US20110112196A1 - Nrf2 screening assays and related methods and compositions - Google Patents

Nrf2 screening assays and related methods and compositions Download PDF

Info

Publication number
US20110112196A1
US20110112196A1 US12/526,296 US52629608A US2011112196A1 US 20110112196 A1 US20110112196 A1 US 20110112196A1 US 52629608 A US52629608 A US 52629608A US 2011112196 A1 US2011112196 A1 US 2011112196A1
Authority
US
United States
Prior art keywords
nrf2
compound
test compound
disease
pathway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/526,296
Other languages
English (en)
Inventor
Matvey E Lukashev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biogen MA Inc
Original Assignee
Biogen Idec MA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39682314&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20110112196(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Biogen Idec MA Inc filed Critical Biogen Idec MA Inc
Priority to US12/526,296 priority Critical patent/US20110112196A1/en
Assigned to BIOGEN IDEC MA INC. reassignment BIOGEN IDEC MA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LUKASHEV, MATVEY E.
Publication of US20110112196A1 publication Critical patent/US20110112196A1/en
Assigned to BIOGEN IDEC MA INC. reassignment BIOGEN IDEC MA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: O-NEILL, GILMORE
Assigned to BIOGEN MA INC. reassignment BIOGEN MA INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: BIOGEN IDEC MA INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0065Forms with gastric retention, e.g. floating on gastric juice, adhering to gastric mucosa, expanding to prevent passage through the pylorus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/137Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/194Carboxylic acids, e.g. valproic acid having two or more carboxyl groups, e.g. succinic, maleic or phthalic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/225Polycarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/275Nitriles; Isonitriles
    • A61K31/277Nitriles; Isonitriles having a ring, e.g. verapamil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/436Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/47042-Quinolinones, e.g. carbostyril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • A61K38/217IFN-gamma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4891Coated capsules; Multilayered drug free capsule shells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5041Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects involving analysis of members of signalling pathways
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/90209Oxidoreductases (1.) acting on NADH or NADPH (1.6), e.g. those with a heme protein as acceptor (1.6.2) (general), Cytochrome-b5 reductase (1.6.2.2) or NADPH-cytochrome P450 reductase (1.6.2.4)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/285Demyelinating diseases; Multipel sclerosis

