JPH0710645A - Aluminum nitride conjugate and its production - Google Patents

Aluminum nitride conjugate and its production

Info

Publication number
JPH0710645A
JPH0710645A JP25288693A JP25288693A JPH0710645A JP H0710645 A JPH0710645 A JP H0710645A JP 25288693 A JP25288693 A JP 25288693A JP 25288693 A JP25288693 A JP 25288693A JP H0710645 A JPH0710645 A JP H0710645A
Authority
JP
Japan
Prior art keywords
titanium
aluminum nitride
copper
sintered body
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25288693A
Other languages
Japanese (ja)
Inventor
Shunichiro Tanaka
俊一郎 田中
Kazuo Ikeda
和男 池田
Akio Sayano
顕生 佐谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25288693A priority Critical patent/JPH0710645A/en
Publication of JPH0710645A publication Critical patent/JPH0710645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain an aluminum nitride conjugate of high joint strength, unbreakable even by thermal shock, by placing metallic copper (alloy) in between an aluminum nitride sintered compact and a metallic member with a specified linear expansion coefficient followed by baking under specified conditions in the presence of metallic Ti, etc. CONSTITUTION:Firstly, metallic copper (alloy) 2 together with metallic Ti or a titanium compound 3 reactive with nitrogen is placed in between an aluminum nitride sintered compact 1 and a metallic member 1 with a linear expansion coefficient of <10X10<-6> deg.C. Second, the system is baked in an inert atmosphere at a temperature >= the melting point of the metallic Ti or said compound. Then, a layer consisting of a compound predominant in titanium nitride formed by reaction between (A) the metallic copper (alloy) 2 and titanium and (B) the nitrogen atom diffused and migrated from the aluminum nitride sintered compact 1 is developed in between said sintered compact 1 and metallic member 1, thus effecting the aimed conjugation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、接合強度が大きく、か
つヒートショックを受けても接合部界面近傍に亀裂や破
壊の生じ難い新規な窒化アルミニウム接合体およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel aluminum nitride bonded body which has a high bonding strength and is resistant to cracking or breakage near the interface of the bonded portion even when subjected to heat shock, and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、アルミナ等のセラミックス焼
結体に金属部材を接合する方法としては、一般にセラミ
ックス焼結体表面にモリブデンペーストを焼付けてメタ
ライズ処理を施した後、ニッケルめっきを行って金属部
材をろう付けして接合する方法が採られている。
2. Description of the Related Art Conventionally, as a method of joining a metal member to a ceramics sintered body such as alumina, generally, a molybdenum paste is baked on the surface of the ceramics sintered body for metallization, and then nickel plating is applied to the metal. A method of brazing and joining members is adopted.

【0003】近年、このような方法に代って、セラミッ
クス焼結体に金属部材を直接接合させる、より簡便な方
法が検討されており、例えばセラミックス焼結体に金属
部材を接触させて酸素等の結合剤を含むガス雰囲気中で
加熱する方法、あるいは結合剤を含有する金属部材をセ
ラミックス焼結体に接触させて非酸化性雰囲気中で焼成
する方法等が開発されている。
In recent years, instead of such a method, a simpler method of directly bonding a metal member to a ceramics sintered body has been studied. For example, by contacting the metal member with the ceramics sintered body, oxygen, etc. A method of heating in a gas atmosphere containing a binder, a method of contacting a metal member containing a binder with a ceramics sintered body and firing in a non-oxidizing atmosphere, and the like have been developed.

【0004】しかしながら、このような従来のセラミッ
クス−金属接合体では、いずれも前処理工程が複雑であ
る上に、窒化物セラミックス焼結体、例えば AlNの線膨
張係数が 4.6×10-6/℃程度であるのに対して、通常使
用される鉄のそれが10〜15×10-6/℃と非常に大きいた
め、窒化アルミニウム焼結体の接合界面近傍に亀裂が生
じたり、場合によっては破壊してしまうという難点があ
った。
However, in such conventional ceramics-metal bonded bodies, the pretreatment process is complicated, and the linear expansion coefficient of nitride ceramics sintered bodies such as AlN is 4.6 × 10 -6 / ° C. In contrast to ordinary steel, the amount of iron that is normally used is very large at 10 to 15 × 10 -6 / ° C, so cracks may occur near the bonding interface of the aluminum nitride sintered body, or in some cases fracture. There was a problem that I would do it.

