JPH07101784A - Aluminum nitride joined body and its production - Google Patents

Aluminum nitride joined body and its production

Info

Publication number
JPH07101784A
JPH07101784A JP12350994A JP12350994A JPH07101784A JP H07101784 A JPH07101784 A JP H07101784A JP 12350994 A JP12350994 A JP 12350994A JP 12350994 A JP12350994 A JP 12350994A JP H07101784 A JPH07101784 A JP H07101784A
Authority
JP
Japan
Prior art keywords
aluminum nitride
titanium
copper
sintered body
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12350994A
Other languages
Japanese (ja)
Inventor
Shunichiro Tanaka
俊一郎 田中
Kazuo Ikeda
和男 池田
Akio Sayano
顕生 佐谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12350994A priority Critical patent/JPH07101784A/en
Publication of JPH07101784A publication Critical patent/JPH07101784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce an aluminum nitride joined body having high bonding strength and not causing cracking or breaking even under a sudden heat shock. CONSTITUTION:An aluminum nitride sintered compact 1 is joined to a metallic member 1' having >=10X10<-6>/ deg.C coefft. of linear expansion with copper or copper alloy 2 and layers 3 of a compd. based on titanium nitride formed by a reaction of titanium with nitrogen atoms diffused and migrated from the aluminum nitride sintered compact 1 to produce the objective aluminum nitride joined body. In other way, an aluminum nitride sintered compact is joined to a metallic member made of copper or copper alloy with a layer based on titanium nitride formed by a reaction of titanium with nitrogen atoms diffused and migrated from the aluminum nitride sintered compact to produce the objective aluminum nitride joined body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、接合強度が大きく、か
つヒートショックを受けても接合部界面近傍に亀裂や破
壊の生じ難い新規な窒化アルミニウム接合体およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel aluminum nitride bonded body which has a high bonding strength and is resistant to cracking or breakage near the interface of the bonded portion even when subjected to heat shock, and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、アルミナ等のセラミックス焼
結体に金属部材を接合する方法としては、一般にセラミ
ックス焼結体表面にモリブデンペーストを焼付けてメタ
ライズ処理を施した後、ニッケルめっきを行って金属部
材をろう付けして接合する方法が採られている。
2. Description of the Related Art Conventionally, as a method of joining a metal member to a ceramics sintered body such as alumina, generally, a molybdenum paste is baked on the surface of the ceramics sintered body for metallization, and then nickel plating is applied to the metal. A method of brazing and joining members is adopted.

【0003】近年、このような方法に代って、セラミッ
クス焼結体に金属部材を直接接合させる、より簡便な方
法が検討されており、例えばセラミックス焼結体に金属
部材を接触させて酸素等の結合剤を含むガス雰囲気中で
加熱する方法、あるいは結合剤を含有する金属部材をセ
ラミックス焼結体に接触させて非酸化性雰囲気中で焼成
する方法等が開発されている。
In recent years, instead of such a method, a simpler method of directly bonding a metal member to a ceramics sintered body has been studied. For example, by contacting the metal member with the ceramics sintered body, oxygen, etc. A method of heating in a gas atmosphere containing a binder, a method of contacting a metal member containing a binder with a ceramics sintered body and firing in a non-oxidizing atmosphere, and the like have been developed.

【0004】しかしながら、このような従来のセラミッ
クス−金属接合体では、いずれも前処理工程が複雑であ
る上に、窒化物セラミックス焼結体、例えば AlNの線膨
張係数が 4.6×10-6/℃程度であるのに対して、通常使
用される鉄のそれが10〜15×10-6/℃と非常に大きいた
め、窒化アルミニウム焼結体の接合界面近傍に亀裂が生
じたり、場合によっては破壊してしまうという難点があ
った。
However, in such conventional ceramics-metal bonded bodies, the pretreatment process is complicated, and the linear expansion coefficient of nitride ceramics sintered bodies such as AlN is 4.6 × 10 -6 / ° C. In contrast to ordinary steel, the amount of iron that is normally used is very large at 10 to 15 × 10 -6 / ° C, so cracks may occur near the bonding interface of the aluminum nitride sintered body, or in some cases fracture. There was a problem that I would do it.

