US20100301595A1 - Method for the production of a polycarbonate laminate - Google Patents

Method for the production of a polycarbonate laminate Download PDF

Info

Publication number
US20100301595A1
US20100301595A1 US12/740,523 US74052308A US2010301595A1 US 20100301595 A1 US20100301595 A1 US 20100301595A1 US 74052308 A US74052308 A US 74052308A US 2010301595 A1 US2010301595 A1 US 2010301595A1
Authority
US
United States
Prior art keywords
layer
polycarbonate
ink jet
jet printing
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/740,523
Other languages
English (en)
Inventor
Oliver Muth
Arthur Mathea
Malte Pflughoefft
Jens Ehreke
Manfred Paeschke
Heinz Pudleiner
Cengiz Yesildag
Klaus Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bundesdruckerei GmbH
Covestro Deutschland AG
Original Assignee
Bundesdruckerei GmbH
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bundesdruckerei GmbH, Bayer MaterialScience AG filed Critical Bundesdruckerei GmbH
Assigned to BAYER MATERIAL SCIENCE AG, BUNDESDRUCKEREI GMBH reassignment BAYER MATERIAL SCIENCE AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EHREKE, JENS, MEYER, KLAUS, MUTH, OLIVER, PAESCHKE, MANFRED, MATHEA, ARTHUR, PUDLEINER, HEINZ, YESILDAG, CENGIZ, PFLUGHOEFFT, MALTE
Publication of US20100301595A1 publication Critical patent/US20100301595A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/45Associating two or more layers
    • B42D25/46Associating two or more layers using pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0003Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor of successively moulded portions rigidly joined to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/45Associating two or more layers
    • B42D25/455Associating two or more layers using heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24521Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface

Definitions

  • the invention relates to the use of a preparation comprising: A) 0.1 to 20 wt % of an organic polymer, B) 30 to 99.9 wt % of a solvent, C) 0 to 10 wt %, referred to dry mass, of a dye or of a mixture of dyes, D) 0 to 10 wt % of a functional material or of a mixture of functional materials, E) 0 to 30 wt % of additive and/or auxiliary substances, or of a mixture of such substances, the relative amounts of the components A) to E) always totaling 100 wt %, as an ink jet printing dye.
  • the invention further relates to a method for making a structure with an ink jet printing layer arranged between two polycarbonate layers, to a structure obtainable by means of such a method, to the use of such a method for making security and/Or value document, and to a security and/or value document to be thus made.
  • a preparation to be used use as an ink for ink jet printing is for instance known from the document EP 1690903 A. Therein, it is an aqueous ink for use on a sucking substrate, as for instance letter envelopes. If an organic polymer is provided, it does not serve as a binding agent, but as an additive for viscosity adjustment. Such inks cannot be used for printing on polycarbonate films for the following reasons explained with regard to paper-based security and/or value documents.
  • PC polycarbonate
  • a personalization of PC (polycarbonate) based security and/or value documents takes place in the practice by means of the so-called laser engraving method, wherein by optical/thermal interactions of a material of the security and/or value document with the laser radiation, locally highly resolved pyrolysis processes are produced and thus local blackenings due to carbon generation occur.
  • the disadvantage of this method is the limitation to black & white or at best gray scale representations.
  • a colored personalization established for paper-based documents in the ink jet printing method is not widely used for PC based security and/or value documents up to now.
  • One reason for this is the lacking compatibility of the used polymers/binders (in connection with the other ink components such as dyes, additives, solvents) with polycarbonate.
  • polycarbonate is no sucking base.
  • Common inks for ink jet printing are adjusted to good absorption times on paper and when imprinted on a non-sucking PC film they remain on the surface and can even after drying often completely be removed without residues, since the color does not penetrate into the material.
  • ink jet printing layers made from insofar known inks lack temperature stability. Since in the field of security and/or value documents, imprinted PC films are typically laminated to each other under the action of pressure (>2 bars) and temperature (>160° C.), there is a risk of discoloration of the ink jet printing layer.
  • the invention teaches the use of a preparation comprising: A) 0.1 to 20 wt % of a binding agent with a polycarbonate derivative based on a geminally disubstituted dihydroxydiphenyl cycloalkane, B) 30 to 99.9 wt % of a preferably organic solvent or of a mixture of solvents, C) 0 to 10 wt %, referred to dry mass, of a dye or of a mixture of dyes, D) 0 to 10 wt % of a functional material or of a mixture of functional materials, E) 0 to 30 wt % of additive and/or auxiliary substances, or of a mixture of such substances, the relative amounts of the components A) to E) always totaling 100 wt %, as an ink jet printing dye.
  • the invention is based on the finding that polycarbonate derivatives used according to the invention are highly compatible with polycarbonate materials for films, in particular with polycarbonates based on bisphenol A, such as for instance Makrofol® films.
  • the high compatibility is shown by that the ink jet printing layer provided according to the invention with a polycarbonate derivative combines with the polycarbonate materials of the films to form a monolithic structure. A layer boundary between the materials cannot optically be detected anymore after the lamination. Further, the used polycarbonate derivative is stable at high temperatures and does not show any discolorations at temperatures up to 200° C. and more being typical for a lamination.
  • compositions used according to the invention are also suitable e.g. for the surface personalization of security and/or value documents, since when printing on the polymer layer, an integral structure is formed.
  • the invention achieves that a security and/or value document based on polycarbonate films can be provided with a colored overprint, for instance during the personalization as a passport photograph, wherein the ink jet printing layer does not only not act as a barrier layer, but rather even more promotes the formation of a monolithic structure during the lamination.
  • the structure fulfills with regard to integrity and durability all requirements.
  • polycarbonate derivative may contain functional carbonate structure units of formula (I),
  • R 1 and R 2 are independently from each other hydrogen, halogen, preferably chlorine or bromine, C 1 -C 8 alkyl, C 5 -C 6 cycloalkyl, C 6 -C 10 aryl, preferred phenyl, and C 7 -C 12 aralkyl, preferably phenyl-C 1 -C 4 alkyl, in particular benzyl; m is an integer from 4 to 7, preferably 4 or 5; R 3 and R 4 can be individually selected for each X, and independently represent hydrogen or C 1 -C 6 alkyl; X is carbon and n an integer greater than 20, with the proviso that at at least one atom X, R 3 and R 4 are both alkyl.
  • halogen preferably chlorine or bromine
  • C 1 -C 8 alkyl C 5 -C 6 cycloalkyl
  • C 6 -C 10 aryl preferred phenyl
  • C 7 -C 12 aralkyl preferably phenyl-C 1
  • R 3 and R 4 both are alkyl.
  • R 3 and R 4 may in particular be methyl.
  • the X atoms in the alpha position to the diphenyl-substituted C atom (C1) cannot be dialkyl-substituted.
  • the polycarbonate derivative may for instance be formed on the basis of monomers, such as 4,4′-(3,3,5-trimethyl cyclohexane-1,1-diyl)diphenol, 4,4′-(3,3-dimethyl cyclohexane-1,1-diyl)diphenol, or 4,4′-(2,4,4-trimethyl cyclopentane-1,1-diyl)diphenol.
  • monomers such as 4,4′-(3,3,5-trimethyl cyclohexane-1,1-diyl)diphenol, 4,4′-(3,3-dimethyl cyclohexane-1,1-diyl)diphenol, or 4,4′-(2,4,4-trimethyl cyclopentane-1,1-diyl)diphenol.
  • a polycarbonate derivative used according to the invention may for instance be made from diphenols of formula (Ia) according to the document DE 38 32 396.6, the scope of disclosure of which with its complete contents is hereby included in the scope of disclosure of this description.
  • a diphenol of formula (Ia) under formation of homopolycarbonates as well as several diphenols of formula (Ia) under formation of copolycarbonates can be used (the meaning of radicals, groups and parameters same as in formula I).
  • diphenols of formula (Ia) can also be used in a mixture with other diphenols, for instance with those of formula (Ib)
  • Suitable other diphenols of formula (Ib) are those, wherein Z is an aromatic radical with 6 tc 30 C atoms, which may contain one or several aromatic nuclei, be substituted and contain aliphatic radicals or other cycloaliphatic radicals than those of formula (Ia) or heteroatoms as bridge members.
  • diphenols of formula (Ib) examples include hydroquinone, resorcin, dihydroxydiphenyls, bi-(hydroxyphenyl)-alkanes, bis-(hydroxyphenyl)-cycloalkanes, bis-(hydroxyphenyl)-sulfides, bis-(hydroxyphenyl)-ethers, bis-(hydroxyphenyl)-ketones, bis-(hydroxyphenyl)-sulfones, bis-(hydroxyphenyl)-sulfoxides, alpha,alpha′-bis-(hydroxyphenyl)-diisopropylbenzenes and their nuclear-alkylated and nuclear-halogenated compounds.
  • Preferred other diphenols are for instance: 4,4′-dihydroxydiphenyl, 2,2-bis-(4-hydroxyphenyl)-propane, 2,4-bis-(4-hydroxyphenyl)-2-methylbutane, 1,1-bis-(4-hydroxyphenyi)-cyclohexane, alpha,alpha-bis-(4-hydroxyphenyl)-p-diisopropylbenzene, 2,2-bis-(3-methyl-4-hydroxyphenyl)-propane, 2,2-bis-(3-chloro-4-hydroxyphenyl)-propane, bis-(3,5-dimethyl-4-hydroxyphenyl)-methane, 2,2-bis-(3,5-dimethyl-4-hydroxyphenyl)-propane, bis-(3,5-dimethyl-4-hydroxyphenyl)-sulfone, 2,4-bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutane, 1,1-bis-(3,5-d
  • diphenols of formula (Ib) are for instance: 2,2-bis-(4-hydroxyphenyl)-propane, 2,2-bis-(3,5-dimethyl-4-hydroxyphenyl)-propane, 2,2-bis-(3,5-dichloro-4-hydroxyphenyl)-propane, 2,2-bis-(3,5-dibromo-4-hydroxyphenyl)-propane and 1,1-bis-(4-hydroxyphenyl)-cyclohexane.
  • 2,2-bis-(4-hydroxyphenyl)-propane is preferred.
  • the other diphenols may be used individually as well as in a mixture.
  • the molar ratio of diphenols of formula (Ia) to, if applicable, the also used other diphenols of formula (Ib) should be between 100 mol % (Ia) to 0 mol % (Ib) and 2 mol % (Ia) to 98 mol % (Ib), preferably between 100 mol % (Ia) to 0 mol % (Ib) and 10 mol % (Ia) to 90 mol % (Ib) and in particular between 100 mol % (Ia) to 0 mol % (Ib) and 30 mol % (Ia) to 70 mol % (Ib).
  • the high-molecular polycarbonate derivatives from the diphenols of formula (Ia), if applicable, in combination with other diphenols, may be made according to the known polycarbonate production methods.
  • the different diphenols may be linked in a statistical manner as well as also block-wise.
  • the polycarbonate derivatives used according to the invention may be branched in a per se known manner. If the branching is desired, this can be achieved in a per se known manner by condensation of small amounts, preferably amounts between 0.05 and 2.0 mol % (referred to the used diphenols), at three or more than three-functional compounds, in particular such with three or more than three phenolic hydroxyl groups.
  • Some branching agents with three or more than three phenolic hydroxyl groups are: phloroglucin, 4,6-dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptene-2, 4,6-dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptane, 1,3,5-tri-(4-hydroxyphenyl)-benzene, 1,1,1-tri-(4-hydroxyphenyl)-ethane, tri-(4-hydroxyphenyl)-phenylmethane, 2,2-bis-[4,4-bis-(4-hydroxyphenyl)-cyclohexyl]-propane, 2,4-bis-(4-hydroxyphenyl-isopropyl)-phenol, 2,6-is-(2-hydroxy-5-methyl-benzyl)-4-methylphenol, 2-(4-hydroxyphenyl)-2-(2,4-dihydroxyphenyl)-propane, hexa-[4-(4-hydroxypheny
  • Some of the other three-functional compounds are 2,4-dihydroxy benzoic acid, trimesic acid, cyanuric chloride and 3,3-bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol.
  • Suitable compounds are e.g. phenol, tert-butylphenols or other alkyl-substituted phenols.
  • phenols of formula (Ic) are suitable
  • R is a branched C8 and/or C9-alkyl radical.
  • the share of CH 3 protons in the alkyl radical R is between 47 and 89% and the share of the CH and CH 2 protons is between 53 and 11%; also preferably R is in an o and/or p position to the OH group, and particularly preferably the upper limit of the ortho share is 20%.
  • the chain stoppers are used in general in amounts from 0.5 to 10, preferably 1.5 to 8 mol %, referred to the used diphenols.
  • the polycarbonate derivatives may preferably be made according to the phase boundary method (cf. H. Schnell Chemistry and Physics of Polycarbonates , Polymer Reviews, Vol. IX, page 33ff., Interscience Publ. 1964) in a per se known manner.
  • the diphenols of formula (Ia) are dissolved in an aqueous alkaline phase.
  • mixtures of diphenols of formula (Ia) and the other diphenols, for instance those of formula (Ib), are used.
  • chain stoppers e.g. of formula (Ic) may be added.
  • a reaction is performed in presence of an inert, preferably polycarbonate-dissolving, organic phase with phosgene according to the method of the phase boundary condensation.
  • the reaction temperature is between 0° C. and 40° C.
