JPH02175674A - Joined body of ceramics and metallic body and method for joining thereof - Google Patents

Joined body of ceramics and metallic body and method for joining thereof

Info

Publication number
JPH02175674A
JPH02175674A JP63329159A JP32915988A JPH02175674A JP H02175674 A JPH02175674 A JP H02175674A JP 63329159 A JP63329159 A JP 63329159A JP 32915988 A JP32915988 A JP 32915988A JP H02175674 A JPH02175674 A JP H02175674A
Authority
JP
Japan
Prior art keywords
metal
ceramics
metallic body
joined
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63329159A
Other languages
Japanese (ja)
Inventor
Seiji Nozaki
野崎 斉治
Kaoru Okamoto
薫 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbide Industries Co Inc
Original Assignee
Nippon Carbide Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbide Industries Co Inc filed Critical Nippon Carbide Industries Co Inc
Priority to JP63329159A priority Critical patent/JPH02175674A/en
Publication of JPH02175674A publication Critical patent/JPH02175674A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/123Metallic interlayers based on iron group metals, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/60Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/74Forming laminates or joined articles comprising at least two different interlayers separated by a substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09145Edge details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a joined body capable of improving joining strength and preventing cracking by providing a void structure having a specific void width around the ends of a metallic body and joining ceramics to the metallic body. CONSTITUTION:In a method for joining ceramics to a metal, a void structure having 0.005-2mm void width around the ends of a metallic body is provided. Both are preferably joined by using either of a method (a) for heating the ceramics and metallic body in an inert gas atmosphere, such as nitrogen gas, or vacuum atmosphere and forming bonds with the mutual diffusion of an oxide layer on the surface of the metallic body and solder (direct method) and a method (b) for interposing a soldering material prepared by mixing an active metal, such as Ti or Zr, with a metal, such as Ag, Cu, Ni or Sn, forming a low-melting alloy or forming the alloy between the ceramics and metallic body and thermally contact bonding both (active metal method).

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、セラミックスと金属体とQ接合体において、
金属体の端部周囲の空隙巾が0.005關〜2朋である
空隙構造′t−/Wすることを特徴と′fるセラミック
スと金属体との接合体に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides ceramics, a metal body, and a Q-joint body.
The present invention relates to a joined body of a ceramic and a metal body, characterized in that the gap width around the end of the metal body is 0.005 mm to 2 mm.

〈従来の技術〉 一般にセラミックスは、耐熱性、耐摩耗性、高電気抵抗
、尚硬度という%徴を有している。
<Prior Art> Ceramics generally have characteristics such as heat resistance, wear resistance, high electrical resistance, and hardness.

該特徴金有したセラミックスと金属体とを接合した接合
体は電子部品、機械部品等に多く使用されている。しか
るにセラミックスと金属体とは異った原子納付をしてい
る。このようなセラミックスと金属体とを接合′1″る
揚台、反応性等の化学的性質、熱膨張率等の物理的性が
大きく異なる。このように性質が異ったセラミックスと
金属体と全高温で加熱し冷却して接合させると熱膨張係
数の差から熱応力が発生する。これが残留応力となる。
Bonded bodies made by bonding ceramics with these characteristics and metal bodies are often used in electronic parts, mechanical parts, and the like. However, ceramics and metal bodies have different atomic charges. The platform used to join these ceramics and metal bodies, the chemical properties such as reactivity, and the physical properties such as coefficient of thermal expansion, differ greatly. Ceramics and metal bodies, which have different properties, When the materials are heated to a high temperature and then cooled to join, thermal stress is generated due to the difference in thermal expansion coefficients.This becomes residual stress.

この残留応力が接8強度を低下させる。この残留応力を
小さくし、放合強度の低下を防止するため棟々の接合方
法が提案されてきた。即ち、セラミックスと金属体とを
窒素ガスの如き不活性ガス雰囲気か真空芥囲気で加熱し
、金属体の表面の酸化層とソルダーの相互拡散で納会を
形成される方法(直接々付方法)。又Ti、Zrのよう
な活性金属と低融点合金を作るAg+ Cu、 Ni、
 Sn等の金属を混合又は合金としたろう材全セラミッ
クスと金属体の1川に介在させて不活性ガス雰囲気又は
真空雰囲気下で加熱圧着する方法(活性金属方法)、更
にセラミックスζこメタライズ層曽をもうけ、このメタ
ライズ層を有するセラミックスと金属体とを金属ソルダ
ーで接合させる方法(メタライズ方法)等多くの提案が
なされているが、接合体を加熱し次いで冷却することを
iahして行うことにより接合強度が低下したり、また
は接合体にクラックが入る欠点が未だに解決されていな
い。
This residual stress reduces the joint strength. In order to reduce this residual stress and prevent a decrease in combined strength, methods for joining ridges have been proposed. That is, a method in which ceramics and a metal body are heated in an inert gas atmosphere such as nitrogen gas or in a vacuum atmosphere, and a bond is formed by mutual diffusion of the oxide layer on the surface of the metal body and the solder (direct bonding method). Also, Ag+ Cu, Ni, which forms low melting point alloys with active metals such as Ti and Zr.
A method in which a brazing filler mixture or alloy of metals such as Sn is interposed between a whole ceramic and a metal body and heated and pressed together in an inert gas atmosphere or vacuum atmosphere (active metal method), and a ceramic ζ metallized layer Many proposals have been made, such as a method (metallization method) of joining ceramics having this metallized layer and a metal body with a metal solder, but by heating and then cooling the joined body, The disadvantages of reduced bonding strength and cracks in the bonded body have not yet been resolved.

〈発明が解決しようとする問題点〉 本発明の目的は、セラミックスと金属体とを接合した時
嶺台体に発生する残留応力全減少させ接合体の接合強度
を向上させること及び接合体のクラックの発生全未然に
防止するにある。
<Problems to be Solved by the Invention> An object of the present invention is to improve the bonding strength of the bonded body by reducing the total residual stress generated in the ridge body when ceramic and metal bodies are bonded, and to prevent cracks in the bonded body. The aim is to prevent this from occurring at all.

特に熱的衝撃強度即ち繰り返し加熱に対する耐久性全向
上させることにある。
In particular, the objective is to completely improve thermal shock strength, that is, durability against repeated heating.

〈問題点を解決するための手段〉 本発明者らは前述した欠点を改良する方法を種々検討し
た結果、セラミックスと金属体において金属体端部周囲
の空隙部が0.005+++m〜2mmである空隙構造
を有することを特徴とするセラミックスと金属体との接
合体を見い出した。
<Means for Solving the Problems> The present inventors have studied various ways to improve the above-mentioned drawbacks, and as a result, the present inventors have developed a method for improving the above-mentioned drawbacks. We have discovered a bonded body of ceramics and a metal body that is characterized by having a structure.

以下、ざらに詳しく不発明について説明する。Hereinafter, non-invention will be explained in detail.

本発明でいう「セラミックス」とは、特に制限はないが
酸化物系セラミックス及び非酸化物系セラミックスであ
る。酸化物系セラミックスは、例えばアルミナ(Adz
es)、マグネシャ(Mg O)及びシリコニヤ(Zr
02)等が挙げられるが、中でもアルミナが好ましい。
"Ceramics" as used in the present invention is not particularly limited, but includes oxide ceramics and non-oxide ceramics. Oxide-based ceramics include, for example, alumina (Adz
es), magnesia (MgO) and silicone (Zr
02), among which alumina is preferred.

非酸化物系セラミックスは、例えば窒化アルミ(AA!
N)、炭化珪素(SiC)及び窒化珪素(8i3N4)
等が挙げられるが、中でも窒化アルミ、炭化珪素が好ま
しい。
Examples of non-oxide ceramics include aluminum nitride (AA!
N), silicon carbide (SiC) and silicon nitride (8i3N4)
Among them, aluminum nitride and silicon carbide are preferred.

本発明でいう「金属体」とは、%に制限はないが、銅(
Cu)、ニッケル(Ni )、クローム(Cr )、コ
バルト、アルミニウム(Al)及びこれらの合金等が挙
げられるが、銅(Cu)、ニッケル(Ni )及びこれ
ら金践ヲ主体とした合金が好ましい。
The "metal body" as used in the present invention refers to copper (
Copper (Cu), nickel (Ni), and alloys mainly composed of these metals are preferred.

本発明でいう「 許金属体端部周囲の空隙構造」とは、セラミックスと金
属体端部周囲とが実質的に接合していない空隙構造であ
れば、いづれの空隙構造′l!−有していても良い。空
隙構造としては、例えば金属体端部周囲を切削して条溝
状構造としたもの、また、塩化第2鉄水浴液及び過硫酸
アンモン等の金属を腐蝕させる作用を有する薬品で、金
属体端部を腐蝕させることによって得られる空隙構造と
したもの、さらに、金属体端部周囲に活性金属ろう材等
接合材を塗布もしくは載置しないことによって得られる
空隙構造等があるが、中でも、薬品で腐蝕させることに
よって得られる空隙構造が好適である。
In the present invention, the "void structure around the end of the metal body" refers to any void structure 'l!' as long as the ceramic and the area around the end of the metal body are not substantially bonded to each other. - May have. Possible structures include, for example, cutting the edges of the metal body to create a groove-like structure, or using chemicals that corrode metals, such as ferric chloride water bath liquid and ammonium persulfate, to create a groove-like structure around the edges of the metal body. There are void structures obtained by corroding the edges of the metal body, and void structures obtained by not applying or placing bonding materials such as active metal brazing materials around the edges of the metal body. A void structure obtained by corrosion is preferred.

また不発明でいう「空隙部」とは、接合体を平面的に見
た場合、セラミックスと金属体とが接合していない金属
体の周回中の長さであり、さらに具体的には、図−2、
(ll−(3)の3の部分であり、この空隙部が0.0
051111以下及び2龍以上では熱的衝撃強度の向上
は殆んど見られない。よって空隙部は0.005 vr
m〜2 mmが好ましく、さらに好ましくは0.01m
m〜1關、%に好菫しくは0.02 T!LM〜0.5
mmである。
In addition, the "void part" in the non-invention is the length of the circumference of the metal body where the ceramic and the metal body are not bonded when the bonded body is viewed from above. -2,
(ll-(3) part 3, and this gap is 0.0
At 051111 or lower and 2 Dragon or higher, there is almost no improvement in thermal shock strength. Therefore, the gap is 0.005 vr
Preferably m to 2 mm, more preferably 0.01 m
For m~1, % is preferably 0.02 T! LM~0.5
It is mm.

さらに不発明でいう「窒隙深さ」とは、接合体を断面的
に見た場合、セラミックスと金属体とζこある空隙部の
間@艮であって、ざらに詳しくは、図−1、(11〜(
3)の3である。この空隙深さは特に制限するものでは
ないが、0.5μ〜20μが好ましく、さらに好ましく
は1μ〜10μである。
Furthermore, the "nitrogen gap depth" as used in non-inventive terms refers to the depth between the ceramic and the metal body and a certain gap when the bonded body is viewed cross-sectionally. , (11~(
3). Although this void depth is not particularly limited, it is preferably 0.5 μ to 20 μ, more preferably 1 μ to 10 μ.

本発明に用いる波付方法は%に制限はないが、例えばセ
ラミックスと金属体と?窒素ガスの如き不活性ガス雰囲
気か真空雰囲気で加熱し、金属体の表面の酸化層とソル
ダーの相互拡散で結合を形成される方法(直接4合方法
)。又Ti・Zrのような括れ金属と低融点合金を作る
Ag@ Cu +Ni、 an%の金属を混会又は合金
としたろう材をセラミックスと金属体の間に介在させて
不活性ガス雰囲気又は真空雰囲気下で加熱土層する方法
(活性金属方法)、更にセラミックスにメタライス方法
をもうけ、このメタライズノ曽ヲ廟′するセラミックス
と金属体とを金属ソルダーで接合させる方法(メタライ
ス方法)等があり、中でも直接4合方法及び活性金属方
法が好ましい。
There is no limit to the percentage of the corrugation method used in the present invention, but for example, what about ceramics and metal bodies? A method in which a bond is formed by mutual diffusion of the oxide layer on the surface of the metal body and the solder by heating in an inert gas atmosphere such as nitrogen gas or a vacuum atmosphere (direct 4-coupling method). In addition, a brazing filler metal made of a mixture or alloy of binder metals such as Ti and Zr and an% of Ag@Cu + Ni, which forms a low-melting point alloy, is interposed between the ceramic and the metal body and placed in an inert gas atmosphere or vacuum. There is a method of heating soil in an atmosphere (active metal method), and a method of joining ceramics with a metal body using metal solder (metallizing method). The direct 4-coupling method and the active metal method are preferred.

不発明に用いる直接4合方法とは、具体的には、セラミ
ックスに金属体を載直し、これを加熱炉に入れ、金属体
の過度の酸化を防止するため、酸素濃度を2+jppm
以下に調整した不活性雰囲気又は真空雰囲気中で最高加
熱温度1060℃〜1083℃以内の温度で5秒〜15
分間加熱した後、冷却して接合体を得る方法である。ま
た活性金属方法とは、セラミックスと金属体との接合面
に活性金ろう材全箔状、粉末状、又粉末金バインダーと
均一に混練しペーストとし、これをスクリーン印刷した
後、この果合体音加熱炉ζζ入れ、不活性雰囲気又は真
空度−10−2rorr以下の雰囲気で最高加熱温1i
700〜950℃以内の温度で加熱時間3分〜60分間
加熱した後、冷却して接合体を得る方法である。
Specifically, the direct 4-coupling method used in the invention involves placing the metal body on ceramics again, placing it in a heating furnace, and reducing the oxygen concentration to 2+jppm in order to prevent excessive oxidation of the metal body.
5 seconds to 15 seconds at a maximum heating temperature of 1060℃ to 1083℃ in an inert atmosphere or vacuum atmosphere adjusted as follows.
This is a method of heating for a minute and then cooling to obtain a bonded body. In addition, the active metal method involves uniformly kneading activated gold filler in the form of whole foil, powder, or powdered gold binder on the bonding surface of ceramics and metal bodies, and then screen-printing this paste. Place in heating furnace ζζ, maximum heating temperature 1i in inert atmosphere or vacuum level -10-2rorr or less atmosphere
This is a method of heating at a temperature within 700 to 950°C for a heating time of 3 to 60 minutes, and then cooling to obtain a bonded body.

活性金属ろう材としては物に制限はないが、比較的低温
加熱で接合させることができる。銀(Ag)、銅(Cu
 )、チタン(T1)又は水素化チタン(TiH)の混
合物系、銀(Ag)、銅(Cu)、ニッケル(Ni )
、チタン(T1)又は水素化チタン(T i H)の混
合物系、銀(Ag)、@(Cu)、錫(Sn)、チタン
又ハ水素化チタ7 (TiH)ノ混合物系、*(Ag)
、ニッケル(Ni)、チタン又は水素化チタンの混合物
系及び銀(Ag )、銅(Cu)、ジルコニヤ(Zr 
)又は銅、ニッケル、チタン又は水素化チタンの混合物
系が好ましい。
Although there are no restrictions on the active metal brazing filler metal, it is possible to bond them by heating at a relatively low temperature. Silver (Ag), copper (Cu
), mixtures of titanium (T1) or titanium hydride (TiH), silver (Ag), copper (Cu), nickel (Ni)
, titanium (T1) or titanium hydride (T i H) mixture system, silver (Ag), @(Cu), tin (Sn), titanium or titanium hydride (TiH) mixture system, *(Ag) )
, nickel (Ni), titanium or titanium hydride mixtures, and silver (Ag), copper (Cu), zirconia (Zr)
) or a mixture system of copper, nickel, titanium or titanium hydride is preferred.

以下、実施例をあげて、さらに具体的に説明する。Hereinafter, a more specific explanation will be given with reference to Examples.

実施例A(接合体の調製) 実施例1 、ff1l二L 58順角、厚さ0.3 前のリン脱酸銅基板の端部周囲
を塩化第2鉄水浴液で腐蝕することにより図−3に示す
ような空隙部1闘、空隙深さ2μmの条溝を形成した。
Example A (Preparation of joined body) Example 1, ff1l2L 58 normal angle, thickness 0.3 By etching the edge of the previous phosphorus-deoxidized copper substrate with a ferric chloride water bath solution, A groove with a gap depth of 2 μm was formed as shown in Figure 3.

 次に該銅基板と64關角、厚さ0.635 mmのア
ルミナ基板(純#96%)とをアセトンで洗浄して脱脂
処理後、アルミナ基板の両面に銅基板を載置し、トンネ
ル式加熱焼成炉に入れ、次に焼成炉へ窒素ガスtl−流
量調節しながら導入し、炉内の酸素濃度が1 ppmに
なるよう番こ窒素ガスを供給した。この窒素雰囲気中で
加熱スピードfr 300℃/分とし、最高加熱温度(
1063±0.5℃)で10分間加熱し、その後冷却し
て接合体を得た(以後この接合体を接曾体、亮1と称し
、実施例として使用する)。
Next, the copper substrate and an alumina substrate (pure #96%) with a 64 angle angle and a thickness of 0.635 mm were cleaned with acetone and degreased, and then the copper substrate was placed on both sides of the alumina substrate, and a tunnel type The mixture was placed in a heating and firing furnace, and then nitrogen gas was introduced into the firing furnace while adjusting the flow rate, and nitrogen gas was supplied so that the oxygen concentration in the furnace was 1 ppm. In this nitrogen atmosphere, the heating speed fr was set at 300°C/min, and the maximum heating temperature (
1063±0.5° C.) for 10 minutes, and then cooled to obtain a bonded body (hereinafter, this bonded body will be referred to as a bonded body, Ryo 1, and will be used as an example).

接合体tK 1 において開用した端部周囲に条溝全形
成しない銅基板をアルミナ基板上に載置し、接合体46
1と同様の条件で接合ケ行い接合体を得た(以後この接
会体金接合体煮2と称し、比較例として使用する)。
A copper substrate with no grooves formed around the open end of the bonded body tK 1 is placed on the alumina substrate, and a bonded body 46 is formed.
Bonding was carried out under the same conditions as 1 to obtain a bonded body (hereinafter this bonded body will be referred to as gold bonded body 2 and will be used as a comparative example).

実施ヤ1」−2 接合体高2の端部周囲を過懺酸アンモンに浸腐し、空隙
巾約10〜20μ、望隙深さ約1μの空隙部を有する接
付体會得jこ(以後これ會接会体高3と称し、実施例と
して使用する)。
Implementation 1'-2 The periphery of the end of the joint body height 2 is immersed in ammonium perphosphate to form a joint body having a gap with a gap width of approximately 10 to 20 μm and a desired gap depth of approximately 1 μm (hereinafter referred to as This will be referred to as Meeting Body High School 3 and will be used as an example).

実施例3、比較例−2 58關角、厚さ200μmのタフピッチ電解鋼基板の端
部周囲全空隙Il〕1.5關、空隙深さ3μmとYJ 
7.1よう番こ切削した。
Example 3, Comparative Example-2 The total gap around the edge of a tough pitch electrolytic steel substrate with a 58 angle and a thickness of 200 μm] 1.5 angle, a gap depth of 3 μm, and YJ
7.1 Cutting was done.

次に該銅板と64 mm角、厚さ0.935 mmのア
ルミナ基板(純度96%)とをアセトンで洗浄して脱脂
処理後アルミナ基板の上に該銅基板を載置し、トンネル
式加熱焼成炉に入れ、焼成炉中窒素ガスを導入し、炉内
の酸素濃度が0.2ppmになるように窒素ガスを供給
した。この窒素雰囲気中で加熱スピードに300℃/分
とし、最高加熱温度1072℃で5分間加熱し、その後
冷却して接合体を倚た(この接合体を以後接せ体高4と
称し、実施例として使用する)。
Next, the copper plate and a 64 mm square, 0.935 mm thick alumina substrate (purity 96%) were cleaned with acetone, degreased, and placed on the alumina substrate, followed by tunnel heating and firing. It was placed in a furnace, and nitrogen gas was introduced into the firing furnace, and the nitrogen gas was supplied so that the oxygen concentration in the furnace was 0.2 ppm. In this nitrogen atmosphere, the heating speed was set to 300°C/min, the maximum heating temperature was 1072°C, and the bonded body was heated for 5 minutes and then cooled. use).

また、接合体高4において、タフピッチを解銅基板の端
部周囲に空隙を形成することなく得た接合体をA5と称
し、比較例として使用する。
Further, a bonded body obtained at a bonded body height of 4 and having a tough pitch without forming a gap around the edge of the copper-deposited substrate is referred to as A5, and is used as a comparative example.

実施例−4 接合体A5の端部周囲を過懺酸アンモンに浸腐させ、周
囲空隙巾約15〜30μm、空隙深さ3μであるアルミ
ナ基板との接合体を得た(以後この接合体を接合体廠6
と称し、実施例として使用する)。
Example 4 The periphery of the end of the bonded body A5 was immersed in ammonium perphosphate to obtain a bonded body with an alumina substrate having a peripheral gap width of approximately 15 to 30 μm and a gap depth of 3 μm (hereinafter, this bonded body will be referred to as Junction factory 6
and used as an example).

実施例−5〜6、比較例−3 326メツシユ以下の粉末である銀粉末68.891銅
粉末26.7g、チタン粉末4.5Iを秤量し、これに
メタアクリル酸イソブチル39、テルピネオール30g
添加し、ボールミルで混合粉砕しペースト’ix表した
。次ζこ25關角、厚さ0.635 mmの窒化アルミ
基板と20m角、厚さ300μmの無酸素鋼基板とをト
リクレン及びアセトンで洗浄して脱脂処理した後、前記
のペースl−スクリーン印刷により式化アルミ基板上に
空隙中が0.75闘となる様に18.5 m7rr角で
、厚さ40 ttの寸法に印刷し、120℃×10分間
熱風乾燥器で乾燥した。この窒化アルミ基板のペースト
を塗布した側に銅基板を図−4に示すように載置し、こ
れを真空加熱焼成炉に入れ、5 X 10 ”−’To
rrの真空下で850−CX10分間加熱後、冷却して
接合体を得た(以後この接合体を接合体&、7と称し、
実施例として使用する)。
Examples 5 to 6, Comparative Example 3 68.891 silver powder, 26.7 g of copper powder, and 4.5 I of titanium powder, which are powders of 326 mesh or less, were weighed, and to this was added 39 g of isobutyl methacrylate and 30 g of terpineol.
The mixture was mixed and ground in a ball mill to form a paste 'ix. Next, after cleaning and degreasing a 0.635 mm thick aluminum nitride substrate and a 20 m square, 300 μm thick oxygen-free steel substrate with trichloride and acetone, the above paste l-screen printing was performed. It was printed on a formula aluminum substrate with dimensions of 18.5 m7rr square and 40 tt so that the void space was 0.75mm, and dried in a hot air dryer at 120°C for 10 minutes. A copper substrate was placed on the paste-applied side of the aluminum nitride substrate as shown in Figure 4, and this was placed in a vacuum heating firing furnace to form a 5 x 10''-'To
After heating with 850-CX for 10 minutes under a vacuum of
used as an example).

また、接合体711;7 において便用したペーストラ
窒化アルミ基板上ζこ20 mrn角、厚さ40μmの
寸法に印刷した。該基板上に銅基板を接仕体遡7と同様
Oこ載置し、接合体、釜7と同一条件で加熱して鋼基板
と菫化アルミと(こ空隙荷造を有しない接合体を得た(
以後この接合体を接合体五8と称し、比較例として使用
する)。
Further, it was printed on the paster aluminum nitride substrate used in the bonded body 711; 7 to a size of 20 mrn square and 40 μm thick. A copper substrate was placed on the substrate in the same manner as in the connection body 7, and the bonded body was heated under the same conditions as in the pot 7 to form a bonded body with the steel substrate and the aluminum oxide (with no void packing). Ta(
This conjugate will hereinafter be referred to as conjugate 58 and will be used as a comparative example).

表 さ約5μの空隙を肩する接合体を得た(以後この接合体
を接合体&9と称し、実施例として使用する)。
A bonded body was obtained which shouldered a gap of approximately 5μ in diameter (hereinafter, this bonded body will be referred to as bonded body &9 and will be used as an example).

実施例B(接合体の評価) 実施例人で得られた接合体&1〜遡9の各々10枚を一
50℃X30分冷却した後、150℃×30分間加熱処
理した。この繰返しを1サイクルとして100サイクル
試験を行った。その後クラックが生じた接合体の枚数を
調べ、その結果全表−11こ示した。
Example B (Evaluation of zygote) After cooling each of 10 sheets of zygotes &1 to 9 obtained in Example 2 at -50°C for 30 minutes, they were heat-treated at 150°C for 30 minutes. A 100 cycle test was conducted with this repetition as one cycle. Thereafter, the number of joined bodies in which cracks occurred was determined, and the results are shown in Table 11.

表−1に示すとおり、不@明による接会体熱的衝撃番こ
極めて強力で、クラックも入らず、また、接合強度も強
大であった。
As shown in Table 1, the bonded body thermal shock test made by Tomei was extremely strong, no cracks appeared, and the bonding strength was also strong.

【図面の簡単な説明】[Brief explanation of the drawing]

図−1及び3は本発明の接会体及び金属体の断面図であ
り、図−2はその平面図である。図−4は実施例5で得
られた接仕体廠7の断面図である。 図−1〜4において、1は金属体、2はセラミックス、
3は空隙構造、4は金属体とセラミックスとの接合面を
示している。また図−4における5はペーストを示して
いる。 図−2 図−2 図−3 図−4
1 and 3 are cross-sectional views of the joined body and metal body of the present invention, and FIG. 2 is a plan view thereof. FIG. 4 is a sectional view of the connecting body 7 obtained in Example 5. In Figures 1 to 4, 1 is a metal body, 2 is a ceramic body,
Reference numeral 3 indicates a void structure, and reference numeral 4 indicates a bonding surface between the metal body and the ceramic. Further, 5 in FIG. 4 indicates paste. Figure-2 Figure-2 Figure-3 Figure-4

Claims (10)

【特許請求の範囲】[Claims] (1)セラミックスと金属体との接合体において、金属
体の端部周囲の空隙巾が0.005mm〜2mmである
空隙構造を有することを特徴とするセラミックスと金属
体との接合体。
(1) A joined body of a ceramic and a metal body, characterized in that the body has a void structure in which the width of the gap around the end of the metal body is 0.005 mm to 2 mm.
(2)該接合体が直接接合法による接合体である特許請
求の範囲第1項記載の接合体。
(2) The conjugated body according to claim 1, wherein the conjugated body is a conjugated body by a direct bonding method.
(3)該接合体が活性金属法による接合体である特許請
求の範囲第1項記載の接合体。
(3) The bonded body according to claim 1, wherein the bonded body is a bonded body formed by an active metal method.
(4)該金属体の端部周囲の空隙構造が条溝である特許
請求の範囲第1項記載の接合体。
(4) The joined body according to claim 1, wherein the void structure around the end of the metal body is a groove.
(5)該セラミックスがアルミナ(Al_2O_3)で
ある特許請求の範囲第1項記載の接合体。
(5) The joined body according to claim 1, wherein the ceramic is alumina (Al_2O_3).
(6)該セラミックスが窒化アルミナ(AlN)である
特許請求の範囲第1項記載の接合体。
(6) The joined body according to claim 1, wherein the ceramic is alumina nitride (AlN).
(7)該セラミックスが炭化珪素(SiC)である特許
請求の範囲第1項記載の接合体。
(7) The joined body according to claim 1, wherein the ceramic is silicon carbide (SiC).
(8)該金属体が銅及び銅合金である特許請求の範囲第
1項記載の接合体。
(8) The joined body according to claim 1, wherein the metal body is copper or a copper alloy.
(9)該金属体がニッケル及びニッケル合金である特許
請求の範囲第1項記載の接合体。
(9) The joined body according to claim 1, wherein the metal body is nickel and a nickel alloy.
(10)セラミックスと金属体とを接合する方法におい
て、金属体の端部周囲の空隙巾が0.005mm〜2m
mである空隙構造を有することを特徴とするセラミック
スと金属体との接合方法。
(10) In a method for joining ceramics and a metal body, the gap width around the end of the metal body is 0.005 mm to 2 m.
A method for joining a ceramic and a metal body, characterized by having a void structure of m.
JP63329159A 1988-12-28 1988-12-28 Joined body of ceramics and metallic body and method for joining thereof Pending JPH02175674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63329159A JPH02175674A (en) 1988-12-28 1988-12-28 Joined body of ceramics and metallic body and method for joining thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63329159A JPH02175674A (en) 1988-12-28 1988-12-28 Joined body of ceramics and metallic body and method for joining thereof

Publications (1)

Publication Number Publication Date
JPH02175674A true JPH02175674A (en) 1990-07-06

Family

ID=18218302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63329159A Pending JPH02175674A (en) 1988-12-28 1988-12-28 Joined body of ceramics and metallic body and method for joining thereof

Country Status (1)

Country Link
JP (1) JPH02175674A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172081A (en) * 2002-11-20 2004-06-17 Lg Electronics Inc Magnetron and joining method between magnetron members
US7159757B2 (en) * 2002-09-26 2007-01-09 Dowa Mining Co., Ltd. Metal/ceramic bonding article and method for producing same
JP2008294283A (en) * 2007-05-25 2008-12-04 Showa Denko Kk Semiconductor device
JP2011199315A (en) * 2011-06-17 2011-10-06 Dowa Holdings Co Ltd Metal/ceramic bonding substrate
JP2012169319A (en) * 2011-02-10 2012-09-06 Showa Denko Kk Insulation laminate material, insulation circuit board, base for power module, and power module
JP2012200730A (en) * 2011-03-23 2012-10-22 Hitachi Metals Ltd Joining method, joining fixture, and circuit board
WO2018114884A1 (en) * 2016-12-22 2018-06-28 Rogers Germany Gmbh Carrier substrate for electric components, and method for manufacturing a carrier substrate
CN114633044A (en) * 2022-03-31 2022-06-17 神华准能资源综合开发有限公司 Solder for brazing between ceramic lining and stainless steel and brazing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7159757B2 (en) * 2002-09-26 2007-01-09 Dowa Mining Co., Ltd. Metal/ceramic bonding article and method for producing same
JP2004172081A (en) * 2002-11-20 2004-06-17 Lg Electronics Inc Magnetron and joining method between magnetron members
JP2008294283A (en) * 2007-05-25 2008-12-04 Showa Denko Kk Semiconductor device
JP2012169319A (en) * 2011-02-10 2012-09-06 Showa Denko Kk Insulation laminate material, insulation circuit board, base for power module, and power module
JP2012200730A (en) * 2011-03-23 2012-10-22 Hitachi Metals Ltd Joining method, joining fixture, and circuit board
JP2011199315A (en) * 2011-06-17 2011-10-06 Dowa Holdings Co Ltd Metal/ceramic bonding substrate
WO2018114884A1 (en) * 2016-12-22 2018-06-28 Rogers Germany Gmbh Carrier substrate for electric components, and method for manufacturing a carrier substrate
EP3584828A1 (en) * 2016-12-22 2019-12-25 Rogers Germany GmbH Carrier substrate for electrical components and method for producing a support substrate
CN114633044A (en) * 2022-03-31 2022-06-17 神华准能资源综合开发有限公司 Solder for brazing between ceramic lining and stainless steel and brazing method
CN114633044B (en) * 2022-03-31 2024-05-24 神华准能资源综合开发有限公司 Solder for brazing ceramic lining and stainless steel and brazing method

Similar Documents

Publication Publication Date Title
JPH0367985B2 (en)
JPH02175674A (en) Joined body of ceramics and metallic body and method for joining thereof
JP2797011B2 (en) Joint of ceramics and metal and method for producing the same
CN1027626C (en) Weldable ceramic Sn base active medium solder
JPS59232692A (en) Brazing filler metal for joining ceramics and metal or the like and composite body composed of ceramics and metal or the like using said brazing filler metal
JPH0424312B2 (en)
JP2797020B2 (en) Bonded body of silicon nitride and metal and method for producing the same
JPH05170552A (en) Aluminum nitride substrate having metallized layer and metallization of the substrate
JPH0460946B2 (en)
JPH10194860A (en) Brazing filler metal
JP3977875B2 (en) Brazing alloy and joined body for joining of alumina-based ceramics-aluminum alloy
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JP2541837B2 (en) Method for manufacturing bonded body of ceramics and metal
JP2001048670A (en) Ceramics-metal joined body
JPS6177676A (en) Silicon nitride bonded body and bonding method
JPH0362674B2 (en)
JPS6228067A (en) Joining method for ceramics
JPH04235246A (en) Alloy for metalizing for ceramics and metalizing method
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JPS62171979A (en) Nonoxide type ceramics metallization and joining method
JP3292767B2 (en) Joining method of silicon carbide ceramics and silicon
JPS6016877A (en) Bonded body of ceramic sintered body and metal member and manufacture
JPS6351994B2 (en)
JPH059396B2 (en)
JPS62179893A (en) Brazing filler metal for joining metal and ceramics