【0005】一方、セラミックス焼結体とセラミックス
焼結体との接合方法としては、上述したメタライズ処理
法の他に、銅箔やチタン箔を介してセラミックス焼結体
−セラミックス焼結体間を直接接合する方法も開発され
ているが、銅箔を介して接合する方法では接合強度が 1
0kg/mm2 以下と不十分であり、かつ急激なヒートショッ
クが与えられた場合には接合界面近傍に亀裂が入り易
く、場合によっては破壊してしまうという難点があっ
た。
On the other hand, as a method for joining the ceramics sintered body to the ceramics sintered body, in addition to the above-mentioned metallizing method, the ceramics sintered body-ceramics sintered body can be directly bonded via a copper foil or a titanium foil. Although a joining method has been developed, the joining strength is 1 in the method of joining via copper foil.
It was insufficient at 0 kg / mm 2 or less, and when a rapid heat shock was applied, there was a problem that cracks tended to occur near the bonding interface and in some cases, it was destroyed.

【0006】[0006]

【発明が解決しようとする課題】本発明者等は、かかる
従来の難点を解消すべく鋭意研究をすすめたところ、窒
化アルミニウム焼結体と金属部材間に、銅もしくは銅合
金とチタンもしくはチタン化合物を介して焼成すること
により、接合強度が大きく、しかもヒートショックによ
る接合界面への亀裂の発生し難い窒化アルミニウム接合
体が得られることを見出した。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made earnest studies to solve the above-mentioned conventional problems. As a result, copper or copper alloy and titanium or titanium compound are provided between the aluminum nitride sintered body and the metal member. It has been found that the aluminum nitride bonded body having a high bonding strength and being less likely to cause cracks at the bonding interface due to heat shock can be obtained by firing through.

【0007】本発明は、かかる知見に基いてなされたも
ので、接合強度が大きく、しかも、急激なヒートショッ
クによっても亀裂や破壊を起こすことのない窒化アルミ
ニウム接合体およびその製造方法を提供しようとするも
のである。
The present invention has been made on the basis of such findings, and it is an object of the present invention to provide an aluminum nitride bonded body which has a large bonding strength and does not cause cracking or destruction even by a rapid heat shock, and a manufacturing method thereof. To do.

【0008】[0008]

【課題を解決するための手段と作用】本発明における第
1の窒化アルミニウム接合体は、窒化アルミニウム焼結
体と、線膨張係数が10×10-6/℃以上の金属部材とが、
(a)銅もしくは銅合金および(b)チタンと前記窒化アル
ミニウム焼結体から拡散移行した窒素原子との反応によ
り形成された窒化チタンを主体とする化合物層を介して
接合されてなることを特徴としている。
The first aluminum nitride bonded body according to the present invention comprises an aluminum nitride sintered body and a metal member having a linear expansion coefficient of 10 × 10 −6 / ° C. or more.
(a) copper or copper alloy and (b) characterized by being bonded through a compound layer mainly composed of titanium nitride formed by the reaction of titanium and nitrogen atoms diffused and transferred from the aluminum nitride sintered body I am trying.

【0009】第2の窒化アルミニウム接合体は、窒化ア
ルミニウム焼結体と、銅もしくは銅合金からなる金属部
材とが、チタンと前記窒化アルミニウム焼結体から拡散
移行した窒素原子との反応により形成された窒化チタン
を主体とする化合物層を介して接合されてなることを特
徴としている。
The second aluminum nitride bonded body is formed by the reaction of the aluminum nitride sintered body and the metal member made of copper or a copper alloy with titanium and nitrogen atoms diffused and transferred from the aluminum nitride sintered body. It is characterized in that they are joined via a compound layer mainly composed of titanium nitride.

【0010】また、本発明の窒化アルミニウム接合体の
製造方法は、窒化アルミニウム焼結体と、線膨張係数が
10×10-6/℃以上の金属部材間に、 (a)銅もしくは銅合
金ならびに (b)チタンもしくは窒素と反応し得るチタン
化合物が混在する層( a、 b成分が合金となっている場
合を除く)を介在させて、真空または不活性雰囲気中で
介在層の融点以上の温度で焼成することにより、前記窒
化アルミニウム焼結体と金属部材間に、前記銅もしくは
銅合金ならびにチタンと前記窒化アルミニウム焼結体か
ら拡散移行した窒素原子との反応により形成された窒化
チタンを主体とする化合物からなる層を形成することを
特徴としている。
The method for manufacturing an aluminum nitride bonded body according to the present invention has a coefficient of linear expansion of
A layer in which (a) copper or copper alloy and (b) titanium or a titanium compound capable of reacting with nitrogen are mixed between metal members of 10 × 10 -6 / ° C or higher (when the a and b components are alloys) ), And baking at a temperature equal to or higher than the melting point of the intervening layer in a vacuum or an inert atmosphere, so that the copper or copper alloy and the titanium and the nitriding are formed between the aluminum nitride sintered body and the metal member. It is characterized in that a layer made of a compound mainly containing titanium nitride formed by a reaction with nitrogen atoms diffused and transferred from the aluminum sintered body is formed.

【0011】本発明の窒化アルミニウム接合体は、具体
的には以下に示すような方法により製造することができ
る。
The aluminum nitride bonded body of the present invention can be manufactured specifically by the following method.

【0012】(A) 窒化アルミニウム焼結体と金属部材
間に、銅もしくは銅合金を配置し、かつこの銅もしくは
銅合金と上記窒化アルミニウム焼結体間に、チタンもし
くは窒素と反応し得るチタン化合物(以下、チタン等と
言う)の粉末層を介在させて、真空または不活性雰囲気
中で介在層の融点以上の温度で焼成する。
(A) A titanium compound in which copper or a copper alloy is arranged between the aluminum nitride sintered body and the metal member, and titanium or nitrogen can react with between the copper or copper alloy and the aluminum nitride sintered body. A powder layer of titanium (hereinafter referred to as "titanium" or the like) is interposed, and firing is performed at a temperature equal to or higher than the melting point of the intervening layer in a vacuum or an inert atmosphere.

【0013】(B) 窒化アルミニウム焼結体と金属部材
間に、銅もしくは銅合金粉末とチタン等の粉末との混合
粉末を介在させて、真空または不活性雰囲気中で介在層
の融点以上の温度で焼成する。
(B) A temperature higher than the melting point of the intervening layer in a vacuum or an inert atmosphere with a mixed powder of copper or copper alloy powder and titanium powder interposed between the aluminum nitride sintered body and the metal member. Bake at.

【0014】(C) 窒化アルミニウム焼結体と金属部材
間に、銅もしくは銅合金および間欠的に空隙を設けたチ
タン等を介在させて、真空または不活性雰囲気中で介在
層の融点以上の温度で焼成する。
(C) A temperature higher than the melting point of the intervening layer in vacuum or in an inert atmosphere with copper or copper alloy and titanium or the like having intermittent voids interposed between the aluminum nitride sintered body and the metal member. Bake at.

【0015】(D) 窒化アルミニウム焼結体と金属部材
間に、チタン等の繊維を埋入させた銅もしくは銅合金の
粉末を介在させて、真空または不活性雰囲気中で介在層
の融点以上の温度で焼成する。
(D) A powder of copper or a copper alloy in which fibers such as titanium are embedded is interposed between the aluminum nitride sintered body and the metal member, and the temperature is not lower than the melting point of the intervening layer in a vacuum or an inert atmosphere. Bake at temperature.

【0016】上記した (A)〜 (D)の方法について、図面
を参照してさらに詳しく説明する。(A)の方法 (1) 図1に示すように、一方の被接合部材である窒化
アルミニウム焼結体1と他方の被接合部材(金属部材)
1′の接合面および銅もしくは銅合金箔2の表面に、チ
タン等の粉末を有機溶剤に分散させてスラリーとして塗
布し加熱乾燥して、チタン等の粉末層3を形成し、この
粉末層3を対向させて重ね合せ、真空中または不活性雰
囲気中で介在層の融点以上の温度で焼成して一体化させ
る。
The above methods (A) to (D) will be described in more detail with reference to the drawings. Method (A) (1) As shown in FIG. 1, the aluminum nitride sintered body 1 which is one member to be joined and the other member (metal member) to be joined
Powder of titanium or the like is dispersed in an organic solvent on the bonding surface 1'and the surface of the copper or copper alloy foil 2 to be applied as a slurry and heated and dried to form a powder layer 3 of titanium or the like. Are opposed to each other and stacked, and are baked and integrated at a temperature equal to or higher than the melting point of the intervening layer in a vacuum or an inert atmosphere.

【0017】(2) 金属部材として銅や銅合金を用いる
場合には、図2に示すように、窒化アルミニウム焼結体
1と金属部材(銅もしくは銅合金)4との接合面に、チ
タン等の粉末を有機溶剤に分散させたスラリーを塗布し
加熱乾燥して、チタン等の粉末層3を形成し、このチタ
ン等の粉末層3を対向させて重ね合せ、真空中または不
活性雰囲気中で介在層の融点以上の温度で焼成して一体
化させる。
(2) When copper or a copper alloy is used as the metal member, as shown in FIG. 2, titanium or the like is formed on the joint surface between the aluminum nitride sintered body 1 and the metal member (copper or copper alloy) 4. Of the above powder is dispersed in an organic solvent and heated and dried to form a powder layer 3 of titanium or the like. The powder layer 3 of titanium or the like is faced and overlapped, and the powder layer 3 is placed in a vacuum or in an inert atmosphere. It is fired at a temperature equal to or higher than the melting point of the intervening layer to be integrated.

【0018】(B)の方法 図3に示すように、微細な(例えば 325メッシュ通過)
銅もしくは銅合金粉末とチタン等の粉末とをアルコール
のような有機溶剤中で混合してスラリーとし、このスラ
リーを乾燥して所定形状にプレス成型し、厚さ 0.1〜 5
mm程度の圧粉体5を成型する。このときの銅もしくは銅
合金とチタン等の粉末との混合比は、銅(合金):チタ
ン等= 95:5〜70:30 の範囲が適当である。次に、接合す
べき窒化アルミニウム焼結体1と金属部材1′間に上記
圧粉体5を挟み、真空中または不活性雰囲気中で圧粉体
5の融点以上の温度で焼成して接合一体化する。
Method (B) As shown in FIG. 3, fine (for example, 325 mesh passage)
Copper or copper alloy powder and powder of titanium or the like are mixed in an organic solvent such as alcohol to form a slurry, and the slurry is dried and press-molded into a predetermined shape to have a thickness of 0.1 to 5
The green compact 5 of about mm is molded. At this time, the mixing ratio of copper or a copper alloy and powder of titanium or the like is appropriately in the range of copper (alloy): titanium or the like = 95: 5 to 70:30. Next, the green compact 5 is sandwiched between the aluminum nitride sintered body 1 and the metal member 1 ′ to be joined, and the compact is fired at a temperature higher than the melting point of the green compact 5 in a vacuum or an inert atmosphere to integrally join. Turn into.

【0019】(C)の方法 図4に示すように、チタン線を織成したり、同一平面上
で繰り返し屈曲させたり、多数条並列させたり、あるい
はチタン箔に多数の打抜き孔を設ける等して形成した、
間欠的に空隙を有するチタン材料(図4ではチタン線6
を繰り返し屈曲させたものを示している)を窒化アルミ
ニウム焼結体1側に配置し、この上に銅もしくは銅合金
を介して(銅もしくは銅合金からなる金属部材を接合す
る場合は不要)、金属部材1′を重ね、真空中または不
活性雰囲気中でチタン材料および銅もしくは銅合金の融
点以上の温度で焼成して接合一体化する。
Method (C) As shown in FIG. 4, a titanium wire is woven, repeatedly bent on the same plane, a large number of rows are arranged in parallel, or a titanium foil is provided with a large number of punched holes. did,
Titanium material having intermittent voids (in FIG. 4, titanium wire 6
Is shown on the side of the aluminum nitride sintered body 1 side, and copper or a copper alloy is interposed on this (not required when a metal member made of copper or a copper alloy is joined), The metal members 1'are overlapped and fired at a temperature equal to or higher than the melting points of the titanium material and copper or copper alloy in a vacuum or an inert atmosphere to join and integrate them.

【0020】(D)の方法 図5に示すように、 (B)の方法において、銅もしくは銅
合金粉末とチタン等の粉末とによる加圧粉体に代えて、
銅もしくは銅合金粉末7にチタン繊維8を混入させたも
のを (B)の方法と同様にして加圧成型した圧粉体、また
は図6に示すように、銅もしくは銅合金粉末7単独の圧
粉体の両面にチタン繊維からなる網状体9を配置し、再
度加圧してこの網状体9の一部を加圧粉体中に埋入させ
たものを用いる。この方法における銅もしくは銅合金と
チタン等との配合比も (B)の方法に準じた範囲とする。
Method (D) As shown in FIG. 5, in the method (B), instead of the pressed powder of copper or copper alloy powder and powder of titanium or the like,
Copper or copper alloy powder 7 mixed with titanium fiber 8 was pressure-molded in the same manner as in the method (B), or as shown in FIG. 6, copper or copper alloy powder 7 alone was pressed. A reticulate body 9 made of titanium fibers is arranged on both sides of the powder, and the reticulated body 9 is partially embedded in the powder under pressure. The compounding ratio of copper or copper alloy to titanium in this method is also in the range according to the method (B).

【0021】このようにして接合された窒化アルミニウ
ム接合体の接合部界面には、窒化アルミニウム焼結体中
の窒素とチタン等との反応による窒化チタンを含む相が
形成され、また銅もしくは銅合金とチタンとが合金化さ
れて種々の組成の合金化相が形成される。なお、このよ
うな接合部を有する窒化アルミニウム接合体は、被接合
部材間に銅もしくは銅合金を介在させ、両接合面にチタ
ンを含有するろう材を挿入して不活性雰囲気中で加熱し
接合することによっても得られる。
A phase containing titanium nitride is formed by a reaction between nitrogen and titanium in the aluminum nitride sintered body, and a copper or copper alloy is formed at the interface of the joined portion of the aluminum nitride joined body thus joined. And titanium are alloyed to form alloyed phases of various compositions. In addition, the aluminum nitride bonded body having such a bonded portion has copper or copper alloy interposed between the members to be bonded, and a brazing material containing titanium is inserted into both bonding surfaces and heated in an inert atmosphere for bonding. It can also be obtained by doing.

【0022】本発明の被接合部材となる窒化アルミニウ
ム焼結体としては、特に常圧焼結、ホットプレス等によ
り焼成された緻密質のものが好適である。また、他方の
被接合部材となる金属部材は、鋼材や銅等の線膨張係数
が10×10-6/℃以上のものである。
As the aluminum nitride sintered body which is the member to be joined of the present invention, a dense one sintered by atmospheric pressure sintering, hot pressing or the like is particularly preferable. The other metal member to be joined is a material such as steel or copper having a linear expansion coefficient of 10 × 10 −6 / ° C. or higher.

【0023】また、本発明に使用し得る銅合金として
は、例えば黄銅、青銅が挙げられる。銅およびこれらの
銅合金の破断伸びは次の通りである。
Further, examples of the copper alloy that can be used in the present invention include brass and bronze. The breaking elongations of copper and these copper alloys are as follows.

【0024】 純銅 45% 黄銅 60%青銅 64% 純鉄 29% なお、これらのうち純銅が最適であり、黄銅も安価で、
かつ亜鉛の含量が20〜40重量% の範囲で 60%以上の伸び
が得られるので、本発明に適している。さらに、本発明
に使用される窒素と反応し得るチタン化合物としては、
例えば二酸化チタンが挙げられる。
Pure copper 45% Brass 60% Bronze 64% Pure iron 29% Of these, pure copper is the most suitable, and brass is also inexpensive.
In addition, the elongation of 60% or more can be obtained when the zinc content is in the range of 20 to 40% by weight, which is suitable for the present invention. Further, as the titanium compound that can react with nitrogen used in the present invention,
For example, titanium dioxide can be used.

【0025】このようにして得られた窒化アルミニウム
接合体は、窒化チタンの界面層の存在により 10kg/mm2
を超える大きい接合強度を有し、かつ銅もしくは銅合金
の存在により応力が緩和されて急激なヒートショックが
加えられても窒化アルミニウム焼結体の接合界面近傍に
亀裂が生じたり、破壊したりするおそれがない。
The aluminum nitride bonded body thus obtained was 10 kg / mm 2 due to the presence of the titanium nitride interface layer.
It has a large joint strength exceeding 1.0 and even if stress is relieved due to the presence of copper or copper alloy and a sudden heat shock is applied, cracks may occur near the joint interface of the aluminum nitride sintered body, or it may break. There is no fear.

【0026】なお、上記各方法の内、 (A)の方法におい
てスラリーを接合面に塗布する方法は、接合面が複雑な
形状の場合に適しており、また (C)の方法において接合
面を間欠的に接合させた場合には、さらに応力緩和効果
が向上し、ヒートショックによる亀裂の発生がより効果
的に防止される。
Among the above methods, the method of applying the slurry to the joint surface in the method (A) is suitable when the joint surface has a complicated shape, and the method of (C) applies the slurry to the joint surface. When they are joined intermittently, the stress relaxation effect is further improved, and the generation of cracks due to heat shock is more effectively prevented.

【0027】[0027]

【実施例】次に、本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0028】実施例1 線径 300μm φ、網目間隔 1.5mmの金属チタン網を、常
圧焼結した窒化ケイ素からなるセラミックス焼結体と銅
板間に挟み、真空中で1050℃で 5分間加熱して接合させ
た。このようにして得られたセラミックス接合体のせん
断強度は 25kg/mm2 であり、かつその破壊はセラミック
ス焼結体の部分で起った。
Example 1 A metal titanium mesh having a wire diameter of 300 μm φ and a mesh spacing of 1.5 mm was sandwiched between a ceramic sintered body made of silicon nitride sintered under normal pressure and a copper plate, and heated in vacuum at 1050 ° C. for 5 minutes. Joined together. The shear strength of the ceramic bonded body thus obtained was 25 kg / mm 2 , and the fracture occurred in the ceramic sintered body.

【0029】実施例2 常圧焼結した 2個の窒化ケイ素からなるセラミックス焼
結体の接合面に、チタン粉末をエチルアルコール中に分
散させたスラリーを直径 400μm の散点状に塗着し、 4
00℃で 5分間乾燥させた後、厚さ 300μm の銅板を介し
て塗着面を重ね合わせ、アルゴン雰囲気中で1050℃で 5
分間加熱して接合させた。
Example 2 A slurry in which titanium powder was dispersed in ethyl alcohol was applied to the bonding surface of a ceramics sintered body composed of two silicon nitrides that had been pressurelessly sintered, in the form of spots having a diameter of 400 μm. Four
After drying at 00 ° C for 5 minutes, the coated surfaces are overlapped with each other through a copper plate with a thickness of 300 μm, and then 5 ° C at 1050 ° C in an argon atmosphere.
Heated for minutes to bond.

【0030】この実施例の接合体の接合面には、マイク
ロクラックは全く認められなかったが、チタンをセラミ
ックス焼結体の全面に塗着した点を除いて同様に接合し
た比較例のものでは、接合面にマイクロクラックの生成
が認められた。従って、従来はクラックが生じて使用さ
れなかったものが十分な強度を有して使用できるように
なった。
No microcracks were observed on the joint surface of the joint body of this example, but in the comparative example which was jointed in the same manner except that titanium was applied to the entire surface of the ceramic sintered body. The generation of microcracks was observed on the joint surface. Therefore, it has become possible to use a material that has been cracked and was not used in the past with sufficient strength.

【0031】実施例3 銅粉末(325メッシュ通過)と金属チタン短繊維(繊維径
300μm φ、繊維長2mm)とをエチルアルコール中で混合
して乾燥した後、プレスにより厚さ 500μm、縦、横各1
0mmの圧粉体に成型した。次に、この圧粉体を常圧焼結
した 2個の窒化ケイ素からなるセラミックス焼結体間に
挟み、アルゴン雰囲気中で1050℃で 5分間加熱して接合
させた。このようにして得られたセラミックス接合体の
せん断破壊強度は 20kg/mm2 であり、破壊はセラミック
ス焼結体の部分で起った。
Example 3 Copper powder (passing 325 mesh) and metallic titanium short fibers (fiber diameter)
(300 μm φ, fiber length 2 mm) in ethyl alcohol and dried, then press 500 μm in thickness, 1 each in length and width
Molded into 0 mm green compact. Next, this green compact was sandwiched between two ceramics sintered bodies made of silicon nitride that were sintered under normal pressure, and heated at 1050 ° C. for 5 minutes in an argon atmosphere to bond them. The shear fracture strength of the ceramic joined body thus obtained was 20 kg / mm 2 , and the fracture occurred in the ceramic sintered body.

【0032】[0032]

【発明の効果】以上説明したように本発明によれば、接
合強度が大きく、しかも急激なヒートショックの付加に
よる亀裂や破壊の発生を抑制した窒化アルミニウム接合
体を提供することが可能となる。
As described above, according to the present invention, it is possible to provide an aluminum nitride bonded body which has a high bonding strength and which suppresses the occurrence of cracks and breakage due to the rapid application of heat shock.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の窒化アルミニウム接合体の一構造例
およびその製造方法を説明するための側面図である。
FIG. 1 is a side view for explaining one structural example of an aluminum nitride bonded body of the present invention and a manufacturing method thereof.

【図2】 本発明の窒化アルミニウム接合体の他の構造
例およびその製造方法を説明するための側面図である。
FIG. 2 is a side view for explaining another structural example of the aluminum nitride bonded body of the present invention and a method for manufacturing the same.

【図3】 本発明の窒化アルミニウム接合体のさらに他
の構造例およびその製造方法を説明するための側面図で
ある。
FIG. 3 is a side view for explaining still another structural example of the aluminum nitride bonded body of the present invention and a manufacturing method thereof.

【図4】 本発明の窒化アルミニウム接合体のさらに他
の構造例およびその製造方法を説明するための斜視図で
ある。
FIG. 4 is a perspective view for explaining still another structural example of the aluminum nitride bonded body of the present invention and a manufacturing method thereof.

【図5】 本発明に使用する圧粉体の一構造例を示す斜
視図である。
FIG. 5 is a perspective view showing one structural example of a green compact used in the present invention.

【図6】 本発明に使用する圧粉体の他の構造例を示す
斜視図である。
FIG. 6 is a perspective view showing another structural example of the green compact used in the present invention.

【符号の説明】[Explanation of symbols]

1……窒化アルミニウム焼結体 1′…金属部材 2……銅または銅合金箔 3……チタンまたは窒素と反応し得るチタン化合物の粉
末層 4……銅または銅合金からなる金属部材 5……圧粉体 6……チタン線 7……銅または銅合金粉末 8……チタン繊維 9……チタン繊維からなる網状体
1 ... Aluminum nitride sintered body 1 '... Metal member 2 ... Copper or copper alloy foil 3 ... Powder layer of titanium compound capable of reacting with titanium or nitrogen 4 ... Metal member made of copper or copper alloy 5 ... Green compact 6 ... Titanium wire 7 ... Copper or copper alloy powder 8 ... Titanium fiber 9 ... Titanium fiber mesh

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウム焼結体と、線膨張係数
が10×10-6/℃以上の金属部材とが、 (a)銅もしくは銅合金および (b)チタンと前記窒化アル
ミニウム焼結体から拡散移行した窒素原子との反応によ
り形成された窒化チタンを主体とする化合物層を介して
接合されてなることを特徴とする窒化アルミニウム接合
体。
1. An aluminum nitride sintered body and a metal member having a linear expansion coefficient of 10 × 10 −6 / ° C. or more are formed from (a) copper or copper alloy and (b) titanium and the aluminum nitride sintered body. An aluminum nitride bonded body, wherein the aluminum nitride bonded body is bonded through a compound layer mainly composed of titanium nitride formed by a reaction with nitrogen atoms that have diffused and transferred.
【請求項2】 窒化アルミニウム焼結体と、銅もしくは
銅合金からなる金属部材とが、 チタンと前記窒化アルミニウム焼結体から拡散移行した
窒素原子との反応により形成された窒化チタンを主体と
する化合物層を介して接合されてなることを特徴とする
窒化アルミニウム接合体。
2. An aluminum nitride sintered body and a metal member made of copper or a copper alloy are mainly composed of titanium nitride formed by a reaction between titanium and nitrogen atoms diffused and transferred from the aluminum nitride sintered body. An aluminum nitride bonded body, which is bonded through a compound layer.
【請求項3】 窒化アルミニウム焼結体と、線膨張係数
が10×10-6/℃以上の金属部材間に、 (a)銅もしくは銅
合金ならびに (b)チタンもしくは窒素と反応し得るチタ
ン化合物が混在する層( a、 b成分が合金となっている
場合を除く)を介在させて、真空または不活性雰囲気中
で介在層の融点以上の温度で焼成することにより、前記
窒化アルミニウム焼結体と金属部材間に、前記銅もしく
は銅合金ならびにチタンと前記窒化アルミニウム焼結体
から拡散移行した窒素原子との反応により形成された窒
化チタンを主体とする化合物からなる層を形成すること
を特徴とする窒化アルミニウム接合体の製造方法。
3. A titanium compound capable of reacting with (a) copper or a copper alloy and (b) titanium or nitrogen between an aluminum nitride sintered body and a metal member having a linear expansion coefficient of 10 × 10 −6 / ° C. or more. The aluminum nitride sintered body is obtained by interposing a layer in which is mixed (except when the a and b components are alloys) and firing at a temperature equal to or higher than the melting point of the intervening layer in a vacuum or an inert atmosphere. Between the metal member and the metal member, a layer comprising a compound mainly composed of titanium nitride formed by the reaction of the copper or copper alloy and titanium and nitrogen atoms diffused and transferred from the aluminum nitride sintered body is formed. Method for manufacturing aluminum nitride bonded body.
JP12350994A 1994-06-06 1994-06-06 Aluminum nitride joined body and its production Pending JPH07101784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12350994A JPH07101784A (en) 1994-06-06 1994-06-06 Aluminum nitride joined body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12350994A JPH07101784A (en) 1994-06-06 1994-06-06 Aluminum nitride joined body and its production

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58182093A Division JPS6077178A (en) 1983-09-30 1983-09-30 Ceramic bonded body and manufacture

Publications (1)

Publication Number Publication Date
JPH07101784A true JPH07101784A (en) 1995-04-18

Family

ID=14862378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12350994A Pending JPH07101784A (en) 1994-06-06 1994-06-06 Aluminum nitride joined body and its production

Country Status (1)

Country Link
JP (1) JPH07101784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224017A (en) * 2013-05-16 2014-12-04 新日鐵住金株式会社 Wear-resistant member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033269A (en) * 1983-08-02 1985-02-20 株式会社東芝 Metal ceramic bonding method
JPS6077178A (en) * 1983-09-30 1985-05-01 株式会社東芝 Ceramic bonded body and manufacture
JPS6077177A (en) * 1983-09-30 1985-05-01 株式会社東芝 Ceramic bonded body
JPS62179893A (en) * 1986-02-05 1987-08-07 Toshiba Corp Brazing filler metal for joining metal and ceramics
JPH0474306A (en) * 1990-07-13 1992-03-09 Canon Inc Information recording carrier driving device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033269A (en) * 1983-08-02 1985-02-20 株式会社東芝 Metal ceramic bonding method
JPS6077178A (en) * 1983-09-30 1985-05-01 株式会社東芝 Ceramic bonded body and manufacture
JPS6077177A (en) * 1983-09-30 1985-05-01 株式会社東芝 Ceramic bonded body
JPS62179893A (en) * 1986-02-05 1987-08-07 Toshiba Corp Brazing filler metal for joining metal and ceramics
JPH0474306A (en) * 1990-07-13 1992-03-09 Canon Inc Information recording carrier driving device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224017A (en) * 2013-05-16 2014-12-04 新日鐵住金株式会社 Wear-resistant member

Similar Documents

Publication Publication Date Title
JPH0474306B2 (en)
US4624404A (en) Method for bonding ceramics and metals
JPH11330308A (en) Ceramic circuit board and manufacture thereof
US6345437B1 (en) Process for the manufacturing of an arched metal ceramic substratum
JPS6077177A (en) Ceramic bonded body
JPH07101784A (en) Aluminum nitride joined body and its production
JPH0710645A (en) Aluminum nitride conjugate and its production
JPH1171186A (en) Bound structure of ceramic to metal and its binding
JP2541837B2 (en) Method for manufacturing bonded body of ceramics and metal
JPH0492871A (en) Ceramic-metal binding body and production thereof
JP2797020B2 (en) Bonded body of silicon nitride and metal and method for producing the same
JPH0292872A (en) Bonding between ceramic material and copper material
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JP2826840B2 (en) Method of joining ceramic body and metal member
JPH09172247A (en) Ceramic circuit board and manufacture thereof
JP2001048670A (en) Ceramics-metal joined body
JPS62207788A (en) Metallization of non-oxide base ceramics
KR0180485B1 (en) Method of manufacturing si3n4 sintered body and metal conjugate
JPH0362674B2 (en)
JPH0460947B2 (en)
JPS62171979A (en) Nonoxide type ceramics metallization and joining method
JP2771810B2 (en) Method of joining ceramic and metal body and joined body
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JP3523665B2 (en) Method of forming metal layer on ceramic surface
JP2000349098A (en) Bonded body of ceramic substrate and semiconductor device, and its manufacture