US20100251746A1 - Flow-down type ice making machine - Google Patents

Flow-down type ice making machine Download PDF

Info

Publication number
US20100251746A1
US20100251746A1 US12/734,709 US73470908A US2010251746A1 US 20100251746 A1 US20100251746 A1 US 20100251746A1 US 73470908 A US73470908 A US 73470908A US 2010251746 A1 US2010251746 A1 US 2010251746A1
Authority
US
United States
Prior art keywords
ice making
water
making water
ice
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/734,709
Other languages
English (en)
Inventor
Hiroki Yamaguchi
Yuji Wakatsuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to HOSHIZAKI DENKI KABUSHIKI KAISHA reassignment HOSHIZAKI DENKI KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WAKATSUKI, YUJI, YAMAGUCHI, HIROKI
Publication of US20100251746A1 publication Critical patent/US20100251746A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/14Water supply

Definitions

  • the present invention relates to a flow-down type ice making machine, and more particularly, to a flow-down type ice making machine provided with water spray guides that allow ice making water supplied from an ice making water supply means to flow down uniformly to an ice making unit.
  • a flow-down type ice making machine which is provided with an ice making unit formed of a pair of ice making plates and produces ice by cooling an ice making surface of each ice making plate by a refrigerant supplied to an evaporation tube disposed between both the ice making plates.
  • the schematic configuration of such a flow-down type ice making machine is briefly described as follows: a plurality of partition members are disposed on the ice making surfaces of the ice making unit and ice making regions are defined each of which longitudinally extends between adjacent partition members.
  • An ice making water supply tube is disposed above the ice making unit, and is designed to supply ice making water, stored in an ice making water tank and sucked up by a circulation pump, to each ice making region through the ice making water supply tube.
  • a refrigerant is made to be circulatively supplied from a refrigeration system to the evaporation tube to cool the ice making unit and also the ice making water is made to flow down to the ice making surfaces to form ice blocks in the shape of half moon on the ice making surfaces.
  • the ice making water supply tube has a plurality of water spray holes opened on a lower face thereof, and is designed to spray ice making water through the water spray holes.
  • Patent Document 1 discloses a flow-down type ice making machine provided with water spray guides to flow down the ice making water uniformly to the ice making surfaces between the ice making water supply tube and the ice making unit. That is, as illustrated in FIG. 10 , water spray guides 10 are disposed near below the ice making water supply tube 12 , and each has a guide hole 14 provided at the lower center thereof, into which the upper end of an ice making unit 16 is inserted.
  • each water spray guide 10 is provided with a slope 18 inclined downwardly from the upper end towards the ice making unit 16 , and is designed to guide ice making water supplied from the ice making water supply tube 12 to ice making surfaces 20 of the ice making unit 16 through the slopes 18 . That is, by guiding the ice making water uniformly to the ice making surfaces 20 with the water spray guides 10 , generation of deformed ice is suppressed appropriately.
  • Patent Document 1 Japanese Patent Publication No. 2863078
  • the ice making water circulatively supplied during ice making operation is gradually cooled by exchanging heat with the ice making plates 22 , and when reaching close to below freezing point (freezing temperature), ice blocks C begin to form on the ice making surfaces 20 .
  • freezing temperature freezing point
  • ice blocks C begin to form on the ice making surfaces 20 .
  • ice crystals cotton ice R
  • cores of ice may be generated in the ice making water at a predetermined timing.
  • the ice making water containing the cotton ice R sometimes may be deposited on the water spray guide 10 to block the guide hole 14 .
  • the ice making water sometimes may scatter in the backside of the ice making plates 22 and areas other than the ice making unit 16 , and ice blocks C may be formed in regions not originally planned, such as between the ice making plates 22 , 22 , causing the ice making unit 16 and other members to be damaged.
  • the present invention is proposed to solve them suitably, and it is an object of the present invention to provide a flow-down type ice making machine capable of preventing a vigorous escape of ice making water from water spray guides even when cotton ice is generated by sequentially discharging the ice making water over a predetermined water level in the water spray guides.
  • a flow-down type ice making machine includes:
  • an ice making unit having an evaporator windingly disposed therein; an ice making water supply means disposed above the ice making unit and supplying ice making water; and a water spray guide disposed between the ice making unit and the ice making water supply means and allowing the ice making water supplied from the ice making water supply means to flow down through a guide hole uniformly to an ice making surface of the ice making unit,
  • the water spray guide is provided with the guide hole at a lower end of a reception area opening above towards the ice making water supply means and receiving the ice making water, and
  • the reception area is provided with a water discharger discharging the ice making water stored therein at a level above the guide hole.
  • the flow-down type ice making machine of the present invention it is possible to prevent generation of deformed ice and also prevent freezing in an unintended region, and thus generation of troubles can be suppressed.
  • FIG. 1 is a front view illustrating an overall configuration of a flow-down type ice making machine according to an embodiment.
  • FIG. 2 are longitudinal sectional side views illustrating enlarged water spray guides, where FIG. 2( a ) illustrates a state of ice making water flowing down during normal ice making operation, and FIG. 2( b ) illustrates a state of the ice making water flowing down during generation of cotton ice.
  • FIG. 3 is an enlarged longitudinal sectional view illustrating a major part of an ice making water supply tube.
  • FIG. 4 is a perspective view illustrating water spray guides according to the embodiment.
  • FIG. 5 is a longitudinal sectional side view illustrating an enlarged ice guiding member.
  • FIG. 6 is a schematic plan view illustrating the ice guiding member.
  • FIG. 7 is an enlarged longitudinal sectional view illustrating a major part of an ice making water tank.
  • FIG. 8 is a perspective view illustrating water spray guides according to another embodiment.
  • FIG. 9 is a perspective view illustrating water spray guides according to yet another embodiment.
  • FIG. 10 is an enlarged longitudinal sectional view illustrating water spray guides of a conventional flow-down type ice making machine.
  • FIG. 1 is a schematic view illustrating an overall configuration of a flow-down type ice making machine 30 according to an embodiment.
  • the flow-down type ice making machine 30 has an ice making unit 16 configured with a pair of ice making plates 22 , 22 disposed facing each other at the front and the rear, and an evaporation tube (evaporator) 32 led out of a refrigeration system, not shown, is windingly disposed between both of the ice making plates 22 , 22 .
  • a plurality of partition members 48 are provided at the right and the left of an ice making surface 20 of each ice making plate 22 at predetermined intervals, and ice making regions 50 are defined between adjacent partition members 48 , 48 .
  • An ice making water supply tube (ice making water supply means) 12 supplying the ice making water to the ice making surfaces 20 of the ice making unit 16 is disposed above the ice making unit 16 .
  • One end of the ice making water supply tube 12 is provided with a connecting portion 36 in fluid communication with a coupling tube 34 led out of a circulation pump P.
  • the ice making water supply tube 12 is provided with a plurality of water spray holes 38 , apart from each other longitudinally at a predetermined interval, and is configured to spray the ice making water downwardly from the water spray holes 38 (refer to FIG. 2 ).
  • the water spray holes 38 are provided in two rows at the front and the rear in correspondence with the ice making plates 22 , 22 at the front and the rear.
  • the ice making water flows fast inside the ice making water supply tube 12 , in particular, in the vicinity of the connecting portion 36 near the circulation pump P, and the water spray holes 38 near the connecting portion 36 are prone to be at a negative pressure. Accordingly, air sometimes may be mixed in the ice making water supplied from the water spray holes 38 near the connecting portion 36 to generate turbid ice or deformed ice. Enlargement of the diameter of the ice making water supply tube 12 as a countermeasure for this allows the flow rate of the ice making water to be lowered, enabling to prevent the water spray holes 38 from being at a negative pressure.
  • a depression 40 recessed in a direction of the inner diameter is formed on the upper face of the ice making water supply tube 12 between the connecting portion 36 and the first (rightmost end) water spray hole 38 , to make the inner diameter dimension of the ice making water supply tube 12 in the region smaller.
  • a deicing water supply tube (deicing water supply means) 42 that supplies water at normal temperature (deicing water) to between the ice making plates 22 , 22 during deicing operation is fixed to the lower face of the ice making water supply tube 12 .
  • the deicing water supply tube 42 has a plurality of splay holes 44 opened in the lower face thereof, and is designed to supply the deicing water through the splay holes 44 .
  • water spray guides 46 are provided respectively in a state of being placed on the upper end of the ice making unit 16 in correspondence with each of the ice making regions 50 .
  • the water spray guides 46 are formed, as illustrated in FIG. 4 , by bending stainless or the like as in the illustrated shape and are coupled to each other transversely.
  • Each water spray guide 46 has a guide hole 52 opened at the center between the front and the rear and, by inserting the upper end of the ice making unit 16 into the guide hole 52 , is mounted in a state of surrounding the upper ends of the ice making plates 22 , 22 at the front and the rear.
  • Each water spray guide 46 is provided with a pair of reception areas 54 , 54 that are open above to receive the ice making water from the ice making water supply tube 12 .
  • Each reception area 54 is configured with slopes 56 extending at the front and the rear and side faces 57 , 57 rising from the edges at the right and the left of the slopes 56 , and a space capable of receiving a predetermined amount of the ice making water is secured therein.
  • the slope 56 is inclined downwardly towards each ice making surface 20 and also has a lower end thereof facing the guide hole 52 .
  • the slope 56 is also provided with central inclinations 59 , 59 that are downwardly inclined to the right and the left from the center as a ridge line, and is designed to divide the ice making water supplied from the ice making water supply tube 12 into the right and the left and feed it uniformly to the ice making surface 20 .
  • the outer surface of the slope 56 is also inclined towards the ice making surface 20 and has a lower end thereof facing the ice making surface 20 . That is, the outer surface of the slope 56 also functions as a guide face that feeds the ice making water, overflowing from the reception area 54 , to the ice making surface 20 .
  • a water discharger 58 in a rectangular shape notched by a required width is formed on the upper edge of the slope 56 , and a gap is formed between the ice making water supply tube 12 and the water spray guide 46 by the water dischargers 58 (refer to FIG. 1 ). That is, by providing the water dischargers 58 at a level above the guide holes 52 , it becomes possible to discharge (overflow) the ice making water over a predetermined water level in the reception area 54 to the outside. As illustrated in FIG. 2( b ), the ice making water leaked to the outside through the water dischargers 58 flows down along the outer surfaces of the slopes 56 , and is guided to the ice making surfaces 20 .
  • the water discharger 58 is formed outside of the lower portion of the water spray hole 38 of the ice making water supply tube 12 , and is not designed to directly discharge from the water dischargers 58 the ice making water supplied through the water spray hole 38 .
  • an ice guiding member 60 that receives ice blocks C falling down from the ice making unit 16 and guides them to an ice storage, not shown, is provided below the ice making unit 16 .
  • the ice guiding member 60 is configured with a plurality of guide pieces 62 provided consecutively at the right and the left via coupling portions 64 , 64 .
  • the ice guiding member 60 is provided slightly apart from the lower end of the ice making plate 22 , and the lower portion of each guide piece 62 faces the inside of an ice making water tank 66 through an opening 67 thereof.
  • the guide piece 62 is a member of a thin plate angle shape provided with two oblique sides 68 , 68 extending at the front and the rear, and is designed to guide the ice blocks C fallen down from the ice making unit 16 forward or backward.
  • the guide pieces 62 are disposed apart from each other at a predetermined interval via the coupling portions 64 , and water conducting portions 70 open above and below are defined between the adjacent guide pieces 62 , 62 .
  • the ice making water failed to freeze in the ice making unit 16 (unfrozen water) is then dropped down through the water conducting portions 70 onto the ice making water tank 66 below.
  • the transverse width dimension of the water conducting portions 70 is set to be smaller than the dimensions of the ice blocks C and is configured not to let the ice blocks C fall down from the water conducting portions 70 .
  • the oblique sides 68 , 68 of the guide pieces 62 are, as illustrated in FIG. 6 , formed so that the center of the guide piece 62 is made to be thicker. That is, by making open ends 68 a, 68 a of the oblique sides 68 , 68 thinner, the unfrozen water is designed to be dropped down into the ice making water tank 66 before reaching the open ends 68 a, 68 a by way of the oblique sides 68 , 68 . As illustrated in FIG. 5 , the oblique sides 68 , 68 of the guide piece 62 also project slightly towards the outside of walls 66 a, 66 b on the front and the rear of the ice making water tank 66 .
  • the ice making water tank 66 has a tank unit 72 , capable of storing the ice making water therein, defined by walls 66 a, 66 b, 66 c, 66 d at the front, rear, left and right, and is designed to enable the ice making water used for approximately one ice making operation to be stored in the tank unit 72 .
  • a bottom portion 74 of the tank unit 72 is inclined downwardly towards one side (the right side in FIG. 1 ), and an outlet port 78 that is connected to an inlet tube 76 of the circulation pump P is perforated at the deepest portion thereof
  • an overflow member 80 is disposed that discharges an excess of the ice making water in the tank unit 72 .
  • the overflow member 80 is, as illustrated in FIG. 7 , configured with a cylindrical main body 82 provided upright on the bottom portion 74 of the tank unit 72 and an partition wall 84 provided upright approximately vertically to divide the inside of the main body 82 into two parts at the right and the left.
  • an inlet port 86 opening in the bottom portion 74 is perforated, and a space at the left in the main body 82 (hereinafter, referred to as a first space 88 ) is in fluid communication with the tank unit 72 through the inlet port 86 .
  • a discharge port 92 is perforated that is in fluid communication with the outside of the ice making water tank 66 .
  • a fluid communication potion 94 is defined between the upper portion of the main body 82 and the partition wall 84 .
  • the tank unit 72 is in fluid communication with the outside of the ice making water tank 66 through the inlet port 86 , the first space 88 , the fluid communication potion 94 , the second space 90 , and the discharge port 92 . Accordingly, the excess water in the tank unit 72 is discharged by giving priority to the ice making water at the bottom portion 74 .
  • the height dimension of the partition wall 84 determines an amount of ice making water stored in the ice making water tank 66 , and is set to be a height capable of securing an amount of ice making water stored to be used for approximately one ice making operation.
  • a refrigerant is circulatively supplied from a refrigeration system, not shown, to the evaporation tube 32 and also the circulation pump P is actuated to feed the ice making water in the ice making water tank 66 to the ice making water supply tube 12 .
  • the pressure of the ice making water is high for being close to the circulation pump P.
  • the dimension of the inner diameter is smaller by providing the depression 40 on the ice making water supply tube 12 , a turbulent flow is generated when the ice making water passes through the depression 40 as illustrated in FIG. 3 . Because of this, the water spray hole 38 near the depression 40 does not become at a negative pressure, making it possible to supply the ice making water smoothly through the water spray hole 38 .
  • the ice making water fed to the ice making water supply tube 12 is spray supplied downwardly through the water spray holes 38 .
  • the ice making water supplied through the water spray holes 38 is received by the reception areas 54 of the water spray guides 46 and flows downwardly along the slopes 56 .
  • the ice making water is guided uniformly to the ice making surfaces 20 through the guide holes 52 and the ice making water flows down across the entire ice making surfaces 20 .
  • the ice making water flowing down the ice making surfaces 20 exchanges heat with the refrigerant supplied to the evaporation tube 32 to be gradually cooled.
  • the unfrozen water drops from the ice making unit 16 down onto the ice guiding member 60 below and is collected into the tank unit 72 of the ice making water tank 66 through the water conducting portions 70 .
  • the ice making water partially falls down on the oblique sides 68 of the guide pieces 62 and is guided downward by way of the oblique sides 68 .
  • the open ends 68 a of the oblique sides 68 are formed thin, the ice making water reaching the region is fallen down from the oblique sides 68 to be collected into the ice making water tank 66 . That is, the ice making water does not scatter to other than the ice making water tank 66 by way of the oblique sides 68 .
  • the vertical dimension can be approximately half compared to that of a guide piece having a slope inclined only in one direction. Accordingly, the ice guiding member 60 can be made vertically smaller and thus the flow-down type ice making machine 30 can be downsized. Moreover, as long as the guide pieces 62 are in an angle shape, the center can be disposed extremely close to the lower ends of the ice making plates 22 and thus the distance of the oblique sides 68 , 68 apart from the ice making plates 22 , 22 does not become enlarged. Therefore, the spatter of the ice making water dropping down on the oblique sides 68 , 68 is small, enabling to prevent it from being splashed to other than the ice making water tank 66 .
  • the ice making water collected into the ice making water tank 66 is circulatively supplied again to the ice making unit 16 by the circulation pump P.
  • the ice making water is gradually cooled due to the circulative supply, and as it reaches near below the freezing point, it begins to be frozen on the ice making surfaces 20 .
  • the cotton ice R results in being accumulated in the reception areas 54 of the water spray guides 46 . Then, as illustrated in FIG.
  • a detection means detects the completion of making ice and the ice making operation is shifted to the deicing operation.
  • the tank unit 72 is in a state where the ice making water with condensed impurities, such as silica, (ice making residue water T) remains slightly in the vicinity of the bottom portion 74 .
  • a hot gas is circulatively supplied from the refrigeration system, not shown, to the evaporation tube 32 and also the deicing water at normal temperature is supplied from the deicing water supply tube 42 to between the ice making plates 22 , 22 to heat the ice making plates 22 , 22 .
  • the deicing water drops down towards the ice guiding member 60 and is collected into the ice making water tank 66 through the water conducting portions 70 . Also in this case, since the oblique sides 68 of the guide pieces 62 are formed thinner in the open ends 68 a, the deicing water falls down before reaching the open ends 68 a of the oblique sides 68 to be collected in the ice making water tank 66 .
  • the ice blocks C on the ice making surfaces 20 begin to melt, and finally the freeze with the ice making surfaces 20 is dissolved.
  • the ice blocks C then slide down on the ice making surfaces 20 and falls down towards the ice guiding member 60 .
  • the ice blocks C falling on the oblique sides 68 of the guide piece 62 slide on the oblique sides 68 and are released to an ice storage, not shown.
  • the open ends 68 a, 68 a of the oblique sides 68 , 68 of the guide pieces 62 extend outwardly from the walls 66 a, 66 b at the front and the rear of the ice making water tank 66 .
  • the voids t between the open ends 68 a and the ice making water tank 66 is oriented laterally or downwardly, making it possible to prevent the ice blocks C sliding on the oblique sides 68 from being caught in the voids t.
  • the collected deicing water causes gradual increase of water in the tank unit 72 .
  • the ice making residue water T retained in the vicinity of the bottom portion 74 of the tank unit 72 preferentially flows into the first space 88 through the inlet port 86 of the overflow member 80 .
  • the ice making water (ice making residue water T) flows into the first space 88 through the inlet port 86 and thus the water level in the first space 88 rises gradually.
  • the overflow member 80 enables the ice making residue water T containing a lot of impurities to be preferentially discharged, and generation of scales in the ice making water tank 66 can be suitably suppressed.
  • the overflow member 80 since the overflow member 80 according to this embodiment has the main body 82 and the partition wall 84 formed integrally with the ice making water tank 66 , it can prevent generation of malfunctions due to defects in mounting and the like, enabling the assembly costs to be inexpensive compared to the case of a separate configuration.
  • the ice making water does not vigorously escape from the water spray guides 46 as it does conventionally. Accordingly, it is possible to prevent the ice making water from being supplied intensively to the ice making surfaces 20 partially to form deformed ice. In addition, it is possible to prevent the ice making water from scattering to other than the ice making unit 16 from the water spray guides 46 to generate unexpected troubles.
  • the ice making water in the water spray guides 46 flows down between the ice making plates 22 , 22 to freeze a contact area between the evaporation tube 32 and the ice making plates 22 , 22 , causing a weld between them to be peeled off.
  • water dischargers 58 provided in the water spray guides 46 are configured by notching the upper edge of the slopes 56 in a rectangular shape in this embodiment, the water dischargers can employ another configuration as long as the ice making water in the reception areas 54 can be overflowed.
  • water dischargers 96 notched from the upper edge of the slopes 56 in an inverted triangle shape may be employed, or as illustrated in FIG. 9 , water dischargers may also be configured with a plurality of through holes 98 provided on the slopes 56 .
  • ice making unit 16 is configured by disposing the pair of ice making plates 22 , 22 facing each other in this embodiment, a flow-down type ice making machine may also be provided with an ice making unit 16 formed of, for example, one piece of an ice making plate 22 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)
US12/734,709 2007-11-21 2008-07-30 Flow-down type ice making machine Abandoned US20100251746A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007-301965 2007-11-21
JP2007301965A JP4994198B2 (ja) 2007-11-21 2007-11-21 流下式製氷機
PCT/JP2008/063631 WO2009066489A1 (ja) 2007-11-21 2008-07-30 流下式製氷機

Publications (1)

Publication Number Publication Date
US20100251746A1 true US20100251746A1 (en) 2010-10-07

Family

ID=40667320

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/734,709 Abandoned US20100251746A1 (en) 2007-11-21 2008-07-30 Flow-down type ice making machine

Country Status (4)

Country Link
US (1) US20100251746A1 (zh)
JP (1) JP4994198B2 (zh)
CN (1) CN101868679B (zh)
WO (1) WO2009066489A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150135758A1 (en) * 2013-11-19 2015-05-21 General Electric Company Refrigerator appliance and an ice making assembly for a refrigerator appliance
CN104995466A (zh) * 2013-01-29 2015-10-21 真实制造有限公司 用于感测制冰装置中的冰厚度的装置和方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043771A (ja) * 2008-08-11 2010-02-25 Hoshizaki Electric Co Ltd 流下式製氷機の散水パイプ
JP5755465B2 (ja) * 2011-02-28 2015-07-29 ホシザキ電機株式会社 自動製氷機
KR101335953B1 (ko) * 2013-09-04 2013-12-04 대영이앤비 주식회사 제빙기
KR101502860B1 (ko) * 2013-09-04 2015-03-17 대영이앤비 주식회사 제빙기
KR101943597B1 (ko) 2018-02-02 2019-04-17 대영이앤비(주) 제빙기용 증발기
JP7373186B2 (ja) * 2019-09-18 2023-11-02 アクア株式会社 製氷装置及び製氷装置を備えた冷蔵庫
JP7458054B2 (ja) * 2019-12-09 2024-03-29 アクア株式会社 製氷機及び製氷機を備えた冷蔵庫

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3546896A (en) * 1968-10-01 1970-12-15 Turbo Refrigerating Co Freezer plates and water distribution for icemaking machine
US4986088A (en) * 1989-01-19 1991-01-22 Scotsman Group, Inc. Evaporator device for ice-making apparatus
US5237837A (en) * 1990-08-06 1993-08-24 Hoshizaki Denki Kabushiki Kaisha Ice making machine
US6349557B1 (en) * 2000-12-26 2002-02-26 Hoshizaki America, Inc. Ice machine spray tube
US20100115981A1 (en) * 2007-05-22 2010-05-13 Hoshizaki Denki Kabushiki Kaisha Sprinkle guide of water trickle ice-making machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046348B2 (ja) * 1983-10-18 1985-10-15 星崎電機株式会社 製氷機用散水器
JPS645728Y2 (zh) * 1984-10-02 1989-02-13
JP2863078B2 (ja) * 1994-01-27 1999-03-03 ホシザキ電機株式会社 製氷機用散水器
CN1212498C (zh) * 2002-08-01 2005-07-27 星崎电机株式会社 自动制冰机
JP2004325064A (ja) * 2003-04-11 2004-11-18 Hoshizaki Electric Co Ltd 製氷機の製氷機構
CN2663884Y (zh) * 2003-09-12 2004-12-15 江苏白雪电器股份有限公司 制冰机的制冰、储冰容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3546896A (en) * 1968-10-01 1970-12-15 Turbo Refrigerating Co Freezer plates and water distribution for icemaking machine
US4986088A (en) * 1989-01-19 1991-01-22 Scotsman Group, Inc. Evaporator device for ice-making apparatus
US5237837A (en) * 1990-08-06 1993-08-24 Hoshizaki Denki Kabushiki Kaisha Ice making machine
US6349557B1 (en) * 2000-12-26 2002-02-26 Hoshizaki America, Inc. Ice machine spray tube
US20100115981A1 (en) * 2007-05-22 2010-05-13 Hoshizaki Denki Kabushiki Kaisha Sprinkle guide of water trickle ice-making machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104995466A (zh) * 2013-01-29 2015-10-21 真实制造有限公司 用于感测制冰装置中的冰厚度的装置和方法
US20150135758A1 (en) * 2013-11-19 2015-05-21 General Electric Company Refrigerator appliance and an ice making assembly for a refrigerator appliance

Also Published As

Publication number Publication date
WO2009066489A1 (ja) 2009-05-28
CN101868679A (zh) 2010-10-20
JP2009127911A (ja) 2009-06-11
CN101868679B (zh) 2012-02-08
JP4994198B2 (ja) 2012-08-08

Similar Documents

Publication Publication Date Title
US20100251746A1 (en) Flow-down type ice making machine
JP5052277B2 (ja) 自動製氷機の製氷水タンク
JP4934501B2 (ja) 流下式製氷機の散水案内器
JPS6082765A (ja) 製氷機
JPH11142033A (ja) 流下式製氷機
JP2011038706A (ja) 流下式製氷機の製氷ユニット
JP2013064518A (ja) 製氷機の貯留タンク
EP1209428A1 (en) Automatic ice making machine
JP5448491B2 (ja) 流下式製氷機の散水装置
JP7155026B2 (ja) 製氷装置
JP5448889B2 (ja) 流下式製氷機の散水ガイド
JP2003042619A (ja) 製氷装置
JP5275719B2 (ja) 製氷機の散水器
JP2002257442A (ja) 自動製氷機
JP4278228B2 (ja) 自動製氷機
JP2011231943A (ja) 流下式製氷機の製氷ユニット
JP5755465B2 (ja) 自動製氷機
JP2016065645A (ja) 製氷機
JP2008180467A (ja) 噴射式自動製氷機
JP3443508B2 (ja) 氷蓄熱装置
JP7174547B2 (ja) 流下式製氷機
KR102136802B1 (ko) 제빙기
JP2011075232A (ja) 流下式製氷機の散水装置
JP2010190525A (ja) 流下式製氷機の製氷水散水器
JP5138944B2 (ja) 噴射式自動製氷機

Legal Events

Date Code Title Description
AS Assignment

Owner name: HOSHIZAKI DENKI KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMAGUCHI, HIROKI;WAKATSUKI, YUJI;REEL/FRAME:024436/0009

Effective date: 20100215

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION