JPH01308884A - Material-bonding process and bonded product - Google Patents

Material-bonding process and bonded product

Info

Publication number
JPH01308884A
JPH01308884A JP13737188A JP13737188A JPH01308884A JP H01308884 A JPH01308884 A JP H01308884A JP 13737188 A JP13737188 A JP 13737188A JP 13737188 A JP13737188 A JP 13737188A JP H01308884 A JPH01308884 A JP H01308884A
Authority
JP
Japan
Prior art keywords
elements
bonding
graphite
bonded
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13737188A
Other languages
Japanese (ja)
Inventor
Toshiaki Fuse
俊明 布施
Keizo Honda
啓三 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13737188A priority Critical patent/JPH01308884A/en
Publication of JPH01308884A publication Critical patent/JPH01308884A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]

Abstract

PURPOSE:To effect the bonding of materials with each other suppressing the generation of cracks, without using an intermediate layer between material elements, by providing a material effective in restricting the extension or contraction of the material element caused by heating and cooling, attaching the material to the outer circumference of the bonding interface of elements having different thermal expansion coefficients and heating the assembled elements at a specific temperature. CONSTITUTION:A Ti foil 8 is inserted between a bonding copper material 6 and a bonding graphite material 7, both materials are made to contact with each other and a Tl layer 9 is placed at the bottom and side faces of the copper material 6. Both material elements are sealed in vacuum in a restriction material 10 made of Mo and having a form of a rectangular cylinder. The material elements maintained in the above state are placed on a specimen table 3 in an HIP furnace 2 and are heated together with the restriction material 10 at a specific temperature. At the same time, Ar gas compressed with a gas compressor 5 is introduced into the furnace 2 to effect the bonding treatment of the materials. The Ti foil 8 interposed between both material elements is melted to effect the mutual diffusion of the copper material 6 and the foil 8 through the formed liquid phase to bond both materials and bond the material 7 by the wetting and reaction with the formed liquid phase. The contraction of the material 6 is restricted with the material 10 in the cooling of the materials to normal temperature and the crack of the material 7 can be prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は黒鉛材料と金属材料のように熱膨張率が異なる
材料要素を接合して一体の接合体を形成する材料接合方
法およびその接合体に係り、特に製造時または使用時等
においてυlれなどの欠陥の発生が少なく、また容易に
製造することができる材料接合方法および接合体に関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to material joining in which material elements having different coefficients of thermal expansion, such as graphite material and metal material, are joined to form an integral joined body. The present invention relates to a method and a bonded body thereof, and particularly relates to a material joining method and a bonded body that can be easily manufactured, with less occurrence of defects such as υl during manufacturing or use.

(従来の技術) 耐熱性、耐食性の強化、軽量化などを目的として使用条
件に応じて複数の素材を組み合せて高様能を発揮させる
複合材料が多くの分野で普及している。
(Prior Art) Composite materials that exhibit high flexibility by combining multiple materials according to usage conditions are becoming popular in many fields for the purpose of enhancing heat resistance, corrosion resistance, weight reduction, etc.

黒鉛材料は極めて高い耐熱性を有しているため、近年核
融合炉の構成材料としての使用が検討されている。実用
化に際しては構造強度を保持するために金属構造材との
接合および冷却部材としてのヒートシンク材との完全な
接合状態を確保する必要がある。しかし黒鉛材料は従来
から使用されている真空ろう付加ろう材では全くぬれな
いために、w練材料との充分な接合強度が得られない。
Since graphite material has extremely high heat resistance, its use as a constituent material of nuclear fusion reactors has been considered in recent years. When put into practical use, it is necessary to ensure perfect bonding with the metal structural material and the heat sink material as a cooling member in order to maintain structural strength. However, since the graphite material cannot be wetted at all by the conventionally used vacuum brazing filler metal, sufficient bonding strength with the wrought material cannot be obtained.

その対策として活性金属をろう材として利用したろう付
方法が一般に採用されている。しかしろう材を使用して
接合した接合体を高真空中で使用すると、ろう材に含有
される高い蒸気圧を有する成分が経時的に蒸発し、核融
合炉内におけるビーム加速性能を大きく阻害する等の問
題がある。そこでろう材からの揮散ガスの影響を排除す
るために、ろう材を使用せずに異種材料要素を直接に接
合することが望まれている。
As a countermeasure to this problem, a brazing method using an active metal as a brazing material is generally adopted. However, when a bonded body made using a brazing filler metal is used in a high vacuum, components with high vapor pressure contained in the brazing filler metal evaporate over time, greatly inhibiting beam acceleration performance in a fusion reactor. There are other problems. Therefore, in order to eliminate the influence of vaporized gas from the brazing filler metal, it is desired to directly join elements of different materials without using a brazing filler metal.

(発明が解決しようとする課題) しかし黒鉛材料に比べ金属材料、特に銅材料は熱膨張率
が約3〜4倍と非常に大きく、かつ黒鉛材料はほとんど
延性を有しない。そのために、両者を突き合せ加熱して
接合した後に接合温度から常温度まで冷却する過程で、
熱膨張量の差により黒鉛材料に過大な応力が作用し、黒
鉛材料にクラックを生じる場合が多く、製品の歩留りを
著しく低下させる問題点がある。
(Problems to be Solved by the Invention) However, compared to graphite materials, metal materials, particularly copper materials, have a very large coefficient of thermal expansion of about 3 to 4 times, and graphite materials have almost no ductility. For this purpose, in the process of butting and heating and joining the two, and then cooling from the joining temperature to room temperature,
Due to the difference in the amount of thermal expansion, excessive stress acts on the graphite material, which often causes cracks in the graphite material, resulting in a problem that significantly reduces the yield of products.

上記問題点を解決する一手段として黒鉛材料と銅材料と
の間の接合面に、黒鉛材料と熱膨張率が等しい、モリブ
デン板を中間層として挿入し、黒鉛材料と銅材料との熱
膨張量の差を、モリブデン板と銅材料との接合部におい
て吸収し、黒鉛材料のクラック発生を防止する構成が特
開昭62−50073号公報に開示されでいる。
One way to solve the above problem is to insert a molybdenum plate as an intermediate layer, which has the same coefficient of thermal expansion as the graphite material, on the joint surface between the graphite material and the copper material, and to Japanese Unexamined Patent Publication No. 62-50073 discloses a structure that absorbs the difference in the difference between the molybdenum plate and the copper material at the joint between the molybdenum plate and the copper material and prevents cracks from occurring in the graphite material.

しかしながら上記のように熱反応を緩和するために、モ
リブデン板を中間層として挿入付加すると、モリブデン
材は、ヒートシンク材として用いられる銅板と比較して
熱伝導度が小さいため接合体による冷却効率が著しく低
下する問題点がある。
However, when a molybdenum plate is inserted and added as an intermediate layer to alleviate the thermal reaction as described above, the cooling efficiency of the joined body becomes significantly lower because the molybdenum material has lower thermal conductivity than the copper plate used as a heat sink material. There are problems with the decline.

すなわち従来の接合方法において一般に中間層を形成す
るために用いられるモリブデン材は比較灼熱伝導度が大
きいが、それでも熱良導体である鋼材の熱伝導度の約6
0%程度の値である。そのため中間層を挿入しない直接
接合による接合体と同等の冷W効率を保持するためには
、アーマとしてi能する黒鉛材料またはヒートシンクと
して機能する銅材料の厚さを厚く設定しなければならな
いという不経済性がある。
That is, although the molybdenum material generally used to form the intermediate layer in conventional bonding methods has a relatively high scorching conductivity, it still has a thermal conductivity of about 6% compared to that of steel, which is a good thermal conductor.
The value is about 0%. Therefore, in order to maintain cold W efficiency equivalent to that of a bonded body made by direct bonding without inserting an intermediate layer, the thickness of the graphite material that functions as an armor or the copper material that functions as a heat sink must be set thick. It is economical.

本発明は上記の問題点を解決するためになされたもので
あり、黒鉛材料と銅材料のように熱膨張率が相互に異な
る材料要素を接合して一体の接合体を形成するに際し、
材料要素間に中間層を設けることなく、また割れの発生
が少ない材料接合方法および接合体を提供することを目
的とする。
The present invention was made in order to solve the above problems, and when joining material elements having mutually different coefficients of thermal expansion, such as graphite material and copper material, to form an integral joined body,
It is an object of the present invention to provide a method for joining materials and a joined body that does not require an intermediate layer between material elements and is less prone to cracking.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、黒鉛と金属材料、黒鉛とセラミックス複合材
など熱膨張率が異なる材料要素と突き合わせ、拡散接合
または化学接合によって両材料要素を接合して一体の接
合体を形成する材料接合方法において、予め接合界面外
周に材料要素の加熱冷却による伸縮を拘束する拘束材を
装着した後に、所定温度にて加熱し材料要素相互および
材料要素と拘束材とを接合し、しかる後に接合温度から
常温度まで冷却することを特徴とする。
(Means for Solving the Problems) The present invention aims to butt material elements with different coefficients of thermal expansion, such as graphite and a metal material, graphite and a ceramic composite material, and join both material elements by diffusion bonding or chemical bonding to form an integral bond. In the method of joining materials to form a body, a restraining material that restrains expansion and contraction due to heating and cooling of the material elements is attached in advance to the outer periphery of the joining interface, and then the material elements are heated at a predetermined temperature to join the material elements and the material elements and the restraining material. , and then cooled from the bonding temperature to room temperature.

また1本発明に係る接合体は熱膨張率が異なる材料要素
を突き合せ加熱して一体に形成される接合体であり、少
なくとも熱膨張率が大きな材料要素の接合界面の外周部
に材料要素の伸縮を拘束する拘束材を接合界面に対向す
るように配設するとともに上記拘束材の外周側面は材料
要素の外周側面と一致するように形成したことを特徴と
する。
In addition, the joined body according to the present invention is a joined body that is integrally formed by butting and heating material elements having different coefficients of thermal expansion, and at least the outer periphery of the joining interface of the material elements having a large coefficient of thermal expansion is The present invention is characterized in that a restraining material for restraining expansion and contraction is disposed to face the bonding interface, and the outer circumferential side surface of the constraining material is formed to match the outer circumferential side surface of the material element.

(作用) 上記材料接合方法によれば、両材料要素の接合界面外周
に拘束材を装着しており、この状態で所定の接合温度に
加熱し、一定時間保持すると材料要素相互が接合される
と同時に材料要素側面と拘束材とが接合される。この接
合処理が完了し、接合温度から常温度まで冷却すると、
熱膨張率の大きな材料要素が大きく収縮しようとするが
、その材料要素は強固な拘束材に接合されているため、
収縮が妨げられる。収縮が開始した段階では、材料要素
内に高い応力が発生するが、材料要素は、拘束され状態
で徐々に塑性変形を起こし、最終的に常温度まで冷却さ
れた段階で残留熱応力は、大幅に低減される。したがっ
て、熱膨張率の小さな材料要素が熱膨張率の大きな材料
要素の収縮によって、割れを発生することがない。
(Function) According to the above material bonding method, a restraining material is attached to the outer periphery of the bonding interface between both material elements, and when the material elements are heated in this state to a predetermined bonding temperature and held for a certain period of time, the material elements are bonded to each other. At the same time, the side surface of the material element and the restraining material are joined. After this bonding process is completed and the temperature is cooled from the bonding temperature to room temperature,
A material element with a large coefficient of thermal expansion attempts to contract greatly, but because the material element is joined to a strong restraint material,
Contraction is prevented. At the stage when contraction begins, high stress occurs within the material element, but the material element gradually undergoes plastic deformation in a restrained state, and finally, at the stage when it is cooled to room temperature, the residual thermal stress is significantly reduced. reduced to Therefore, a material element with a small coefficient of thermal expansion does not crack due to contraction of a material element with a large coefficient of thermal expansion.

また材料要素の接合外周部に拘束材を配設した接合体に
よれば、加熱処理時および冷却時における接合面の熱に
よる伸縮が拘、束材によって防止されるため、同様に割
れの発生が少ない接合体を得ることができる。
In addition, in a joined body in which a restraining material is provided around the outer periphery of joining material elements, the expansion and contraction due to heat of the joining surface during heat treatment and cooling is restrained and the binding material prevents the occurrence of cracks. Fewer zygotes can be obtained.

さらに上記拘束材の外周側面を材料要素の外周側面と一
致するように形成しているため、拘束材を撤去すること
なくそのまま、接合体の構成材料として使用が可能であ
り、接合処理後の加工成形工程が簡素化する。
Furthermore, since the outer circumferential side of the above-mentioned restraining material is formed to match the outer circumferential side of the material element, it can be used as a constituent material of the joined body without removing the restraining material, and can be processed after the joining process. The molding process is simplified.

また、使用時の熱変化による収縮が発生しても拘束材に
よって割れの発生が効果的に防止することが可能であり
、接合体の寿命、信頼性を大幅に向上させることができ
る。
Further, even if shrinkage occurs due to thermal changes during use, the restraint material can effectively prevent cracking, and the life and reliability of the joined body can be greatly improved.

(実施例) 以下、本発明の一実施例について添付図面を参照して説
明する。第1図は本発明に係る材料擦合方法を実膿する
ための熱間静水圧成形装置(1・IIP装置: Hot
 1sostatic Pressing)の構成を示
す断面図である。
(Example) Hereinafter, an example of the present invention will be described with reference to the accompanying drawings. Figure 1 shows a hot isostatic pressing apparatus (1.IIP apparatus: Hot
FIG.

HIP装置1は、断熱材を配した高圧容器であるHIP
炉2と、HI P炉2内の底部に配置した試料台3と、
試料台3上方側面に配設され、処理材料を加熱する複数
のヒータ線4と、HIP炉2内にアルゴン、窒素などの
不活性ガスを加圧して送給するガス圧縮機5とを備える
The HIP device 1 is a high-pressure container equipped with a heat insulating material.
A furnace 2, a sample stage 3 placed at the bottom of the HIP furnace 2,
A plurality of heater wires 4 which are disposed on the upper side surface of the sample stage 3 and which heat the processing material, and a gas compressor 5 which pressurizes and supplies an inert gas such as argon or nitrogen into the HIP furnace 2 are provided.

以下材料要素として、銅材料とグラファイト(黒鉛)材
料とを接合する場合を例にとり本実施胸を説明する。
The present embodiment will be described below by taking as an example a case where a copper material and a graphite material are bonded as material elements.

まず、材料要素としての接合銅材6と接合グラファイト
材7との間に、厚さが約5μmのチタン箔8を挿入し両
材料要素を突き合わせる。熱膨張率の大きい接合銅材6
の底面および側端面の下方部分に厚さが約2C1mのタ
ンタル箔9を配置する。突き合わされた材料要素は、モ
リブデンによって角筒状に形成された拘束材10内に真
空封入される。
First, a titanium foil 8 having a thickness of about 5 μm is inserted between a bonding copper material 6 and a bonding graphite material 7 as material elements, and the two material elements are butted. Bonded copper material 6 with high coefficient of thermal expansion
A tantalum foil 9 having a thickness of approximately 2C1m is placed on the lower part of the bottom surface and side end surfaces of. The matched material elements are vacuum-sealed in a restraining material 10 made of molybdenum and formed into a rectangular tube shape.

次に真空封入された材料要素を、HIP炉2内の試料台
3に配置し、ヒータ線4に通電する。材料要素および拘
束材10を所定温度まで加熱するとともに、ガス圧縮機
5を起動し、アルゴンガスを加圧媒体としてHI P炉
2内に導入して接合処理を行う。
Next, the vacuum-sealed material element is placed on the sample stage 3 in the HIP furnace 2, and the heater wire 4 is energized. The material elements and the restraining material 10 are heated to a predetermined temperature, the gas compressor 5 is started, and argon gas is introduced into the HIP furnace 2 as a pressurized medium to perform the bonding process.

この接合処理条件は材料要素の種類によって異なるが、
鋼材とグラファイト材との接合処理を行う場合には、一
般に加熱温度900℃、ガス圧力1ONgf/m、加熱
温度保持時間60分間である。
The conditions for this joining process vary depending on the type of material element, but
When bonding a steel material and a graphite material, the heating temperature is generally 900° C., the gas pressure is 1 ON gf/m, and the heating temperature is held for 60 minutes.

この条件下において、両材料要素間に介装したチタン箔
8が溶解して液相を形成し、この液相を介して接合銅材
6とチタン箔8との間で相互拡散が起こり、両者は接合
すると共に、接合グラファイト材7は生成した液相との
ぬれと反応とにより接合する。
Under this condition, the titanium foil 8 interposed between both material elements melts to form a liquid phase, and through this liquid phase, mutual diffusion occurs between the bonding copper material 6 and the titanium foil 8, and both are bonded, and the bonded graphite material 7 is bonded by wetting and reaction with the generated liquid phase.

一方モリブデンによって形成した拘束材10の内壁面と
接合銅材6の側面部11とが同一条件下で拡散接合する
。なお、接合銅材6の下側面および底面には^融点金属
であるタンタル箔9が配設されているため、液相は形成
されず、拘束材10と接合銅材6とは接合しない。従っ
て、接合鋼材6と接合グラファイトI7との接合界面の
周囲の側面部11のみが拘束材10と接合した状態とな
る。
On the other hand, the inner wall surface of the restraining material 10 formed of molybdenum and the side surface portion 11 of the bonding copper material 6 are diffusion bonded under the same conditions. Note that since the tantalum foil 9, which is a melting point metal, is disposed on the lower side and bottom surface of the joining copper material 6, a liquid phase is not formed and the restraining material 10 and the joining copper material 6 are not joined. Therefore, only the side surface portion 11 around the bonding interface between the bonded steel material 6 and the bonded graphite I7 is bonded to the restraining material 10.

接合温度に保持終了後、一体となった接合体を常温まで
冷却する過程において、熱膨張率が大きな接合鋼材6が
接合グラファイト材7より大きく収縮しようとして部材
内部に大きな応力か発生するが、接合銅材6は接合界面
の両端の側面部11゜11において拘束材10によって
拘束されているため、収縮しない。そのため収縮差によ
る接合グラフアイl−材7の割れを効果的に防止するこ
とができる。
After the bonding temperature has been maintained, in the process of cooling the integrated bonded body to room temperature, the bonded steel material 6, which has a large coefficient of thermal expansion, attempts to contract more than the bonded graphite material 7, and a large stress is generated inside the member. Since the copper material 6 is restrained by the restraining material 10 at the side surfaces 11° 11 at both ends of the bonding interface, it does not shrink. Therefore, it is possible to effectively prevent cracking of the bonded graphite material 7 due to the difference in shrinkage.

なお、接合銅材6の、下側面および底面は拘束材10に
接合していないため変形が容易である。
Note that the lower side and bottom surface of the bonded copper material 6 are not bonded to the restraining material 10, and therefore are easily deformed.

そのため接合銅材6を冷却する間に、両側面部11.1
1間に発生した応力を解消する方向に接合銅材6が塑性
変形し、拘束されている接合部近傍の残留応力が緩和さ
れる。
Therefore, while cooling the joining copper material 6, both side parts 11.1
The bonded copper material 6 is plastically deformed in a direction that eliminates the stress generated during the bonding process, and the residual stress in the vicinity of the constrained bonded portion is relaxed.

本実施例によれば、接合界面外周部の接合銅材6の熱収
縮を拘束することが可能となるため、接合界面外周部に
おける接合グラファイトvJ7の割れを防止することが
できる。
According to this embodiment, it is possible to restrain the thermal shrinkage of the bonded copper material 6 at the outer periphery of the bonding interface, so that cracking of the bonded graphite vJ7 at the outer periphery of the bonding interface can be prevented.

また従来方法と異なり、熱応力を緩和するための中間層
を設けず、グラファイト材と鋼材との直接接合構造とし
ているため、熱伝導率を大幅に向上させることができる
。従ってヒートシンクとしての銅部材の厚さを低減する
ことが可能となり、設備の経済性が向上する。
Also, unlike conventional methods, the graphite material and steel material are directly bonded without providing an intermediate layer to alleviate thermal stress, so thermal conductivity can be significantly improved. Therefore, it becomes possible to reduce the thickness of the copper member serving as a heat sink, and the economical efficiency of the equipment improves.

次に本発明方法の他の実施例を第2図(a)〜(d)を
参照して説明する。
Next, another embodiment of the method of the present invention will be described with reference to FIGS. 2(a) to 2(d).

本実施例では、熱膨張率の大きな材料要素自体を拘束材
として兼用して使用する。
In this embodiment, the material element itself having a large coefficient of thermal expansion is used also as a restraining material.

すなわち、第2図(a)に示すように角柱状に形成した
接合グラファイト材7aの外周面に厚さが数μmないし
は数10μmのチタン箔8aを被着し、さらにその外周
に、拘束材を兼用した接合銅材6aを囲むように組み付
ける。接合部16a。
That is, as shown in FIG. 2(a), a titanium foil 8a having a thickness of several μm to several tens of μm is applied to the outer peripheral surface of a bonded graphite material 7a formed into a prismatic shape, and a restraining material is further applied to the outer peripheral surface of the titanium foil 8a. It is assembled so as to surround the joining copper material 6a which also serves as a joint. Joint portion 16a.

(3a、・・・の各接合面外縁は真空中でシール溶接さ
れ、接合銅材6a、6a、・・・は相互に固定される。
(The outer edges of each joining surface of 3a, . . . are seal-welded in a vacuum, and the joining copper materials 6a, 6a, . . . are fixed to each other.

次に固定された接合銅材6aおよび接合グラファイト材
7aは、第1図に示すトLIP炉2内に配置され、ヒー
タ114によって加熱されると同時に、ガス圧縮機5に
よって送給された高圧の不活性ガスによって第2図(b
)において矢印で示すように周囲から加圧される。処理
条件は、例えば加熱温度950℃、ガス圧力2000 
K9 f / cM 、加熱温度保持時間60分間程度
が好ましい。この条件下において、接合グラファイト4
(7aと接合銅材6aとはチタン箔8aを介して相互拡
散接合および反応接合によって強固に接合する。
Next, the fixed bonded copper material 6a and bonded graphite material 7a are placed in the LIP furnace 2 shown in FIG. Figure 2 (b)
), pressure is applied from the surroundings as shown by the arrow. The processing conditions are, for example, a heating temperature of 950°C and a gas pressure of 2000°C.
K9 f/cM and heating temperature holding time of about 60 minutes are preferable. Under this condition, the bonded graphite 4
(7a and the bonding copper material 6a are firmly bonded via the titanium foil 8a by mutual diffusion bonding and reaction bonding.

加熱による接合処理が完了し、次に生成した接合体を加
熱処理温度から常温まで冷却する過程の当初においては
、接合グラファイト材7aと比較して接合鋼材6aは約
3倍以上の熱膨張率を有するため、接合銅材6aの収縮
Rは大きく、第2図(C)に示すように接合鋼材68は
中心部の接合グラファイト材7aを圧縮する。
After the joining process by heating is completed, at the beginning of the process of cooling the resulting joined body from the heat treatment temperature to room temperature, the joining steel material 6a has a coefficient of thermal expansion approximately three times or more compared to the joining graphite material 7a. Therefore, the contraction R of the bonded copper material 6a is large, and the bonded steel material 68 compresses the bonded graphite material 7a in the center, as shown in FIG. 2(C).

さらに冷却が進行して接合体の温度が400〜600℃
に到達した状態では接合銅材6aの強度は極めて低トし
ているので、この温度域において1〜2時間保持するこ
とによって、接合鋼材6a内の残留応力の低減を図るこ
とができる。
As cooling progresses further, the temperature of the joined body reaches 400-600℃.
Since the strength of the bonded copper material 6a is extremely low when the temperature reaches this temperature, residual stress in the bonded steel material 6a can be reduced by maintaining the temperature in this temperature range for 1 to 2 hours.

常温度まで冷却後、第2図(d)に示すように角筒状に
接合された接合銅材6aの両側面部1 ’2 a 。
After cooling to room temperature, both side surfaces 1'2a of the joined copper material 6a are joined into a rectangular tube shape as shown in FIG. 2(d).

12bを撤去し、さらに接合グラファイト材7aの中央
部の切断線13に沿って、切断することにより、グラフ
ァイトと銅とが一体に接合した2組の接合体14が得ら
れる。
12b is removed and the bonded graphite material 7a is further cut along the cutting line 13 at the center, thereby obtaining two sets of bonded bodies 14 in which graphite and copper are integrally bonded.

本実施例による材料接合方法によれば、接合処理後に接
合体を冷却する過程において、拘束材を兼用する接合銅
材6aは接合グラファイト材7aに対して常に中心方向
に圧縮応力を作用させるのみであり、引張応力や曲げ応
力を作用さVることがない。したがってグラファイト材
の割れが発生することが少ない。
According to the material joining method according to this embodiment, in the process of cooling the joined body after the joining process, the joining copper material 6a, which also serves as a restraining material, always applies compressive stress to the joining graphite material 7a in the center direction. There is no tensile stress or bending stress applied. Therefore, cracks in the graphite material are less likely to occur.

なお、本実施例において、接合界面に液相を形成する部
材として、チタンff1saを介装したが、チタン箔8
aの代わりに、真空N着、スパッタ蒸着、イオンブレー
ティングなどの物理然肴法(PVD法)によって、接合
グラファイト材7aの表面または接合銅材6aの表面に
チタン膜を形成した場合においても同様な効果が得られ
ることが実証されている。
In this example, titanium ff1sa was interposed as a member for forming a liquid phase at the bonding interface, but titanium foil 8
The same applies when a titanium film is formed on the surface of the bonded graphite material 7a or the surface of the bonded copper material 6a by a physical vapor deposition method (PVD method) such as vacuum N deposition, sputter deposition, or ion blating instead of a. It has been proven that effective results can be obtained.

またチタン粉末を用いた場合においても、HIP装置の
等方圧による加圧作用によって、緻密な接合組織を形成
することができる。なお介装する金属材としては、チタ
ン(T1)の他に周期表第■族のジルコニウム(Zr)
、またはハフニウム(Hf )等の金属元素を使用して
も同様な効果が得られる。
Further, even when titanium powder is used, a dense bonding structure can be formed by the pressurizing action of the isostatic pressure of the HIP device. In addition to titanium (T1), zirconium (Zr) from group Ⅰ of the periodic table can be used as the intervening metal material.
A similar effect can be obtained by using a metal element such as , or hafnium (Hf 2 ).

さらに本実施例の材料接合方法は、熱膨張率が異なる材
料要素、例えば、黒鉛と黒鉛複合材、黒鉛とセラミック
ス複合材等についても適用可能であり、同様の効果を発
揮することができる。
Furthermore, the material bonding method of this embodiment can be applied to material elements having different coefficients of thermal expansion, such as graphite and graphite composites, graphite and ceramics composites, etc., and can exhibit similar effects.

次に本発明方法のその他の実施例について第3図を参照
して説明する。
Next, another embodiment of the method of the present invention will be described with reference to FIG.

本実施例おいては、厚さ10μ瓦のチタン箔8bを介し
て接合グラファイト材7bと接合銅材6bとを突き合わ
せ、さらに接合界面外周にチタン箔8Cを介して拘束材
10bを装着する。拘束材10bは、例えば接合グラフ
ァイト材7bと近似した熱膨張率を有し、高温強度に優
れたモリブデン材によって形成される。拘束材10bを
装着された接合材料要素は、加圧台15上に載置される
In this embodiment, the bonded graphite material 7b and the bonded copper material 6b are butted together via a titanium foil 8b having a thickness of 10 μm, and a restraining material 10b is attached to the outer periphery of the bonded interface via a titanium foil 8C. The restraint material 10b is formed of, for example, a molybdenum material that has a coefficient of thermal expansion similar to that of the bonded graphite material 7b and has excellent high-temperature strength. The bonding material element equipped with the restraining material 10b is placed on the pressurizing table 15.

接合材料要素の側面は、拘束材10bを嵌入した外枠板
16で被覆される。さらに接合材料要素の上面には加圧
板17が載置され、接合材料要素を所定圧力強さで押圧
するように構成される。
The side surfaces of the joining material elements are covered with an outer frame plate 16 into which a restraining material 10b is inserted. Furthermore, a pressure plate 17 is placed on the upper surface of the joining material element, and is configured to press the joining material element with a predetermined pressure intensity.

次に上記構成において、接合処理を行う。接合処理は真
空度が約2 X 10 ’Torrの雰囲気中において
、加熱温度が950℃、加圧強度100グ/d、加熱温
度保持時間60分間とした。
Next, in the above configuration, a bonding process is performed. The bonding process was carried out in an atmosphere with a degree of vacuum of about 2×10' Torr, at a heating temperature of 950° C., a pressure strength of 100 g/d, and a heating temperature holding time of 60 minutes.

上記条件下において、接合銅材6bと接合グラファイト
材7bとは、加圧板17による加圧力と付加される熱に
よって相互に接合するとともに、接合銅材6bの上部側
面が熱膨脹を伴なって拘束材10b内面に接合する。
Under the above conditions, the bonded copper material 6b and the bonded graphite material 7b are bonded to each other by the pressure applied by the pressure plate 17 and the heat applied, and the upper side surface of the bonded copper material 6b expands thermally and becomes a restraining material. It is joined to the inner surface of 10b.

加熱処理が完了後、生成した接合体を冷却する過程にお
いて、熱膨張率が大きな接合銅材6bが収縮しようとす
るが、両側面部において接合された拘束材10bによっ
てその変位が拘束されるため、接合グラファイト材7b
の端部における割れの発生が効果的に防止される。
After the heat treatment is completed, in the process of cooling the resulting bonded body, the bonded copper material 6b, which has a large coefficient of thermal expansion, attempts to contract, but its displacement is restrained by the restraining materials 10b bonded on both side surfaces. Bonded graphite material 7b
The occurrence of cracks at the edges of the material is effectively prevented.

なお、接合銅材6bの側面全体に拘束材を装着し、側面
全域にJ3ける収縮を拘束する構成にすると、接合銅材
6b内部の残留応力が大きくなり、冷却後に拘束材10
bを撤去する際に、接合グラファイト材7bに割れが発
生する場合がある。
Note that if a restraining material is attached to the entire side surface of the bonded copper material 6b and the contraction of J3 is restrained over the entire side surface, the residual stress inside the bonded copper material 6b increases, and the constraint material 10 after cooling increases.
When removing the bonded graphite material 7b, cracks may occur in the bonded graphite material 7b.

したがって拘束材10bは第3図に示すように接合界面
近傍のみに装着するとよい。例えば接合銅材6bの厚さ
が10順程度の場合は拘束材10bによる接合銅材6b
の拘束部の幅は5履程度が好ましい。
Therefore, it is preferable to attach the restraining material 10b only near the joint interface, as shown in FIG. For example, if the thickness of the bonded copper material 6b is about 10, the bonded copper material 6b is
The width of the restraint part is preferably about 5 shoes.

さらに第4図に従って本発明に係る接合体の一実施例を
説明する。
Further, an embodiment of the joined body according to the present invention will be described with reference to FIG.

本実施例に係る接合体は、熱膨張率が異なる材料要素と
しての鋼材18と黒鉛材19とをチタンv′I8dを介
して突き合せ加熱して一体に形成される接合体20であ
り、少なくとも熱膨張率が大きな材料要素である鋼材1
8の接合界面21の外周部に材料要素の伸縮を拘束する
リング状の拘束材22を接合界面21に対向するように
配設するとともに上記拘束材22の外周側面は材料要素
の外周側面と一致するように形成される。リング状の拘
束材22が銅材18の上面外周部に嵌合する接触面には
チタン箔8eが介装されている。
The joined body according to this embodiment is a joined body 20 that is integrally formed by abutting and heating a steel material 18 and a graphite material 19 as material elements having different coefficients of thermal expansion through titanium v'I8d, and at least Steel material 1, which is a material element with a large coefficient of thermal expansion
A ring-shaped restraint material 22 for restraining expansion and contraction of the material element is disposed on the outer periphery of the joint interface 21 of No. 8 so as to face the joint interface 21, and the outer peripheral side surface of the restraint material 22 coincides with the outer peripheral side surface of the material element. It is formed to A titanium foil 8e is interposed on the contact surface where the ring-shaped restraining member 22 fits onto the outer peripheral portion of the upper surface of the copper material 18.

拘束材22は、モリブデン(MO)またはモリブデン合
金の伯に、黒鉛材19と熱膨張率が近似し、かつ高温強
度に優れた部材、例えばタングステンやタングステン合
金などで形成するとよい。
The restraining material 22 is preferably formed of molybdenum (MO) or a molybdenum alloy, which has a coefficient of thermal expansion similar to that of the graphite material 19, and has excellent high-temperature strength, such as tungsten or a tungsten alloy.

拘束材22の前面寸法は、黒鉛材19の断面形状が25
aa+角の場合には、約5#1角、断面形状が50aI
角の場合には、5〜10s+角V1度の値が好ましい。
The front dimension of the restraining material 22 is such that the cross-sectional shape of the graphite material 19 is 25
In the case of aa+ angle, approximately 5#1 angle, cross-sectional shape is 50aI
In the case of an angle, a value of 5 to 10 seconds + angle V1 degree is preferred.

上記リング状の拘束材22を配設した接合体20によれ
ば加熱処理によって、鋼材18、黒鉛材19およびリン
グ状拘束材22が相互に接合する。
According to the joined body 20 in which the ring-shaped restraining material 22 is arranged, the steel material 18, the graphite material 19, and the ring-shaped restraining material 22 are bonded to each other by heat treatment.

一体に接合された接合体20の冷却時における鋼材18
の収縮は、リング状拘束材22によって拘束されるため
、゛黒鉛材19の割れの発生が少ない。
Steel material 18 during cooling of joined body 20 joined together
Since the contraction of the graphite material 19 is restrained by the ring-shaped restraining material 22, cracks in the graphite material 19 are less likely to occur.

また本接合体20によればリング状の拘束材22を接合
界面周囲に埋め込む構造とし、その外周面を鋼材18お
よび黒鉛材19の外周面と一致するように形成している
ため、接合処理後において拘束材22を撤去することな
く、そのまま接合体の構成材料として使用することが可
能である。従って接合処理後の加工成形工程が簡素化す
る。
Furthermore, according to the present bonded body 20, the ring-shaped restraining material 22 is embedded around the bonding interface, and its outer circumferential surface is formed to match the outer circumferential surfaces of the steel material 18 and the graphite material 19, so that after the bonding process, In this case, it is possible to use the restraining material 22 as it is as a constituent material of the joined body without removing it. Therefore, the processing and forming process after the bonding process is simplified.

さらに接合界面の大部分は鋼材18と、黒鉛材19とが
直接接合した領域で占められているため、伝熱効率が高
く、冷却能力を大きく設定することができる。
Further, since most of the joint interface is occupied by the region where the steel material 18 and the graphite material 19 are directly joined, the heat transfer efficiency is high and the cooling capacity can be set to be large.

〔発明の効果〕〔Effect of the invention〕

以上説明の通り本発明に係る材料接合方法および接合体
によれば、材料要素の接合界面外周に設【ノた拘束材に
よって、接合部周囲における材料要素の熱収縮および変
形を拘束することができる。
As explained above, according to the material joining method and joined body according to the present invention, thermal contraction and deformation of the material elements around the joint can be restrained by the restraining material installed on the outer periphery of the joining interface of the material elements. .

すなわち熱膨張率が賃なる材料要素間の熱収縮量の差に
起因する応力の発生が回避され、割れ等の欠陥が発生し
ない接合体を得ることができる。
In other words, the generation of stress due to the difference in thermal contraction between material elements whose coefficient of thermal expansion is important is avoided, and a joined body free from defects such as cracks can be obtained.

また材料要素間に熱応力緩和用の中間層を設けることな
く、両材料要素を直接に接合しているため、伝熱効率の
低下が少なく高い冷却能力を有する接合体を提供するこ
とができる。
Further, since both material elements are directly joined without providing an intermediate layer for relaxing thermal stress between the material elements, it is possible to provide a joined body having a high cooling capacity with little reduction in heat transfer efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する際に使用するHrP装置
の構成および本発明方法によって材料要素を接合する状
態を示す断面図、第2図(a)〜(d)は本発明方法の
他の実施例を工程順に示す断面図、第3図は本発明方法
のその伯の実施例を示す断面図、第4図は本発明による
接合体の構造を示す断面図である。 1・・・HIP装置、2・・・HIP炉、3・・・試料
台、4・・・ヒータ線、5・・・ガス圧縮機、6.6a
、6b・・・接合鋼材、7.7a、7b・・・接合グラ
ファイト材、8.8a、8b、8c、8d、8e−・・
チタン箔、9・・・タンタル箔、10,10b・・・拘
束材、11・・・側面部、12a、12b・・・側面部
、13・・・切断線、14・・・接合体、15・・・加
圧台、16・・・外枠板、17・・・加圧板、18・・
・銅材、19・・・黒鉛材、20・・・接合体、21・
・・接合界面、22・・・拘束材。 出願人代理人  波 多 野    久第1図 一−−−6α 第2図
FIG. 1 is a cross-sectional view showing the configuration of the HrP apparatus used in carrying out the method of the present invention and the state in which material elements are joined by the method of the present invention, and FIGS. FIG. 3 is a cross-sectional view showing a second embodiment of the method of the present invention, and FIG. 4 is a cross-sectional view showing the structure of a joined body according to the present invention. 1... HIP device, 2... HIP furnace, 3... sample stand, 4... heater wire, 5... gas compressor, 6.6a
, 6b... Joined steel material, 7.7a, 7b... Joined graphite material, 8.8a, 8b, 8c, 8d, 8e-...
Titanium foil, 9... Tantalum foil, 10, 10b... Restraint material, 11... Side part, 12a, 12b... Side part, 13... Cutting line, 14... Joined body, 15 ... Pressure table, 16 ... Outer frame plate, 17 ... Pressure plate, 18 ...
・Copper material, 19...Graphite material, 20...Joint body, 21.
...Joining interface, 22...Restraint material. Applicant's agent Hisashi Hatano Figure 1--6α Figure 2

Claims (1)

【特許請求の範囲】 1、黒鉛と金属材料、黒鉛とセラミックス複合材など熱
膨張率が異なる材料要素と突き合わせ、拡散接合または
化学接合によつて両材料要素を接合して一体の接合体を
形成する材料接合方法において、予め接合界面外周に材
料要素の加熱冷却による伸縮を拘束する拘束材を装着し
た後に、所定温度にて加熱し材料要素相互および材料要
素と拘束材とを接合し、しかる後に接合温度から常温度
まで冷却することを特徴とする材料接合方法。 2、材料要素の一方が黒鉛であり、他方が銅または銅合
金である請求項1記載の材料接合方法。 3、拘束材は、モリブデン、モリブデン合金、タングス
テンおよびタングステン合金から選択された一種の材料
により形成された請求項1記載の材料接合方法。 4、熱膨張率が異なる材料要素を突き合せ加熱して一体
に形成される接合体であり、少なくとも熱膨張率が大き
な材料要素の接合界面の外周部に材料要素の伸縮を拘束
する拘束材を接合界面に対向するように配設するととも
に上記拘束材の外周側面は材料要素の外周側面と一致す
るように形成したことを特徴とする接合体。
[Claims] 1. Forming an integral joined body by butting material elements with different coefficients of thermal expansion, such as graphite and a metal material, or graphite and a ceramic composite, and joining both material elements by diffusion bonding or chemical bonding. In the material joining method, a restraining material is attached in advance to the outer periphery of the joining interface to restrain expansion and contraction due to heating and cooling of the material elements, and then the material elements are joined to each other and the material elements and the restraining material by heating at a predetermined temperature. A material joining method characterized by cooling from the joining temperature to room temperature. 2. The material joining method according to claim 1, wherein one of the material elements is graphite and the other is copper or a copper alloy. 3. The material joining method according to claim 1, wherein the restraining material is formed of one kind of material selected from molybdenum, molybdenum alloy, tungsten, and tungsten alloy. 4. It is a joined body formed by abutting and heating material elements with different coefficients of thermal expansion, and at least a restraining material to restrain expansion and contraction of the material elements is placed on the outer periphery of the joint interface of the material elements with a large coefficient of thermal expansion. A joined body, characterized in that the restraining material is disposed so as to face a joining interface, and the outer circumferential side surface of the constraining material is formed to match the outer circumferential side surface of the material element.
JP13737188A 1988-06-06 1988-06-06 Material-bonding process and bonded product Pending JPH01308884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13737188A JPH01308884A (en) 1988-06-06 1988-06-06 Material-bonding process and bonded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13737188A JPH01308884A (en) 1988-06-06 1988-06-06 Material-bonding process and bonded product

Publications (1)

Publication Number Publication Date
JPH01308884A true JPH01308884A (en) 1989-12-13

Family

ID=15197123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13737188A Pending JPH01308884A (en) 1988-06-06 1988-06-06 Material-bonding process and bonded product

Country Status (1)

Country Link
JP (1) JPH01308884A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058056A (en) * 1991-06-28 1993-01-19 Kinzoku Giken Kk Joining method for stainless steel and aluminum or aluminum alloy
JP2000226273A (en) * 1999-02-05 2000-08-15 Plansee Ag Production of heat-resistant composite structure member
EP1632463A1 (en) * 2004-09-06 2006-03-08 Plansee Gmbh Composite material
JP2012238733A (en) * 2011-05-12 2012-12-06 Thermo Graphitics Co Ltd Anisotropic thermally-conductive element and manufacturing method thereof
JP2014200819A (en) * 2013-04-05 2014-10-27 株式会社東芝 Brazing device and brazing method
CN105397264A (en) * 2015-12-29 2016-03-16 西安瑞福莱钨钼有限公司 Vacuum hot-pressing diffusion welding method for molybdenum and graphite

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058056A (en) * 1991-06-28 1993-01-19 Kinzoku Giken Kk Joining method for stainless steel and aluminum or aluminum alloy
JP2000226273A (en) * 1999-02-05 2000-08-15 Plansee Ag Production of heat-resistant composite structure member
EP1632463A1 (en) * 2004-09-06 2006-03-08 Plansee Gmbh Composite material
US7670681B2 (en) 2004-09-06 2010-03-02 Plansee Se Material composite and method of producing the composite
US8557383B2 (en) 2004-09-06 2013-10-15 Plansee Se Method of producing a material composite
JP2012238733A (en) * 2011-05-12 2012-12-06 Thermo Graphitics Co Ltd Anisotropic thermally-conductive element and manufacturing method thereof
JP2014200819A (en) * 2013-04-05 2014-10-27 株式会社東芝 Brazing device and brazing method
CN105397264A (en) * 2015-12-29 2016-03-16 西安瑞福莱钨钼有限公司 Vacuum hot-pressing diffusion welding method for molybdenum and graphite

Similar Documents

Publication Publication Date Title
US6180931B1 (en) Heater unit for semiconductor processing
JP4257728B2 (en) Formation method of spatter target assembly
EP0135937B1 (en) Method of bonding alumina to metal
JP4101292B2 (en) Sputter target and barking plate assembly and method of manufacturing the same
JPS61111981A (en) Method of bonding ceramic part and metal part
JP3040203B2 (en) High temperature stable composite and method for producing the same
US5998041A (en) Joined article, a process for producing said joined article, and a brazing agent for use in producing such a joined article
JPH01308884A (en) Material-bonding process and bonded product
US5874015A (en) Method for making a rhenium rocket nozzle
JP3197835B2 (en) Composite joint of beryllium, copper alloy and stainless steel and composite joint method
JP2941382B2 (en) Ceramic-metal bonded body and method of manufacturing the same
JP3119906B2 (en) Joint of carbon material and metal
US6789723B2 (en) Welding process for Ti material and Cu material, and a backing plate for a sputtering target
JPH029779A (en) Production of ceramic-metal composite body
JPH069907B2 (en) Method for producing composite material composed of graphite and metal
WO1998003297A1 (en) Two-step brazing process for joining materials with different coefficients of thermal expansion
JPH0649623B2 (en) Method of joining ceramics and metal
JPH0987051A (en) Joined body of ceramics and method for joining ceramics
KR100329831B1 (en) BONDING METHOD AND BONDING DEVICE OF Ti/Al6061 SPUTTERING TARGET ASSEMBLY
JPH0649620B2 (en) Method for joining ceramic member and metal member
JP2854619B2 (en) Joining method
JPH0243704B2 (en) SERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO
JPH0142914B2 (en)
JPH04158994A (en) Cold joining method by superfine particles
JP2001262329A (en) Solid phase diffusion-joined sputtering target assembly and its producing method