JPS61215273A - Method of bonding ceramic and metal - Google Patents

Method of bonding ceramic and metal

Info

Publication number
JPS61215273A
JPS61215273A JP5553285A JP5553285A JPS61215273A JP S61215273 A JPS61215273 A JP S61215273A JP 5553285 A JP5553285 A JP 5553285A JP 5553285 A JP5553285 A JP 5553285A JP S61215273 A JPS61215273 A JP S61215273A
Authority
JP
Japan
Prior art keywords
metal
metal layer
base material
joining
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5553285A
Other languages
Japanese (ja)
Other versions
JPH0243704B2 (en
Inventor
健司 山根
正昭 青木
邦彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP5553285A priority Critical patent/JPH0243704B2/en
Publication of JPS61215273A publication Critical patent/JPS61215273A/en
Publication of JPH0243704B2 publication Critical patent/JPH0243704B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、セラミックスと金属との接合方法の改良に
関し、殊に熱応力緩和体をインサート材として介在させ
る接合方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for joining ceramics and metal, and particularly to a joining method in which a thermal stress relaxation body is interposed as an insert material.

〔従来技術〕[Prior art]

一般にセラミックスは、耐摩耗性、耐熱性、耐食性等に
すぐれておシ、機械部品、電子部品等への利用は著しい
ものがあるが、セラミックは複雑な形状の部品の成形、
加工が困難であること、および金属に比べて非常に高価
であることなどの欠点がある。そして、前述の成形、加
工が困難であることに対しては、成形、加工が容易であ
る金属を成形、加工して得た部品にセラミックスを接合
することによって所望の部品を得ることが行われている
。このため、各種の接合方法が発明され、提案されてい
る。その中には、拡散接合方法を含む圧接法、ろう付は
法があり、強固な接合体が得られるので、非常に有効な
接合方法であるにもかかわらず接合の際、高温を必要と
する。
In general, ceramics have excellent wear resistance, heat resistance, corrosion resistance, etc., and are often used in mechanical parts, electronic parts, etc.;
Disadvantages include being difficult to process and being very expensive compared to metal. In order to solve the above-mentioned difficulty in forming and processing, desired parts can be obtained by bonding ceramics to parts obtained by forming and processing metals that are easy to form and process. ing. For this reason, various joining methods have been invented and proposed. Among them, there are pressure welding methods, including diffusion bonding methods, and brazing methods, which are very effective joining methods because they can produce strong joints, but require high temperatures during joining. .

〔解決しようとする問題点〕[Problem to be solved]

ところが、このような高温の元における接合後、室温ま
で冷却し友とき、セラミックスと金属との接合界面に、
熱膨張係数の差による残留応力が発生し、セラミックス
の破壊または接合界面での剥離が起きる。そして、接合
体が大形になる程、この傾向は著しくなると言う問題が
おった。なお、このような問題の解決を図るものとして
、この発明の出願人から特願昭59−48086号、特
願昭59−112689号、特願昭59−214774
号などの出願があることを参考的に示す。
However, after joining under such high temperatures, when cooled to room temperature, the bonding interface between the ceramic and the metal,
Residual stress occurs due to the difference in thermal expansion coefficients, resulting in destruction of the ceramic or peeling at the bonding interface. A problem arises in that this tendency becomes more pronounced as the joined body becomes larger. In order to solve these problems, the applicant of this invention has filed Japanese Patent Application No. 59-48086, Japanese Patent Application No. 59-112689, and Japanese Patent Application No. 59-214774.
For reference, it indicates that there is an application such as No.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、セラミックスと金属との接合に当り、イン
サート材としてセラミックス母材に接する側にアルミニ
ウム、アルミニウム合金ま九はアルミニウム複合体によ
る第1金属層を形成し、次にセラミックスと同程度の熱
膨張係数を有する第2金属層を形成させる。そして更に
第2金属層と金属母材との間に第1金属層と同じ金属ま
九は第2金属層と金属母材の中間の熱膨張係数を有する
金属の第3金属層を介在させて接合させる0〔作 用〕 セラミックスと同等の熱膨張係数を有する第2金属層を
介在させることによって、金属母材から受ける熱応力を
遮断し、セラミックス母材に伝えない。
When joining ceramics and metals, this invention forms a first metal layer of aluminum, aluminum alloy, or aluminum composite on the side that is in contact with the ceramic base material as an insert material, and then heats it to the same degree as the ceramics. A second metal layer having a coefficient of expansion is formed. Further, a third metal layer made of the same metal as the first metal layer and having a coefficient of thermal expansion intermediate between that of the second metal layer and the metal base material is interposed between the second metal layer and the metal base material. Bonding 0 [Function] By interposing the second metal layer having a coefficient of thermal expansion equivalent to that of the ceramic, thermal stress received from the metal base material is blocked and is not transmitted to the ceramic base material.

そして、セラミックスおよび金属の両方に接合反応性を
もった第1金属層によってセラミックス母材と第2金属
層との接合を容易にする0更に第3金属層を第2金属層
と金属母材との間に介在させて第2金属層と金属母材と
の接合を容易にする。第3金属層としてアルミニウム、
その合金またはその複合体を介在させて接合するときに
は第1金属層の接合温度つまりアルミニウムの融点約6
60℃以下の温度でよく、この場合はセラミックス母材
、第1金属層、第2金属層、第3金属層および金属母材
は1工程で接合できる0しかしながら、一般に金属母材
としてはステンレス鋼などの鋼材が使われることが多く
、接合温度が660℃を越えることが多い。このような
場合でも、第2金属層と金属母材とが同系の金属であれ
ば、その間の接合はしやすく、一般には両者の熱膨張係
数の差が小さい。そこで、第3金属層を介在させずに第
2金属層と金属母材を接合したものに、第1金属層を介
してセラミックス母材を接合することもできるが、強固
な接合体を得るには第3金属層を介在させることが望、
ましい。一方、第2金属層と金属母材とが異系の金属で
あれば、一般にその間の接合はむずかしく、この間に第
3金属層を介在させないと接合困難である。又、一般に
両者の熱膨張係数差は大となシ接合後界面に熱応力が残
留する。従ってこの第3金属層を第2金属層と金属母材
との中間の熱膨張係数を有する金属とすることが必要で
あり、それによりて金属母材の熱応力を緩和させ、接合
を確実にする。そして、この場合は一般に第2金属層、
第3金属層および金属母材をその接合最適温度約700
℃以上で接合する工程と、その後、第1金属層を介・在
させて約650℃以下でセラミックス母材と接合する工
程とがとられる。
The first metal layer, which has bonding reactivity to both ceramics and metals, facilitates the bonding between the ceramic base material and the second metal layer. The second metal layer is interposed between the metal base material and the second metal layer to facilitate bonding between the second metal layer and the metal base material. Aluminum as the third metal layer,
When joining with the alloy or its composite interposed, the joining temperature of the first metal layer, that is, the melting point of aluminum, approximately 6
The temperature may be 60°C or lower, and in this case, the ceramic base material, the first metal layer, the second metal layer, the third metal layer, and the metal base material can be joined in one process.However, generally stainless steel is used as the metal base material. Steel materials such as are often used, and the joining temperature often exceeds 660°C. Even in such a case, if the second metal layer and the metal base material are metals of the same type, bonding between them is easy, and the difference in coefficient of thermal expansion between them is generally small. Therefore, it is possible to bond the ceramic base material to the second metal layer and the metal base material through the first metal layer without intervening the third metal layer, but it is difficult to obtain a strong bonded body. It is desirable to interpose a third metal layer,
Delicious. On the other hand, if the second metal layer and the metal base material are different metals, it is generally difficult to bond them together, and it is difficult to bond them unless the third metal layer is interposed therebetween. Furthermore, since the difference in thermal expansion coefficient between the two is generally large, thermal stress remains at the interface after bonding. Therefore, it is necessary to make this third metal layer a metal with a coefficient of thermal expansion intermediate between that of the second metal layer and the metal base material, thereby relieving the thermal stress of the metal base material and ensuring reliable bonding. do. In this case, generally the second metal layer,
The optimum temperature for bonding the third metal layer and the metal base material is approximately 700℃.
A step of bonding at a temperature of 0.degree.

(実施例1) セラミックス母材(炭化ケイ素;外径125m、内径1
18■、厚さ10 m ) 1 、第1金属層(純アル
ミニウムA1050;外径125m+、内径113諺、
厚さ0.6鱈)2.第2金属層(鉄、ニッケル、コバル
ト合金鋳物;3%C11,8〜2,8%St、0.8%
Mn、30〜83%N l s数%C。
(Example 1) Ceramic base material (silicon carbide; outer diameter 125 m, inner diameter 1
18cm, thickness 10m) 1. First metal layer (pure aluminum A1050; outer diameter 125m+, inner diameter 113cm)
Thickness: 0.6 cod) 2. Second metal layer (iron, nickel, cobalt alloy casting; 3%C11,8~2.8%St, 0.8%
Mn, 30-83%Nls number%C.

;外径125m、内径118簡、厚さ8 m ) 8、
第3金属層(第1金属と同じ)4、金属母材(ステンレ
ス鋼5uS804L;外径129■、内径103■、厚
さ8m)5をアセトン中で10分間超音波洗浄し、第1
図の様に積層し、約1O−4Torr  の真空中で、
1橡/−の加圧、600℃×30分間、拡散接合した。
;Outer diameter 125m, inner diameter 118mm, thickness 8m) 8,
The third metal layer (same as the first metal) 4 and the metal base material (stainless steel 5uS804L; outer diameter 129cm, inner diameter 103cm, thickness 8m) 5 were ultrasonically cleaned in acetone for 10 minutes, and the first
Laminated as shown in the figure, in a vacuum of about 1O-4 Torr,
Diffusion bonding was carried out at 600° C. for 30 minutes under a pressure of 1 m2/-.

室温冷却後、セラミックス母材の剥離、破壊は全くおこ
らず良好な接合体が得られた。
After cooling to room temperature, a good joined body was obtained without any peeling or destruction of the ceramic base material.

(参考例塾) 実施例1と同様のセラミックス、金属母材を用い、この
間に実施例1と同様の第1金属層を介在させて同様の条
件で拡散接合して室温に冷却したところ、セラミックス
に著しい破壊がおこった。
(Reference example school) Using the same ceramic and metal base materials as in Example 1, interposing the same first metal layer as in Example 1 and diffusion bonding under the same conditions and cooling to room temperature, the ceramic Significant destruction occurred.

(実施例2) 実施例1と同様の第2金属、金属母材と、別の第3金属
層(純チタンJIS2種;外径125m、内径118■
、厚さ0.5目)をアセトン中で10分間超音波洗浄後
、約107orrの真空中で、加圧2 ky / mj
、880℃XaO分間拡散接合して、第2金属層/第3
金属層/母材金属層の複合体を得た。これと実施例1と
同様のセラミツ・クスと第1金属をア七トン洗浄後、実
施例1と同様の条件で拡散接合した。室温に冷却後、セ
ラミックス母材に全く異常はおこらず良好な接合体が得
られた。
(Example 2) The same second metal and metal base material as in Example 1, and another third metal layer (pure titanium JIS class 2; outer diameter 125 m, inner diameter 118 mm)
, thickness 0.5 mm) in acetone for 10 minutes, and then in a vacuum of about 107 orr under a pressure of 2 ky/mj.
, 880°C XaO diffusion bonding for minutes to form the second metal layer/third
A composite of metal layer/base metal layer was obtained. After cleaning this and the same ceramics and first metal as in Example 1, diffusion bonding was carried out under the same conditions as in Example 1. After cooling to room temperature, no abnormality occurred in the ceramic base material, and a good joined body was obtained.

(他の実施例) 他の実施例としてセラミックス母材は、アルミナ、ジル
コニア、マグネシア、サイアロン等の酸化物系セラミッ
クス、炭化ケイ素、窒化ケイ素等の非酸化物系セラミッ
クスとすることができ、金  □属母材はステンレス鋼
、チタン及びチタン合金、ニッケル及びニッケル合金等
とすることができる。
(Other Examples) As another example, the ceramic base material can be an oxide ceramic such as alumina, zirconia, magnesia, or sialon, or a non-oxide ceramic such as silicon carbide or silicon nitride. The metallic base material can be stainless steel, titanium and titanium alloys, nickel and nickel alloys, and the like.

第1金属層はアルミニウム、アルミニウム合金、アルミ
ニウムをマトリックスとする複合材、アルミニウム合金
のクラツド板とすることができる。
The first metal layer can be aluminum, an aluminum alloy, an aluminum matrix composite, or an aluminum alloy clad plate.

第2金属層は、鉄、ニッケル、コバルト系の合金鋳物若
しくはその合金、鉄、ニッケル系合金、鉄、ニッケル、
クロム系合金、鉄、ニッケル、クロム、とすることがで
きる。第3金属層は、前記の第1金属、または銀、チタ
ン、ニッケル、ジルコニウム、モリブテン、銅、マンガ
ン、クロム、鉄、二箔、板または物理的化学的方法で形
成した薄膜とすることができる。但し、第2金属層は板
状が望ましい。
The second metal layer is made of iron, nickel, cobalt-based alloy casting or its alloy, iron, nickel-based alloy, iron, nickel,
It can be a chromium-based alloy, iron, nickel, or chromium. The third metal layer can be the first metal, or silver, titanium, nickel, zirconium, molybdenum, copper, manganese, chromium, iron, bifoil, a plate, or a thin film formed by a physical or chemical method. . However, the second metal layer is preferably plate-shaped.

更に、第1及び第3金属は、拡散接合または他の接合方
法によって第2金属とあらかじめ一体化し友後セラミッ
クス母材と金属母材との間に介在させて拡散接合しても
よい。また、セラミックス母材と第1金属層とを接合後
、第1金属層と第2金属層/第3金属層/金属母材との
複合体とを接合してもよい。この様な接合順序は目的に
応じ適宜選ばれる。また更に、接合方法ははんだ付け、
ろう付は摩擦圧接など他の接合方法とすることができる
Furthermore, the first and third metals may be integrated with the second metal in advance by diffusion bonding or other bonding methods, and may be interposed between the ceramic base material and the metal base material to be diffusion bonded. Further, after the ceramic base material and the first metal layer are bonded, the first metal layer and the composite of the second metal layer/third metal layer/metal base material may be bonded. Such a bonding order is appropriately selected depending on the purpose. Furthermore, the joining method is soldering,
Brazing can be other joining methods such as friction welding.

〔発明の効果〕〔Effect of the invention〕

上2−ミックスと金属の接合に於いて、熱接合の際、両
者の熱膨張係数の差に起因して発生する残留応力を吸収
し、セラミックスの破壊または界面剥離を防止すること
ができる。
Top 2 - In bonding mix and metal, it is possible to absorb the residual stress generated due to the difference in thermal expansion coefficients between the two during thermal bonding, thereby preventing destruction of the ceramic or interfacial peeling.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、この発明の実施例を示すものであり、第1図は
側面図、第2図は上面図である。 図面において、1はセラミックス母材、2は第1金属層
、3は第2金属層、4は第3金属層、5は金属母材であ
る。
The drawings show an embodiment of the invention, with FIG. 1 being a side view and FIG. 2 being a top view. In the drawings, 1 is a ceramic base material, 2 is a first metal layer, 3 is a second metal layer, 4 is a third metal layer, and 5 is a metal base material.

Claims (7)

【特許請求の範囲】[Claims] (1)セラミックスと金属とを、インサート材を介在さ
せて接合する接合方法において、前記インサート材は、
セラミックス母材に接する側をアルミニウム、アルミニ
ウム合金またはアルミニウム複合体の第1金属層とし、
次に前記セラミックス母材と同程度の熱膨張係数を有す
る第2金属層とし、更に金属母材に接する側を第3金属
層として形成した熱応力緩和体である前記セラミックス
と金属との接合方法。
(1) In a joining method of joining ceramics and metal with an insert material interposed, the insert material:
The side in contact with the ceramic base material is a first metal layer of aluminum, aluminum alloy or aluminum composite,
Next, a second metal layer having a thermal expansion coefficient comparable to that of the ceramic base material is formed, and a third metal layer is formed on the side in contact with the metal base material. A method for joining the ceramic and metal, which is a thermal stress relaxation body. .
(2)前記第3金属層は、前記第1金属層と同じ金属で
ある特許請求の範囲第1項記載のセラミックスと金属と
の接合方法。
(2) The method for joining ceramics and metal according to claim 1, wherein the third metal layer is the same metal as the first metal layer.
(3)前記第3金属層は、前記第2金属層と前記金属母
材の中間の熱膨張係数を有する金属である特許請求の範
囲第1項記載のセラミックスと金属との接合方法。
(3) The method of joining ceramics and metal according to claim 1, wherein the third metal layer is a metal having a coefficient of thermal expansion intermediate between that of the second metal layer and the metal base material.
(4)前記第1金属層は箔、薄膜または板である特許請
求の範囲第1項ないし第3項記載のセラミックスと金属
との接合方法。
(4) The method for joining ceramics and metal according to any one of claims 1 to 3, wherein the first metal layer is a foil, a thin film, or a plate.
(5)前記第2金属層は板である特許請求の範囲第1項
ないし第3項記載のセラミックスと金属との接合方法。
(5) The method for joining ceramics and metal according to any one of claims 1 to 3, wherein the second metal layer is a plate.
(6)前記第3金属層は箔、薄膜または板である特許請
求の範囲第1項ないし第3項記載のセラミックスと金属
との接合方法。
(6) The method of joining ceramics and metal according to any one of claims 1 to 3, wherein the third metal layer is a foil, a thin film, or a plate.
(7)前記接合方法は拡散接合方法である特許請求の範
囲第1項ないし第6項記載のセラミックスと金属との接
合方法。
(7) The method of joining ceramics and metal according to any one of claims 1 to 6, wherein the joining method is a diffusion joining method.
JP5553285A 1985-03-18 1985-03-18 SERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO Expired - Lifetime JPH0243704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5553285A JPH0243704B2 (en) 1985-03-18 1985-03-18 SERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5553285A JPH0243704B2 (en) 1985-03-18 1985-03-18 SERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO

Publications (2)

Publication Number Publication Date
JPS61215273A true JPS61215273A (en) 1986-09-25
JPH0243704B2 JPH0243704B2 (en) 1990-10-01

Family

ID=13001336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5553285A Expired - Lifetime JPH0243704B2 (en) 1985-03-18 1985-03-18 SERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO

Country Status (1)

Country Link
JP (1) JPH0243704B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293621A (en) * 1988-09-30 1990-04-04 Hoya Corp Manufacture of acoustooptical element
US7353979B2 (en) 2003-09-22 2008-04-08 Ngk Insulators, Ltd. Method of fabricating substrate placing stage
CN107263035A (en) * 2017-07-12 2017-10-20 大连理工大学 A kind of processing method of high flatness ultra-thin metal plates

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293621A (en) * 1988-09-30 1990-04-04 Hoya Corp Manufacture of acoustooptical element
US7353979B2 (en) 2003-09-22 2008-04-08 Ngk Insulators, Ltd. Method of fabricating substrate placing stage
CN107263035A (en) * 2017-07-12 2017-10-20 大连理工大学 A kind of processing method of high flatness ultra-thin metal plates
CN107263035B (en) * 2017-07-12 2019-01-15 大连理工大学 A kind of processing method of high flatness ultra-thin metal plates

Also Published As

Publication number Publication date
JPH0243704B2 (en) 1990-10-01

Similar Documents

Publication Publication Date Title
EP0135937B1 (en) Method of bonding alumina to metal
JPS6140624B2 (en)
JPH0788262B2 (en) Method for joining silicon nitride and metal
JPS61215273A (en) Method of bonding ceramic and metal
JP3197835B2 (en) Composite joint of beryllium, copper alloy and stainless steel and composite joint method
US4705207A (en) Method of brazing columbium to itself using low bonding pressures and temperatures
JPS63144175A (en) Ceramic to metal joint structure
JPH029779A (en) Production of ceramic-metal composite body
JPH06292984A (en) Dissimilar metal joint of copper and aluminum
JPH0328391B2 (en)
JPH0940476A (en) Joined body of aluminum alloy member and ceramic member
JPH0159998B2 (en)
JPS61117171A (en) Heat stress alleviator
JPS63225585A (en) Ceramic-metal joined body and joining method
JPS61136968A (en) Bonded body of ceramic members
JPH0547513B2 (en)
JPH01111783A (en) Joined structure of carbon and ceramics, carbon or metal
JPH0547514B2 (en)
JPH0517248A (en) Method for joining ceramics to metal
JPS61136969A (en) Method of bonding sialon and metal
JPH04305363A (en) Method for joining material having small coefficient of linear expansion and copper
JPS62130843A (en) Metallic ceramics joining body
JPH0725674A (en) Production of joined body of ceramics to metal
JPH0729858B2 (en) Method of joining ceramics and metal
JPH01282164A (en) Joined body of ceramics and metal