  • branching agents may either be presented with the diphenols in the aqueous alkaline phase or be added dissolved in the organic solvent before the phosgenation. Beside the diphenols of formula (Ia) and, if applicable, other diphenols (Ib), thus their mono and/or bis-chlorocarbonic acid esters can also be used, the latter being added dissolved in organic solvents.
  • the amount of chain stoppers and of branching agents then depends on the molar amount of diphenolate radicals corresponding to formula (Ia) and, if applicable, formula (Ib); when chlorocarbonic acid esters are also used, the amount of phosgene can correspondingly be reduced in a known manner.
  • Suitable organic solvents for the chain stoppers and, if applicable, for the branching agents and the chlorocarbonic acid esters are for instance methylene chloride, chlorobenzene and in particular mixtures of methylene chloride and chlorobenzene. If applicable, the used chain stoppers and branching agents can be dissolved in the same solvent.
  • phase boundary polycondensation serve for instance methylene chloride, chlorobenzene and mixtures of methylene chloride and chlorobenzene.
  • aqueous alkaline phase serves for instance a NaOH solution.
  • Making the polycarbonate derivatives according to the phase boundary method can by catalyzed in a usual manner by catalyzers such as tertiary amines, in particular tertiary aliphatic amines such as tributylamine or triethylamine; the catalyzers can be used in amounts from 0.05 to 10 mol %, referred to the moles of used diphenols.
  • the catalyzers can be added before the phosgenation or during or also after the phosgenation.
  • the polycarbonate derivatives can be made according to the known method in a homogeneous phase, the so-called “pyridine method” and according to the known method for the transesterification of molten mass by using for instance diphenyl carbonate instead of phosgene.
  • the polycarbonate derivatives may be linear or branched, they are homopolycarbonates or copolycarbonates based on the diphenols of formula (Ia).
  • the polycarbonate properties can be varied in a favorable manner.
  • the diphenols of formula (Ia) are contained in polycarbonate derivatives in amounts from 100 mol % to 2 mol %, preferably in amounts from 100 mol % to 10 mol % and in particular in amounts from 100 mol % to 30 mol %, referred to the total amount of 100 mol % of diphenol units.
  • the polycarbonate derivative comprises a copolymer in particular consisting of monomer units M1 based on formula (Ib), preferably bisphenol A, and monomer units M2 based on the geminally disubstituted dihydroxydiphenyl cycloalkane, preferably of the 4,4′-(3,3,5-trimethyl cyclohexane-1,1-diyl)diphenol, wherein the molar ratio M2/M1 is preferably greater than 0.3, in particular greater than 0.4, for instance greater than 0.5.
  • the glass temperature Tg below 150° C. after a first heating cycle may be increased in a second heating cycle, which can substantially improve the stability of the obtained structure.
  • the polycarbonate derivative has an average molecular weight (mean weight) of at least 10,000, preferably of 20,000 to 300,000.
  • the component B may in principle be substantially organic or aqueous.
  • Substantially aqueous means that up to 20 wt % of the component B can be organic solvents.
  • Substantially organic means that up to 5 wt % water may be present in the component B.
  • the component B comprises or consists of a liquid aliphatic, cycloaliphatic, and/or aromatic hydrocarbon, a liquid organic ester, and/or of a mixture of such substances.
  • the used organic solvents are preferably halogen-free organic solvents.
  • These may in particular be aliphatic, cycloaliphatic, aromatic hydrocarbons, such as mesitylene, 1,2,4-trimethylbenzene, cumene and solvent naphtha, toluene, xylene; (organic) esters, such as methylacetate, ethylacetate, butylacetate, methoxypropylacetate, ethyl-3-ethoxypropionate.
  • mesitylene (1,3,5-trimethylbenzene) 1,2,4-trimethylbenzene, cumene (2-phenylpropane), solvent naphtha and ethyl-3-ethoxypropionate.
  • a suitable mixture of solvents comprises for instance L1) 0 to 10 wt %, preferably 1 to 5 wt %, in particular 2 to 3 wt %, of mesitylene, L2) 10 to 50 wt %, preferably 25 to 50 wt %, in particular 30 to 40 wt %, of 1-methoxy-2-propanol-acetate, L3) 0 to 20 wt %, preferably 1 to 20 wt %, in particular 7 to 15 wt %, of 1,2,4-trimethylbenzene, L4) 10 to 50 wt %, preferably 25 to 50 wt %, in particular 30 to 40 wt %, of ethyl-3-ethoxypropionate, L5) 0 to 10 wt %, preferably 0.01 to 2 wt %, in particular 0.05 to 0.5 wt %, of cumene, and L6) 0 to 80 wt %, preferably 1 to 40 wt
  • first polycarbonate layer and the second polycarbonate layer have a glass temperature Tg of more than 145° C., in particular more than 147° C.
  • the polycarbonate derivative typically has an average molecular weight (mean weight) of at least 10,000, preferably from 20,000 to 300,000.
  • the preparation may comprise in detail: A) 0.1 to 10 wt %, in particular 0.5 to 5 wt %, of a binding agent with a polycarbonate derivative based on a geminally disubstituted dihydroxydiphenyl cycloalkane, B) 40 to 99.9 wt %, in particular 45 to 99.5 wt %, of an organic solvent or of a mixture of solvents, C) 0.1 to 6 wt %, in particular 0.5 to 4 wt %, of a dye or of a mixture of dyes, D) 0.001 to 6 wt %, in particular 0.1 to 4 wt %, of a functional material or of a mixture of functional materials, E) 0.1 to 30 wt %, in particular 1 to 20 wt %, of additive and/or auxiliary substances, or of a mixture of such substances.
  • Dyes are all coloring substances. This means, they may be dyes (a survey of dyes is given in Ullmann's Encyclopedia of Industrial Chemistry , Electronic Release 2007, Wiley Verlag, chapter “Dyes, General Survey”), as well as pigments (a survey of organic and inorganic pigments is given in Ullmann's Encyclopedia of Industrial Chemistry , Electronic Release 2007, Wiley Verlag, chapter “Pigments, Organic” and “Pigments, Inorganic”). Dyes should be soluble or (stably) dispersible or suspensible in the solvents of the component B. Furthermore, it is advantageous, if the dye is stable, in particular color-stable at temperatures of 160° C.
  • the dye is subjected to a given and reproducible color change under the processing conditions and is selected correspondingly.
  • Pigments must be present, in addition to the temperature stability, in particular in a finest particle size distribution. In the practice of ink jet printing this means that the particle size should not exceed 1.0 ⁇ m, since otherwise occlusions in the printing head will result. Normally, nano-scale solid pigments have proven themselves.
  • the dyes may be kationic, anionic or also neutral.
  • soluble dyes can be used anthraquinone, azo, quinophthalone, cumarin, methin, perinone, and/or pyrazole dyes, e.g. obtainable under the trade name Macrolex®. Further suitable dyes are described in the document Ullmann's Encyclopedia of Industrial Chemistry , Electronic Release 2007, Wiley Verlag, chapter “Colorants Used in Ink Jet Inks”. Well soluble dyes will lead to an optimum integration in the matrix or the binder of the printing layer.
  • the dyes can be added either directly as a dye or pigment or as a paste, a mixture of dye and pigment together with an additional binder. This additional binder may be different from a binder according to the invention (e.g.
  • the amount of the component B refers to the dye without the other components of the paste.
  • these other components of the paste must then be subsumed under the component E.
  • so-called colored pigments in the scale colors cyan-magenta-yellow and preferably also (soot-) black, full-tone color images are possible.
  • the component D comprises substances, which by using technical means can immediately be seen by the human eye or by using suitable detectors. These are materials familiar to the man skilled in the art (cf. also van Renesse, Optical Document Security, 3rd ed., Artech House, 2005), which are used for the protection of value and security documents. Thereto belong luminescent substances (dyes or pigments, organic or inorganic) such as e.g. photoluminophores, electroluminophores, anti-Stokes luminophores, fluorophores, but also magnetizable, photo-acoustically addressable or piezoelectric materials. Furthermore, Raman-active or Raman-amplifying materials can be used, same as so-called barcode materials.
  • the preferred criteria are either the solubility in the component B or for pigmented systems particle sizes ⁇ 1 ⁇ m and temperature stability for temperatures >160° C. in the meaning of the explanations with regard to the component C.
  • Functional materials can directly be added or via a paste, i.e. mixture with an additional binder, which is then a constituent of the component E, or the binder of the component A used according to the invention.
  • the component E comprises the substances normally used for inks in ink jet printing, such as anti-foam agents, set-up agents, wetting agents, tensides, floating agents, drying agents, catalyzers, (light) stabilizers, preservation agents, biocides, tensides, organic polymers for viscosity adjustment, buffer systems, etc.
  • Set-up agents are for instance conventional set-up salts. An example is sodium lactate.
  • biocides may be used all commercially available preservation agents, which are used for inks. Examples are Proxel®GXL and Parmetol® A26.
  • Tensides may be all commercially available tensides, which are used for inks. Preferred are amphoteric or non-ionic tensides.
  • tensides which do not alter the properties of the dye
  • suitable tensides are betaines, ethoxilated diols etc.
  • Surfynol® and Tergitol® examples are the product series Surfynol® and Tergitol®.
  • the amount of tensides is for instance selected such that the surface tension of the ink is in the range from 10 to 60 mN/m, preferably from 25 to 45 mN/m, measured at 25° C.
  • a buffer system may be provided, which stabilizes the pH value in the range from 2.5 to 8.5, in particular in the range from 5 to 8.
  • Suitable buffer systems are lithium acetate, borate buffer, triethanolamine or acetic acid/sodium acetate.
  • a buffer system will in particular be applied in the case of a substantially aqueous component B.
  • water-soluble polymers may be provided. These may be all polymers being suitable for conventional ink formulations. Examples are water-soluble starch, in particular with an average molecular weight from 3,000 to 7,000, polyvinylpyrolidone, in particular with an average molecular weight from 25,000 to 250,000, polyvinyl alcohol, in particular with an average molecular weight from 10,000 to 20,000, xanthan gum, carboxymethyl cellulose, ethylene oxide/propylene oxide block copolymer, in particular with an average molecular weight from 1,000 to 8,000.
  • the share of biocide referred to the total amount of ink
  • the share of tenside referred to the total amount of ink
  • the share of set-up agents may be from 0 to 1 wt %, preferably from 0.1 to 0.5 wt %.
  • auxiliary agents also belong all other components, such as for instance acetic acid, formic acid or n-methyl pyrolidone or other polymers from the used dye solution or paste.
  • the invention further relates to a method for making a structure with at least one first polymer layer and, optionally, a second polymer layer, each made from a polycarbonate polymer based on bisphenol A, wherein on the first polymer layer an ink jet printing layer is arranged, comprising the following steps: a) on at least one partial region of the first polymer layer, the ink jet printing layer from a preparation used according to the invention is applied, b) optionally, the ink jet printing layer is dried, c) optionally after step a) or step b), the second polymer layer is placed on the first polymer layer, covering the ink jet printing layer, and the first polymer layer and the second polymer layer are laminated with each other under pressure, at a temperature from 120° C. to 230° C. and for a defined time.