【0005】一方、セラミックス焼結体とセラミックス
焼結体との接合方法としては、上述したメタライズ処理
法の他に、銅箔やチタン箔を介してセラミックス焼結体
−セラミックス焼結体間を直接接合する方法も開発され
ているが、銅箔を介して接合する方法では接合強度が 1
0kg/mm2 以下と不十分であり、かつ急激なヒートショッ
クが与えられた場合には接合界面近傍に亀裂が入り易
く、場合によっては破壊してしまうという難点があっ
た。
On the other hand, as a method for joining the ceramics sintered body to the ceramics sintered body, in addition to the above-mentioned metallizing method, the ceramics sintered body-ceramics sintered body can be directly bonded via a copper foil or a titanium foil. Although a joining method has been developed, the joining strength is 1 in the method of joining via copper foil.
It was insufficient at 0 kg / mm 2 or less, and when a rapid heat shock was applied, there was a problem that cracks tended to occur near the bonding interface and in some cases, it was destroyed.

【0006】[0006]

【発明が解決しようとする課題】本発明者等は、かかる
従来の難点を解消すべく鋭意研究をすすめたところ、窒
化アルミニウム焼結体と他のセラミックス焼結体または
金属部材間に、銅もしくは銅合金とチタンもしくはチタ
ン化合物を介して焼成することにより、接合強度が大き
く、しかもヒートショックによる接合界面への亀裂の発
生し難い窒化アルミニウム接合体が得られることを見出
した。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made intensive studies to solve the above-mentioned conventional problems, and as a result, a copper or copper alloy is formed between an aluminum nitride sintered body and another ceramic sintered body or a metal member. It has been found that by firing through a copper alloy and titanium or a titanium compound, an aluminum nitride bonded body having a high bonding strength and in which cracks are not easily generated at the bonding interface due to heat shock can be obtained.

【0007】本発明は、かかる知見に基いてなされたも
ので、接合強度が大きく、しかも、急激なヒートショッ
クによっても亀裂や破壊を起こすことのない窒化アルミ
ニウム接合体およびその製造方法を提供しようとするも
のである。
The present invention has been made on the basis of such findings, and it is an object of the present invention to provide an aluminum nitride bonded body which has a large bonding strength and does not cause cracking or destruction even by a rapid heat shock, and a manufacturing method thereof. To do.

【0008】[0008]

【課題を解決するための手段と作用】すなわち、本発明
の窒化アルミニウム接合体は、窒化アルミニウム焼結体
と線膨張係数が10×10-6/℃未満の金属部材とが、 (a)
銅もしくは銅合金および (b)チタンと前記窒化アルミニ
ウム焼結体から拡散移行した窒素原子との反応により形
成された窒化チタンを主体とする化合物層を介して接合
されてなることを特徴としている。
[Means and Actions for Solving the Problems] That is, in the aluminum nitride bonded body of the present invention, the aluminum nitride sintered body and the metal member having a linear expansion coefficient of less than 10 × 10 −6 / ° C.
It is characterized in that they are bonded via a compound layer mainly composed of titanium nitride formed by the reaction of copper or a copper alloy and (b) titanium with nitrogen atoms diffused and transferred from the aluminum nitride sintered body.

【0009】また、本発明における第1の窒化アルミニ
ウム接合体の製造方法は、窒化アルミニウム焼結体と線
膨張係数が10×10-6/℃未満の金属部材間に、 (a)銅も
しくは銅合金を配置し、かつこの銅もしくは銅合金と窒
化アルミニウム焼結体間に、(b)チタンもしくは窒素と
反応し得るチタン化合物を介在させて( a、 b成分が合
金となっている場合を除く)、真空または不活性雰囲気
中で介在層の融点以上の温度で焼成することにより、前
記窒化アルミニウム焼結体と金属部材間に、前記銅もし
くは銅合金ならびにチタンと前記窒化アルミニウム焼結
体から拡散移行した窒素原子との反応により形成された
窒化チタンを主体とする化合物からなる層を形成するこ
とを特徴としている。
Further, the first method for producing an aluminum nitride bonded body according to the present invention comprises: (a) copper or copper between the aluminum nitride sintered body and a metal member having a linear expansion coefficient of less than 10 × 10 −6 / ° C. An alloy is placed, and (b) a titanium compound capable of reacting with titanium or nitrogen is interposed between the copper or copper alloy and the aluminum nitride sintered body (except when a and b are alloys). ), By baking at a temperature equal to or higher than the melting point of the intervening layer in a vacuum or an inert atmosphere, diffusion between the copper or copper alloy and titanium and the aluminum nitride sintered body occurs between the aluminum nitride sintered body and the metal member. It is characterized in that a layer made of a compound containing titanium nitride as a main component is formed by the reaction with the transferred nitrogen atoms.

【0010】さらに、第2の窒化アルミニウム接合体の
製造方法は、窒化アルミニウム焼結体と線膨張係数が10
×10-6/℃未満の金属部材間に、 (a)銅もしくは銅合金
ならびに (b)チタンもしくは窒素と反応し得るチタン化
合物が混在する層( a、 b成分が合金となっている場合
を除く)を介在させて、真空または不活性雰囲気中で介
在層の融点以上の温度で焼成することにより、前記窒化
アルミニウム焼結体と金属部材間に、前記銅もしくは銅
合金ならびにチタンと前記窒化アルミニウム焼結体から
拡散移行した窒素原子との反応により形成された窒化チ
タンを主体とする化合物からなる層を形成することを特
徴としている。
Further, according to the second method for manufacturing an aluminum nitride bonded body, the coefficient of linear expansion is 10 or less than that of the aluminum nitride sintered body.
A layer containing (a) copper or a copper alloy and (b) a titanium compound capable of reacting with titanium or nitrogen between metal members having a temperature of less than × 10 -6 / ° C. Except), and firing at a temperature equal to or higher than the melting point of the intervening layer in a vacuum or an inert atmosphere, the copper or copper alloy and the titanium and the aluminum nitride are interposed between the aluminum nitride sintered body and the metal member. It is characterized in that a layer made of a compound mainly composed of titanium nitride formed by reaction with nitrogen atoms diffused and transferred from the sintered body is formed.

【0011】本発明の窒化アルミニウム接合体は、具体
的には以下に示すような方法により製造することができ
る。
The aluminum nitride bonded body of the present invention can be manufactured specifically by the following method.

【0012】(A) 窒化アルミニウム焼結体と金属部材
もしくは他のセラミックス焼結体間に、銅もしくは銅合
金を配置し、かつこの銅もしくは銅合金と上記窒化アル
ミニウム焼結体間に、チタンもしくは窒素と反応し得る
チタン化合物(以下、チタン等と言う)の粉末層を介在
させて、真空または不活性雰囲気中で介在層の融点以上
の温度で焼成する。
(A) Copper or a copper alloy is placed between the aluminum nitride sintered body and the metal member or other ceramics sintered body, and titanium or titanium is placed between the copper or copper alloy and the aluminum nitride sintered body. A titanium compound powder (hereinafter referred to as titanium) capable of reacting with nitrogen is interposed, and firing is performed at a temperature equal to or higher than the melting point of the intervening layer in a vacuum or an inert atmosphere.

【0013】(B) 窒化アルミニウム焼結体と金属部材
もしくは他のセラミックス焼結体間に、銅もしくは銅合
金粉末とチタン等の粉末との混合粉末を介在させて、真
空または不活性雰囲気中で介在層の融点以上の温度で焼
成する。
(B) A mixed powder of copper or copper alloy powder and powder of titanium or the like is interposed between the aluminum nitride sintered body and the metal member or other ceramics sintered body, and the mixture is vacuumed or in an inert atmosphere. Baking is performed at a temperature equal to or higher than the melting point of the intervening layer.

【0014】(C) 窒化アルミニウム焼結体と金属部材
もしくは他のセラミックス焼結体間に、銅もしくは銅合
金の箔と間欠的に空隙を有するチタン等を介在させて、
真空または不活性雰囲気中で介在層の融点以上の温度で
焼成する。
(C) Between the aluminum nitride sintered body and the metal member or other ceramics sintered body, a copper or copper alloy foil and titanium having intermittent voids are interposed,
Baking at a temperature equal to or higher than the melting point of the intervening layer in a vacuum or an inert atmosphere.

【0015】(D) 窒化アルミニウム焼結体と金属部材
もしくは他のセラミックス焼結体間に、チタン等の繊維
を埋入させた銅もしくは銅合金の粉末を介在させて、真
空または不活性雰囲気中で介在層の融点以上の温度で焼
成する。
(D) A powder of copper or copper alloy in which fibers such as titanium are embedded is interposed between the aluminum nitride sintered body and the metal member or other ceramics sintered body, and the powder is placed in a vacuum or an inert atmosphere. And firing at a temperature above the melting point of the intervening layer.

【0016】上記した (A)〜 (D)の方法について、図面
を参照してさらに詳しく説明する。 (A)の方法 (1) 図1に示すように、一方の被接合部材である窒化
アルミニウム焼結体1と他方の被接合部材1′の接合面
および銅もしくは銅合金箔2の表面に、チタン等の粉末
を有機溶剤に分散させてスラリーとして塗布し加熱乾燥
して、チタン等の粉末層3を形成し、この粉末層3を対
向させて重ね合せ、真空中または不活性雰囲気中で介在
層の融点以上の温度で焼成して一体化させる。
The above methods (A) to (D) will be described in more detail with reference to the drawings. Method (A) (1) As shown in FIG. 1, on the joining surface of the aluminum nitride sintered body 1 which is one of the joined members and the other joined member 1 ′ and the surface of the copper or copper alloy foil 2, A powder of titanium or the like is dispersed in an organic solvent, applied as a slurry, and dried by heating to form a powder layer 3 of titanium or the like, and the powder layers 3 are opposed to each other and overlapped with each other. The layers are fired at a temperature equal to or higher than the melting point of the layers to integrate them.

【0017】(2) 金属部材として銅や銅合金を用いる
場合には、図2に示すように、窒化アルミニウム焼結体
1と金属部材4との接合面に、チタン等の粉末を有機溶
剤に分散させたスラリーを塗布し加熱乾燥して、チタン
等の粉末層3を形成し、このチタン等の粉末層3を対向
させて重ね合せ、真空中または不活性雰囲気中で介在層
の融点以上の温度で焼成して一体化させる。
(2) When copper or copper alloy is used as the metal member, as shown in FIG. 2, titanium or other powder is used as an organic solvent on the joint surface between the aluminum nitride sintered body 1 and the metal member 4. The dispersed slurry is applied and dried by heating to form a powder layer 3 of titanium or the like, and the powder layers 3 of titanium or the like are faced and overlapped with each other. Bake at temperature to integrate.

【0018】(B)の方法 図3に示すように、微細な(例えば 325メッシュ通過)
銅もしくは銅合金粉末とチタン等の粉末とをアルコール
のような有機溶剤中で混合してスラリーとし、このスラ
リーを乾燥して所定形状にプレス成型し、厚さ 0.1〜 5
mm程度の圧粉体5を成型する。このときの銅もしくは銅
合金とチタン等の粉末との混合比は、銅(合金):チタ
ン等= 95:5〜70:30 の範囲が適当である。次に、接合す
べき窒化アルミニウム焼結体1と他方の被接合部材1′
間に上記圧粉体5を挟み、真空中または不活性雰囲気中
で圧粉体5の融点以上の温度で焼成して接合一体化す
る。 (C)の方法 図4に示すように、チタン線を織成したり、同一平面上
で繰り返し屈曲させたり、多数条並列させたり、あるい
はチタン箔に多数の打抜き孔を設ける等して形成した、
間欠的に空隙を有するチタン材料(図4ではチタン線6
を繰り返し屈曲させたものを示している)を窒化アルミ
ニウム焼結体1側に配置し、この上に銅もしくは銅合金
を介して(銅もしくは銅合金からなる金属部材を接合す
る場合は不要)、他方の被接合部材1′を重ね、真空中
または不活性雰囲気中でチタン材料および銅もしくは銅
合金の融点以上の温度で焼成して接合一体化する。
Method (B) As shown in FIG. 3, fine (for example, 325 mesh passage)
Copper or copper alloy powder and powder of titanium or the like are mixed in an organic solvent such as alcohol to form a slurry, and the slurry is dried and press-molded into a predetermined shape to have a thickness of 0.1 to 5
The green compact 5 of about mm is molded. At this time, the mixing ratio of copper or a copper alloy and powder of titanium or the like is appropriately in the range of copper (alloy): titanium or the like = 95: 5 to 70:30. Next, the aluminum nitride sintered body 1 to be joined and the other joined member 1 '
The green compact 5 is sandwiched in between, and is fired at a temperature equal to or higher than the melting point of the green compact 5 in vacuum or in an inert atmosphere to join and integrate them. Method (C) As shown in FIG. 4, a titanium wire is woven, repeatedly bent on the same plane, a large number of rows are arranged in parallel, or a titanium foil is formed with a large number of punched holes.
Titanium material having intermittent voids (in FIG. 4, titanium wire 6
Is shown on the side of the aluminum nitride sintered body 1 side, and copper or a copper alloy is interposed on this (not required when a metal member made of copper or a copper alloy is joined), The other members 1'to be joined are stacked and fired at a temperature equal to or higher than the melting points of the titanium material and copper or copper alloy in a vacuum or an inert atmosphere to join and integrate them.

【0019】(D)の方法 図5に示すように、チタン繊維8を混入させた銅もしく
は銅合金粉末を加圧成型した圧粉体7、または図6に示
すように、銅もしくは銅合金粉末単独の圧粉体7の両面
にチタン繊維からなる網状体9を配置し、再度加圧して
網状体9の一部を加圧粉体中に埋入させたものを用い
る。この方法における銅もしくは銅合金とチタン等との
配合比も (B)の方法に準じた範囲とする。
Method (D) As shown in FIG. 5, a green compact 7 obtained by pressure-molding copper or copper alloy powder mixed with titanium fibers 8 or copper or copper alloy powder as shown in FIG. A reticulate body 9 made of titanium fibers is arranged on both surfaces of a single green compact 7 and pressed again to embed a part of the reticulate body 9 in the pressurized powder. The compounding ratio of copper or copper alloy to titanium in this method is also in the range according to the method (B).

【0020】このようにして接合された窒化アルミニウ
ム接合体の接合部界面には、窒化アルミニウム焼結体中
の窒素とチタン等との反応による窒化チタンを含む相が
形成され、また銅もしくは銅合金とチタンとが合金化さ
れて種々の組成の合金化相が形成される。なお、このよ
うな接合物を有する窒化アルミニウム接合体は、被接合
部材間に銅もしくは銅合金を介在させ、両接合面にチタ
ンを含有するろう材を挿入して不活性雰囲気中で加熱し
接合することによっても得られる。
At the joint interface of the aluminum nitride joined body thus joined, a phase containing titanium nitride is formed by the reaction between nitrogen and titanium in the aluminum nitride sintered body, and copper or copper alloy is formed. And titanium are alloyed to form alloyed phases of various compositions. In addition, an aluminum nitride bonded body having such a bonded product is bonded by joining copper or copper alloy between the members to be bonded, inserting a brazing filler metal containing titanium on both bonding surfaces, and heating in an inert atmosphere. It can also be obtained by doing.

【0021】本発明の被接合部材となる窒化アルミニウ
ム焼結体としては、特に常圧焼結、ホットプレス等によ
り焼成された緻密質のものが好適である。また、他方の
被接合部材となる金属部材としては、鋼材のような線膨
張係数が10×10-6/℃以上と大きいものに限らず、コバ
ールやインバーのような線膨張係数が10×10-6/℃未満
のものが好適である。
As the aluminum nitride sintered body which is the member to be joined of the present invention, a dense one sintered by atmospheric pressure sintering, hot pressing or the like is particularly preferable. The metal member to be the other member to be joined is not limited to a material having a large linear expansion coefficient of 10 × 10 −6 / ° C. or more, such as steel material, but a linear expansion coefficient of 10 × 10 6 such as Kovar or Invar. It is preferably less than -6 / ° C.

【0022】また、本発明に使用し得る銅合金として
は、例えば黄銅、青銅が挙げられる。銅およびこれらの
銅合金の破断伸びは次の通りである。
Further, examples of the copper alloy that can be used in the present invention include brass and bronze. The breaking elongations of copper and these copper alloys are as follows.

【0023】 純銅 45% 黄銅 60%青銅 64% 純鉄 29% なお、これらのうち純銅が最適であり、黄銅も安価で、
かつ亜鉛の含量が20〜40重量% の範囲で 60%以上の伸び
が得られるので、本発明に適している。さらに、本発明
に使用される窒素と反応し得るチタン化合物としては、
例えば二酸化チタンが挙げられる。
Pure copper 45% Brass 60% Bronze 64% Pure iron 29% Of these, pure copper is the most suitable, and brass is also inexpensive.
In addition, the elongation of 60% or more can be obtained when the zinc content is in the range of 20 to 40% by weight, which is suitable for the present invention. Further, as the titanium compound that can react with nitrogen used in the present invention,
For example, titanium dioxide can be used.

【0024】このようにして得られた窒化アルミニウム
接合体は、窒化チタンの界面層の存在により 10kg/mm2
を超える大きい接合強度を有し、かつ銅もしくは銅合金
の存在により応力が緩和されて急激なヒートショックが
加えられても窒化アルミニウム焼結体もしくは他のセラ
ミックス焼結体の接合界面近傍に亀裂が生じたり、破壊
したりするおそれがない。
The aluminum nitride bonded body thus obtained was 10 kg / mm 2 due to the presence of the titanium nitride interface layer.
It has a large joint strength of more than 1.0 and even if stress is relieved due to the presence of copper or copper alloy and a sudden heat shock is applied, cracks occur near the joint interface of the aluminum nitride sintered body or other ceramic sintered body. There is no possibility of causing or destroying.

【0025】なお、上記各方法の内、 (A)の方法におい
てスラリーを接合面に塗布する方法は、接合面が複雑な
形状の場合に適しており、また (C)の方法において接合
面を間欠的に接合させた場合には、さらに応力緩和効果
が向上し、ヒートショックによる亀裂の発生がより効果
的に防止される。
Among the above methods, the method of applying the slurry to the joint surface in the method (A) is suitable when the joint surface has a complicated shape, and the method of (C) applies the slurry to the joint surface. When they are joined intermittently, the stress relaxation effect is further improved, and the generation of cracks due to heat shock is more effectively prevented.

【0026】[0026]

【実施例】次に、本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0027】実施例1 線径 300μm φ、網目間隔 1.5mmの金属チタン網を、常
圧焼結した窒化ケイ素からなるセラミックス焼結体と銅
板間に挟み、真空中で1050℃で 5分間加熱して接合させ
た。このようにして得られた窒化アルミニウム接合体の
せん断強度は25kg/mm2 であり、かつその破壊はセラミ
ックス焼結体の部分で起った。
Example 1 A metal titanium net having a wire diameter of 300 μm φ and a mesh spacing of 1.5 mm was sandwiched between a ceramic sintered body made of silicon nitride sintered under normal pressure and a copper plate, and heated in vacuum at 1050 ° C. for 5 minutes. Joined together. The shear strength of the aluminum nitride bonded body thus obtained was 25 kg / mm 2 , and the fracture occurred in the ceramic sintered body.

【0028】実施例2 常圧焼結した 2個の窒化ケイ素からなるセラミックス焼
結体の接合面に、チタン粉末をエチルアルコール中に分
散させたスラリーを直径 400μm の散点状に塗着し、 4
00℃で 5分間乾燥させた後、厚さ 300μm の銅板を介し
て塗着面を重ね合わせ、アルゴン雰囲気中で1050℃で 5
分間加熱して、これらを接合させた。
Example 2 A slurry in which titanium powder was dispersed in ethyl alcohol was applied to the bonding surface of a ceramics sintered body composed of two silicon nitrides sintered under normal pressure in the form of spots having a diameter of 400 μm, Four
After drying at 00 ° C for 5 minutes, the coated surfaces are overlapped with each other through a copper plate with a thickness of 300 μm, and then 5 ° C at 1050 ° C in an argon atmosphere.
These were joined by heating for a minute.

【0029】この実施例の接合体の接合面には、マイク
ロクラックは全く認められなかったが、チタンを窒化ケ
イ素焼結体の全面に塗着した点を除いて同様に接合した
比較例のものでは、接合面にマイクロクラックの生成が
認められた。従って、従来はクラックが生じて使用され
なかったものが十分な強度を有して使用できるようにな
った。
Microcracks were not observed at all on the joint surface of the joint body of this example, but of the comparative example which was jointed in the same manner except that titanium was applied to the entire surface of the silicon nitride sintered body. Then, generation of microcracks was observed on the joint surface. Therefore, it has become possible to use a material that has been cracked and was not used in the past with sufficient strength.

【0030】実施例3 銅粉末(325メッシュ通過)と金属チタン短繊維(繊維径
300μm φ、繊維長2mm)とをエチルアルコール中で混合
して乾燥した後、プレスにより厚さ 500μm、縦、横各1
0mmの圧粉体に成型した。次に、この圧粉体を常圧焼結
した 2個の窒化ケイ素からなるセラミックス焼結体間に
挟み、アルゴン雰囲気中で1050℃で 5分間加熱して接合
させた。このようにして得られたセラミックス接合体の
せん断破壊強度は 20kg/mm2 であり、破壊はセラミック
ス焼結体の部分から起った。
Example 3 Copper powder (passing 325 mesh) and metallic titanium short fibers (fiber diameter)
(300 μm φ, fiber length 2 mm) in ethyl alcohol and dried, then press 500 μm in thickness, 1 each in length and width
Molded into 0 mm green compact. Next, this green compact was sandwiched between two ceramics sintered bodies made of silicon nitride that were sintered under normal pressure, and heated at 1050 ° C. for 5 minutes in an argon atmosphere to bond them. The shear fracture strength of the ceramic joined body thus obtained was 20 kg / mm 2 , and the fracture occurred from the portion of the ceramic sintered body.

【0031】[0031]

【発明の効果】以上説明したように本発明によれば、接
合強度が大きく、しかも急激なヒートショックの付加に
よる亀裂や破壊の発生を抑制した窒化アルミニウム接合
体を提供することが可能となる。
As described above, according to the present invention, it is possible to provide an aluminum nitride bonded body which has a high bonding strength and which suppresses the occurrence of cracks and breakage due to the rapid application of heat shock.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の窒化アルミニウム接合体の一構造例
およびその製造方法を説明するための側面図である。
FIG. 1 is a side view for explaining one structural example of an aluminum nitride bonded body of the present invention and a manufacturing method thereof.

【図2】 本発明の窒化アルミニウム接合体の他の構造
例およびその製造方法を説明するための側面図である。
FIG. 2 is a side view for explaining another structural example of the aluminum nitride bonded body of the present invention and a method for manufacturing the same.

【図3】 本発明の窒化アルミニウム接合体のさらに他
の構造例およびその製造方法を説明するための側面図で
ある。
FIG. 3 is a side view for explaining still another structural example of the aluminum nitride bonded body of the present invention and a manufacturing method thereof.

【図4】 本発明の窒化アルミニウム接合体のさらに他
の構造例およびその製造方法を説明するための斜視図で
ある。
FIG. 4 is a perspective view for explaining still another structural example of the aluminum nitride bonded body of the present invention and a manufacturing method thereof.

【図5】 本発明に使用する圧粉体の一構造例を示す斜
視図である。
FIG. 5 is a perspective view showing one structural example of a green compact used in the present invention.

【図6】 本発明に使用する圧粉体の他の構造例を示す
斜視図である。
FIG. 6 is a perspective view showing another structural example of the green compact used in the present invention.

【符号の説明】[Explanation of symbols]

1……窒化アルミニウム焼結体 1′…他方の被接合部材 2……銅もしくは銅合金箔 3……チタンまたは窒素と反応し得るチタン化合物の粉
末の層 4……金属部材 5、7……圧粉体 6……チタン線 8……チタン繊維 9……チタン繊維からなる網状体
DESCRIPTION OF SYMBOLS 1 ... Aluminum nitride sintered body 1 '... The other joined member 2 ... Copper or copper alloy foil 3 ... Layer of titanium compound powder which can react with titanium or nitrogen 4 ... Metal member 5, 7 ... Green compact 6 Titanium wire 8 Titanium fiber 9 Titanium fiber mesh

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウム焼結体と線膨張係数が
10×10-6/℃未満の金属部材とが、(a)銅もしくは銅合
金および (b)チタンと前記窒化アルミニウム焼結体から
拡散移行した窒素原子との反応により形成された窒化チ
タンを主体とする化合物層を介して接合されてなること
を特徴とする窒化アルミニウム接合体。
1. The coefficient of linear expansion is the same as that of the aluminum nitride sintered body.
The metal member having a temperature of less than 10 × 10 −6 / ° C. is mainly composed of (a) copper or a copper alloy, and (b) titanium nitride formed by the reaction of titanium and nitrogen atoms diffused from the aluminum nitride sintered body. An aluminum nitride bonded body characterized by being bonded via a compound layer comprising:
【請求項2】 窒化アルミニウム焼結体と線膨張係数が
10×10-6/℃未満の金属部材間に、 (a)銅もしくは銅合
金を配置し、かつこの銅もしくは銅合金と窒化アルミニ
ウム焼結体間に、 (b)チタンもしくは窒素と反応し得る
チタン化合物を介在させて( a、 b成分が合金となって
いる場合を除く)、真空または不活性雰囲気中で介在層
の融点以上の温度で焼成することにより、前記窒化アル
ミニウム焼結体と金属部材間に、前記銅もしくは銅合金
ならびにチタンと前記窒化アルミニウム焼結体から拡散
移行した窒素原子との反応により形成された窒化チタン
を主体とする化合物からなる層を形成することを特徴と
する窒化アルミニウム接合体の製造方法。
2. The coefficient of linear expansion is the same as that of the aluminum nitride sintered body.
(A) Copper or a copper alloy may be arranged between metal members having a temperature of less than 10 × 10 −6 / ° C., and (b) Titanium or nitrogen may react between the copper or copper alloy and the aluminum nitride sintered body. By interposing a titanium compound (except when the a and b components are alloys) and firing at a temperature equal to or higher than the melting point of the intervening layer in a vacuum or an inert atmosphere, the aluminum nitride sintered body and the metal are sintered. Between the members, a layer comprising a compound mainly composed of titanium nitride formed by a reaction between the copper or copper alloy and titanium and nitrogen atoms diffused and transferred from the aluminum nitride sintered body is formed. A method for manufacturing an aluminum joined body.
【請求項3】 窒化アルミニウム焼結体と線膨張係数が
10×10-6/℃未満の金属部材間に、 (a)銅もしくは銅合
金ならびに (b)チタンもしくは窒素と反応し得るチタン
化合物が混在する層( a、 b成分が合金となっている場
合を除く)を介在させて、真空または不活性雰囲気中で
介在層の融点以上の温度で焼成することにより、前記窒
化アルミニウム焼結体と金属部材間に、前記銅もしくは
銅合金ならびにチタンと前記窒化アルミニウム焼結体か
ら拡散移行した窒素原子との反応により形成された窒化
チタンを主体とする化合物からなる層を形成することを
特徴とする窒化アルミニウム接合体の製造方法。
3. The coefficient of linear expansion is the same as that of the aluminum nitride sintered body.
A layer in which (a) copper or copper alloy and (b) titanium or a titanium compound capable of reacting with nitrogen are mixed between metal members less than 10 × 10 −6 / ° C. (when a and b components are alloys) ), And baking at a temperature equal to or higher than the melting point of the intervening layer in a vacuum or an inert atmosphere, so that the copper or copper alloy and the titanium and the nitriding are formed between the aluminum nitride sintered body and the metal member. A method for manufacturing an aluminum nitride bonded body, comprising forming a layer made of a compound mainly composed of titanium nitride formed by a reaction with nitrogen atoms diffused and transferred from an aluminum sintered body.
JP25288693A 1993-10-08 1993-10-08 Aluminum nitride conjugate and its production Pending JPH0710645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25288693A JPH0710645A (en) 1993-10-08 1993-10-08 Aluminum nitride conjugate and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25288693A JPH0710645A (en) 1993-10-08 1993-10-08 Aluminum nitride conjugate and its production

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58182093A Division JPS6077178A (en) 1983-09-30 1983-09-30 Ceramic bonded body and manufacture

Publications (1)

Publication Number Publication Date
JPH0710645A true JPH0710645A (en) 1995-01-13

Family

ID=17243533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25288693A Pending JPH0710645A (en) 1993-10-08 1993-10-08 Aluminum nitride conjugate and its production

Country Status (1)

Country Link
JP (1) JPH0710645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022056203A (en) * 2020-09-29 2022-04-08 株式会社フェローテックホールディングス Joining substrate, and joining method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077178A (en) * 1983-09-30 1985-05-01 株式会社東芝 Ceramic bonded body and manufacture
JPS62179893A (en) * 1986-02-05 1987-08-07 Toshiba Corp Brazing filler metal for joining metal and ceramics
JPH0474306A (en) * 1990-07-13 1992-03-09 Canon Inc Information recording carrier driving device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077178A (en) * 1983-09-30 1985-05-01 株式会社東芝 Ceramic bonded body and manufacture
JPS62179893A (en) * 1986-02-05 1987-08-07 Toshiba Corp Brazing filler metal for joining metal and ceramics
JPH0474306A (en) * 1990-07-13 1992-03-09 Canon Inc Information recording carrier driving device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022056203A (en) * 2020-09-29 2022-04-08 株式会社フェローテックホールディングス Joining substrate, and joining method

Similar Documents

Publication Publication Date Title
JPH0474306B2 (en)
US4624404A (en) Method for bonding ceramics and metals
JPH07111981B2 (en) Method of fixing electronic device to substrate
JP2006347778A (en) Manufacturing method of functionally gradient material, and functionally gradient material
JPH0710645A (en) Aluminum nitride conjugate and its production
JPH0520392B2 (en)
JPH07101784A (en) Aluminum nitride joined body and its production
JPH1171186A (en) Bound structure of ceramic to metal and its binding
JP3302714B2 (en) Ceramic-metal joint
JPH0930870A (en) Bonded material of ceramic metal and accelerating duct
JPH0492871A (en) Ceramic-metal binding body and production thereof
JP3370060B2 (en) Ceramic-metal joint
JP2797020B2 (en) Bonded body of silicon nitride and metal and method for producing the same
JPH0292872A (en) Bonding between ceramic material and copper material
JP2541837B2 (en) Method for manufacturing bonded body of ceramics and metal
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JP2771810B2 (en) Method of joining ceramic and metal body and joined body
JPS6177681A (en) Method of bonding nitride ceramics
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JPH0362674B2 (en)
JPS62171979A (en) Nonoxide type ceramics metallization and joining method
KR0180485B1 (en) Method of manufacturing si3n4 sintered body and metal conjugate
JPS60166275A (en) Bonding of ceramic and metal
JPH044268B2 (en)
JPS5948778B2 (en) Method for manufacturing ceramic-metal composite