Definitions

  • certain compounds for treating neurological diseases including demyelinating neurological diseases, such as, e.g., multiple sclerosis.
  • MS Multiple sclerosis
  • CNS central nervous system
  • MS is a chronic, progressing, disabling disease, which generally strikes its victims some time after adolescence, with diagnosis generally made between 20 and 40 years of age, although onset may occur earlier.
  • the disease is not directly hereditary, although genetic susceptibility plays a part in its development.
  • Relapsing-remitting MS presents in the form of recurrent attacks of focal or multifocal neurologic dysfunction. Attacks may occur, remit, and recur, seemingly randomly over many years. Remission is often incomplete and as one attack follows another, a stepwise downward progression ensues with increasing permanent neurological deficit.
  • Phase 2 enzymes serve as a protection mechanism in mammalian cells against oxygen/nitrogen species (ROS/RNS), electrophiles and xenobiotics. These enzymes are not normally expressed at their maximal levels and, their expression can be induced by a variety of natural and synthetic agents.
  • Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor responsible for the induction of a variety of important antioxidant and detoxification enzymes that coordinate a protective cellular response to metabolic and toxic stress.
  • ROS/RNS are most damaging in the brain and neuronal tissue, where they attack post-mitotic (i.e., non-dividing) cells such as glial cells, oligodendocytes, and neurons, which are particularly sensitive to free radicals. This process leads to neuronal damage. Oxidative stress has been implicated in the pathogenesis of a variety of neurodegenerative diseases, including ALS, Alzheimer's disease (AD), and Parkinson's disease (PD). For review, see, e.g., van Muiswinkel et al., Curr. Drug Targets CNS—Neurol. Disord., 2005, 4:267-281.
  • NQO1 NQO1
  • Nrf2 pathway may be activated in neurodegenerative and neuroinflammatory diseases as an endogenous protective mechanism. Indeed, most recently, it has been reported that induced activation of Nrf2-dependent genes by certain cyclopenanone-based compounds (NEPP) counters the toxic effects of metabolic inhibition and ROS/RNS production in the brain and protects neurons from death in vitro and in vivo (see Satoh et al., PNAS, 2006, 103(3):768-773).
  • NEPP cyclopenanone-based compounds
  • inducers of Nrf2 pathway include isothiocyanates and their thiol addition products, dithiocarbamates, as well as 1,2-dithiole-3-thiones, trivalent arsenic derivatives (e.g., phenyl arsenoxide), heavy metals, certain conjugated cyclic and acyclic polyenes (including porphyrins, chlorophyllins, and chlorophyll), and vicinal dimercaptans.
  • isothiocyanates and their thiol addition products include dithiocarbamates, as well as 1,2-dithiole-3-thiones
  • trivalent arsenic derivatives e.g., phenyl arsenoxide
  • heavy metals e.g., certain conjugated cyclic and acyclic polyenes (including porphyrins, chlorophyllins, and chlorophyll), and vicinal dimercaptans.
  • the inducers can modify thiol groups by a variety of mechanisms including: alkylation (Michael addition acceptors, isothiocyanates, quinones); oxidation (e.g., peroxides and hydroperoxides); and direct reaction with thiol/disulfide linkages (e.g., vicinal dithiols such as 1,2-dimercaptopropanol, lipoic acid). These diverse response mechanisms provide plasticity for cellular responses to a variety of electrophilic and oxidant stressors.
  • the neurological disease is a neurodegenerative disease such as, for example, ALS, Parkinson's disease, Alzheimer's disease, and Huntington's disease. In some embodiments the neurological disease is MS or another demyelinating neurological disease.
  • the methods 1-3 further comprise:
  • the methods 1-3 comprise contacting a cell with at least one test compound and determining whether the Nrf2 pathway is upregulated in the cell.
  • an upregulation of the Nrf2 pathway above a threshold indicates that the at least one compound has at least one biological property beneficial in treating a neurological disease (e.g., neuroprotective properties).
  • the upregulation of the Nrf2 pathway is assessed (in vivo and/or in vitro) by at least one of the following:
  • the compounds that are being screened, evaluated, or compared comprise at least one member of at least one of the following classes of compounds: mild alkylating agents, Michael addition acceptors, and compounds that are metabolized upon administration to Michael addition acceptors.
  • the Michael addition acceptor has the structure of Formula I, II, Ill, or IV set forth below.
  • method 1 comprises:
  • method 2 comprises:
  • method 3 comprises:
  • the test compound is fumaric acid, a salt thereof, or a fumaric acid derivative.
  • the first composition comprises DMF, MMF, or both.
  • the dose and/or the formulation of the first composition differs from the dose and/or the formulation of the second composition.
  • method 3 further comprises:
  • method 4 comprises administering to the mammal a therapeutically effective amount of at least one neuroprotective compound having Formula I, II, III, or IV, e.g., a fumaric acid derivative (e.g., DMF or MMF).
  • a neuroprotective compound having Formula I, II, III, or IV e.g., a fumaric acid derivative (e.g., DMF or MMF).
  • method 4 provides a method of slowing or preventing neurodegeneration in a patient in need thereof, by administering the compound in an amount and for a period of time sufficient to slow or prevent demyelination, axonal loss, and/or neuronal death, e.g., by at least 30% relative to a control.
  • method 5 comprises:
  • the at least one first compound, used in step (a), is a compound of Formula I, II, III, or IV, e.g., a fumaric acid derivative (e.g., DMF or MMF); and the at least one second compound, which is used in step (b), is an immunosuppressive or an immunomodulatory compound that does not upregulate the Nrf2 pathway (e.g., by more than 30% over a control).
  • a fumaric acid derivative e.g., DMF or MMF
  • the at least one second compound, which is used in step (b) is an immunosuppressive or an immunomodulatory compound that does not upregulate the Nrf2 pathway (e.g., by more than 30% over a control).
  • method 5 comprises administering to the mammal a therapeutically effective amount of a compound of Formula I, II, III, or IV.
  • the at least onecompound being screened, identified, evaluated, or used for treating a neurological disorder is not fumaric acid or its salt, or a fumaric acid derivative (e.g., DMF or MMF).
  • FIG. 1 demonstrates that DMF and MMF are activators of Nrf2 at concentrations within clinical exposure range (cells in culture).
  • FIG. 2 shows results of RNAi experiments.
  • FIG. 3 shows evidence of Nrf2 activation by DMF and MMF In vivo.
  • FIG. 4 shows evidence of Nrf2 activation by DMF and MMF In vivo.
  • Fumaric acid esters such as DMF have been proposed for treatment of MS (see, e.g., Schimrigk et al., Eur. J. Neurol., 2006, 13(6):604-10; Drugs R&D, 2005, 6(4):229-30).
  • DMF is a member of a large group of anti-oxidant molecules known for their cytoprotective and anti-inflammatory properties. These molecules also share the property of the Nrf2 pathway activation. Thus, the finding that DMF activates the Nrf2 pathway in conjunction with the neuroprotective effects of DMF further offers a rationale for identification of structurally and/or mechanistically related molecules that would be expected to be therapeutically effective for the treatment of neurological disorders, such as, e.g., MS.
  • activation and “upregulation,” when used in reference to the Nrf2 pathway, are used interchangeably herein.
  • a drug for treating a neurological disease refers to a compound that has a therapeutic benefit in a specified neurological disease as shown in at least one animal model of a neurological disease or in human clinical trials for the treatment of a neurological disease.
  • neuroprotection and its cognates refer to prevention or a slowing in neuronal degeneration, including, for example, demyelination and/or axonal loss, and/or, neuronal and/or oligodendrocyte death.
  • Neuroprotection may occur through several mechanisms, e.g., through reducing inflammation, providing neurotrophic factors, scavenging free radicals, etc.
  • a compound is considered neuroprotective if it (1) upregulates the Nrf2 pathway above a certain threshold and (2) provides neuroprotection, regardless of possible other mechanisms of action.
  • treatment refers to therapeutic as well as prophylactic/preventative measures.
  • those in need of treatment may include individuals already having a specified disease and those who are at risk for acquiring that disease.
  • terapéuticaally effective dose and “therapeutically effective amount” refer to that amount of a compound which results in at least one of prevention or delay of onset or amelioration of symptoms of a neurological disorder in a subject or an attainment of a desired biological outcome, such as reduced neurodegeneration (e.g., demyelination, axonal loss, and neuronal death) or reduced inflammation of the cells of the CNS.
  • a desired biological outcome such as reduced neurodegeneration (e.g., demyelination, axonal loss, and neuronal death) or reduced inflammation of the cells of the CNS.
  • test compounds including the following methods:
  • methods 1-3 may comprise:
  • Combinatorial libraries of compounds are also described in, e.g., Solid-Supported Combinatorial and Parallel Synthesis of Small-Molecular-Weight Compound Libraries (Tetrahedron Organic Chemistry) Ian Salusbury (ed.), Elsevier (1998); Combinatorial Libraries: Synthesis, Screening and Application Potential (Library Binding), by Riccardo Cortese (ed.), Walter de Gruyter (1995).
  • the libraries of compounds may be, for example, quinone libraries and other libraries as described in Mittoo, Comb. Chem. & High Throughput Screen, 2006, 9:421-423.
  • the at least one compound or plurality of compounds being screened and/or selected comprises at least one compound selected from at least one of the following groups of compounds: mild alkylating agents, Michael addition acceptors or compounds that are metabolized to Michael addition acceptors, including compounds of Formulas I, II, III, or IV.
  • the at least one compound is selected from fumaric acid, its salts, and fumaric acid derivatives.
  • the upregulation of the Nrf2 pathway by the at least one drug or drug candidate indicates that the at least one drug or drug candidate has at least one activity selected from slowing demyelination, slowing the loss of axons, and slowing the rate of neuronal death.
  • the method of evaluating at least one drug or drug candidate comprises an additional step:
  • steps a) and c) are performed in vivo in at least one model of a neurological disease, e.g., as described below.
  • the evaluated at least one drug or drug candidate for a neurological disease is chosen from the following: FTY720 (2-(4-octylphenethyl)-2-aminopropane-1,3-diol; Novartis); anti-IL12 antibody (e.g., ABT-874; Abbott Laboratories); GSK683699 (GSK/Tanabe); NeuroVax (Immune Response Corp.; Darlington, Curr. Opin. Mol.
  • anti-CCR2 antibody e.g., MLN 1202; Millennium
  • interferon ⁇ -1a e.g., Avonex®; Biogen Idec
  • anti- ⁇ 4-integrin antibody e.g., Tysabri®; Biogen Idec/Elan
  • anti-CD20 antibody e.g., Rituxan® (Biogen Idec/Genentech); TV 5010 (Teva); NBI-788 (Neurocrine); MBP8298 (BioMS (see Warren et al., Eur. J.
  • the at least one drug or drug candidate being evaluated is at least one compound selected from at least one class selected from a mild alkylating agent, a Michael addition acceptor, and a compound that is metabolized to a Michael addition acceptor, including compounds of Formulas I, II, III, or IV.
  • the compound is fumaric acid, its salt, or a fumaric acid derivative.
  • Such methods comprise:
  • substantially dissimilar levels of upregulation by the at least one first and at least one second compositions indicate that the compositions are not bioequivalent.
  • the test compound is fumaric acid, its salt thereof, a fumaric acid derivative, or mixtures thereof.
  • the first composition comprises at least one of DMF, MMF, and both DMF and MMF.
  • the dose and/or the formulation of the at least one first composition differs from the dose and/or the formulation of the at least one second composition.
  • the at least one first composition may be a controlled release composition such as, e.g., compositions described in WO 2006/037342.
  • the method further comprises and additional step:
  • Pharmacokinetic parameters and methods for evaluating the same are well known and are described in, e.g., Pharmacokinetics, Second Edition (Drugs and the Pharmaceutical Sciences) by Milo Gibaldi et al. (eds.), Informa Healthcare (1982). Examples of such pharmacokinetic parameters that can be evaluated include serum half-life, clearance, and volume distribution.
  • substantially dissimilar pharmacokinetic parameter(s) of the a least one first and at least one second compositions indicate that the compositions are not bioequivalent.
  • the test compound being evaluated is a mild alkylating agent, and more specifically, a Michael addition acceptor, or a compound that is metabolized to a Michael addition acceptor.
  • the test compound is fumaric acid or its salt, or a fumaric acid derivative.
  • Also provided are methods of treating a mammal who has or is at risk for developing a neurological disease including the following methods:
  • a method of treating a mammal who has or is at risk for a neurological disease comprises administering to the mammal a therapeutically effective amount of at least one neuroprotective compound which has Formula I, II, III, or IV, e.g., a fumaric acid derivative (e.g., DMF or MMF).
  • a neuroprotective compound which has Formula I, II, III, or IV, e.g., a fumaric acid derivative (e.g., DMF or MMF).
  • a method of slowing or preventing neurodegeneration in a subject in need thereof, by administering the at least one compound in an amount and for a period of time sufficient to do at least one of slow or prevent demyelination, slow or prevent axonal loss, and alow or prevent neuronal death, e.g., by at least 30%, 50%, 100% or higher over a control over a period of at least 5, 10, 12, 20, 40, 52, 100, or 200 weeks, or more.
  • such methods comprise:
  • the at least one first compound, used in step (a), is a compound of Formula I, II, III, or IV, e.g., DMF or MMF; and the at least one second compound, which is used in step (b), is an immunosuppressive or an immunomodulatory compound that does not upregulate the Nrf2 pathway (e.g., by more than 30%, 50%, 100% over a control).
  • the method comprises administering to the mammal a therapeutically effective amount of a compound of Formula I, II, III, or IV.
  • the at least one first compound and the at least one second compound may be administered concurrently (as separate compositions or a mixed composition) or consecutively over overlapping or non-overlapping intervals.
  • the sequential administration the at least one first compound and the at least one second compound can be administered in any order.
  • the length of an overlapping interval is more than 2, 4, 6, 12, 24, or 48 weeks, for example.
  • Michael addition acceptors generally include olefins or acetylenes conjugated to an electron withdrawing group, such as carbonyl containing groups, thiocarbonyl containing groups, cyano, sulfonyl, sulfonamido, amido, formyl, keto, and nitro.
  • exemplary carbonyl groups include carboxylic acid esters and carboxylic acid.
  • the at least one compound being screened, identified, evaluated, or used for treating a neurological disorder is selected from a mild alkylating agent, a Michael addition acceptor, and a compound that is metabolized to a Michael addition acceptor.
  • the Michael addition acceptor has the structure of Formula I:
  • X is O; S; C(R)(C 1-12 )alkyl; or C(R)(C 2-12 )alkenyl, wherein R is H, (C 1-12 )alkyl or (C 2-12 )alkenyl;
  • R 1 , R 2 , R 3 and R 4 are independently selected from: H; OH; O ⁇ ; CO 2 H, CO 2 ⁇ ; SH; S ⁇ ; SO 2 H, SO 2 ⁇ ; (C 1-24 )alkyl; (C 1-24 )alkenyl; (C 6-50 )aryl, CO 2 (C 1-24 )alkyl; SO 2 (C 1-24 )alkyl; CO 2 (C 1-24 )alkenyl; SO 2 (C 1-24 )alkenyl, CO 2 Y, wherein Y is psoralen-9-yl, retinyl, alpha-tocopherol, calciferyl, corticostreoid-21-yl or monosaccarid- ⁇ -yl; (C 1-24 )alkoxy; (C 1-24 )alkenyloxy; (C 6-50 )aryloxy; (C 1-24 )alkylthio; (C 1-24 )alkenylthio
  • the at least one Michael addition acceptor has the structure of Formula I, with the following provisos:
  • R 1 is selected from: H; OH; O ⁇ ; CO 2 H, CO 2 ⁇ ; SH; S ⁇ ; SO 2 H, SO 2 ⁇ ; (C 1-24 )alkyl; (C 1-24 )alkenyl; (C 6-50 )aryl; CO 2 (C 1-24 )alkyl, SO 2 (C 1-24 )alkyl; CO 2 (C 1-24 )alkenyl; SO 2 (C 1-24 )alkenyl; CO 2 Y, wherein Y is psoralen-9-yl, retinyl, alpha-tocopherol, calciferyl, corticostreoid-21-yl or monosaccarid- ⁇ -yl; (C 1-24 )alkoxy; (C 1-24 )alkenyloxy; (C 6-50 )aryloxy; (C 1-24 )alkylthio; (C 1-24 )alkenylthio; (C 6-50 )arylthio;
  • R 2 is selected from: H; CO 2 H; CO 2 ⁇ ; SO 2 H; SO 2 ⁇ ; (C 1-24 )alkyl; (C 1-24 )alkenyl; (C 6-50 )aryl; CO 2 (C 1-24 )alkyl; SO 2 (C 1-24 )alkyl; CO 2 (C 1-24 )alkenyl; SO 2 (C 1-24 )alkenyl; CO 2 Y, wherein Y is psoralen-9-yl, retinyl, alpha-tocopherol, calciferyl, corticostreoid-21-yl or monosaccarid- ⁇ -yl; (C 1-24 )alkoxy; (C 1-24 )alkenyloxy; (C 6-50 )aryloxy; (C 1-24 )alkylthio; (C 1-24 )alkenylthio; (C 6-50 )arylthio, amido; arylalkyl; cyano;
  • R 3 and R 4 are independently selected from: H; CO 2 H; CO 2 ⁇ ; SO 2 H; SO 2 ⁇ ; (C 1-24 )alkyl; (C 1-24 )alkenyl; (C 6-50 )aryl; CO 2 (C 1-24 )alkyl; SO 2 (C 1-24 )alkyl; CO 2 (C 1-24 )alkenyl; SO 2 (C 1-24 )alkenyl; CO 2 Y, wherein Y is psoralen-9-yl, retinyl, alpha-tocopherol, calciferyl, corticostreoid-21-yl or monosaccarid- ⁇ -yl; (C 1-24 )alkoxy; (C 1-24 )alkenyloxy; (C 6-50 )aryloxy; (C 1-24 )alkylthio; (C 1-24 )alkenylthio; (C 6-50 )arylthio; amido; arylalkyl;
  • the at least one Michael addition acceptor has the structure of Formula II:
  • X is selected from O; S; C(R)(C 1-12 )alkyl; and C(R)(C 2-12 )alkenyl, wherein R is selected from H; (C 1-12 )alkyl; and (C 2-12 )alkenyl; and R 1 , R 2 , R 3 , and R 4 are independently selected from: H; OH; O ⁇ ; CO 2 H; CO 2 ⁇ ; (C 1-12 )alkyl; (C 1-12 )alkenyl; and CO 2 (C 1 - 12 )alkyl;
  • X, R 1 , R 2 and R 3 may be joined together to form a cyclic moiety.
  • the pharmaceutically acceptable salt is a salt of a metal (M) cation, wherein M can be an alkali, alkaline earth, or transition metal such as Li, Na, K, Ca, Zn, Sr, Mg, Fe, or Mn.
  • the compounds of Formula I include fumaric acid, its salts, and fumaric acid derivatives.
  • the at least one compound of Formula I has the structure of Formula III:
  • R 1 and R 3 are independently selected from OH; O ⁇ ; (C 1-24 )alkoxy; (C 1-24 )alkenyloxy; (C 6-50 )aryloxy; psoralen-9-yloxy; retinyloxy; alpha-tocopheroloxy; calciferyloxy; corticostreoid-21-yloxy; monosaccarid- ⁇ -yloxy; amino; and a D or L natural or unnatural amino acid; and wherein at least one of the the (C 1-24 )alkoxy; (C 1-24 )alkenyloxy; and (C 6-50 )aryloxy groups may be optionally substituted with at least one group chosen from halogen (F, Cl, Br, or I), OH, (C 1-4 )alkoxy, nitro and cyano.
  • halogen F, Cl, Br, or I
  • R 1 and R 3 are described in U.S. application Ser. No. 10/433,295, paragraphs 10 to 11 and 18-28, and Ser. No. 11/421,083, which are incorporated herein by reference.
  • the compound of formula (I) has the structure of Formula IV:
  • R 1 and R 3 are independently selected from OH; O ⁇ ; (C 1-24 )alkoxy; allyloxy; vinyloxy; (C 6-50 )aryloxy; psoralen-9-yloxy; retinyloxy; alpha-tocopheroloxy; calciferyloxy; corticostreoid-21-yloxy; monosaccarid- ⁇ -yloxy; amino; and a D or L natural or unnatural amino acid; and wherein at least one of the the (C 1-24 )alkoxy, allyloxy, vinyloxy, and (C 6-50 )aryloxy may be optionally substituted with at least one group chosen from Cl, F, I, Br, OH, (C 1-4 )alkoxy, nitro, and cyano.
  • the “fumaric acid derivative” is chosen from the compounds of Formula III, compounds of Formula IV and the following:
  • fumaric acid amides derived from natural and unnatural amino D or L acids, as described in U.S. patent application Ser. No. 10/433,295, paragraphs 10 to 11 and 18-28, and Ser. No. 11/421,083.
  • “fumaric acid derivative” is one or more dialkyl fumarates (e.g., DMF), mono alkyl fumarates (MMF) or salts thereof.
  • DMF dialkyl fumarates
  • MMF mono alkyl fumarates
  • the at least one compound being screened, evaluated, compared or used for treating a neurological disorder is not fumaric acid or its salt, or a fumaric acid derivative (e.g., DMF or MMF).
  • Nrf2 Nuclear Factor-E2-related factor 2; for sequence of the Nrf2, see Accession No. AAB32188
  • ARE antioxidant response element
  • This pathway has been well characterized for its role in hepatic detoxification and chemoprevention through the activation of phase II gene expression.
  • ARE-regulated genes may also contribute to the maintenance of redox homeostasis by serving as endogenous anti-oxidant systems.
  • the list of Nfr2-regulated genes contains over 200 genes encoding proteins and enzymes involved in detoxification and antioxidant response (Kwak et al., J. Biol.
  • Chem., 2003, 278:8135 such as, e.g., HO-1, ferritin, glutathione peroxidase, glutathione-S-transferases (GSTs), NAD(P)H:quinone oxidoreductases, now commonly known as nicotinamide quinone oxidoreductase 1 (NQO1; EC 1.6.99.2; also known as DT diaphorase and menadione reductase), NQO2, g-glutamylcysteine synthase (g-GCS), glucuronosyltransferase, ferritin, and heme oxygenase-1 (HO-1), as well as any one of the enzymes proteins listed in Table 1 in Chen & Kunsch, Curr. Pharm. Designs, 2004, 10:879-891; Lee et al., J. Biol. Chem., 2003, 278(14):12029-38, and Kwak,
  • the at least one Nrf2-regulated gene which is used to assess the activation of the Nrf2 pathway is selected from a phase II detoxification enzyme, an anti-oxidant enzyme, an enzyme of the NADPH generating system, and Nrf2 itself.
  • phase II detoxification enzymes include NQO1, NQO2, GST-Ya, GST-pi, GST-theta 2, GST-mu (1,2,3), microsomal GST 3, catalytic y-GCS, regulatory-GCS, microsomal epoxide hydrolase, UDP-glucuronosyltransferase, transaldolase, transketolase, and drug-metabolizing enzyme.
  • anti-oxidant enzymes examples include HO-1, ferritin (L), glutathione reductase, glutathione peroxidase, metallothionein I, thioredoxin, thioredoxin reductase, peroxiredoxin MSP23, Cu/Zn superoxide dismutase, and catalase.
  • the enzymes of the NADPH generating system include malic enzyme, UDP-glucose dehydrogenase, malate oxidoreductase, and glucose-6-phosphate dehydrogenase.
  • the antioxidant response element (ARE, also referred to as the electrophile response element (EpRE), GRE1, ARE4, and StREb) is a cis-acting DNA regulatory element with a core nucleotide sequence of 5′-TGA(C/T/G)NNNGC-3′ (SEQ ID NO:1) (Rushmore et al., J. Biol. Chem., 1991, 266(18):11632-9; see also Nioi et al., Mutation Res., 2004, 555:14-171).
  • the DNA sequence of the ARE element, to which Nrf2 binds comprises the core ARE sequence TGA(C/T/G)NNNGC (SEQ ID NO:2) or the ARE consensus sequence (G/A)TGA(C/T/G)NNNGC(A/G) (SEQ ID NO:3).
  • the ARE sequence comprises any one of the “minimal enhancer” sequences shown in Table 1.
  • the ARE sequence further comprises at least one of corresponding 5′- and 3′-USR sequences as shown in Table 1.
  • Nrf2 is sequestered in the cytoplasm to the actin-bound Kelch-like ECH-associated protein 1 (Keap1; Accession No. NP — 987096 for human Keap1), a Cullin3 ubiquitin ligase adaptor protein. More specifically, the N-terminal domain of Nrf2, known as Neh2 domain, is thought to interact with the C-terminal Kelch-like domain of Keap1. In response to xenobiotics or oxidative stress, Nrf2 is released from the Keap1/Nrf2 complex, thereby promoting nuclear translocation of Nrf2 and concomitant activation of ARE-mediated gene transcription.
  • Kelch-like ECH-associated protein 1 Kelch-like ECH-associated protein 1
  • Keap1 function requires association with Cullin3, a scaffold protein that positions Keap1 and its substrate in proximity to the E3 ligase Rbx1, allowing the substrate (Nrf2) to be polyubiquitinated and thus targeted for degradation.
  • the exact mechanism of how the Keap1/Nrf2 complex senses oxidative stress is not fully understood.
  • Human Keap1 contains 25 cysteine residues that were hypothesized to function as sensors of oxidative stress; 9 of the cysteines are thought to be highly reactive (Dinkova-Kostova et al., PNAS, 2005, 102(12):4584-9).
  • methods 1-3 described herein comprise contacting a cell with at least one test compound and determining whether the Nrf2 pathway is upregulated in the cell.
  • an upregulation of the Nrf2 pathway above a threshold indicates that the at least one compound has certain biological properties beneficial in treating a neurological disease (e.g., neuroprotective properties).
  • the ability of a compound to activate the Nrf2 pathway can be determined by one or more in vitro and in vivo assays, including, e.g., the following assays described below.
  • Nrf2 The sequence of the promoter region of the nrf2 gene ( ⁇ 1065 to ⁇ 35) has been published, for example, in Chan et al., PNAS, 1996, 93:13943-13948.
  • Antibodies against Nrf2 are can be produced by methods known in the art and are commercially available from, for example, StressGen. Accordingly, in some embodiments, the Nrf2 pathway is activated so that the expression levels of Nrf2 are increased by, for example, at least 30%, 50%, 100%, 200%, 500% or more as compared to the non-activated state.
  • Nrf2 Green fluorescence protein
  • the Nrf2 pathway is activated so that the ratio between cytomplasmic and nuclear Nrf2 is elevated by, for example, at least 30%, 50%, 100%, 200%, 500% or more as compared to the non-activated state.
  • Expression levels and/or activity of one or more genes under the control of Nrf2 include endogenous or artificially introduced reporter genes in reporter constructs introduced into cells.
  • expression levels of endogenous or exogenously introduced NQO1 may be determined as described in the Examples.
  • a reporter gene construct with one or more ARE sites operably linked to a reporter gene e.g., luceferase or GFP
  • luceferase or GFP can be made, as described in, e.g., Satoh et al., PNAS, 2006, 103(3):768-773.
  • Methods for measuring enzymatic activity of NQO1, using for example, menadione as a substrate are described in Dinkova-Kostova et al., PNAS, 2001, 98:3404-09 or by Prochaska et al., Anal. Biochem., 1988, 169:328-336.
  • Methods for measuring GST activity, using for example, 1-chloro-2,4-dinitrobenzene as a substrate are described in Ramos-Gomez et al., J. Neurosci., 2004, 24(5):1101-1112 and Habig et al., 1974, J. Biol. Chem., 219, 7130-7139.
  • the Nrf2 pathway is activated so that the expression levels and/or activity of the gene produced are increased by, for example, at least 30%, 50%, 100%, 200%, 500% or more as compared to the non-activated state.
  • Nrf2 pathway is activated so that the level of Nrf2 binding to ARE is increased by, for example, at least 30%, 50%, 100%, 200%, 500% or more as compared to the non-activated state.
  • Nrf2/Keap1 The stability of Nrf2/Keap1 complexes—Such assay may include analysis of immunoprecipitated complexes with Nrf2 and/or Keap1 or other Nrf2/Keap1-associated proteins as described in, e.g., Satoh et al., PNAS, 2006, 103(3):768-773.
  • Anti-Keap1 antibodies can be produced using methods known in the art and are available commercially from, for example, Santa Cruz Biotechnology. Accordingly, in some embodiments, the Nrf-2 pathway is activated so that the stability of Nrf2/Keap1 complexes is increased by, for example, at least 30%, 50%, 100%, 200%, 500% or more as compared to the non-activated state.
  • Keap1 and other Nrf2/Keap1-associated proteins Modification (e.g., alkylation levels) of Keap1 and other Nrf2/Keap1-associated proteins—Such assays may include mass spectrometric analysis of immunoprecipitated Keap1, using techniques as described in, e.g., Dinkova-Kostova et al., PNAS, 2005, 102(12):4584-9 and Gao et al., J. Biol. Chem., on-line pub. Manuscript M607622200.
  • the Nrf-2 pathway is activated so that the level of Keap1 and other Nrf2/Keap1-associated proteins is increased by, for example, at least 30%, 50%, 100%, 200%, 500% or more as compared to the non-activated state.
  • Alkylating capacity of a compound can be assessed using recombinant Keap1, by a competition reaction with 5,5′-dithiobis(2-nitrobezoic acid) (DTNB) as described in, e.g., Gao et al., J. Biol. Chem., on-line pub. Manuscript M607622200.
  • DTNB 5,5′-dithiobis(2-nitrobezoic acid)
  • the cell being contacted with at least one test compound is a neuron or a neuronal cell line.
  • the cell being contacted with the at least one test compound is selected from a colon carcinoma cell line (e.g., DLD1), a neuroblastoma cell line (e.g., SkNSH or IMR32), and a primary monocyte.
  • the cell may be a cell in culture (in vitro) or be inside of an animal (in vivo).
  • Cell viability and in particular, neuronal viability can be assessed in vivo or in vitro using any suitable method, including methods as described in the Examples.
  • neuronal viability can be assessed using an MTT assay after exposure of neuronal cell cultures to cytotoxic levels of glutamate as described in, e.g., Shih et al., J. Neurosci., 2005, 25(44):10321-35.
  • cell viability may also be assessed in assays in which cell death is induced by oxidative damage, for example, by the addition of glucose oxidase to astrocyte cell cultures, as described in, e.g., Calabrese et al., J. Neurosci. Res., 2005, 79:509-521.
  • In vivo assays may be performed as described in, e.g., Misgeld, Histochem. Cell Biol., 2005, 124:189-196.
  • the amount of the reporter gene expressed can be determined by any suitable method.
  • Expression levels at the RNA or the protein level, can be determined using routine methods. Expression levels are usually scaled and/or normalized per total amount of RNA or protein in the sample and/or a control, which is typically a housekeeping gene such as actin or GAPDH.
  • RNA levels are determined by quantitative PCR (e.g., RT-PCR), Northern blotting, or any other method for determining RNA levels, e.g., as described in Cloning: A Laboratory Manual, by Sambrook et al. (eds.), 2nd ed., Cold Spring Harbor Laboratory Press, 1989; Lodie et al., Tissue Eng., 2002, 8(5):739-751); or as described in the Examples.
  • Protein levels are determined using, Western blotting, ELISA, enzymatic activity assays, or any other method for determining protein levels as described in, e.g., Current Protocols in Molecular Biology, by Ausubel et al. (eds.), John Wiley and Sons, 1998.
  • Expression levels may also be determined using reporter gene assays in cell/tissue extracts or by tissue or whole-animal imaging.
  • tissue imaging on living animals can be performed by fluorescence detection (Hoffman Lancet Oncol., 2002 3:546-556; Tung et al., Cancer Res., 2000, 60:4953-4958), bioluminescence detection (Shi et al., PNAS, 2001, 98:12754-12759; Luke et al., J. Virol., 2002, 76:12149-12161; and U.S. Pat. Nos. 5,650,135 and 6,217,847), positron emission tomography (Liang et al., Mol.
  • a neurological disease in methods 1-5 above can be a neurodegenerative disease such as, for example, ALS, Parkinson's disease, Alzheimer's disease, and Huntington's disease.
  • the neurological disease can also be multiple sclerosis (MS), or other demyelinating diseases of the central or peripheral nervous system.
  • MS in methods 1-5 is selected from: relapsing remitting MS (RRMS), secondary progressive MS (SPMS), primary progressive MS (PPMS), and malignant MS (Marburg Variant).
  • the subject being treated or administered the compound as per methods described herein is a mammal in need thereof, such as a subject in need of neuroprotection, including a subject who has or is at risk for developing a demyelinating and another specified neurodegenerative disease.
  • the subject is mammalian, and can be a rodent or another laboratory animal, e.g., a non-human primate. In some embodiments, the subject is human.
  • Neurodegenerative diseases are described in, for example, Neurodegenerative Diseases: Neurobiology, Pathogenesis and Therapeutics, M. Flint Beal, Anthony E. Lang, Albert C. Ludolph, Cambridge University Press (Jul. 11, 2005).
  • Examples of neurological diseases suitable for the methods described herein include neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease, Alzheimer's disease, and Huntington's disease.
  • ALS amyotrophic lateral sclerosis
  • Parkinson's disease Alzheimer's disease
  • Huntington's disease Huntington's disease.
  • demyelinating neurological disease including, in addition to MS, the following diseases: acute haemorrhagic leucoencephalomyelitis, Hurst's disease, acute disseminated encephalomyelitis, optic neuritis, Devic's disease, spinal cord lesions, acute necrotizing myelitis, transverse myelitis, chronic progressive myelopathy, progressive multifocal leukoencephalopathy (PML), radiation myelopathy, HTLV-1 associated myelopathy, monophasic isolated demyelination, central pontine myelinolysis, and leucodystrophy (e.g., adrenoleucodystrophy, metachromatic leucodystrophy, Krabbe's disease, Canavan's disease, Alexander's disease, Pelizaeus-Merbacher disease, vanishing white matter disease, oculodentodigital syndrome, Zellweger's syndrome), chronic inflammatory demyelinating polyneuropathy (
  • diseases suitable for the methods described herein include polyneuritis and mitochondrial disorders with demyelination. These disorders may be co-presented with, and possibly aggravated by diabetes, e.g., insulin-dependent diabetes mellitus (IDDM; type I diabetes), or other diseases.
  • IDDM insulin-dependent diabetes mellitus
  • a test compound may be further assayed in an animal model of MS, known as Experimental Autoimmune Encephalomyelitis (EAE) (Tuohy et al., J. Immunol., 1988, 141:1126-1130, Sobel et al. J. Immunol., 1984, 132:2393-2401, and Traugott, Cell Immunol., 1989 119:114-129).
  • EAE Experimental Autoimmune Encephalomyelitis
  • Chronic relapsing EAE provides a well established experimental model for testing agents that would be useful for the treatment of MS.
  • the mouse EAE is an induced autoimmune demyelinating disease with many similarities to human MS in its clinical manifestations.
  • BBB blood-brain barrier
  • TMEV Thieler's murine encephalomyelitis virus
  • MHV murine hepatitis virus
  • Sindbis virus Sindbis virus as described in, e.g., Ercoli et al., J. immunol., 2006, 175:3293-3298.
  • a compound may be optionally tested in at least one additional animal model (see, generally, Immunologic Defects in Laboratory Animals, eds. Gershwin et al., Plenum Press, 1981), for example, such as the following: the SWR X NZB (SNF1) mouse model (Uner et al., J. Autoimmune Disease, 1998, 11(3):233-240), the KRN transgenic mouse (K/BxN) model (Ji et al., Immunol.
  • SNF1 SWR X NZB
  • K/BxN KRN transgenic mouse
  • NZB X NZW mice a model for SLE (Riemekasten et al., Arthritis Rheum., 2001, 44(10):2435-2445); the NOD mouse model of diabetes (Baxter et al., Autoimmunity, 1991, 9(1):61-67), etc.); or mouse models of multiple sclerosis (see, e.g., Linker et al., Eur. J. Immunol., 2002, 8(6):620-624, and Eugster et al., Nat. Med., 1999, 29:626-632; and Gold et al., Brain, 2006, 129:1953-1971).
  • Preliminary doses for example, as determined in animal tests, and the scaling of dosages for human administration is performed according to art-accepted practices.
  • Toxicity and therapeutic efficacy can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD 50 (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population).
  • the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD 50 /ED 50 .
  • compositions that exhibit large therapeutic indices are used.
  • the therapeutically effective dose can be estimated initially from cell culture assays.
  • a dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC 50 (i.e., the concentration of the therapeutic compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture assays or animal models.
  • Levels in plasma may be measured, for example, by ELISA or HPLC.
  • the effects of any particular dosage can be monitored by a suitable bioassay. Examples of dosages are: about 0.1 ⁇ IC 50 , about 0.5 ⁇ IC 50 , about 1 ⁇ IC 50 , about 5 ⁇ IC 50 , 10 ⁇ IC 50 , about 50 ⁇ IC 50, and about 100 ⁇ IC 50 .
  • Therapeutically effective dosages achieved in one animal model can be converted for use in another animal, including humans, using conversion factors known in the art (see, e.g., Freireich et al., Cancer Chemother. Reports, 1966, 50(4):219-244 and Table 2 for Equivalent Surface Area Dosage Factors).
  • the dosage of such compounds lies within a range of circulating concentrations that include the ED 50 with little or no toxicity. In some embodiments the dosage varies within this range depending upon the dosage form employed and the route of administration utilized. Generally, a therapeutically effective amount may vary with the subject's age, condition, and sex, as well as the severity of the medical condition in the subject. Examples of pharmaceutically acceptable dosages for compounds described herein are from 1 ⁇ g/kg to 25 mg/kg, depending on the compounds, severity of the symptoms and the progression of the disease.
  • the appropriate therapeutically effective doses can be selected by a treating clinician and in some embodiments range approximately from 1 ⁇ g/kg to 20 mg/kg, from 1 ⁇ g/kg to 10 mg/kg, from 1 ⁇ g/kg to 1 mg/kg, from 10 ⁇ g/kg to 1 mg/kg, from 10 ⁇ g/kg to 100 ⁇ g/kg, from 100 ⁇ g to 1 mg/kg. Additionally, certain specific dosages are indicated in the Examples.
  • an effective amount can range from 1 mg/kg to 50 mg/kg (e.g., from 2.5 mg/kg to 20 mg/kg or from 2.5 mg/kg to 15 mg/kg).
  • Effective doses will also vary, as recognized by those skilled in the art, dependent on route of administration, excipient usage, and the possibility of co-usage with other therapeutic treatments including use of other therapeutic agents.
  • an effective dose of DMF or MMR to be administered to a subject orally can be from about 0.1 g to 1 g per pay, 200 mg to about 800 mg per day (e.g., from about 240 mg to about 720 mg per day; or from about 480 mg to about 720 mg per day; or about 720 mg per day).
  • the 720 mg per day may be administered in separate administrations of 2, 3, 4, or 6 equal doses.
  • the dosage may be determined by a physician and adjusted, as necessary, to suit observed effects of the treatment.
  • the compositions may be given as a bolus dose, to maximize the circulating levels for the greatest length of time after the dose. Continuous infusion may also be used after the bolus dose.
  • compositions used in the methods described herein further comprise a pharmaceutically acceptable excipient.
  • pharmaceutically acceptable excipient refers to any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, that are compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art.
  • the compositions may also contain other active compounds providing supplemental, additional, or enhanced therapeutic functions.
  • the pharmaceutical compositions may also be included in a container, pack, or dispenser together with instructions for administration.
  • a pharmaceutical composition is formulated to be compatible with its intended route of administration. Methods to accomplish the administration are known in the art. “Administration” is not limited to any particular delivery system and may include, without limitation, parenteral (including subcutaneous, intravenous, intramedullary, intraarticular, intramuscular, or intraperitoneal injection), rectal, topical, transdermal, or oral (for example, in capsules (e.g., as, poiser, granules, microtablet, micropellets, etc.), suspensions, or tablets). Examples of some of formulations containing DMF and/or MMF are given in, e.g., U.S. Pat. Nos. 6,509,376, and 6,436,992.
  • Administration to an individual may occur in a single dose or in repeat administrations, and in any of a variety of physiologically acceptable salt forms, and/or with an acceptable pharmaceutical carrier and/or additive as part of a pharmaceutical composition.
  • physiologically acceptable salt forms and standard pharmaceutical formulation techniques and excipients are well known to persons skilled in the art.
  • DLD1 cells were grown in MEM supplemented with 10% fetal bovine serum. The cells were transfected with the indicated siRNA's using the Lipofectamine reagent (Invitrogen) according to the manufacturer's instructions and 30 hrs later stimulated with 30 ⁇ M DMF for 40 hours. The cells were harvested and processed for Western blotting analysis of Nrf2 and NQO1 levels as described in Example 1. Sources and the identity of reagents used in Examples 1 and 2 are specified Table 3 below:
  • mice received s.c. injections in the flanks and tail base of 50 ⁇ g MOG 35-55 peptide in PBS emulsified in an equal volume of complete Freund's adjuvant (CFA) containing Mycobacterium tuberculosis H37RA (Difco, Detroit Mich., USA) at a final concentration of 0.5 mg/ml.
  • CFA complete Freund's adjuvant
  • Two injections of pertussis toxin List Biological Laboratories Inc., California, USA; 200 ng per mouse i.p were given on days 0 and 2.
  • DMF and MMF was diluted in 200 ⁇ l 0.08% Methocel/H 2 O as vehicle and administered by oral gavage starting from day 3 post immunization (p.i) until termination.
  • Each treatment group consisted of 8 animals: vehicle alone as a negative control, 5 mg/kg body weight DMF twice a day, 15 mg/kg body weight DMF twice a day, 15 mg/kg body weight MMF twice a day.
  • the compounds were obtained via Fumapharm AG. Oral gavage was used to ensure exact dosing and to avoid compound degradation.
  • the resuluts shown in FIGS. 3 and 4 , demonstrate MMF and DMF activation of Nrf2 in vivo.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)
US12/526,296 2007-02-08 2008-02-07 Nrf2 screening assays and related methods and compositions Abandoned US20110112196A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/526,296 US20110112196A1 (en) 2007-02-08 2008-02-07 Nrf2 screening assays and related methods and compositions

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US88892107P 2007-02-08 2007-02-08
US12/526,296 US20110112196A1 (en) 2007-02-08 2008-02-07 Nrf2 screening assays and related methods and compositions
PCT/US2008/001602 WO2008097596A2 (fr) 2007-02-08 2008-02-07 Essais de criblage de nrf2 et procédés et compositions correspondants

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/001602 A-371-Of-International WO2008097596A2 (fr) 2007-02-08 2008-02-07 Essais de criblage de nrf2 et procédés et compositions correspondants

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/372,426 Continuation US8399514B2 (en) 2007-02-08 2012-02-13 Treatment for multiple sclerosis

Publications (1)

Publication Number Publication Date
US20110112196A1 true US20110112196A1 (en) 2011-05-12

Family

ID=39682314

Family Applications (8)

Application Number Title Priority Date Filing Date
US12/526,296 Abandoned US20110112196A1 (en) 2007-02-08 2008-02-07 Nrf2 screening assays and related methods and compositions
US13/372,426 Active US8399514B2 (en) 2007-02-08 2012-02-13 Treatment for multiple sclerosis
US13/465,740 Abandoned US20120259012A1 (en) 2007-02-08 2012-05-07 Treatment for Amyotrophic Lateral Sclerosis
US13/767,014 Abandoned US20130317103A1 (en) 2007-02-08 2013-02-14 NRF2 Screening Assays and Related Methods and Compositions
US13/804,283 Abandoned US20130303613A1 (en) 2007-02-08 2013-03-14 NRF2 Screening Assays and Related Methods and Compositions
US14/718,962 Abandoned US20150366803A1 (en) 2007-02-08 2015-05-21 NRF2 Screening Assays and Related Methods and Compositions
US15/988,578 Abandoned US20180263906A1 (en) 2007-02-08 2018-05-24 NRF2 Screening Assays and Related Methods and Compositions
US16/583,491 Abandoned US20200016072A1 (en) 2007-02-08 2019-09-26 NRF2 Screening Assays and Related Methods and Compositions

Family Applications After (7)

Application Number Title Priority Date Filing Date
US13/372,426 Active US8399514B2 (en) 2007-02-08 2012-02-13 Treatment for multiple sclerosis
US13/465,740 Abandoned US20120259012A1 (en) 2007-02-08 2012-05-07 Treatment for Amyotrophic Lateral Sclerosis
US13/767,014 Abandoned US20130317103A1 (en) 2007-02-08 2013-02-14 NRF2 Screening Assays and Related Methods and Compositions
US13/804,283 Abandoned US20130303613A1 (en) 2007-02-08 2013-03-14 NRF2 Screening Assays and Related Methods and Compositions
US14/718,962 Abandoned US20150366803A1 (en) 2007-02-08 2015-05-21 NRF2 Screening Assays and Related Methods and Compositions
US15/988,578 Abandoned US20180263906A1 (en) 2007-02-08 2018-05-24 NRF2 Screening Assays and Related Methods and Compositions
US16/583,491 Abandoned US20200016072A1 (en) 2007-02-08 2019-09-26 NRF2 Screening Assays and Related Methods and Compositions

Country Status (19)

Country Link
US (8) US20110112196A1 (fr)
EP (10) EP2680007A1 (fr)
CY (2) CY1114340T1 (fr)
DE (2) DE13156663T1 (fr)
DK (3) DK2629097T1 (fr)
ES (3) ES2916649T3 (fr)
FI (2) FI2629097T1 (fr)
FR (2) FR14C0050I1 (fr)
HK (1) HK1139204A1 (fr)
HR (2) HRP20220902T3 (fr)
HU (1) HUS2300001I1 (fr)
LT (2) LT2653873T (fr)
LU (1) LU92487I2 (fr)
NO (1) NO2023001I1 (fr)
PL (2) PL2653873T3 (fr)
PT (2) PT2137537E (fr)
RS (2) RS63489B1 (fr)
SI (2) SI2137537T1 (fr)
WO (1) WO2008097596A2 (fr)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090304790A1 (en) * 2004-10-08 2009-12-10 Aditech Pharma Ab Controlled release pharmaceutical compositions comprising a fumaric acid ester
US20100048651A1 (en) * 2008-08-19 2010-02-25 Xenoport, Inc. Prodrugs of methyl hydrogen fumarate, pharmaceutical compositions thereof, and methods of use
US20100130607A1 (en) * 2007-02-08 2010-05-27 Ralf Gold Neuroprotection in demyelinating diseases
WO2012162669A1 (fr) * 2011-05-26 2012-11-29 Biogen Idec Ma Inc. Méthodes de traitement de la sclérose en plaques et de conservation et/ou d'augmentation de la teneur en myéline
US8399514B2 (en) 2007-02-08 2013-03-19 Biogen Idec Ma Inc. Treatment for multiple sclerosis
WO2013067036A1 (fr) * 2011-10-31 2013-05-10 Rutgers, The State University Of New Jersey Inhibiteurs directs de l'interaction keap1-nrf2 en tant que modulateurs de l'inflammation par anti-oxydant
US8524773B2 (en) 1998-11-19 2013-09-03 Biogen Idec International Gmbh Utilization of dialkylfumarates
WO2013148690A1 (fr) 2012-03-27 2013-10-03 Teva Pharmaceutical Industries Ltd. Traitement de la sclérose en plaques avec une combinaison de laquinimod et de fumarate de diméthyle
US8669281B1 (en) 2013-03-14 2014-03-11 Alkermes Pharma Ireland Limited Prodrugs of fumarates and their use in treating various diseases
WO2014160633A1 (fr) 2013-03-24 2014-10-02 Xenoport, Inc. Compositions pharmaceutiques de fumarate de diméthyle
US8906420B2 (en) 2009-01-09 2014-12-09 Forward Pharma A/S Pharmaceutical formulation comprising one or more fumaric acid esters in an erosion matrix
US8980832B2 (en) 2003-09-09 2015-03-17 Biogen Idec International Gmbh Use of fumaric acid derivatives for treating cardiac insufficiency, and asthma
JP2015519873A (ja) * 2012-03-30 2015-07-16 ネステク ソシエテ アノニム 4−オキソ−2−ペンテン酸及び脳の健康
US9302977B2 (en) 2013-06-07 2016-04-05 Xenoport, Inc. Method of making monomethyl fumarate
US9326965B2 (en) 2014-02-28 2016-05-03 Banner Life Sciences Llc Controlled release fumarate esters
US9326947B1 (en) 2014-02-28 2016-05-03 Banner Life Sciences Llc Controlled release fumarate esters
US20160146785A1 (en) * 2012-10-10 2016-05-26 Temple University Of The Commonwealth System Of Higher Education Nuclear factor-erythroid 2 related factor 2 (nrf2) biosensors and modulators of nrf2
US9416096B2 (en) 2013-09-06 2016-08-16 Xenoport, Inc. Crystalline forms of (N,N-Diethylcarbamoyl)methyl methyl (2E)but-2-ene-1,4-dioate, methods of synthesis and use
US9421182B2 (en) 2013-06-21 2016-08-23 Xenoport, Inc. Cocrystals of dimethyl fumarate
US9422226B2 (en) 2011-06-08 2016-08-23 Biogen Ma Inc. Process for preparing high purity and crystalline dimethyl fumarate
US9505776B2 (en) 2013-03-14 2016-11-29 Alkermes Pharma Ireland Limited Prodrugs of fumarates and their use in treating various diseases
US9566259B1 (en) 2015-08-31 2017-02-14 Banner Life Sciences Llc Fumarate ester dosage forms
US9597292B2 (en) 2012-08-22 2017-03-21 Xenoport, Inc. Oral dosage forms of methyl hydrogen fumarate and prodrugs thereof
US9604922B2 (en) 2014-02-24 2017-03-28 Alkermes Pharma Ireland Limited Sulfonamide and sulfinamide prodrugs of fumarates and their use in treating various diseases
US9999672B2 (en) 2014-03-24 2018-06-19 Xenoport, Inc. Pharmaceutical compositions of fumaric acid esters
US10098863B2 (en) 2014-02-28 2018-10-16 Banner Life Sciences Llc Fumarate esters
US10399924B2 (en) 2012-12-21 2019-09-03 Biogen Ma Inc. Deuterium substituted fumarate derivatives
US10945984B2 (en) 2012-08-22 2021-03-16 Arbor Pharmaceuticals, Llc Methods of administering monomethyl fumarate and prodrugs thereof having reduced side effects
US11903918B2 (en) 2020-01-10 2024-02-20 Banner Life Sciences Llc Fumarate ester dosage forms with enhanced gastrointestinal tolerability

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2252283T3 (pl) 2008-01-11 2019-09-30 Reata Pharmaceuticals, Inc. Syntetyczne triterpenoidy i sposoby zastosowania w leczeniu choroby
US7915402B2 (en) 2008-04-18 2011-03-29 Reata Pharmaceuticals, Inc. Antioxidant inflammation modulators: oleanolic acid derivatives with saturation in the C-ring
KR101665042B1 (ko) 2008-04-18 2016-10-11 리타 파마슈티컬스 잉크. 소염성 골격군을 포함하는 화합물 및 사용 방법
CN102083442B (zh) 2008-04-18 2014-08-13 里亚塔医药公司 抗氧化剂炎症调节剂:在c-17具有氨基和其它修饰的齐墩果酸衍生物
LT2271658T (lt) 2008-04-18 2017-02-27 Reata Pharmaceuticals, Inc. Antioksidantai uždegimo moduliatoriai:oleanolio rūgšties c-17 patvirtinti dariniai
US9085527B2 (en) 2008-07-08 2015-07-21 Catabasis Pharmaceuticals, Inc. Fatty acid acylated salicylates and their uses
EP2309860B1 (fr) 2008-07-22 2014-01-08 Trustees of Dartmouth College Cyanoénones monocycliques et leurs procédés d'utilisation
EP2424357A4 (fr) * 2009-04-29 2012-10-10 Biogen Idec Inc Traitement de la neurodégénérescence et de la neuroinflammation
CN102821602B (zh) 2010-01-08 2016-04-20 凯特贝希制药公司 脂肪酸富马酸酯衍生物及其用途
US8759535B2 (en) 2010-02-18 2014-06-24 High Point Pharmaceuticals, Llc Substituted fused imidazole derivatives, pharmaceutical compositions, and methods of use thereof
SG190449A1 (en) * 2010-12-07 2013-07-31 Teva Pharma Use of laquinimod for reducing fatigue, improving functional status, and improving quality of life in multiple sclerosis patients
WO2012083306A2 (fr) 2010-12-17 2012-06-21 Reata Pharmaceuticals, Inc. Pyrazolyl- et pyrimidinyl-énones tricycliques en tant que modulateurs d'inflammation antioxydants
ME03469B (fr) 2011-03-11 2020-01-20 Reata Pharmaceuticals Inc Dérivés monométhyle triterpénoïdes en c4 et leurs procédés d'utilisation
WO2012145420A1 (fr) * 2011-04-18 2012-10-26 Rutgers, The State University Of New Jersey Composition, procédé de synthèse et utilisation de nouveaux modulateurs d'inflammation antioxydants
CA2865316A1 (fr) * 2011-04-28 2012-11-01 Gino Cortopassi Agents utiles pour le traitement de l'ataxie de friedreich et autres maladies neurodegeneratives
US9421273B2 (en) 2011-12-16 2016-08-23 Biogen Ma Inc. Silicon-containing fumaric acid esters
US20130158077A1 (en) 2011-12-19 2013-06-20 Ares Trading S.A. Pharmaceutical compositions
US9504679B2 (en) 2011-12-19 2016-11-29 Bjoern Colin Kahrs Pharmaceutical compositions comprising glitazones and Nrf2 activators
PL2841445T3 (pl) 2012-04-27 2017-10-31 Reata Pharmaceuticals Inc Pochodne 2,2-difluoropropionamidowe bardoksolonu metylu, formy polimorficzne oraz sposoby ich stosowania
WO2013188818A1 (fr) 2012-06-15 2013-12-19 Reata Pharmaceuticals, Inc. Modulateurs anti-inflammation basés sur des triterpénoïdes époxydés au niveau du cycle a et leurs méthodes d'utilisation
US9278912B2 (en) 2012-09-10 2016-03-08 Reata Pharmaceuticals, Inc. C13-hydroxy derivatives of oleanolic acid and methods of use thereof
HUE044126T2 (hu) 2012-09-10 2019-09-30 Reata Pharmaceuticals Inc Oleanolsav C17-alkándiil- és alkéndiil-származékai, és eljárás azok elõállítására
US9512094B2 (en) 2012-09-10 2016-12-06 Reata Pharmaceuticals, Inc. C17-heteroaryl derivatives of oleanolic acid and methods of use thereof
US20140171504A1 (en) 2012-12-14 2014-06-19 Georgia Regents Research Institute, Inc. Methods of Treating Sickle Cell Disease and Related Disorders Using Fumaric Acid Esters
WO2014138298A1 (fr) * 2013-03-05 2014-09-12 University Of Chicago Traitement de troubles de démyélinisation
ES2526979B1 (es) * 2013-07-17 2015-10-28 Fundación Para La Investigación Biomédica Del Hospital Universitario De La Princesa Uso del 3-(2-isotiocianatoetil)-5-metoxi-1H-indol para el tratamiento de enfermedades neurodegenerativas
EP3062884B1 (fr) 2013-10-29 2020-12-02 President and Fellows of Harvard College Compositions pour l'utilisation dans le traitement de la rétinite pigmentaire
CN103768045B (zh) * 2013-10-30 2015-10-07 苏州大学附属第一医院 富马酸二甲酯在制备治疗蛛网膜下腔出血后早期脑损伤药物的应用
GB201401465D0 (en) 2014-01-29 2014-03-12 Roach Arthur H Use of cladribine for treating autoimmune inflammatory disease
EP2924127A1 (fr) * 2014-03-27 2015-09-30 Université Paul Sabatier Toulouse III Procédé et kit pour le pronostic des maladies induites par une défaillance du gène OPA1, telle que l'atrophie optique
AU2015253330A1 (en) 2014-04-29 2016-12-01 Teva Pharmaceutical Industries Ltd. Laquinimod for the treatment of relapsing-remitting multiple sclerosis (RRMS) patients with a high disability status
DE102014010832A1 (de) 2014-07-24 2016-01-28 Peter Krause Verwendung von medikamentösen Ingredienzien zur Behandlung von Multiple Sklerose
WO2016089648A1 (fr) 2014-12-01 2016-06-09 Vtv Therapeutics Llc Inhibiteurs de bach1 en combinaison avec des activateurs de nrf2 et compositions pharmaceutiques les contenant
MA41139A (fr) * 2014-12-11 2017-10-17 Actelion Pharmaceuticals Ltd Combinaison pharmaceutique comportant un agoniste sélectif du récepteur sip1
MA41785A (fr) * 2015-03-20 2018-01-23 Biogen Ma Inc Procédés et compositions pour l'administration intraveineuse de fumarates pour le traitement de maladies neurologiques
DK3273951T3 (da) 2015-03-27 2020-11-02 Symbionyx Pharmaceuticals Inc Sammensætninger og fremgangsmåder til behandling af psoriasis
US10085961B2 (en) 2015-06-01 2018-10-02 Sun Pharmaceutical Industries Limited Pharmaceutical compositions of dimethyl fumarate
CN105087644A (zh) * 2015-07-23 2015-11-25 山东大学 一种高通量筛选具有Nrf2激活活性的化合物的方法
US10213411B2 (en) 2015-08-27 2019-02-26 Vijaykumar Rajasekhar Use of prodrugs of fumarates in treating heart failure diseases
MX2018003569A (es) 2015-09-23 2018-11-29 Reata Pharmaceuticals Inc Derivados de acido oleanolico modificado en c4 para la inhibicion de il-17 y otros usos.
US10463642B2 (en) 2016-02-01 2019-11-05 Vijaykumar Rajasekhar Methods of treating heart failure diseases using prodrugs of methyl hydrogen fumarate
US20190292246A1 (en) 2016-11-03 2019-09-26 Juno Therapeutics, Inc. Combination therapy of a cell based therapy and a microglia imhibitor
AU2018275894A1 (en) 2017-06-02 2019-12-12 Juno Therapeutics, Inc. Articles of manufacture and methods for treatment using adoptive cell therapy
MX2019014288A (es) 2017-06-02 2020-08-03 Juno Therapeutics Inc Articulos de manufactura y metodos relacionados a toxicidad asociada con terapia celular.
WO2019046832A1 (fr) 2017-09-01 2019-03-07 Juno Therapeutics, Inc. Expression génique et évaluation d'un risque de développement d'une toxicité suite à une thérapie cellulaire
JP7502991B2 (ja) 2017-10-16 2024-06-19 ボイジャー セラピューティクス インコーポレイテッド 筋萎縮性側索硬化症(als)の治療
WO2019079242A1 (fr) 2017-10-16 2019-04-25 Voyager Therapeutics, Inc. Traitement de la sclérose latérale amyotrophique (sla)
WO2019089848A1 (fr) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Procédés associés à une charge tumorale pour évaluer une réponse à une thérapie cellulaire
US20210254103A1 (en) 2018-07-02 2021-08-19 Voyager Therapeutics, Inc. Treatment of amyotrophic lateral sclerosis and disorders associated with the spinal cord
US20210361318A1 (en) 2018-07-02 2021-11-25 Voyager Therapeutics, Inc. Cannula system and use thereof
US11014940B1 (en) 2018-10-16 2021-05-25 Celgene Corporation Thiazolidinone and oxazolidinone compounds and formulations
US11186556B1 (en) 2018-10-16 2021-11-30 Celgene Corporation Salts of a thiazolidinone compound, solid forms, compositions and methods of use thereof
US11014897B1 (en) 2018-10-16 2021-05-25 Celgene Corporation Solid forms comprising a thiazolidinone compound, compositions and methods of use thereof
US11013723B1 (en) 2018-10-16 2021-05-25 Celgene Corporation Solid forms of a thiazolidinone compound, compositions and methods of use thereof
MX2021006238A (es) 2018-11-30 2021-10-01 Juno Therapeutics Inc Metodos para tratamiento que usan terapia celular adoptiva.
BR112021010120A2 (pt) 2018-11-30 2021-08-31 Juno Therapeutics, Inc. Métodos para dosagem e tratamento de malignidades celulares em terapia celular adotiva
CN115398231A (zh) 2019-12-06 2022-11-25 朱诺治疗学股份有限公司 与治疗b细胞恶性肿瘤的细胞疗法相关的毒性和反应的相关方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030018072A1 (en) * 1998-11-19 2003-01-23 Joshi Rajendra Kumar Utilization of dialkylfumarates

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2530372A1 (de) 1975-07-08 1977-01-13 Walter Dr Schweckendiek Pharmazeutische zubereitungen zur behandlung von psoriasis
DE2621214C3 (de) 1976-05-13 1981-11-12 Koronis Gmbh Chemisch-Pharmazeutische Praeparate, 5441 Sassen Verwendung von Stabilisatoren in Arzneimitteln mit Fumarsäuremonoäthylester und desen Mineralsalzen
JPS5824104B2 (ja) 1977-12-06 1983-05-19 博衛 小川 フマル酸製剤
DE2840498C2 (de) 1978-09-18 1980-04-10 Walter Dr. 6700 Ludwigshafen Schweckendiek Pharmazeutische Zubereitungen zur Behandlung von Psoriasis
DE3127432A1 (de) 1981-07-11 1983-02-03 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von fumarsaeuremonoester
CH664150A5 (de) 1985-01-15 1988-02-15 Peter Paul Prof Dr Speiser Fumarsaeureprodrug, verfahren zu seiner herstellung und dieses enthaltende darreichungsformen.
US5149695A (en) 1985-01-15 1992-09-22 Speiser Peter P Fumaric acid derivatives, process for the production thereof and pharmaceutical compositions containing same
JPS61194020A (ja) 1985-02-22 1986-08-28 Dai Ichi Seiyaku Co Ltd 網膜症治療剤
US4855305A (en) 1987-03-23 1989-08-08 Applied Medical Research Compositions and methods of effecting contraception utilizing melatonin
IL83775A (en) 1987-09-04 1991-12-15 Dexter Chemical Corp Amino acid esters and amides of fumaric acid and pharmaceutical compositions containing them for use in the treatment of psoriasis
US5214196A (en) 1987-09-04 1993-05-25 Dexter Chemical Corporation Diethyl ester of di-glycyl fumaramide
US5242905A (en) 1987-09-04 1993-09-07 Dexter Chemical Corporation Pharmaceutical compositions for the treatment of psoriasis
US4959389A (en) 1987-10-19 1990-09-25 Speiser Peter P Pharmaceutical preparation for the treatment of psoriatic arthritis
US5424332A (en) 1987-10-19 1995-06-13 Speiser; Peter P. Pharmaceutical composition and process for the production thereof
DE3834794A1 (de) 1988-10-12 1990-04-19 F Schielein Oral zu verabreichendes mittel zur behandlung von psoriasis
AU1271592A (en) 1991-01-18 1992-08-27 Dexter Chemical Corporation Malic acid derivatives and compositions for the treatment of psoriasis
IT1251166B (it) 1991-08-09 1995-05-04 Chiesi Farma Spa Derivati di geneserina,loro preparazione e composizioni farmaceutiche che li contengono
US5459667A (en) 1993-01-22 1995-10-17 Sumitomo Electric Industries, Ltd. Navigation apparatus for informing vehicle driver of information regarding travel route
CA2164837A1 (fr) 1993-06-08 1994-12-22 Raymond K. Brown Compositions therapeutiques et methodes d'utilisation
JPH06345644A (ja) 1993-06-10 1994-12-20 Unitika Ltd 自己免疫性疾患治療剤
US5407772A (en) 1993-11-30 1995-04-18 Xerox Corporation Unsaturated polyesters
AU1945495A (en) 1994-03-16 1995-10-03 Novo Nordisk A/S Acid addition salts of 2,3,4,5-tetrahydro-1h-3-benzazepine compounds
WO1997011092A1 (fr) 1994-04-07 1997-03-27 Nippon Shinyaku Co., Ltd. Derives de phosphates de cyclosporine et composition medicinale
US6576236B1 (en) 1994-07-01 2003-06-10 Dana Farber Cancer Institute Methods for stimulating T cell responses by manipulating a common cytokine receptor γ chain
US5650135A (en) 1994-07-01 1997-07-22 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive localization of a light-emitting conjugate in a mammal
US6649143B1 (en) 1994-07-01 2003-11-18 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive localization of a light-emitting conjugate in a mammal
GB2291422A (en) 1994-07-18 1996-01-24 Fujisawa Pharmaceutical Co 4-phenyl-pyrido[2,3-b]pyrazin-4-ones
US5763190A (en) 1994-09-21 1998-06-09 The Trustees Of The University Of Pennsylvania Methods for the identification of compounds capable of inducing the nuclear translocation of a receptor complex comprising the glucocoticoid receptor type II and viral protein R interacting protein
CN1125141A (zh) 1994-12-22 1996-06-26 杭州中美华东制药有限公司 一种含环孢菌素a的固体分散物及其外用剂型上的用途
JP2535141B2 (ja) 1995-01-17 1996-09-18 中外製薬株式会社 フマル酸含有徐放性製剤
CA2226915A1 (fr) 1995-09-13 1997-03-20 Yoshikazu Ohta Agent immunosuppresseur
HU9502843D0 (en) 1995-09-29 1995-11-28 Livigene Ltd Pharmaceutical composition
JP4004567B2 (ja) 1996-02-14 2007-11-07 アステラス製薬株式会社 Wb2663b物質を含有する免疫抑制剤
KR970064620A (ko) 1996-03-05 1997-10-13 임성기 사이클로스포린-함유 외용약제 조성물
IL127166A0 (en) 1996-05-22 1999-09-22 Univ Alberta Type-2 chemokine binding proteins and methods of use therefor
AU7003096A (en) 1996-06-21 1998-01-07 Jury Evgenievich Belyaev Semi-finished product for producing drug bases, bases obtained using the same and variants, and drugs obtained using these bases and variants
EP1611885A1 (fr) 1996-07-26 2006-01-04 Susan P. Perrine Utilisation d'un agent inducteur pour le traitement des maladies virales et cellulaires et du sang
WO1998027970A2 (fr) 1996-12-24 1998-07-02 National Research Council Of Canada Traitement de maladies ou prevention de dommages cellulaires causes par des radicaux libres contenant de l'oxygene
US5972363A (en) 1997-04-11 1999-10-26 Rohm And Haas Company Use of an encapsulated bioactive composition
DE19721099C2 (de) 1997-05-20 1999-12-02 Fumapharm Ag Muri Verwendung von Fumarsäurederivaten
US20050245612A1 (en) 2004-05-03 2005-11-03 Blass John P Pharmaceutical compositions for metabolic insufficiencies
JP2001521002A (ja) 1997-10-24 2001-11-06 コーネル リサーチ ファンデーション インク. 脳の代謝機能不全のための栄養補充剤
DE19814358C2 (de) 1998-03-31 2002-01-17 Fumapharm Ag Muri Verwendung von Alkylhydrogenfumaraten zur Behandlung von Psoriasis, psoriatischer Arthritis, Neurodermitis und Enteritis regionalis Crohn
DE19839566C2 (de) 1998-08-31 2002-01-17 Fumapharm Ag Muri Verwendung von Fumarsäurederivaten in der Transplantationsmedizin
DE19848260C2 (de) 1998-10-20 2002-01-17 Fumapharm Ag Muri Fumarsäure-Mikrotabletten
DE10000577A1 (de) 2000-01-10 2001-07-26 Fumapharm Ag Muri Verwendung von Fumarsäurederivaten zur Behandlung mitochondrialer Krankheiten
EP1272614B1 (fr) 2000-02-11 2007-08-15 Philadelphia Health and Education Corporation Differentiation des cellules stromales de la moelle osseuse en cellules neuronales et utilisation associee
WO2002002190A2 (fr) 2000-07-05 2002-01-10 Johns Hopkins School Of Medicine Prevention et traitement de maladies degeneratives par le glutathion et des enzymes de detoxification de phase ii
AU2002230423A1 (en) 2000-11-08 2002-05-21 Massachusetts Institute Of Technology Serotonergic compositions and methods for treatment of mild cognitive impairment
US6451667B1 (en) 2000-12-21 2002-09-17 Infineon Technologies Ag Self-aligned double-sided vertical MIMcap
DE10101307A1 (de) 2001-01-12 2002-08-01 Fumapharm Ag Muri Fumarsäurederivate als NF-kappaB-Inhibitor
JP2004523511A (ja) 2001-01-12 2004-08-05 フーマファーム アーゲー フマル酸アミド類
JP2004518712A (ja) 2001-02-14 2004-06-24 ラート・マティアス 細胞の生体エネルギー代謝に関与する生化学的化合物の組成物及びそれの使用法
RU2189813C1 (ru) 2001-06-01 2002-09-27 Российский научно-исследовательский институт гематологии и трансфузиологии Лекарственное средство антигипоксического действия
US20030104997A1 (en) 2001-09-05 2003-06-05 Black Ira B. Multi-lineage directed induction of bone marrow stromal cell differentiation
CA2463624A1 (fr) 2001-10-15 2003-04-24 National Research Council Of Canada Agents anti-glycation destines a la prevention des complications liees a l'age, au diabete et au tabagisme
DE10217314A1 (de) 2002-04-18 2003-11-13 Fumapharm Ag Muri Carbocyclische und Oxacarboncyclische Fumarsäure-Oligomere
AU2004269903B2 (en) 2003-09-09 2010-09-02 Biogen International Gmbh The use of fumaric acid derivatives for treating cardiac insufficiency, and asthma
DE10342423A1 (de) 2003-09-13 2005-04-14 Heidland, August, Prof. Dr.med. Dr.h.c. Verwendung von Fumarsäurederivaten zur Prophylaxe und zur Behandlung von Genomschäden
PT2801354T (pt) 2004-10-08 2017-06-05 Forward Pharma As Composições farmacêuticas de libertação controlada compreendendo um éster de ácido fumárico
EP1812374A1 (fr) 2004-11-10 2007-08-01 Aditech Pharma AB Nouveaux sels de monoalkylesters d'acide fumarique et leur utilisation pharmaceutique
AU2005306399B2 (en) 2004-11-19 2012-02-09 Biogen Ma Inc. Treatment for multiple sclerosis
US7638119B2 (en) 2004-12-02 2009-12-29 Wisconsin Alumni Research Foundation Method of diminishing the symptoms of neurodegenerative disease
EP1674082A1 (fr) 2004-12-22 2006-06-28 Zentaris GmbH Procédé pour la manufacture des suspensions ou lyophilisates steriles des complexes mal-soluble de peptides basic, des formulations pharmaceutiques avec ces complexes et leur utilisation comme medicament
CN101163692B (zh) 2005-02-16 2012-01-18 先灵公司 具有cxcr3拮抗活性的杂环取代的哌嗪
EP1858888B1 (fr) 2005-02-16 2013-04-17 Merck Sharp & Dohme Corp. Pyrazinyl-piperazine-piperidines substitutees heteroaryle a activite antagoniste cxcr3
JP2008530220A (ja) 2005-02-16 2008-08-07 シェーリング コーポレイション Cxcr3アンタゴニスト活性を有する、ピラジニルで置換されたピペラジン−ピペリジン
KR20070107075A (ko) 2005-02-16 2007-11-06 쉐링 코포레이션 Cxcr3 길항제 활성을 갖는 신규의 헤테로사이클릭치환된 피리딘 또는 페닐 화합물
WO2006088836A2 (fr) 2005-02-16 2006-08-24 Schering Corporation Piperazine-piperidines a activite antagoniste cxcr3
ATE523506T1 (de) 2005-02-16 2011-09-15 Schering Corp Amingebundene pyridyl- und phenylsubstituierte piperazin-piperidine mit cxcr3-antagonistischer aktivität
MX2007009946A (es) 2005-02-16 2007-09-26 Schering Corp Piperazin-piperidinas sustituidas con piridilo y fenilo con actividad antagonista de cxcr3.
DE102005022845A1 (de) 2005-05-18 2006-11-23 Fumapharm Ag Thiobernsteinsäurederivate und deren Verwendung
WO2007005879A2 (fr) 2005-07-01 2007-01-11 The Johns Hopkins University Compositions et procedes pour traiter ou prevenir des troubles associes au stress oxydatif
EP1915334A2 (fr) 2005-07-07 2008-04-30 Aditech Pharma AB Nouveaux sels de monoalkylesters d'acide fumarique et leur utilisation pharmaceutique
EP2186819A1 (fr) 2005-07-07 2010-05-19 Aditech Pharma AG Nouveaux esters de glucopyranose et esters de glucofuranose d'alkyl-fumarates et leur utilisation pharmaceutique
EP1940382A2 (fr) 2005-10-07 2008-07-09 Aditech Pharma AB Polytherapie a base d' esters d' acide fumarique pour le traitement de maladies autoimmunes et/ou inflammatoires
JP2009510137A (ja) 2005-10-07 2009-03-12 アディテック・ファルマ・アクチボラゲット フマル酸エステルを含む制御放出医薬組成物
US20080089861A1 (en) 2006-07-10 2008-04-17 Went Gregory T Combination therapy for treatment of demyelinating conditions
WO2008096271A2 (fr) 2007-02-08 2008-08-14 Ralf Gold Neuroprotection dans des maladies démyélinisantes
EP2680007A1 (fr) 2007-02-08 2014-01-01 Biogen Idec MA Inc. Essais de criblage de Nrf2 et procédés et compositions correspondants
EP2424357A4 (fr) 2009-04-29 2012-10-10 Biogen Idec Inc Traitement de la neurodégénérescence et de la neuroinflammation
PL2533634T3 (pl) 2010-02-12 2016-04-29 Biogen Ma Inc Neuroprotekcja w chorobach demielinizacyjnych
JP2013221921A (ja) 2012-04-19 2013-10-28 Heidenhain Kk ロータリーエンコーダ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030018072A1 (en) * 1998-11-19 2003-01-23 Joshi Rajendra Kumar Utilization of dialkylfumarates

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524773B2 (en) 1998-11-19 2013-09-03 Biogen Idec International Gmbh Utilization of dialkylfumarates
US8759393B2 (en) 1998-11-19 2014-06-24 Biogen Idec International Gmbh Utilization of dialkylfumarates
US8980832B2 (en) 2003-09-09 2015-03-17 Biogen Idec International Gmbh Use of fumaric acid derivatives for treating cardiac insufficiency, and asthma
US11229619B2 (en) 2004-10-08 2022-01-25 Biogen Swiss Manufacturing Gmbh Controlled release pharmaceutical compositions comprising a fumaric acid ester
US20090304790A1 (en) * 2004-10-08 2009-12-10 Aditech Pharma Ab Controlled release pharmaceutical compositions comprising a fumaric acid ester
US11052062B2 (en) 2004-10-08 2021-07-06 Biogen Swiss Manufacturing Gmbh Controlled release pharmaceutical compositions comprising a fumaric acid ester
US8399514B2 (en) 2007-02-08 2013-03-19 Biogen Idec Ma Inc. Treatment for multiple sclerosis
US20100130607A1 (en) * 2007-02-08 2010-05-27 Ralf Gold Neuroprotection in demyelinating diseases
US9452972B2 (en) 2008-08-19 2016-09-27 Xenoport, Inc. Methods of using prodrugs of methyl hydrogen fumarate and pharmaceutical compositions thereof
US8148414B2 (en) 2008-08-19 2012-04-03 Xenoport, Inc. Prodrugs of methyl hydrogen fumarate, pharmaceutical compositions thereof, and methods of use
US20100048651A1 (en) * 2008-08-19 2010-02-25 Xenoport, Inc. Prodrugs of methyl hydrogen fumarate, pharmaceutical compositions thereof, and methods of use
US8778991B2 (en) 2008-08-19 2014-07-15 Xenoport, Inc. Prodrugs of methyl hydrogen fumarate, pharmaceutical compositions thereof, and methods of use
US8785443B2 (en) 2008-08-19 2014-07-22 Xenoport, Inc. Methods of using prodrugs of methyl hydrogen fumarate and pharmaceutical compositions thereof
US8906420B2 (en) 2009-01-09 2014-12-09 Forward Pharma A/S Pharmaceutical formulation comprising one or more fumaric acid esters in an erosion matrix
US11173123B2 (en) 2009-01-09 2021-11-16 Biogen Swiss Manufacturing Gmbh Pharmaceutical formulation comprising one or more fumaric acid esters in an erosion matrix
WO2012162669A1 (fr) * 2011-05-26 2012-11-29 Biogen Idec Ma Inc. Méthodes de traitement de la sclérose en plaques et de conservation et/ou d'augmentation de la teneur en myéline
US9422226B2 (en) 2011-06-08 2016-08-23 Biogen Ma Inc. Process for preparing high purity and crystalline dimethyl fumarate
WO2013067036A1 (fr) * 2011-10-31 2013-05-10 Rutgers, The State University Of New Jersey Inhibiteurs directs de l'interaction keap1-nrf2 en tant que modulateurs de l'inflammation par anti-oxydant
US10106502B2 (en) 2011-10-31 2018-10-23 Rutgers, The State University Of New Jersey Direct inhibitors of Keap1-Nrf2 interaction as antioxidant inflammation modulators
WO2013148690A1 (fr) 2012-03-27 2013-10-03 Teva Pharmaceutical Industries Ltd. Traitement de la sclérose en plaques avec une combinaison de laquinimod et de fumarate de diméthyle
EP2830623A4 (fr) * 2012-03-27 2015-09-02 Teva Pharma Traitement de la sclérose en plaques avec une combinaison de laquinimod et de fumarate de diméthyle
JP2015519873A (ja) * 2012-03-30 2015-07-16 ネステク ソシエテ アノニム 4−オキソ−2−ペンテン酸及び脳の健康
US10940117B2 (en) 2012-08-22 2021-03-09 Arbor Pharmaceuticals, Llc Oral dosage forms of methyl hydrogen fumarate and prodrugs thereof
US10716760B2 (en) 2012-08-22 2020-07-21 Arbor Pharmaceuticals, Llc Oral dosage forms of methyl hydrogen fumarate and prodrugs thereof
US10945984B2 (en) 2012-08-22 2021-03-16 Arbor Pharmaceuticals, Llc Methods of administering monomethyl fumarate and prodrugs thereof having reduced side effects
US9597292B2 (en) 2012-08-22 2017-03-21 Xenoport, Inc. Oral dosage forms of methyl hydrogen fumarate and prodrugs thereof
US20160146785A1 (en) * 2012-10-10 2016-05-26 Temple University Of The Commonwealth System Of Higher Education Nuclear factor-erythroid 2 related factor 2 (nrf2) biosensors and modulators of nrf2
US10054583B2 (en) * 2012-10-10 2018-08-21 Temple University Of The Commonwealth System Of Higher Education Nuclear factor-erythroid 2 related factor 2 (NRF2) biosensors and modulators of NRF2
US10399924B2 (en) 2012-12-21 2019-09-03 Biogen Ma Inc. Deuterium substituted fumarate derivatives
US10596140B2 (en) 2013-03-14 2020-03-24 Alkermes Pharma Ireland Limited Prodrugs of fumarates and their use in treating various diseases
US10406133B2 (en) 2013-03-14 2019-09-10 Alkermes Pharma Ireland Limited Prodrugs of fumarates and their use in treating various diseases
US11083703B2 (en) 2013-03-14 2021-08-10 Alkermes Pharma Ireland Limited Prodrugs of fumarates and their use in treating various diseases
US8669281B1 (en) 2013-03-14 2014-03-11 Alkermes Pharma Ireland Limited Prodrugs of fumarates and their use in treating various diseases
US9505776B2 (en) 2013-03-14 2016-11-29 Alkermes Pharma Ireland Limited Prodrugs of fumarates and their use in treating various diseases
US11905298B2 (en) 2013-03-14 2024-02-20 Alkermes Pharma Ireland Limited Prodrugs of fumarates and their use in treating various diseases
US11230548B2 (en) 2013-03-14 2022-01-25 Alkermes Pharma Ireland Limited Prodrugs of fumarates and their use in treating various diseases
US11679092B2 (en) 2013-03-14 2023-06-20 Alkermes Pharma Ireland Limited Prodrugs of fumarates and their use in treating various diseases
US9090558B2 (en) 2013-03-14 2015-07-28 Alkermes Pharma Ireland Limited Prodrugs of fumarates and their use in treating various diseases
WO2014160633A1 (fr) 2013-03-24 2014-10-02 Xenoport, Inc. Compositions pharmaceutiques de fumarate de diméthyle
US11938111B2 (en) 2013-03-24 2024-03-26 Arbor Pharmaceuticals, Llc Pharmaceutical compositions of dimethyl fumarate
US10179118B2 (en) 2013-03-24 2019-01-15 Arbor Pharmaceuticals, Llc Pharmaceutical compositions of dimethyl fumarate
US9302977B2 (en) 2013-06-07 2016-04-05 Xenoport, Inc. Method of making monomethyl fumarate
US9421182B2 (en) 2013-06-21 2016-08-23 Xenoport, Inc. Cocrystals of dimethyl fumarate
US9682057B2 (en) 2013-09-06 2017-06-20 Xenoport, Inc. Crystalline forms of (N,N-Diethylcarbamoyl)methyl methyl (2E)but-2-ene-1,4-dioate, methods of synthesis and use
US9416096B2 (en) 2013-09-06 2016-08-16 Xenoport, Inc. Crystalline forms of (N,N-Diethylcarbamoyl)methyl methyl (2E)but-2-ene-1,4-dioate, methods of synthesis and use
US9604922B2 (en) 2014-02-24 2017-03-28 Alkermes Pharma Ireland Limited Sulfonamide and sulfinamide prodrugs of fumarates and their use in treating various diseases
US10105337B2 (en) 2014-02-28 2018-10-23 Banner Life Sciences Llc Fumarate ester pharmaceutical compositions
US10918617B2 (en) 2014-02-28 2021-02-16 Banner Life Sciences Llc Fumarate ester pharmaceutical compositions
US10105336B2 (en) 2014-02-28 2018-10-23 Banner Life Sciences Llc Fumarate ester pharmaceutical compositions
US10098863B2 (en) 2014-02-28 2018-10-16 Banner Life Sciences Llc Fumarate esters
US9511043B2 (en) 2014-02-28 2016-12-06 Banner Life Sciences Llc Fumarate ester pharmaceutical compositions
US9326947B1 (en) 2014-02-28 2016-05-03 Banner Life Sciences Llc Controlled release fumarate esters
US10918615B2 (en) 2014-02-28 2021-02-16 Banner Life Sciences Llc Fumarate esters
US9517209B2 (en) 2014-02-28 2016-12-13 Banner Life Sciences Llc Fumarate ester pharmaceutical compositions
US10918616B2 (en) 2014-02-28 2021-02-16 Banner Life Sciences Llc Fumarate ester pharmaceutical compositions
US9326965B2 (en) 2014-02-28 2016-05-03 Banner Life Sciences Llc Controlled release fumarate esters
US9814691B2 (en) 2014-02-28 2017-11-14 Banner Life Sciences Llc Fumarate ester pharmaceutical compositions
US9820960B2 (en) 2014-02-28 2017-11-21 Banner Life Sciences Llc Fumarate ester pharmaceutical compositions
US9999672B2 (en) 2014-03-24 2018-06-19 Xenoport, Inc. Pharmaceutical compositions of fumaric acid esters
US11135296B2 (en) 2014-03-24 2021-10-05 Arbor Pharmaceuticals, Llc Pharmaceutical compositions of fumaric acid esters
US9820961B2 (en) 2015-08-31 2017-11-21 Banner Life Sciences Llc Fumarate ester dosage forms
US10945985B2 (en) 2015-08-31 2021-03-16 Banner Life Sciences Llc Fumarate ester dosage forms
US10105335B2 (en) 2015-08-31 2018-10-23 Banner Life Sciences Llc Fumarate ester dosage forms
US9566259B1 (en) 2015-08-31 2017-02-14 Banner Life Sciences Llc Fumarate ester dosage forms
US11590095B2 (en) 2015-08-31 2023-02-28 Banner Life Sciences Llc Fumarate ester dosage forms
US9814692B2 (en) 2015-08-31 2017-11-14 Banner Life Sciences Llc Fumarate ester dosage forms
US9636319B1 (en) 2015-08-31 2017-05-02 Banner Life Sciences Llc Fumarate ester dosage forms
US9636318B2 (en) 2015-08-31 2017-05-02 Banner Life Sciences Llc Fumarate ester dosage forms
US11903918B2 (en) 2020-01-10 2024-02-20 Banner Life Sciences Llc Fumarate ester dosage forms with enhanced gastrointestinal tolerability

Also Published As

Publication number Publication date
HUS2300001I1 (hu) 2023-02-28
US20120259012A1 (en) 2012-10-11
EP2680009A1 (fr) 2014-01-01
SI2137537T1 (sl) 2013-10-30
NO2023001I1 (no) 2023-01-02
US20130317103A1 (en) 2013-11-28
CY2014026I1 (el) 2016-10-05
RS52922B (en) 2014-02-28
HRP20130707T1 (en) 2013-09-30
RS63489B1 (sr) 2022-09-30
LTPA2023503I1 (fr) 2023-02-10
WO2008097596A3 (fr) 2008-12-11
PT2137537E (pt) 2013-08-22
ES2916649T3 (es) 2022-09-21
FI2629097T1 (fi) 2022-06-15
WO2008097596A2 (fr) 2008-08-14
US20150366803A1 (en) 2015-12-24
DE13156663T1 (de) 2022-07-14
EP2653873A1 (fr) 2013-10-23
EP2680007A1 (fr) 2014-01-01
PL2653873T3 (pl) 2022-08-22
PL2653873T1 (pl) 2022-07-04
US20130303613A1 (en) 2013-11-14
FR23C1003I1 (fr) 2023-03-10
LT2653873T (lt) 2022-10-10
EP2680008A1 (fr) 2014-01-01
DK2629097T1 (da) 2022-05-30
FR23C1003I2 (fr) 2024-01-12
EP2680010A1 (fr) 2014-01-01
EP2137537A2 (fr) 2009-12-30
HRP20220902T3 (hr) 2022-10-14
US20200016072A1 (en) 2020-01-16
DK2137537T3 (da) 2013-07-29
HK1139204A1 (en) 2010-09-10
ES2916649T1 (es) 2022-07-04
PT2653873T (pt) 2022-07-26
US20180263906A1 (en) 2018-09-20
EP2653873B8 (fr) 2022-08-24
US20120196931A1 (en) 2012-08-02
EP2653873B1 (fr) 2022-07-20
EP2137537B1 (fr) 2013-05-29
LU92487I2 (fr) 2015-11-02
SI2653873T1 (sl) 2022-09-30
EP2137537B8 (fr) 2016-06-01
CY2014026I2 (el) 2016-10-05
EP2629097A1 (fr) 2013-08-21
DK2653873T3 (da) 2022-07-25
EP2518511A1 (fr) 2012-10-31
EP4137819A1 (fr) 2023-02-22
DK2653873T1 (da) 2022-05-30
DE13169139T1 (de) 2022-07-14
EP2680006A1 (fr) 2014-01-01
CY1114340T1 (el) 2016-08-31
US8399514B2 (en) 2013-03-19
ES2424022T3 (es) 2013-09-26
FR14C0050I1 (fr) 2014-08-08
PL2137537T3 (pl) 2013-10-31
ES2916604T1 (es) 2022-07-04
FIC20230002I1 (fi) 2023-01-16

Similar Documents

Publication Publication Date Title
US20200016072A1 (en) NRF2 Screening Assays and Related Methods and Compositions
Linker et al. Dimethyl fumarate for treatment of multiple sclerosis: mechanism of action, effectiveness, and side effects
US20190269749A1 (en) Methods for preventing or treating insulin resistance
Singh et al. Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases
Cong et al. Cardiac-specific overexpression of catalase prevents diabetes-induced pathological changes by inhibiting NF-κB signaling activation in the heart
Deng et al. Elevated Glutathione Is Not Sufficient to Protect against Doxorubicin-Induced Nuclear Damage in Heart in Multidrug Resistance–Associated Protein 1 (Mrp1/Abcc1) Null Mice
Pujol Novel therapeutic targets and drug candidates for modifying disease progression in adrenoleukodystrophy
JP2022528727A (ja) 酸化ストレスに関連する疾患の治療に使用するためのニタゾキサニド及びチアゾリド
Çadirci et al. The in vitro cytotoxicity, genotoxicity and oxidative damage potential of the oral dipeptidyl peptidase-4 inhibitor, linagliptin, on cultured human mononuclear blood cells
Kogami et al. Fenofibrate attenuates the cytotoxic effect of cisplatin on lung cancer cells by enhancing the antioxidant defense system in vitro
JP2023500278A (ja) 抗酸化性質を有する併用療法
Zhu Function and regulation of intestinal p450 enzymes: insights from conditional cytochrome p450 reductase knockout mouse models

Legal Events

Date Code Title Description
AS Assignment

Owner name: BIOGEN IDEC MA INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUKASHEV, MATVEY E.;REEL/FRAME:025634/0366

Effective date: 20101206

AS Assignment

Owner name: BIOGEN IDEC MA INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:O-NEILL, GILMORE;REEL/FRAME:027182/0642

Effective date: 20111027

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BIOGEN MA INC., MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:BIOGEN IDEC MA INC.;REEL/FRAME:036077/0797

Effective date: 20150323