  • a structure according to the invention may only consist of a polymer layer and of a printing layer applied by means of the preparation used according to the invention, may however also comprise another polymer layer, if applicable, in another structure with additional layers. It is for instance possible that the printing layer is provided as the uppermost layer within a structure (if applicable, with additional layers). Further, the printing layer can be imprinted directly and without another cover on a polymer layer adapted as an overlay film.
  • the ink jet printing layer may be provided over the full surface on the first polymer layer. In most cases, however, the ink jet printing layer will be provided in a partial region only of the surface of the first polymer layer.
  • the specific pressure (pressure directly at the workpiece) in step d) is typically in the range from 1 bar to 10 bars, in particular in the range from 3 bars to 7 bars.
  • the temperature in step d) is preferably in the range from 140° C. to 200° C., in particular in the range from 150° C. to 180° C.
  • the time of the step d) may be in the range from 0.5 s to 120 s, in particular from 5 s to 60 s.
  • drying can be performed at a temperature in the range from 20° C. to 120° C., in particular from 20° C. to 80° C., preferably from 20° C. to 60° C., for a time of at least 1 s, preferably from 5 s to 6,000 s.
  • the first polycarbonate layer and the second polycarbonate layer may, independently from each other, have a glass temperature Tg of more than 145° C.
  • the thickness of the first polycarbonate layer and of the second polycarbonate layer may be, identical or different, in the range from 10 to 1,000 ⁇ m, in particular from 20 to 200 ⁇ m.
  • the thickness, measured in directions orthogonal to a main face of a polycarbonate layer, of the ink jet printing layer may be, before or after drying, in the range from 0.01 to 10 ⁇ m, in particular from 0.05 to 5 ⁇ m, preferably from 0.02 to 1 ⁇ m.
  • Subject matter of the invention is also a structure obtainable with a method according to the invention.
  • a structure typically contains at least one first polycarbonate layer and a second polycarbonate layer and an ink jet printing layer from a preparation used according to the invention and arranged between the first polycarbonate layer and the second polycarbonate layer.
  • a method according to the invention for making a structure may be used for making a security and/or value document, wherein optionally simultaneously with, before or after the production of the structure, the first polycarbonate layer and/or the second polycarbonate layer are directly or indirectly connected in a stack with at least one additional layer, for instance a carrier layer.
  • security and/or value documents are: identity cards, passports, ID cards, access control cards, visas, tax symbols, tickets, driver's licenses, vehicle documents, banknotes, checks, postage stamps, credit cards, any chip cards and adhesive labels (e.g. for product protection).
  • security and/or value documents typically comprise at least one substrate, a printing layer and optionally a transparent cover layer.
  • Substrate and cover layer themselves may be composed of a multitude of layers.
  • a substrate is a carrier structure, onto which the printing layer with information, images, patterns and the like is applied.
  • materials for a substrate all conventional materials on a paper and/or (organic) polymer basis can be used.
  • Such a security and/or value document comprises within the total multi-layer structure a structure according to the invention. Beside the structure according to the invention, at least one (additional) printing layer may be provided, which may be applied on an external surface of the structure or on an additional layer connected with the structure.
  • the invention relates to a security and/or value document to be thus made or comprising a structure according to the invention.
  • Abrasion-resistant decorations of injection-molded parts can be made by in-mold lamination of films.
  • PC films are imprinted by silk-screen printing, plastically deformed (e.g. deep-drawing), placed in an injection mold and in-mold laminated with a thermoplastic material.
  • casings for mobile phones or decorative housings are made.
  • Multi-colored decorations require the production of several printing forms/printing screens and are therefore only economical for high quantities.
  • an ink used according to the invention however, also piece productions or unique motives are possible, and thus e.g. individualized, highly abrasion-resistant casings for mobile phones (for example with a photograph) or personalized tachometer discs (e.g. initials of the owner) can be produced.
  • the invention also relates to a method for making a structure with at least one polymer layer and an injection-molded part from a polymer material, wherein between the polymer layer and the injection-molded part an ink jet printing layer is arranged, comprising the following steps: a) on at least one partial region of the polymer layer, the ink jet printing layer from a preparation used according to the invention is applied, b) optionally, the ink jet printing layer is dried, c) after step a) or step b), the polymer layer is placed in an injection mold (if necessary after plastic deformation of the imprinted polymer layer for fitting to the walls of the injection mold), the ink jet printing layer showing toward inside, d) into the injection mold, the polymer material is injected at a temperature of at least 60° C., and e) after cooling-off to a temperature of at least 20° C. below the temperature of the step d), the structure is taken from the injection mold.
  • the polymer layer may preferably be a polycarbonate layer based on bisphenol A.
  • polycarbonate layer based on bisphenol A.
  • polymer materials in principle all thermoplastic polymers usual in the field of plastic injection can be used.
  • the temperature in step d) may be in the range from 80° C. to 200° C., in particular in the range from 100° C. to 180° C.
  • the temperature in step e) may be at least 40° C. below the temperature in step d).
  • the invention also comprises a structure comprising at least one polycarbonate layer and an injection-molded part and an ink jet printing layer from a preparation used according to the invention and arranged between the polycarbonate layer and the injection-molded part.
  • FIG. 1 a representation of a test print area
  • FIG. 2 details of a portrait of a person made by a method according to the invention.
  • the polycarbonate derivative had a relative solution viscosity of 1.255.
  • the glass temperature was determined to be 157° C. (DSC).
  • the polycarbonate derivative has a relative solution viscosity of 1.263.
  • the glass temperature was determined to be 167° C. (DSC).
  • the polycarbonate derivative had a relative solution viscosity of 1.263.
  • the glass temperature was determined to be 183° C. (DSC).
  • the polycarbonate derivative had a relative solution viscosity of 1.251.
  • the glass temperature was determined to be 204° C. (DSC).
  • Example 2 As in Example 1, a mixture of 44.2 g (0.19 mole) bisphenol A and 250.4 g (0.81 mole) 1,1-bis-(4-hydroxyphenyl)-3,3,5-trimethyl cyclohexane was reacted to the polycarbonate.
  • the polycarbonate derivative had a relative solution viscosity of 1.248.
  • the glass temperature was determined to be 216° C. (DSC).
  • a liquid preparation was made from 17.5 weight parts of the polycarbonate derivative from Example 1.3 and 82.5 weight parts of a solvent mixture according to Table I.
  • Example 2 In a 50 mL wide-neck thread glass, 4 g polycarbonate solution of Example 2 and 30 g of the mixture of solvents of Example 2 were homogenized with a magnetic stirrer. A colorless, low-viscous solution with a solution viscosity of 1.67 mPa ⁇ s at ambient temperature was obtained.
  • the surface tension of this basic ink was determined with an OEG Surftens measuring system according to the pendant drop method to be 21.4 ⁇ 1,9 mN/m.
  • Example 7 In an analogous manner to Example 3, 10 g polycarbonate solution of Example 2 and 32.5 g mixture of solvents of Example 2 were homogenized with a magnetic stirrer (4% PC solution). A colorless, low-viscous solution with solution viscosity of 5.02 mPa ⁇ s at 20° C. was obtained. Here, too, no addition of a pigment or dye was made, since this ink only served for use in the test print of Example 7.
  • Example 4 A polycarbonate solution according to Example 4 was prepared and additionally reacted with approx. 2% pigment Black 28. An ink results, by means of which black & white images can be printed on polycarbonate films, and reference is made to Example 8.
  • Example 3 The solution of Example 3 was transferred by filtration into a printer cartridge and printed with an ink jet printer FUJIFILM-Dimatix DMP 2800 under variation of various printing parameters.
  • the used printer is a so-called drop-on-demand system, wherein the drop generation is made by a piezoelectric printing head.
  • the DMP 2800 has a stroboscopic image recording system, by means of which the drop formation and the drop path can be investigated.
  • the prints were dried at 100° C. for 30 min. Depending on the base, different drop sizes can be achieved, as is shown in Table 1.
  • the drops will be absorbed more than on non-sucking bases such as glass or plastic.
  • Example 4 An ink according to Example 4 was printed on glass substrates.
  • the so-called drop distance (pitch, see also FIG. 1 ) varied from 10 to 45 ⁇ m.
  • the prints were again dried at 100° C. for 30 min.
  • the layer thickness can be adjusted in a wide range.
  • Example 5 Using the ink of Example 5, a portrait of a person was printed on Makrofole® 4-4. The thus produced portrait was laminated together with transparent Makrofol® 6-2-films at temperatures >180° C., pressures >5 bar and times >10 min to form a structure of approx. 800 ⁇ m thickness. Light-microscopic investigations before and after the lamination were made, in order to evaluate the edge definition of individual pixels. The results are shown in FIG. 2 . There are shown on top in FIG. 2 colored printing images (top) and thereunder the same printing images, however after conversion into black & white. On the left side, there is shown a detailed representation of the ink jet printing layer made according to the invention before the lamination.
  • the structure is a monolithic block excellently resisting to delamination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Ink Jet (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
US12/740,523 2007-10-31 2008-10-29 Method for the production of a polycarbonate laminate Abandoned US20100301595A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007052947.5 2007-10-31
DE102007052947A DE102007052947A1 (de) 2007-10-31 2007-10-31 Verfahren zur Herstellung eines Polycarbonat-Schichtverbundes
PCT/DE2008/001751 WO2009056110A1 (de) 2007-10-31 2008-10-29 Verfahren zur herstellung eines polycarbonat-schichtverbundes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/001751 A-371-Of-International WO2009056110A1 (de) 2007-10-31 2008-10-29 Verfahren zur herstellung eines polycarbonat-schichtverbundes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/959,356 Continuation US10377116B2 (en) 2007-10-31 2015-12-04 Method for the production of a polycarbonate laminate

Publications (1)

Publication Number Publication Date
US20100301595A1 true US20100301595A1 (en) 2010-12-02

Family

ID=40377629

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/740,523 Abandoned US20100301595A1 (en) 2007-10-31 2008-10-29 Method for the production of a polycarbonate laminate
US14/959,356 Active US10377116B2 (en) 2007-10-31 2015-12-04 Method for the production of a polycarbonate laminate

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/959,356 Active US10377116B2 (en) 2007-10-31 2015-12-04 Method for the production of a polycarbonate laminate

Country Status (16)

Country Link
US (2) US20100301595A1 (de)
EP (1) EP2205686B1 (de)
JP (2) JP5943248B2 (de)
KR (1) KR101583095B1 (de)
CN (1) CN101842448B (de)
AT (1) ATE502091T1 (de)
BR (1) BRPI0818838B1 (de)
CA (1) CA2703722C (de)
DE (2) DE102007052947A1 (de)
ES (1) ES2360657T3 (de)
MY (1) MY150557A (de)
PL (1) PL2205686T3 (de)
PT (1) PT2205686E (de)
RU (1) RU2497858C2 (de)
TW (1) TWI553064B (de)
WO (1) WO2009056110A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130115386A1 (en) * 2011-11-04 2013-05-09 Cmc Magnetics Corporation Multi-functional label sticker
KR20150109349A (ko) * 2013-01-17 2015-10-01 바이엘 머티리얼사이언스 아게 보안 및/또는 중요 문서용 데이터 시트
US20160129679A1 (en) * 2007-10-31 2016-05-12 Bundesdruckerei Gmbh Method for the production of a polycarbonate laminate

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010000559A1 (de) 2010-02-25 2011-08-25 Bundesdruckerei GmbH, 10969 Verfahren zur Verifikation von Sicherheits- oder Wertdokumenten mit einem Anthrachinon-Farbstoff
DE102010025044B4 (de) 2010-06-22 2016-01-07 Bundesdruckerei Gmbh Verfahren und Vorrichtung zum Herstellen eines Sicherheitsdokuments mit farbigen Perforationen
DE102010041975A1 (de) 2010-10-05 2012-04-05 Bundesdruckerei Gmbh Verfahren zum Erfassen eines Wert- und/oder Sicherheitsdokuments
DE102010043652A1 (de) 2010-11-09 2012-05-10 Bundesdruckerei Gmbh Sicherheitsmerkmal, Verfahren zu dessen Herstellung und das Sicherheitsmerkmal enthaltendes Wert- und/oder Sicherheitsdokument
DE102011004787A1 (de) 2011-02-25 2012-08-30 Bundesdruckerei Gmbh Identifikationsvorrichtung und Identifikationsausweis
DE102012209665A1 (de) 2012-06-08 2013-12-12 Bundesdruckerei Gmbh System und Verfahren zum Individualisieren von Sicherheitsdokumenten
DE102013207998A1 (de) 2013-05-02 2014-11-06 Bundesdruckerei Gmbh Sicherheits- oder Wertprodukt mit elektrolumineszierendem Sicherheitselement und Verfahren zur Herstellung desselben
CN103333593B (zh) * 2013-05-30 2016-06-15 蚌埠市鸿安精密机械有限公司 一种耐油性双酚a型聚碳酸酯的粉末涂料及其制备方法
DE102013218754B4 (de) 2013-09-18 2019-05-09 Bundesdruckerei Gmbh Manipulationsabgesichertes Wert- oder Sicherheitsprodukt und Verfahren zum Verifizieren der Echtheit des manipulationsabgesicherten Wert- oder Sicherheitsproduktes
DE102013218755B4 (de) 2013-09-18 2020-10-29 Bundesdruckerei Gmbh Wert- oder Sicherheitsprodukt mit mindestens einer innenliegenden elektrischen Schaltung
DE102013221221A1 (de) 2013-10-18 2015-04-23 Bundesdruckerei Gmbh Verfahren zum Herstellen eines individualisierten Sicherheitsdokuments mit Vertiefungen
DE102013221324A1 (de) 2013-10-21 2015-04-23 Bundesdruckerei Gmbh Mit mindestens einem Druckmerkmal versehenes Druckprodukt, Verfahren zu dessen Herstellung und Transferfolie
DE102013221337A1 (de) 2013-10-21 2015-04-23 Bundesdruckerei Gmbh Verfahren zum Bilden mindestens einer dreidimensionalen Struktur auf mindestens einer Oberfläche eines Substrats
DE102015202252A1 (de) 2015-02-09 2016-08-11 Bundesdruckerei Gmbh Wert- oder Sicherheitsprodukt und Verfahren zu dessen Herstellung mit dezentraler Individualisierung
DE102015006334A1 (de) * 2015-05-19 2016-11-24 Ksg - Kappelmaier Service Gmbh Träger zum Aufbringen geheimhaltungsbedürftiger Daten und Datenträger mit aufgebrachten geheimhaltungsbedürftigen Daten
DE102016101491A1 (de) 2016-01-28 2017-08-03 Bundesdruckerei Gmbh Sicherheits- oder Wertprodukt mit retroreflektivem Sicherheitselement
DE102016212741A1 (de) 2016-07-13 2018-01-18 Bundesdruckerei Gmbh Verfahren zum Herstellen eines Wert- oder Sicherheitsproduktes
RU2640521C1 (ru) * 2016-09-29 2018-01-09 Акционерное общество "ГОЗНАК" Красочная композиция, многослойный поликарбонатный композит и способ его изготовления
DE102017202267B4 (de) * 2017-02-13 2023-06-15 Bundesdruckerei Gmbh Verfahren zum Herstellen eines Sicherheitsmerkmals in einem Datenträger und ein Datenträger mit einem solchen Sicherheitsmerkmal
DE102017004055B4 (de) * 2017-04-26 2019-05-16 Mühlbauer Gmbh & Co. Kg Sicherheitseinlage mit einem UV-Auftrag für ein Ausweisdokument und Verfahren zur Herstellung einer Sicherheitseinlage mit einem UV-Auftrag für ein Ausweisdokument
DE102017004039B4 (de) 2017-04-26 2019-06-06 Mühlbauer Gmbh & Co. Kg Sicherheitseinlage für ein Ausweisdokument und Verfahren zur Herstellung einer Sicherheitseinlage für ein Ausweisdokument
DE102018207251A1 (de) * 2018-05-09 2019-11-14 Bundesdruckerei Gmbh Verfahren zum Herstellen eines Sicherheitselements mit zwei Sicherheitsmerkmalen und Verwendung des Verfahrens
DE102019113431B4 (de) * 2018-06-28 2024-08-22 Bundesdruckerei Gmbh Verfahren und Vorrichtung zur Kennzeichnung einer Datenseite, insbesondere für ein Wert- und/oder Sicherheitsdokument
DE102018222669A1 (de) 2018-12-20 2020-06-25 Bundesdruckerei Gmbh Verfahren zum Herstellen eines Wert- oder Sicherheitsdokuments oder eines Wert- oder Sicherheitsdokumentenrohlings und Wert- oder Sicherheitsdokument
DE102019129491A1 (de) 2019-10-31 2021-05-06 Bundesdruckerei Gmbh Prüfung eines Sicherheitsdokuments auf Basis von Tröpfchenmorphologien
EP3922473A1 (de) 2020-06-12 2021-12-15 Bundesdruckerei GmbH Verfahren zur herstellung eines gedruckten lichtbildes auf einem datenträger für ein sicherheits- oder wertdokument
DE102020133826A1 (de) 2020-12-16 2022-06-23 Bundesdruckerei Gmbh Verfahren zur Herstellung eines gedruckten Bildes auf einem Datenträger für ein Sicherheits- oder Wertdokument
DE102020115635A1 (de) 2020-06-12 2021-12-16 Bundesdruckerei Gmbh Verfahren zur Herstellung eines gedruckten Bildes auf einem Datenträger für ein Sicherheits- oder Wertdokument
DE102020211950B4 (de) 2020-09-23 2024-06-27 Bundesdruckerei Gmbh Dokumentkörper mit Stirnseitenkennung
DE102023101175A1 (de) 2023-01-18 2024-07-18 Bundesdruckerei Gmbh Polymerschichtverbund für Sicherheits- und Wertdokumente, Herstellungsverfahren, Zubereitung und Verwendung

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2970131A (en) * 1961-01-31 polycarbonate process
US2991273A (en) * 1956-07-07 1961-07-04 Bayer Ag Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates
US2999846A (en) * 1956-11-30 1961-09-12 Schnell Hermann High molecular weight thermoplastic aromatic sulfoxy polycarbonates
US2999835A (en) * 1959-01-02 1961-09-12 Gen Electric Resinous mixture comprising organo-polysiloxane and polymer of a carbonate of a dihydric phenol, and products containing same
US3028365A (en) * 1953-10-16 1962-04-03 Bayer Ag Thermoplastic aromatic polycarbonates and their manufacture
US3062781A (en) * 1958-07-02 1962-11-06 Bayer Ag Process for the production of polycarbonates
US3148172A (en) * 1956-07-19 1964-09-08 Gen Electric Polycarbonates of dihydroxyaryl ethers
US3271367A (en) * 1955-03-26 1966-09-06 Bayer Ag Thermoplastic polycarbonates of dihydroxydiarylene sulfones and their preparation
US3275601A (en) * 1956-01-04 1966-09-27 Bayer Ag Manufacture of polycarbonates using tertiary amines, quaternary amines and salts thereof as catalysts
US4456667A (en) * 1981-07-30 1984-06-26 Agfa-Gavaert Aktiengesellschaft Tamperproof document and a process for producing the same
US5648414A (en) * 1994-06-20 1997-07-15 Bayer Aktiengesellschaft Screen printing ink containing polycarbonate binder
US6060426A (en) * 1998-06-30 2000-05-09 Ncr Corporation Thermal paper with security features
US6066594A (en) * 1998-09-18 2000-05-23 Polaroid Corporation Identification document
US20030211296A1 (en) * 2002-05-10 2003-11-13 Robert Jones Identification card printed with jet inks and systems and methods of making same
US20040191521A1 (en) * 2003-03-31 2004-09-30 Exatec Llc Ink for a polycarbonate substrate
US20040224103A1 (en) * 2001-03-05 2004-11-11 Fargo Electronics, Inc. Identification cards, protective coatings, films, and methods for forming the same
US20040266910A1 (en) * 2003-06-30 2004-12-30 Teikoku Printing Inks Mfg. Co., Ltd. Printing ink, and decorated sheet obtained using the same
US20050242194A1 (en) * 2004-03-11 2005-11-03 Jones Robert L Tamper evident adhesive and identification document including same
US20050247794A1 (en) * 2004-03-26 2005-11-10 Jones Robert L Identification document having intrusion resistance
US20080106002A1 (en) * 2006-11-06 2008-05-08 Josef Feldman Laminated identification document
US20080296887A1 (en) * 2002-10-29 2008-12-04 Emil Baggenstos Identification Card and Method for the Production Thereof
US20100291392A1 (en) * 2007-10-31 2010-11-18 Bundesdruckerei Gmbh Method for producing a polycarbonate layered composite
US20100310812A1 (en) * 2007-10-31 2010-12-09 Bundesdruckerei Gmbh Method for producing a polycarbonate layered composite

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE297605C (de)
GB1122003A (en) 1964-10-07 1968-07-31 Gen Electric Improvements in aromatic polycarbonates
NL152889B (nl) 1967-03-10 1977-04-15 Gen Electric Werkwijze ter bereiding van een lineair polycarbonaatcopolymeer, alsmede orienteerbare textielvezel van dit copolymeer.
DE1983570U (de) * 1967-07-08 1968-04-18 Garthe Kg Paul Verschluss fuer lade- und lueftungseinrichtungen an gedeckten gueterwagen.
DE2063052A1 (de) 1970-12-22 1972-07-13 Bayer Verseifungsbeständige Polycarbonate
DE2063050C3 (de) 1970-12-22 1983-12-15 Bayer Ag, 5090 Leverkusen Verseifungsbeständige Polycarbonate, Verfahren zu deren Herstellung und deren Verwendung
DE2211956A1 (de) 1972-03-11 1973-10-25 Bayer Ag Verfahren zur herstellung verseifungsstabiler blockcopolycarbonate
NL8105580A (nl) * 1981-12-11 1983-07-01 Enschede & Zonen Grafisch Kaart die is gevormd als een laminaat van kunststoffolien en werkwijze voor het lamineren van een dergelijke kaart.
DE3832396A1 (de) 1988-08-12 1990-02-15 Bayer Ag Dihydroxydiphenylcycloalkane, ihre herstellung und ihre verwendung zur herstellung von hochmolekularen polycarbonaten
DD297605A5 (de) * 1988-08-12 1992-01-16 Bayer Aktiengesellschaft,De Verbundfolien mit polycarbonaten
DE3939864A1 (de) 1989-12-01 1991-06-06 Gao Ges Automation Org Mehrschichtige ausweiskarte mit langer lebensdauer
DE4422106A1 (de) 1994-06-24 1996-01-04 Link Wilhelm Kg Vorrichtung zum Befestigen einer Lehne an einem Stuhl
DE4424106A1 (de) * 1994-07-08 1996-01-11 Bayer Ag Schichtstoffe
DE19832570C2 (de) * 1998-07-20 2002-03-28 Mcgavigan John Ltd Hochtemperaturbeständige flexible Druckfarbe und deren Verwendung
DE10159373A1 (de) * 2001-12-04 2003-06-12 Bayer Ag Mehrschichtiges Erzeugnis
DE10312610A1 (de) * 2003-03-21 2004-09-30 Bayer Ag Verfahren zum Hinterspritzen von dekorierten Folien
JP2004315765A (ja) * 2003-04-21 2004-11-11 Idemitsu Kosan Co Ltd 印刷インキ
US7732041B2 (en) * 2004-08-02 2010-06-08 Exatec Llc Decorative ink for automotive plastic glazing
DE102004046522A1 (de) 2004-09-23 2006-03-30 Wipak Walsrode Gmbh & Co. Kg Polycarbonat-Mehrschichtfolie
DE202005002122U1 (de) 2005-02-09 2005-04-21 Francotyp-Postalia Ag & Co. Kg Tinte für den Tintenstrahldruck
RU2286367C1 (ru) * 2005-09-29 2006-10-27 Институт элементоорганических соединений им. А.Н. Несмеянова РАН Полимерная лакокрасочная композиция
JP2007125730A (ja) * 2005-11-01 2007-05-24 Think Laboratory Co Ltd グラビア製版ロール及びその製造方法
US20080085415A1 (en) * 2006-10-04 2008-04-10 Chengtao Li Decorated plastic glazing assembly via a film insert molding process
DE102007059747A1 (de) * 2007-12-07 2009-06-10 Bundesdruckerei Gmbh Polymerschichtverbund für ein Sicherheits- und/oder Wertdokument
DE102007059746A1 (de) * 2007-12-07 2009-06-10 Bundesdruckerei Gmbh Verfahren zur Herstellung eines Sicherheits- und/oder Wertdokumentes mit personalisierten Informationen
DE102008012426A1 (de) * 2007-10-31 2009-05-07 Bundesdruckerei Gmbh Sicherung von Dokumenten
DE102007052947A1 (de) * 2007-10-31 2009-05-07 Bayer Materialscience Ag Verfahren zur Herstellung eines Polycarbonat-Schichtverbundes
US20130214524A1 (en) * 2007-12-07 2013-08-22 Bayer Material Science Ag Method for producing a security and/or valuable document with personalized information
US20150191037A1 (en) * 2007-12-07 2015-07-09 Bundesdruckerei Gmbh Method for producing a security and/or valuable document with personalized information
DE102008023499A1 (de) * 2008-05-14 2009-11-19 Bayer Materialscience Ag Druckfarbe oder Drucklack, damit beschichteter Schichtstoff und Verfahren zur Herstellung eines Schichtstoffs
EP2700510B1 (de) * 2012-08-23 2015-09-16 Bayer MaterialScience AG Polycarbonatbasierte Sicherheits- und/oder Wertdokumente mit Hologramm im Kartenkörper

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2970131A (en) * 1961-01-31 polycarbonate process
US3028365A (en) * 1953-10-16 1962-04-03 Bayer Ag Thermoplastic aromatic polycarbonates and their manufacture
US3271367A (en) * 1955-03-26 1966-09-06 Bayer Ag Thermoplastic polycarbonates of dihydroxydiarylene sulfones and their preparation
US3275601A (en) * 1956-01-04 1966-09-27 Bayer Ag Manufacture of polycarbonates using tertiary amines, quaternary amines and salts thereof as catalysts
US2991273A (en) * 1956-07-07 1961-07-04 Bayer Ag Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates
US3148172A (en) * 1956-07-19 1964-09-08 Gen Electric Polycarbonates of dihydroxyaryl ethers
US2999846A (en) * 1956-11-30 1961-09-12 Schnell Hermann High molecular weight thermoplastic aromatic sulfoxy polycarbonates
US3062781A (en) * 1958-07-02 1962-11-06 Bayer Ag Process for the production of polycarbonates
US2999835A (en) * 1959-01-02 1961-09-12 Gen Electric Resinous mixture comprising organo-polysiloxane and polymer of a carbonate of a dihydric phenol, and products containing same
US4456667A (en) * 1981-07-30 1984-06-26 Agfa-Gavaert Aktiengesellschaft Tamperproof document and a process for producing the same
US5648414A (en) * 1994-06-20 1997-07-15 Bayer Aktiengesellschaft Screen printing ink containing polycarbonate binder
US6060426A (en) * 1998-06-30 2000-05-09 Ncr Corporation Thermal paper with security features
US6066594A (en) * 1998-09-18 2000-05-23 Polaroid Corporation Identification document
US20040224103A1 (en) * 2001-03-05 2004-11-11 Fargo Electronics, Inc. Identification cards, protective coatings, films, and methods for forming the same
US20030211296A1 (en) * 2002-05-10 2003-11-13 Robert Jones Identification card printed with jet inks and systems and methods of making same
US20080296887A1 (en) * 2002-10-29 2008-12-04 Emil Baggenstos Identification Card and Method for the Production Thereof
US20040191521A1 (en) * 2003-03-31 2004-09-30 Exatec Llc Ink for a polycarbonate substrate
US6958189B2 (en) * 2003-03-31 2005-10-25 Exatec, Llc Ink for a polycarbonate substrate
US20040266910A1 (en) * 2003-06-30 2004-12-30 Teikoku Printing Inks Mfg. Co., Ltd. Printing ink, and decorated sheet obtained using the same
US20050242194A1 (en) * 2004-03-11 2005-11-03 Jones Robert L Tamper evident adhesive and identification document including same
US20050247794A1 (en) * 2004-03-26 2005-11-10 Jones Robert L Identification document having intrusion resistance
US20080106002A1 (en) * 2006-11-06 2008-05-08 Josef Feldman Laminated identification document
US20100291392A1 (en) * 2007-10-31 2010-11-18 Bundesdruckerei Gmbh Method for producing a polycarbonate layered composite
US20100310812A1 (en) * 2007-10-31 2010-12-09 Bundesdruckerei Gmbh Method for producing a polycarbonate layered composite
US8636862B2 (en) * 2007-10-31 2014-01-28 Bundesdruckerei Gmbh Method for producing a polycarbonate layered composite

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160129679A1 (en) * 2007-10-31 2016-05-12 Bundesdruckerei Gmbh Method for the production of a polycarbonate laminate
US10377116B2 (en) * 2007-10-31 2019-08-13 Bundesdruckerei Gmbh Method for the production of a polycarbonate laminate
US20130115386A1 (en) * 2011-11-04 2013-05-09 Cmc Magnetics Corporation Multi-functional label sticker
KR20150109349A (ko) * 2013-01-17 2015-10-01 바이엘 머티리얼사이언스 아게 보안 및/또는 중요 문서용 데이터 시트
US9827806B2 (en) * 2013-01-17 2017-11-28 Bundesdruckerei Gmbh Data sheet for a security and/or value document
KR102147557B1 (ko) * 2013-01-17 2020-08-25 코베스트로 도이칠란드 아게 보안 및/또는 중요 문서용 데이터 시트

Also Published As

Publication number Publication date
KR101583095B1 (ko) 2016-01-07
ES2360657T3 (es) 2011-06-08
PT2205686E (pt) 2011-04-19
RU2010121974A (ru) 2011-12-10
TW200940663A (en) 2009-10-01
PL2205686T3 (pl) 2011-10-31
WO2009056110A1 (de) 2009-05-07
JP5943248B2 (ja) 2016-07-05
CN101842448A (zh) 2010-09-22
TWI553064B (zh) 2016-10-11
BRPI0818838B1 (pt) 2020-11-10
BRPI0818838A2 (pt) 2015-04-22
CN101842448B (zh) 2014-08-27
EP2205686A1 (de) 2010-07-14
DE502008002911D1 (de) 2011-04-28
CA2703722C (en) 2015-05-05
RU2497858C2 (ru) 2013-11-10
DE102007052947A1 (de) 2009-05-07
JP2011503249A (ja) 2011-01-27
KR20100093027A (ko) 2010-08-24
US20160129679A1 (en) 2016-05-12
MY150557A (en) 2014-01-30
JP2014224259A (ja) 2014-12-04
JP6098895B2 (ja) 2017-03-22
US10377116B2 (en) 2019-08-13
CA2703722A1 (en) 2009-05-07
EP2205686B1 (de) 2011-03-16
ATE502091T1 (de) 2011-04-15

Similar Documents

Publication Publication Date Title
US10377116B2 (en) Method for the production of a polycarbonate laminate
US20100304093A1 (en) Method for producing a security and/or valuable document with personalised information
US20100260985A1 (en) Polymer layer composite for a security and/or valuable document
US10391807B2 (en) Polymer laminate for a security and/or valuable document and method for the production thereof
US8478080B2 (en) Securing of documents by means of digital watermark information
JP5411148B2 (ja) 複数層の個人特定情報および/または個別化情報を含むポリマー層複合体の製造方法
US8636862B2 (en) Method for producing a polycarbonate layered composite
US10723109B2 (en) Method for producing a polycarbonate layered composite
US9827806B2 (en) Data sheet for a security and/or value document
US10150324B2 (en) Method for producing a security and/or valuable document with personalized information
US20130214524A1 (en) Method for producing a security and/or valuable document with personalized information
CN105440783B (zh) 用于制备安全文件和/或价值文件的电致发光安全元件的覆盖层的制剂

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAYER MATERIAL SCIENCE AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUTH, OLIVER;MATHEA, ARTHUR;PFLUGHOEFFT, MALTE;AND OTHERS;SIGNING DATES FROM 20100313 TO 20100426;REEL/FRAME:024310/0956

Owner name: BUNDESDRUCKEREI GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUTH, OLIVER;MATHEA, ARTHUR;PFLUGHOEFFT, MALTE;AND OTHERS;SIGNING DATES FROM 20100313 TO 20100426;REEL/FRAME:024310/0956

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION