US20070034862A1 - Electronic device comprising an organic semiconductor, an organic semiconductor, and an intermediate buffer layer made of a polymer that is cationically polymerizable and contains no photoacid - Google Patents
Electronic device comprising an organic semiconductor, an organic semiconductor, and an intermediate buffer layer made of a polymer that is cationically polymerizable and contains no photoacid Download PDFInfo
- Publication number
- US20070034862A1 US20070034862A1 US10/570,640 US57064004A US2007034862A1 US 20070034862 A1 US20070034862 A1 US 20070034862A1 US 57064004 A US57064004 A US 57064004A US 2007034862 A1 US2007034862 A1 US 2007034862A1
- Authority
- US
- United States
- Prior art keywords
- electronic device
- organic
- buffer layer
- atoms
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920000642 polymer Polymers 0.000 title claims description 65
- 239000004065 semiconductor Substances 0.000 title claims description 55
- 239000010410 layer Substances 0.000 claims description 138
- 238000004132 cross linking Methods 0.000 claims description 53
- 239000000463 material Substances 0.000 claims description 42
- -1 electrode Substances 0.000 claims description 24
- 125000003118 aryl group Chemical group 0.000 claims description 17
- 125000004432 carbon atom Chemical group C* 0.000 claims description 17
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 17
- 125000002091 cationic group Chemical group 0.000 claims description 16
- 150000001875 compounds Chemical class 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000011229 interlayer Substances 0.000 claims description 9
- 230000005855 radiation Effects 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 8
- 239000012298 atmosphere Substances 0.000 claims description 8
- 229920001940 conductive polymer Polymers 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229920000767 polyaniline Polymers 0.000 claims description 7
- 125000003342 alkenyl group Chemical group 0.000 claims description 6
- 238000012656 cationic ring opening polymerization Methods 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 6
- 125000006165 cyclic alkyl group Chemical group 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- 125000005259 triarylamine group Chemical group 0.000 claims description 6
- 150000007513 acids Chemical class 0.000 claims description 5
- 125000003545 alkoxy group Chemical group 0.000 claims description 5
- 229920000547 conjugated polymer Polymers 0.000 claims description 5
- 230000005669 field effect Effects 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 5
- 229920000123 polythiophene Polymers 0.000 claims description 5
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- 238000010538 cationic polymerization reaction Methods 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 4
- 125000000623 heterocyclic group Chemical group 0.000 claims description 4
- 125000002950 monocyclic group Chemical group 0.000 claims description 4
- 125000003566 oxetanyl group Chemical group 0.000 claims description 4
- 125000003367 polycyclic group Chemical group 0.000 claims description 4
- 238000007669 thermal treatment Methods 0.000 claims description 4
- 125000005309 thioalkoxy group Chemical group 0.000 claims description 4
- 239000010405 anode material Substances 0.000 claims description 2
- 238000010791 quenching Methods 0.000 claims description 2
- 229930192474 thiophene Natural products 0.000 claims description 2
- 238000007142 ring opening reaction Methods 0.000 claims 1
- 238000010276 construction Methods 0.000 abstract description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 27
- 230000015572 biosynthetic process Effects 0.000 description 27
- 238000003786 synthesis reaction Methods 0.000 description 25
- 239000000178 monomer Substances 0.000 description 24
- 239000000243 solution Substances 0.000 description 23
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 18
- 238000000034 method Methods 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 12
- 239000002904 solvent Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 125000005842 heteroatom Chemical group 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 239000011368 organic material Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 7
- 238000010992 reflux Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 150000003384 small molecules Chemical class 0.000 description 6
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 5
- 229910052776 Thorium Inorganic materials 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000012044 organic layer Substances 0.000 description 5
- 239000012074 organic phase Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 239000000412 dendrimer Substances 0.000 description 4
- 229920000736 dendritic polymer Polymers 0.000 description 4
- 239000002346 layers by function Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 125000006413 ring segment Chemical group 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 150000001336 alkenes Chemical group 0.000 description 3
- 239000002800 charge carrier Substances 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 238000004770 highest occupied molecular orbital Methods 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- COIOYMYWGDAQPM-UHFFFAOYSA-N tri(ortho-tolyl)phosphine Substances CC1=CC=CC=C1P(C=1C(=CC=CC=1)C)C1=CC=CC=C1C COIOYMYWGDAQPM-UHFFFAOYSA-N 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- HDJPXKVSBWKOLR-UHFFFAOYSA-N (3,4-dipentoxyphenyl)boronic acid Chemical compound CCCCCOC1=CC=C(B(O)O)C=C1OCCCCC HDJPXKVSBWKOLR-UHFFFAOYSA-N 0.000 description 2
- ICPSWZFVWAPUKF-UHFFFAOYSA-N 1,1'-spirobi[fluorene] Chemical compound C1=CC=C2C=C3C4(C=5C(C6=CC=CC=C6C=5)=CC=C4)C=CC=C3C2=C1 ICPSWZFVWAPUKF-UHFFFAOYSA-N 0.000 description 2
- ORQHBYAQYTUUJN-UHFFFAOYSA-N 1,2-dipentoxybenzene hydrobromide Chemical compound Br.CCCCCOC1=CC=CC=C1OCCCCC ORQHBYAQYTUUJN-UHFFFAOYSA-N 0.000 description 2
- JEVIWOHJFUIYMO-UHFFFAOYSA-N 11-(4-bromophenoxy)undecan-1-ol Chemical compound OCCCCCCCCCCCOC1=CC=C(Br)C=C1 JEVIWOHJFUIYMO-UHFFFAOYSA-N 0.000 description 2
- XDJIQWRWOJKPCS-UHFFFAOYSA-N 3-ethyl-3-(iodomethyl)oxetane Chemical compound CCC1(CI)COC1 XDJIQWRWOJKPCS-UHFFFAOYSA-N 0.000 description 2
- FDRNXKXKFNHNCA-UHFFFAOYSA-N 4-(4-anilinophenyl)-n-phenylaniline Chemical compound C=1C=C(C=2C=CC(NC=3C=CC=CC=3)=CC=2)C=CC=1NC1=CC=CC=C1 FDRNXKXKFNHNCA-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 150000004292 cyclic ethers Chemical class 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- DCZNSJVFOQPSRV-UHFFFAOYSA-N n,n-diphenyl-4-[4-(n-phenylanilino)phenyl]aniline Chemical class C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 DCZNSJVFOQPSRV-UHFFFAOYSA-N 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 239000011877 solvent mixture Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 1
- CZLMRJZAHXYRIX-UHFFFAOYSA-N 1,3-dioxepane Chemical compound C1CCOCOC1 CZLMRJZAHXYRIX-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- IRTCJFCIQKNFPP-UHFFFAOYSA-N 2-methyl-1,4-dioxane Chemical compound CC1COCCO1 IRTCJFCIQKNFPP-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- XYVMOLOUBJBNBF-UHFFFAOYSA-N 3h-1,3-oxazol-2-one Chemical class OC1=NC=CO1 XYVMOLOUBJBNBF-UHFFFAOYSA-N 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910010084 LiAlH4 Inorganic materials 0.000 description 1
- 229910005855 NiOx Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910002842 PtOx Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- IOEJYZSZYUROLN-UHFFFAOYSA-M Sodium diethyldithiocarbamate Chemical compound [Na+].CCN(CC)C([S-])=S IOEJYZSZYUROLN-UHFFFAOYSA-M 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910001515 alkali metal fluoride Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910001618 alkaline earth metal fluoride Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000005264 aryl amine group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000011097 chromatography purification Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000011243 crosslinked material Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical group 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910001449 indium ion Inorganic materials 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002596 lactones Chemical group 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 1
- APCOQCLKCAFINS-UHFFFAOYSA-N n,n-bis(4-bromophenyl)-4-butan-2-ylaniline Chemical compound C1=CC(C(C)CC)=CC=C1N(C=1C=CC(Br)=CC=1)C1=CC=C(Br)C=C1 APCOQCLKCAFINS-UHFFFAOYSA-N 0.000 description 1
- QBODEGFCUGKATP-UHFFFAOYSA-N n-(4-bromophenyl)-4-[4-(n-(4-bromophenyl)-4-tert-butylanilino)phenyl]-n-(4-tert-butylphenyl)aniline Chemical compound C1=CC(C(C)(C)C)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(Br)=CC=1)C=1C=CC(=CC=1)C(C)(C)C)C1=CC=C(Br)C=C1 QBODEGFCUGKATP-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 150000002918 oxazolines Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920001798 poly[2-(acrylamido)-2-methyl-1-propanesulfonic acid] polymer Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- MNWBNISUBARLIT-UHFFFAOYSA-N sodium cyanide Chemical compound [Na+].N#[C-] MNWBNISUBARLIT-UHFFFAOYSA-N 0.000 description 1
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 150000003463 sulfur Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000003115 supporting electrolyte Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/20—Changing the shape of the active layer in the devices, e.g. patterning
- H10K71/211—Changing the shape of the active layer in the devices, e.g. patterning by selective transformation of an existing layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/115—Polyfluorene; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/151—Copolymers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/103—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/269—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31511—Of epoxy ether
Definitions
- Organic-based charge transport materials generally triarylamine-based hole transporters
- OLEDs or PLEDs organic or polymeric light emitting diodes
- O-SCs organic solar cells
- O-FETs organic field effect transistors
- O-ICs organic circuit elements
- O-lasers organic laser diodes
- organic devices can be produced from solution which entails less technical and cost outlay than vacuum processes, as are generally carried out for low molecular weight compounds.
- colored electroluminescent devices can be produced comparatively simply by processing the materials by surface coating from solution (for example by spin coating, doctor blade technique, etc.).
- the structuring, i.e. driving of individual image points, is usually carried out here in the “leads”, i.e. for example in the electrodes. This may, for example, be done using shadow masks in the manner of a template.
- the structuring of organic circuits and partially organic solar cell panels or laser arrays can be carried out similarly.
- Shadow masks furthermore cannot be readily employed when, for example, full-color displays or organic circuits with different circuit elements are to be produced.
- full-color displays the three primary colors (red, green and, blue) in individual pixels (image points) must be applied next to one another with a high resolution. Similar considerations apply to electronic circuits with different circuit elements. While the individual image points can be produced by evaporating the individual colors using shadow masks in the case of low molecular weight evaporatable molecules (with the associated difficulties already mentioned above), this is not possible for polymeric materials and materials processed from solution, and the structuring can no longer be carried out merely by structuring the electrodes.
- structurable materials are described which are suitable for use in structured devices such as OLEDs, PLEDs, organic lasers, organic circuit elements or organic solar cells. These are organic, in particular electroluminescent materials, which contain at least one oxetane group capable of crosslinking, the crosslinking reaction of which can be deliberately initiated and controlled.
- electroluminescent materials which contain at least one oxetane group capable of crosslinking, the crosslinking reaction of which can be deliberately initiated and controlled.
- Macromol. Rapid Commun. 1999, 20, 225 describes N,N,N′,N′-tetraphenylbenzidines functionalized with oxetane groups, which can be crosslinked in a photoinduced way.
- These compound classes are used as structurable hole conductors directly on the anode of the organic electronic device.
- At least one photoinitiator is added to the materials for crosslinking.
- an acid is generated which initiates a crosslinking reaction by cationic ring-opening polymerization.
- a pattern of regions with crosslinked material and regions with uncrosslinked material can thus be obtained by structured exposure.
- the regions of uncrosslinked material can then be removed by suitable operations (for example washing with suitable solvents). This leads to the desired structuring.
- suitable operations for example washing with suitable solvents.
- Exposure, as employed for the structuring is a standard process in modern electronics and can, for example, be carried out with lasers or by surface exposure using a suitable photomask.
- the mask does not involve the risk of deposition here, since in this case only radiation and no material flux has to be delimited by the mask.
- Chem Phys Chem 2000, 207 such a crosslinked triarylamine layer is introduced as an interlayer between a conductive doped polymer and an organic luminescent semiconductor. A higher efficiency is obtained in this case.
- a photoacid is used for the crosslinking. This appears to be necessary for complete crosslinking of the triarylamine layer.
- the photoacid or its reaction products remain as contamination in the electronic device after the crosslinking. It is generally acknowledged that both organic and inorganic impurities can perturb the operation of organic electronic devices. For this reason, it would be desirable to be able to reduce the use of photoacids as much as possible.
- EP 0637899 proposes electroluminescent arrangements having one or more layers in which at least one layer is obtained by thermal or radiation-induced crosslinking, which furthermore contain at least one emitter layer and at least one charge transport unit per layer.
- the crosslinking may take place radically, ionically, cationically or via a photoinduced ring closure reaction.
- An advantage mentioned is that a plurality of layers can thereby be formed on one another, or that the layers can also be structured in a radiation-induced way.
- no teaching is given as to which of the various crosslinking reactions can be used to produce a suitable device, and how the crosslinking reaction can best be carried out.
- radically crosslinkable units or groups capable of photocycloaddition are preferred, that various types of auxiliaries, for example initiators, may be contained and that the film is preferably crosslinked by means of actinic radiation and not thermally.
- auxiliaries for example initiators
- Suitable device configurations are also not described. It is therefore unclear how many layers the device preferably comprises, and how thick they should be, which material classes are preferably used and which of them should be crosslinked. It is therefore also not apparent to the person skilled in the art how the described invention can be successfully implemented in practice.
- an interlayer of a conductive doped polymer is often introduced as a charge injection layer between the electrode (in particular the anode) and the function material ( Appl. Phys. Lett. 1997, 70, 2067-2069).
- a conductive doped polymer may also be used directly as the anode (or even as the cathode, depending on the application).
- the most common of these polymers are polythiophene derivatives (for example poly(ethylenedioxythiophene), PEDOT) and polyaniline (PANI), which are generally doped with polystyrene sulfonic acid or other polymer-bound Brönstedt acids and thus brought into a conductive state.
- Protons or other cationic impurities have a negative effect in particular when the functional semiconductor layer applied onto this layer is cationically crosslinkable and, as described above, is intended to be structured.
- the functional layer is already partially or fully crosslinked by the presence of protons or other cationic impurities, without providing the opportunity to control the crosslinking, for example by actinic radiation.
- the advantage of the controlled structurability is therefore lost.
- Cationically crosslinkable materials thus in principle do provide the possibility of structuring and therefore an alternative to printing techniques. However, technical implementation of these materials is not to date possible since the problem of uncontrolled crosslinking on a doped charge injection layer is not yet resolved.
- the electronic properties of the devices can be significantly improved when at least one buffer layer, which is cationically crosslinkable, is introduced between the doped interlayer and the functional organic semiconductor layer.
- Particularly good properties are obtained with a buffer layer whose cationic crosslinking is induced thermally, i.e. by a temperature rise to from 50 to 250° C., preferably from 80 to 200° C., and to which no photoacid is added.
- Another advantage of this buffer layer is that the uncontrollable crosslinking of a cationically crosslinkable semiconductor can be avoided by using the buffer layer, which for the first time permits controlled structuring of the semiconductor.
- Yet another advantage of crosslinking the buffer layer is that the glass transition temperature of the material and therefore the stability of the layer are increased by the crosslinking.
- the invention therefore relates to electronic devices containing at least one layer of a conductive doped polymer and at least one layer of an organic semiconductor, characterized in that at least one conducting or semiconducting organic buffer layer which is cationically polymerizable, and to which less than 0.5% of a photoacid is added, is introduced between these layers.
- a photoacid is a compound which releases a protic acid by a photochemical reaction when exposed to actinic radiation.
- photoacids are 4-(thio-phenoxyphenyl)-diphenylsulfonium hexafluoroantimonate or ⁇ 4-[(2-hydroxytetradecyl)-oxyl]-phenyl ⁇ -phenyliodonium hexafluoroantimonate and the like, as described for example in EP 1308781.
- the photoacid may be added for the crosslinking reaction, in which case a proportion of from approximately 0.5 to approximately 3% by weight is preferably selected according to the prior art.
- Electronic devices in the context of this invention are organic or polymeric light emitting diodes (OLEDs, PLEDs, for example EP 0676461, WO 98/27136), organic solar cells (O-SCs, for example WO 98/48433, WO 94/05045), organic field effect transistors (O-FETs, for example U.S. Pat. No. 5,705,826, U.S. Pat. No. 5,596,208, WO 00/42668), field quench elements (FQDs, for example US 2004/017148), organic circuit elements (O-ICs, for example WO 95/31833, WO 99/10939), organic optical amplifiers or organic laser diodes (O-lasers, WO 98/03566).
- OLEDs organic or polymeric light emitting diodes
- PLEDs for example EP 0676461, WO 98/27136
- O-SCs organic solar cells
- O-SCs for example WO 98/48433, WO 94/0504
- Organic in the context of this invention means that at least one layer of an organic conductive doped polymer, at least one conducting or semiconducting organic buffer layer and at least one layer containing at least one organic semiconductor are present; further organic layers (for example electrodes) may also be present in addition to these. Moreover, layers which are not based on organic materials may also be present, for example inorganic interlayers or electrodes.
- the electronic device is constructed from a substrate (conventionally glass or a plastic sheet), an electrode, an intermediate layer of a conductive doped polymer, a crosslinkable buffer layer according to the invention, an organic semiconductor and a back electrode.
- This device is accordingly (depending on the application) structured, contacted and hermetically sealed, since the lifetime of such devices is drastically shortened in the presence of water and/or air. It may also be preferred to use a conductive doped polymer as the electrode material for one or both electrodes and not to introduce an interlayer of conductive doped polymer.
- the structure also contains a further electrode (gate) which is separated from the organic semiconductor by an insulator layer generally having a high dielectric constant. It may furthermore be expedient to introduce yet other layers into the device.
- the electrodes are selected so that their potential coincides as well as possible with the potential of the adjacent organic layer, in order to ensure maximally efficient electron or hole injection. If the cathode is to inject electrons, as is the case for example in OLEDs/PLEDs or n-type conducting O-FETs, or receive holes, as is the case for example in O-SCs, then metals with a low work function, metal alloys or multilayered structures comprising different metals, for example alkaline-earth metals, alkali metals, main group metals or lanthanides (for example Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.) are preferred for the cathode.
- metals with a low work function metal alloys or multilayered structures comprising different metals, for example alkaline-earth metals, alkali metals, main group metals or lanthanides (for example Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.) are preferred for
- the cathodes are conventionally between 10 and 10,000 nm, preferably between 20 and 1000 nm, thick. It may also be preferred to introduce a thin interlayer of a material having a high dielectric constant between a metal cathode and the organic semiconductor (or other functional organic layers which may optionally be present).
- Alkali metal or alkaline-earth metal fluorides may for example be suitable for this (for example LiF, Li 2 O, BaF 2 , MgO, NaF, etc.).
- the layer thickness of this dielectric layer is preferably between 1 and 10 nm.
- the anode preferably has a potential of more than 4.5 eV vs. vacuum.
- metals with a high redox potential are suitable for this, for example Ag, Pt or Au.
- Metal/metal oxide electrodes for example Al/Ni/NiO x , Al/Pt/PtO x
- the anode may also consist of a conductive organic material (for example a conductive doped polymer).
- At least one of the electrodes must be transparent in order to allow either irradiation of the organic material (O-SCs) or output of light (OLEDs/PLEDs, O-lasers, organic optical amplifiers).
- O-SCs organic material
- O-lasers organic optical amplifiers
- a preferred construction uses a transparent anode.
- Preferred anode materials here are conductive mixed metal oxides. Indium-tin oxide (ITO) or indium-zinc oxide (IZO) are particularly preferred.
- Conductive doped organic materials, in particular conductive doped polymers, are furthermore preferred.
- a similar construction also applies to inverted structures, in which the light is output from the cathode or incident on the cathode.
- the cathode then preferably consists of the materials described above, with the difference that the metal is very thin and therefore transparent.
- the layer thickness of the cathode is preferably less than 50 nm, particularly preferably less than 30 nm, and in particular less than 10 nm.
- a further transparent conductive material is applied thereon, for example indium-tin oxide (ITO), indium-zinc oxide (IZO) etc.
- Various organic doped conductive polymers may be suitable for the conductive doped polymer (either as an electrode or as an additional charge injection layer or “Planarization Layer”, in order to compensate for unevennesses of the electrode and thus minimize short circuits).
- the conductive doped polymer is applied onto the anode or functions directly as the anode.
- the potential of the layer is preferably from 4 to 6 eV vs. vacuum.
- the thickness of the layer is preferably between 10 and 500 nm, particularly preferably between 20 and 250 nm.
- the layers are generally thicker in order to ensure a good outward electrical connection and a low capacitive impedance.
- Derivatives of polythiophene are particularly preferably used (particularly preferably poly(ethylenedioxythiophene), PEDOT) and polyaniline (PANI).
- the doping is generally carried out using acids or oxidizing agents.
- the doping is preferably carried out using polymer-bound Brönsted acids.
- polymer-bound sulfonic acids in particular poly(styrene sulfonic acid), poly(vinyl sulfonic acid) and PAMPSA (poly(2-acrylamido-2-methyl-propane sulfonic acid)) are particularly preferred for this.
- the conductive polymer is generally applied from an aqueous solution or dispersion and is insoluble in organic solvents. The subsequent layer can thereby be readily applied from organic solvents.
- Low molecular weight oligomeric, dendritic or polymeric semiconducting materials are in principle suitable for the organic semiconductor.
- An organic material in the context of this invention is intended to mean not only purely organic materials, but also metallorganic materials and metal coordination compounds with organic ligands.
- the oligomeric, dendritic or polymeric materials may be conjugated, non-conjugated or partially conjugated.
- Conjugated polymers in the context of this invention are polymers which contain primarily sp 2 -hybridized carbon atoms in the main chain, which may also be replaced by corresponding heteroatoms. In the simplest case, this means the alternate presence of double and single bonds in the main chain.
- conjugated polymer Primarily means that naturally occurring defects, which lead to conjugation interruptions, do not invalidate the term “conjugated polymer”.
- conjugated likewise applies in this application text when the main chain contains for example arylamine units and/or particular heterocycles (i.e. conjugation via N, O or S atoms) and/or metallorganic complexes (i.e. conjugation via the metal atom).
- Units such as, for example, simple alkene chains, (thio)ether bridges, ester, amide or imide linkages would however be unequivocally defined as non-conjugated segments.
- conjugated organic material is also intended to include ⁇ -conjugated polysilanes, -germylenes and analogues which carry organic side groups, and can therefore be applied from organic solvents, for example poly(phenylmethylsilane).
- Non-conjugated materials are materials in which no lengthy conjugated units occur in the main chain or in the dendrimer backbone.
- partially conjugated materials is intended to mean those materials which have lengthy conjugated sections in the main chain or in the dendrimer backbone, which are bridged by non-conjugated units, or which contain lengthy conjugated units in the side chain.
- conjugated polymers are poly-para-phenylenevinylene (PPV), polyfluorenes, polyspirobifluorenes or systems which are based in the broadest sense on poly-p-phenylene (PPP), and derivatives of the structures.
- PPP poly-para-phenylenevinylene
- PPP polyfluorenes
- PPP polyspirobifluorenes or systems which are based in the broadest sense on poly-p-phenylene (PPP), and derivatives of the structures.
- Materials with a high charge carrier mobility are primarily of interest for use in O-FETs. These are for example oligo- or poly(triarylamines), oligo- or poly(thiophenes) and copolymers which contain a large proportion of these units.
- the layer thickness of the organic semiconductor is preferably 10-500 nm, particularly preferably 20-250 nm, depending on the application.
- dendrimer is intended to mean a highly branched compound which is constructed from a multifunctional core to which branched monomers are bound in a regular structure, so that a tree-like structure is obtained. Both the core and the monomers may assume any branched structures which consist both of purely organic units and of organometallic compounds or coordination compounds.
- dendrimers are to be understood as described for example in M. Fischer, F. Vögtle, Angew. Chem., Int. Ed. 1999, 38, 885-905.
- crosslinkable organic layers have been developed (WO 02/10129). After the crosslinking reaction, these are insoluble and therefore can no longer be attacked by solvents during the application of further layers.
- Crosslinkable organic semiconductors also have advantages for the structuring of multicolored PLEDs. The use of crosslinkable organic semiconductors is thus furthermore preferred.
- Preferred crosslinking reactions are cationic polymerizations, based on electron-rich olefin derivatives, heteronuclear multiple bonds with heteroatoms or heterogroups or rings with heteroatoms (for example O, S, N, P, Si, etc.). Particularly preferred crosslinking reactions are cationic polymerizations based on rings with heteroatoms. Such crosslinking reactions are described in detail below for the buffer layer according to the invention.
- Semiconducting luminescent polymers which can be chemically crosslinked are generally disclosed in WO 96/20253.
- Oxetane-containing semiconducting polymers, as described in WO 02/10129, have proved particularly suitable. They can be crosslinked deliberately and in a controlled way by adding a photoacid and irradiation.
- Crosslinkable low molecular weight compounds may furthermore be suitable, for example cationically crosslinkable triarylamines (M. S. Bayer et al., Macromol. Rapid Commun. 1999, 20, 224-228; D. C. Müller et al., Chem Phys Chem 2000, 207-211). These descriptions are incorporated into the present invention by reference.
- the introduction of a buffer layer which is introduced between the conductive doped polymer and the organic semiconductor, and which carries the cationically crosslinkable units, is such that it can absorb low molecular weight cationic species and intrinsic cationic charge carriers which may diffuse out of the conductive doped polymer.
- the buffer layer may be both low molecular weight and oligomeric, dendritic or polymeric.
- the layer thickness is preferably in the range of 5-300 nm, particularly preferably in the range of 10-200 nm.
- the potential of the layer preferably lies between the potential of the conductive doped polymer and that of the organic semiconductor. This can be achieved by a suitable choice of the materials for the buffer layer and suitable substitution of the materials.
- Preferred materials for the buffer layer are derived from hole-conductive materials, such as those used as hole conductors in other applications.
- Cationically crosslinkable triarylamine-based, thiophene-based or triarylphosphine-based materials or combinations of these systems are particularly preferably preferred for this.
- Copolymers with other monomer units, for example fluorene, spirobifluorene, etc., with a high proportion of these hole-conductive units are also suitable. The potentials of these compounds can be adjusted by suitable substitution.
- electron-withdrawing substituents for example F, Cl, CN, etc.
- electron-repelling substituents for example alkoxy groups, amino groups, etc.
- the buffer layer according to the invention may comprise low molecular weight compounds which are crosslinked in the layer and thus rendered insoluble. Oligomeric, dendritic or polymeric soluble solutions, which are rendered insoluble by subsequent cationic crosslinking, may also be suitable. Mixtures of low molecular weight compounds and oligomeric, dendritic and/or polymeric compounds may furthermore be used.
- cationic species that can diffuse out of the conductive doped polymer are firstly protons which may originally come from the dopant being used (often polymer-bound sulfonic acids) but also ubiquitous water. Cationic species, for example metal ions, may also be present as (undesired) impurities in the conductive polymer.
- cationic species is the electrode on which the conductive polymer is applied.
- indium ions may emerge from an ITO electrode and diffuse into the active layers of the devices.
- Other low molecular weight cationic species that may possibly be present are monomeric and oligomeric constituents of the conductive polymer, which are converted into a cationic state by protonation or by other doping. It is furthermore possible for charge carriers introduced by oxidative doping to diffuse into the semiconductor layer.
- the cationically crosslinkable buffer layer can trap diffusing cationic species so that the crosslinking reaction is subsequently initiated; on the other hand, the buffer layer is simultaneously rendered insoluble by the crosslinking, so that the subsequent application of an organic semiconductor from conventional organic solvents presents no problems.
- the crosslinked buffer layer represents a further barrier against diffusion.
- Preferred cationically polymerizable groups of the buffer layer are the following functional groups:
- Non-aromatic cyclic systems in which one or more ring atoms are identically or differently O, S, N, P, Si, etc., are generally suitable for this.
- Cyclic systems having from 3 to 7 ring atoms, in which from 1 to 3 ring atoms are identically or differently O, S or N, are preferred.
- Examples of such systems are unsubstituted or substituted cyclic amines (for example aziridine, azeticine, tetrahydropyrrole, piperidine), cyclic ethers (for example oxiran, oxetane, tetrahydrofuran, pyran, dioxane), as well as the corresponding sulfur derivatives, cyclic acetals (for example 1,3-dioxolane, 1,3-dioxepane, trioxane), lactones, cyclic carbonates, but also cyclic structures which contain different heteroatoms in the cycle, for example oxazolines, dihydrooxazines or oxazolones. Cyclic siloxanes having from 4 to 8 ring atoms are furthermore preferred.
- low molecular weight, oligomeric or polymeric organic materials in which at least one H atom is replaced by a group of the formula (I), (II) or (III),
- the crosslinking of these units is preferably carried out by thermal treatment of the device at this stage. It is not necessary, and not even desirable, to add a photoacid for the crosslinking since this would introduce impurities into the device. Without wishing to be bound by a special theory, we suspect that the crosslinking of the buffer layer is initiated by the protons emerging from the conductive doped polymer.
- This crosslinking preferably takes place at a temperature of from 80 to 200° C. and for a duration of from 0.1 to 120 minutes, preferably from 1 to 60 minutes, particularly preferably from 1 to 10 minutes, in an inert atmosphere.
- This crosslinking particularly preferably takes place at a temperature of from 100 to 180° C. and for a duration of from 20 to 40 minutes in an inert atmosphere.
- auxiliaries which are not photoacids, but which can promote the crosslinking, to be added to the buffer layer.
- Salts in particular inorganic salts, for example tetrabutylammonium hexafluoroantimonate, which are added as a supporting electrolyte in order to improve the crosslinking, acids, in particular organic acids, for example acetic acid, or further addition of polystyrene sulfonic acid to the conductive polymer, or oxidizing substances, for example nitrylium or nitrosylium salts (NO + , NO 2 + ), may for example be suitable for this.
- auxiliaries can easily be washed out and therefore do not remain as contamination in the film.
- the auxiliaries have the advantage that the crosslinking can thereby be fully carried out more easily and that thicker buffer layers can thereby also be produced.
- this crosslinkable buffer layer which is introduced between the conductive doped polymer and the organic semiconductor, offers the following advantages:
- the phases were separated and the process was repeated once more with 40 ml of the dithiocarbamate solution.
- the phases were separated, the organic phase was washed with 3 ⁇ 150 ml of water and precipitated by adding it in two times the volume of methanol.
- the raw polymer was dissolved in chlorobenzene, filtered using celite and precipitated by adding two times the volume of methanol. 1.84 g (64% Th.) of the polymer P2 were obtained, which is soluble in chlorobenzene but insoluble in toluene, THF or chloroform.
- the LEDs were produced according to a general method which was adapted to the respective conditions (for example solution viscosity and optimal layer thickness of the functional layers in the device) in the particular case.
- the LEDs described below were respectively three-layer systems (three organic layers), i.e. substrate//ITO//PEDOT//buffer layer//polymer//cathode.
- PEDOT is a polythiophene derivative (Baytron P4083 from H. C. Stark, Goslar). Ba from Aldrich and Ag from Aldrich were used for the cathode in all cases.
- the way in which PLEDs can generally be produced is described in detail in WO 04/037887 and the literature cited therein.
- a cationically crosslinkable semiconductor was applied as a buffer layer on the PEDOT layer.
- the crosslinkable polymers P1 and P2 or the crosslinkable low molecular weight compound V1 were used as materials for the buffer layer.
- a solution (with a concentration of 4-25 mg/ml in for example toluene, chlorobenzene, xylene etc.) of the crosslinkable material was taken and dissolved by stirring at room temperature. Depending on the material, it may also be advantageous to stir for some time at 50-70° C. After the complete dissolving of the compound, it was filtered through a 5 ⁇ m filter.
- the buffer layer was then spin coated at variable speeds (400-6000 rpm) with a spin coater in an inert atmosphere.
- the layer thicknesses could thus be varied in a range of from approximately 20 to 300 nm.
- the crosslinking was subsequently carried out by heating the device to 180° C. for 30 minutes on a hotplate in an inert atmosphere.
- the organic semiconductor and the cathode were then applied onto the buffer layer, as described in WO 04/037887 and the literature cited therein.
- the structured LEDs were produced similarly as Example 4 up to and including the step of crosslinking the buffer layer.
- cationically crosslinkable semiconductors were used for the organic semiconductors. These were red, green and blue emitting conjugated polymers based on poly-spirobifluorene, which were functionalized with oxetane groups. These materials and their synthesis are already described in the literature ( Nature 2003, 421, 829).
- a solution (generally with a concentration of 4-25 mg/ml in for example toluene, chlorobenzene, xylene:cyclohexanone (4:1)) was taken and dissolved by stirring at room temperature. Depending on the compound, it may also be advantageous to stir for some time at 50-70° C.
- the film was then heat-treated in an inert atmosphere for 3 minutes at 130° C., subsequently treated with a 10 ⁇ 4 molar LiAlH 4 solution in THF and washed with THF.
- the non-crosslinked positions in the film were thereby washed off.
- This process was repeated with the other solutions of the crosslinkable organic semiconductors, and the three primary colors were thereby successively applied in a structured way.
- the evaporation coating of the electrodes and the contacting were then carried out as described above.
- the polymer exhibits a lifetime of approximately 500 h.
- An LED was also produced whose buffer layer was photochemically crosslinked by adding 0.5% by weight of ⁇ 4-[(2-hydroxytetradecyl)-oxyl]-phenyl ⁇ -phenyliodonium hexafluoroantimonate with exposure to UV radiation (3 s, 302 nm) and subsequent heating to 90° C. for 30 seconds. The buffer layer was then washed with THF and heated to 180° C. for 5 minutes. Under otherwise equal conditions, this LED had a lifetime of approximately 630 h.
- the measurement was repeated with polymer P2 as the buffer layer, as described in Example 6 under otherwise identical conditions.
- the polymer exhibits a lifetime of approximately 1500 h without addition of photoacid to the buffer layer, and approximately 600 h with addition of photoacid.
- the measurement was repeated with compound V1 as the buffer layer, as described in Example 6 under otherwise identical conditions.
- the polymer exhibits a lifetime of approximately 1350 h without addition of photoacid to the buffer layer, and approximately 550 h with addition of photoacid.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electroluminescent Light Sources (AREA)
- Thin Film Transistor (AREA)
- Formation Of Insulating Films (AREA)
- Junction Field-Effect Transistors (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003140711 DE10340711A1 (de) | 2003-09-04 | 2003-09-04 | Elektronische Vorrichtung enthaltend organische Halbleiter |
DE10340711.1 | 2003-09-04 | ||
PCT/EP2004/009902 WO2005024970A1 (de) | 2003-09-04 | 2004-09-04 | Elektronische vorrichtung enthaltend einen organischen halbleiter und dazwischen eine pufferschicht bestehend aus einem polymer welches kationisch polymerisierbar ist und keine photosäure enthält |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070034862A1 true US20070034862A1 (en) | 2007-02-15 |
Family
ID=34258390
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/570,640 Abandoned US20070034862A1 (en) | 2003-09-04 | 2004-09-04 | Electronic device comprising an organic semiconductor, an organic semiconductor, and an intermediate buffer layer made of a polymer that is cationically polymerizable and contains no photoacid |
US10/570,372 Expired - Fee Related US7901766B2 (en) | 2003-09-04 | 2004-09-04 | Electronic devices comprising an organic conductor and semiconductor as well as an intermediate buffer layer made of a crosslinked polymer |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/570,372 Expired - Fee Related US7901766B2 (en) | 2003-09-04 | 2004-09-04 | Electronic devices comprising an organic conductor and semiconductor as well as an intermediate buffer layer made of a crosslinked polymer |
Country Status (8)
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060251886A1 (en) * | 2003-09-04 | 2006-11-09 | Mueller David C | Electronic devices comprising an organic conductor and semiconductor as well as an intermediate buffer layer made of a crosslinked polymer |
US20090026448A1 (en) * | 2006-02-13 | 2009-01-29 | Merck Patent Gmbh | Electronic component, method for its production and its use |
US20090149627A1 (en) * | 2006-05-12 | 2009-06-11 | Junyou Pan | Indenofluorene polymer based organic semiconductor materials |
US20100181556A1 (en) * | 2008-11-18 | 2010-07-22 | Ying Wang | Organic electronic device with low-reflectance electrode |
US20110198575A1 (en) * | 2005-12-28 | 2011-08-18 | E. I. Du Pont De Nemours And Company | Compositions comprising novel compounds and electronic devices made with such compositions |
WO2014046539A1 (en) * | 2012-09-18 | 2014-03-27 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Electro-optical device stack |
US9502657B2 (en) | 2012-09-07 | 2016-11-22 | Pioneer Corporation | Organic electroluminescence device and manufacturing method thereof |
WO2017065983A1 (en) * | 2015-10-16 | 2017-04-20 | Dow Global Technologies Llc | Process for making an organic charge transporting film |
US9644112B1 (en) * | 2016-04-20 | 2017-05-09 | Eastman Kodak Company | Articles having electrically-conductive layer or pattern |
US10665804B2 (en) * | 2017-10-12 | 2020-05-26 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Organic light emitting diode and display device |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100738219B1 (ko) * | 2003-12-23 | 2007-07-12 | 삼성에스디아이 주식회사 | 유기 전계 발광 소자용 중간층 형성 물질 및 이를 이용한유기 전계 발광 소자 |
DE102004021567A1 (de) | 2004-05-03 | 2005-12-08 | Covion Organic Semiconductors Gmbh | Elektronische Vorrichtungen enthaltend organische Halbleiter |
GB2425654B (en) * | 2005-04-29 | 2010-03-17 | Seiko Epson Corp | A method of fabricating a heterojunction of organic semiconducting polymers |
KR100715548B1 (ko) * | 2005-07-29 | 2007-05-07 | 광 석 서 | 부분 치환된 고분자 도판트를 사용하여 합성된 전도성고분자 |
US7576356B2 (en) * | 2005-08-08 | 2009-08-18 | Osram Opto Semiconductors Gmbh | Solution processed crosslinkable hole injection and hole transport polymers for OLEDs |
US8440324B2 (en) | 2005-12-27 | 2013-05-14 | E I Du Pont De Nemours And Company | Compositions comprising novel copolymers and electronic devices made with such compositions |
US8138075B1 (en) | 2006-02-06 | 2012-03-20 | Eberlein Dietmar C | Systems and methods for the manufacture of flat panel devices |
JP4175397B2 (ja) * | 2006-06-28 | 2008-11-05 | セイコーエプソン株式会社 | 有機エレクトロルミネセンス装置の製造方法 |
US8632892B2 (en) | 2006-07-19 | 2014-01-21 | Hitachi Chemical Co., Ltd. | Organic electronic material, organic electronic device, and organic electroluminescent device |
WO2008099926A1 (ja) * | 2007-02-15 | 2008-08-21 | Mitsubishi Chemical Corporation | 有機電界発光素子及び有機デバイスの製造方法 |
JP5196928B2 (ja) * | 2007-09-18 | 2013-05-15 | キヤノン株式会社 | 有機発光素子及び表示装置 |
CN101868490B (zh) * | 2007-11-21 | 2014-06-04 | 默克专利股份有限公司 | 共轭共聚物 |
US20090236979A1 (en) * | 2008-03-24 | 2009-09-24 | Air Products And Chemicals, Inc. | Organic Electroluminescent Device and the Method of Making |
JP5540600B2 (ja) * | 2008-08-13 | 2014-07-02 | 三菱化学株式会社 | 電子デバイス、有機電界発光素子、有機el表示装置および有機el照明 |
JP5359255B2 (ja) * | 2008-12-19 | 2013-12-04 | コニカミノルタ株式会社 | 有機光電変換素子 |
JP5141600B2 (ja) * | 2009-03-09 | 2013-02-13 | 三菱化学株式会社 | 有機電界発光素子用組成物の製造方法 |
US20120074360A1 (en) * | 2009-06-01 | 2012-03-29 | Hitachi Chemical Company | Organic Electronic Material, Ink Composition Containing Same, and Organic Thin Film, Organic Electronic Element, Organic Electroluminescent Element, Lighting Device, and Display Device Formed Therewith |
EP4322238A3 (en) * | 2010-01-19 | 2024-05-15 | Sirigen II Limited | Novel reagents for directed biomarker signal amplification |
US8859171B2 (en) * | 2010-03-03 | 2014-10-14 | Xerox Corporation | Charge transport particles |
KR101181228B1 (ko) * | 2010-10-11 | 2012-09-10 | 포항공과대학교 산학협력단 | 유기 태양 전지 및 이의 제조 방법 |
KR101756657B1 (ko) * | 2010-11-03 | 2017-07-12 | 엘지디스플레이 주식회사 | 백색 유기 발광 소자 및 이를 이용한 표시 장치 |
JP5944120B2 (ja) * | 2011-07-21 | 2016-07-05 | コニカミノルタ株式会社 | 有機光電変換素子とその製造方法、およびそれを用いた有機太陽電池 |
EP2894942A4 (en) * | 2012-09-04 | 2015-10-07 | Mitsubishi Chem Corp | ORGANIC ELECTROLUMINESCENZING DEVICE AND METHOD OF MANUFACTURING THEREOF |
US10003024B2 (en) * | 2012-09-27 | 2018-06-19 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
US9312485B2 (en) * | 2012-12-13 | 2016-04-12 | Ei Du Pont De Nemours And Company | Process and materials for making contained layers and devices made with same |
KR102372211B1 (ko) * | 2014-03-27 | 2022-03-08 | 닛산 가가쿠 가부시키가이샤 | 전하 수송성 바니시 |
US20170117491A1 (en) * | 2014-04-09 | 2017-04-27 | Sumitomo Chemical Company, Limited | Light emitting device and composition used in the same |
KR102496777B1 (ko) * | 2015-02-25 | 2023-02-06 | 미쯔비시 케미컬 주식회사 | 중합체, 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 유기 el 표시 장치 및 유기 el 조명 |
KR102472751B1 (ko) | 2016-12-06 | 2022-11-30 | 메르크 파텐트 게엠베하 | 전자 디바이스의 제조 방법 |
JP7056644B2 (ja) * | 2017-03-24 | 2022-04-19 | 日産化学株式会社 | フッ素原子含有重合体及びその利用 |
JP2018203889A (ja) | 2017-06-06 | 2018-12-27 | 日立化成株式会社 | 硬化性重合体、重合液、導電性膜及び有機発光素子 |
CN110832658A (zh) * | 2017-07-04 | 2020-02-21 | 日立化成株式会社 | 有机电子材料及有机电子元件 |
KR102385225B1 (ko) | 2017-07-12 | 2022-04-11 | 삼성디스플레이 주식회사 | 유기막 형성용 조성물, 이를 이용한 표시 장치 및 표시 장치의 제조 방법 |
WO2020011701A1 (de) * | 2018-07-11 | 2020-01-16 | Merck Patent Gmbh | Formulierung enthaltend ein hochverzweigtes polymer, hochverzweigtes polymer sowie elektrooptische vorrichtung enthaltend dieses hochverzweigte polymer |
CN111048663B (zh) | 2018-10-12 | 2025-07-08 | 康宁股份有限公司 | 用于有机薄膜晶体管的可uv图案化的聚合物掺混物 |
CN118496480A (zh) | 2018-11-05 | 2024-08-16 | 康宁股份有限公司 | 用于有机薄膜晶体管的可uv图案化的聚合物掺混物 |
KR102806396B1 (ko) | 2018-12-05 | 2025-05-14 | 삼성디스플레이 주식회사 | 축합환 화합물, 이를 포함한 조성물 및 이로부터 형성된 박막을 포함하는 유기 발광 소자 |
KR20220036393A (ko) | 2020-09-14 | 2022-03-23 | 삼성디스플레이 주식회사 | 표시 장치 |
KR20220060630A (ko) | 2020-11-04 | 2022-05-12 | 삼성디스플레이 주식회사 | 기판의 도전성 본딩 구조 및 이를 포함하는 표시 장치 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5518824A (en) * | 1993-08-02 | 1996-05-21 | Basf Aktiengesellschaft | Electroluminescent arrangement |
US5792557A (en) * | 1994-02-08 | 1998-08-11 | Tdk Corporation | Organic EL element |
US20030180574A1 (en) * | 2002-02-22 | 2003-09-25 | Wen-Yao Huang | Efficient organic electroluminescent devices with red fluorescent dopants |
US20040028804A1 (en) * | 2002-08-07 | 2004-02-12 | Anderson Daniel G. | Production of polymeric microarrays |
US20040054152A1 (en) * | 2000-08-01 | 2004-03-18 | Klaus Meerholz | Materials that can be structured, method for producing the same and their use |
US20050017629A1 (en) * | 2003-07-22 | 2005-01-27 | Altair Center, Llc. | Light emitting devices based on hyperbranched polymers with lanthanide ions |
US20060251886A1 (en) * | 2003-09-04 | 2006-11-09 | Mueller David C | Electronic devices comprising an organic conductor and semiconductor as well as an intermediate buffer layer made of a crosslinked polymer |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4720432A (en) * | 1987-02-11 | 1988-01-19 | Eastman Kodak Company | Electroluminescent device with organic luminescent medium |
US5331183A (en) | 1992-08-17 | 1994-07-19 | The Regents Of The University Of California | Conjugated polymer - acceptor heterojunctions; diodes, photodiodes, and photovoltaic cells |
JP3082479B2 (ja) * | 1992-10-23 | 2000-08-28 | ジェイエスアール株式会社 | ネガ型感放射線性樹脂組成物 |
JP2848207B2 (ja) * | 1993-09-17 | 1999-01-20 | 凸版印刷株式会社 | 有機薄膜el素子 |
DE59510315D1 (de) | 1994-04-07 | 2002-09-19 | Covion Organic Semiconductors | Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien |
WO1995031833A2 (en) | 1994-05-16 | 1995-11-23 | Philips Electronics N.V. | Semiconductor device provided with an organic semiconductor material |
JP3246189B2 (ja) | 1994-06-28 | 2002-01-15 | 株式会社日立製作所 | 半導体表示装置 |
TW293172B (enrdf_load_stackoverflow) | 1994-12-09 | 1996-12-11 | At & T Corp | |
DE19500912A1 (de) * | 1995-01-13 | 1996-07-18 | Basf Ag | Elektrolumineszierende Anordnung |
EP0842208B2 (en) * | 1995-07-28 | 2009-08-19 | Sumitomo Chemical Company, Limited | 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers |
KR100431015B1 (ko) * | 1995-07-28 | 2004-07-30 | 다우 글로벌 테크놀로지스 인크. | 2,7-아릴-9-치환된플루오렌및9-치환된플루오렌올리고머및중합체 |
US5929194A (en) † | 1996-02-23 | 1999-07-27 | The Dow Chemical Company | Crosslinkable or chain extendable polyarylpolyamines and films thereof |
JP3643433B2 (ja) * | 1996-03-25 | 2005-04-27 | ケミプロ化成株式会社 | トリフェニルアミン含有ポリエーテルケトン、その製法およびそれを用いた有機el素子 |
WO1998003566A1 (en) | 1996-07-19 | 1998-01-29 | The Regents Of The University Of California | Conjugated polymers as materials for solid state lasers |
JP3899566B2 (ja) | 1996-11-25 | 2007-03-28 | セイコーエプソン株式会社 | 有機el表示装置の製造方法 |
DE19652261A1 (de) | 1996-12-16 | 1998-06-18 | Hoechst Ag | Arylsubstituierte Poly(p-arylenvinylene), Verfahren zur Herstellung und deren Verwendung in Elektroluminszenzbauelementen |
DE19711713A1 (de) | 1997-03-20 | 1998-10-01 | Hoechst Ag | Photovoltaische Zelle |
US6309763B1 (en) * | 1997-05-21 | 2001-10-30 | The Dow Chemical Company | Fluorene-containing polymers and electroluminescent devices therefrom |
JP4509228B2 (ja) | 1997-08-22 | 2010-07-21 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 有機材料から成る電界効果トランジスタ及びその製造方法 |
JP2000077185A (ja) * | 1998-08-28 | 2000-03-14 | Asahi Chem Ind Co Ltd | 有機エレクトロルミネッセンス素子 |
US6107452A (en) * | 1998-10-09 | 2000-08-22 | International Business Machines Corporation | Thermally and/or photochemically crosslinked electroactive polymers in the manufacture of opto-electronic devices |
KR100400291B1 (ko) * | 1998-11-27 | 2004-02-05 | 주식회사 하이닉스반도체 | 신규의포토레지스트용단량체,그의공중합체및이를이용한포토레지스트조성물 |
CN1167146C (zh) | 1999-01-15 | 2004-09-15 | 陶氏环球技术公司 | 高分子半导体场效应晶体管 |
JP2001076874A (ja) * | 1999-09-07 | 2001-03-23 | Tdk Corp | 有機el表示装置 |
KR20020095210A (ko) * | 2000-04-11 | 2002-12-20 | 듀폰 디스플레이즈, 인크. | 가용성 폴리(플루오렌-옥사디아졸) 공액 중합체 |
DE10044840A1 (de) * | 2000-09-11 | 2002-04-04 | Siemens Ag | Photostrukturierbare neue organische Halbleitermaterialien |
US6994893B2 (en) | 2001-03-10 | 2006-02-07 | Covion Organic Semiconductors Gmbh | Solutions and dispersions of organic semiconductors |
JP2003007471A (ja) * | 2001-04-13 | 2003-01-10 | Semiconductor Energy Lab Co Ltd | 有機発光素子および前記素子を用いた発光装置 |
US7009338B2 (en) * | 2001-05-16 | 2006-03-07 | The University Of Southern California | High efficiency multi-color electro-phosphorescent OLEDs |
JP2003007475A (ja) * | 2001-06-20 | 2003-01-10 | Honda Motor Co Ltd | 有機エレクトロルミネッセンス素子 |
JP2003029400A (ja) * | 2001-07-19 | 2003-01-29 | Fuji Photo Film Co Ltd | 画像形成材料 |
DE10143353A1 (de) | 2001-09-04 | 2003-03-20 | Covion Organic Semiconductors | Konjugierte Polymere enthaltend Spirobifluoren-Einheiten und deren Verwendung |
JP2003103696A (ja) * | 2001-09-27 | 2003-04-09 | Hitachi Chem Co Ltd | 凹凸を形成するための版、その製造方法、それを用いた電磁波シールド材料、その製造方法、並びにその電磁波シールド材料を用いた電磁波遮蔽構成体及び電磁波シールドディスプレイ |
EP1308781A3 (en) | 2001-10-05 | 2003-09-03 | Shipley Co. L.L.C. | Cyclic sulfonium and sulfoxonium photoacid generators and photoresists containing them |
JP2003142272A (ja) * | 2001-11-01 | 2003-05-16 | Nichia Chem Ind Ltd | 高分子正孔輸送材およびそれを用いた有機電界発光素子 |
JP4197117B2 (ja) † | 2001-11-22 | 2008-12-17 | シャープ株式会社 | キャリア輸送性を有する高分子材料を用いた有機薄膜素子、有機薄膜素子の製造方法、および配線 |
JP2003163086A (ja) * | 2001-11-27 | 2003-06-06 | Nippon Hoso Kyokai <Nhk> | 有機el素子および有機elディスプレイ |
DE10159946A1 (de) | 2001-12-06 | 2003-06-18 | Covion Organic Semiconductors | Prozess zur Herstellung von Aryl-Aryl gekoppelten Verbindungen |
US6743757B2 (en) * | 2001-12-06 | 2004-06-01 | Infineum International Ltd. | Dispersants and lubricating oil compositions containing same |
JP3946671B2 (ja) | 2002-07-23 | 2007-07-18 | 三星エスディアイ株式会社 | 光子発光抑制素子基盤の画像表示装置及びこれを利用した画像表示方法 |
KR100694364B1 (ko) † | 2002-09-03 | 2007-03-12 | 캠브리지 디스플레이 테크놀로지 리미티드 | 광학 디바이스 |
DE10249723A1 (de) | 2002-10-25 | 2004-05-06 | Covion Organic Semiconductors Gmbh | Arylamin-Einheiten enthaltende konjugierte Polymere, deren Darstellung und Verwendung |
GB0226010D0 (en) * | 2002-11-08 | 2002-12-18 | Cambridge Display Tech Ltd | Polymers for use in organic electroluminescent devices |
US6982179B2 (en) * | 2002-11-15 | 2006-01-03 | University Display Corporation | Structure and method of fabricating organic devices |
DE602004015103D1 (de) * | 2003-05-12 | 2008-08-28 | Cambridge Entpr Ltd | Herstellung einer polymeren vorrichtung |
-
2003
- 2003-09-04 DE DE2003140711 patent/DE10340711A1/de not_active Withdrawn
-
2004
- 2004-09-04 EP EP04764853.0A patent/EP1671379B2/de not_active Expired - Lifetime
- 2004-09-04 AT AT04764854T patent/ATE418161T1/de not_active IP Right Cessation
- 2004-09-04 CN CNB2004800289980A patent/CN100508237C/zh not_active Expired - Fee Related
- 2004-09-04 WO PCT/EP2004/009902 patent/WO2005024970A1/de active Application Filing
- 2004-09-04 EP EP20040764854 patent/EP1661191B1/de not_active Expired - Lifetime
- 2004-09-04 JP JP2006525128A patent/JP5133562B2/ja not_active Expired - Lifetime
- 2004-09-04 KR KR1020067004566A patent/KR101042863B1/ko not_active Expired - Lifetime
- 2004-09-04 JP JP2006525129A patent/JP5355857B2/ja not_active Expired - Lifetime
- 2004-09-04 AT AT04764853T patent/ATE492913T1/de active
- 2004-09-04 US US10/570,640 patent/US20070034862A1/en not_active Abandoned
- 2004-09-04 DE DE200450012028 patent/DE502004012028D1/de not_active Expired - Lifetime
- 2004-09-04 CN CNA2004800253688A patent/CN1849717A/zh active Pending
- 2004-09-04 WO PCT/EP2004/009903 patent/WO2005024971A1/de active Application Filing
- 2004-09-04 US US10/570,372 patent/US7901766B2/en not_active Expired - Fee Related
- 2004-09-04 DE DE200450008698 patent/DE502004008698D1/de not_active Expired - Lifetime
-
2006
- 2006-03-03 KR KR1020067004561A patent/KR101071034B1/ko not_active Expired - Lifetime
-
2013
- 2013-05-08 JP JP2013098569A patent/JP2013191867A/ja not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5518824A (en) * | 1993-08-02 | 1996-05-21 | Basf Aktiengesellschaft | Electroluminescent arrangement |
US5792557A (en) * | 1994-02-08 | 1998-08-11 | Tdk Corporation | Organic EL element |
US20040054152A1 (en) * | 2000-08-01 | 2004-03-18 | Klaus Meerholz | Materials that can be structured, method for producing the same and their use |
US20030180574A1 (en) * | 2002-02-22 | 2003-09-25 | Wen-Yao Huang | Efficient organic electroluminescent devices with red fluorescent dopants |
US20040028804A1 (en) * | 2002-08-07 | 2004-02-12 | Anderson Daniel G. | Production of polymeric microarrays |
US20050017629A1 (en) * | 2003-07-22 | 2005-01-27 | Altair Center, Llc. | Light emitting devices based on hyperbranched polymers with lanthanide ions |
US20060251886A1 (en) * | 2003-09-04 | 2006-11-09 | Mueller David C | Electronic devices comprising an organic conductor and semiconductor as well as an intermediate buffer layer made of a crosslinked polymer |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060251886A1 (en) * | 2003-09-04 | 2006-11-09 | Mueller David C | Electronic devices comprising an organic conductor and semiconductor as well as an intermediate buffer layer made of a crosslinked polymer |
US7901766B2 (en) | 2003-09-04 | 2011-03-08 | Merck Patent Gmbh | Electronic devices comprising an organic conductor and semiconductor as well as an intermediate buffer layer made of a crosslinked polymer |
US20110198575A1 (en) * | 2005-12-28 | 2011-08-18 | E. I. Du Pont De Nemours And Company | Compositions comprising novel compounds and electronic devices made with such compositions |
US20090026448A1 (en) * | 2006-02-13 | 2009-01-29 | Merck Patent Gmbh | Electronic component, method for its production and its use |
US20110065222A1 (en) * | 2006-02-13 | 2011-03-17 | Merck Patent Gmbh | Electronic component, method for its production and its use |
US8278394B2 (en) | 2006-05-12 | 2012-10-02 | MERCK Patent Gesellschaft mit beschränkter Haftung | Indenofluorene polymer based organic semiconductor materials |
US20090149627A1 (en) * | 2006-05-12 | 2009-06-11 | Junyou Pan | Indenofluorene polymer based organic semiconductor materials |
US8643000B2 (en) * | 2008-11-18 | 2014-02-04 | E I Du Pont De Nemours And Company | Organic electronic device with low-reflectance electrode |
US20100181556A1 (en) * | 2008-11-18 | 2010-07-22 | Ying Wang | Organic electronic device with low-reflectance electrode |
US9502657B2 (en) | 2012-09-07 | 2016-11-22 | Pioneer Corporation | Organic electroluminescence device and manufacturing method thereof |
US9882176B2 (en) | 2012-09-07 | 2018-01-30 | Pioneer Corporation | Organic electroluminescence device and manufacturing method thereof |
US10135036B2 (en) | 2012-09-07 | 2018-11-20 | Pioneer Corporation | Organic electroluminescence device and manufacturing method thereof |
WO2014046539A1 (en) * | 2012-09-18 | 2014-03-27 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Electro-optical device stack |
US9478765B2 (en) | 2012-09-18 | 2016-10-25 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Electro-optical device stack, having patches covering layer breaches |
WO2017065983A1 (en) * | 2015-10-16 | 2017-04-20 | Dow Global Technologies Llc | Process for making an organic charge transporting film |
US20180358558A1 (en) * | 2015-10-16 | 2018-12-13 | Dow Global Technologies Llc | Process for making an organic charge transporting film |
US10868253B2 (en) * | 2015-10-16 | 2020-12-15 | Rohm And Haas Electronic Materials Llc | Process for making an organic charge transporting film |
US9644112B1 (en) * | 2016-04-20 | 2017-05-09 | Eastman Kodak Company | Articles having electrically-conductive layer or pattern |
US10665804B2 (en) * | 2017-10-12 | 2020-05-26 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Organic light emitting diode and display device |
Also Published As
Publication number | Publication date |
---|---|
JP2013191867A (ja) | 2013-09-26 |
CN1864280A (zh) | 2006-11-15 |
KR101042863B1 (ko) | 2011-06-20 |
EP1661191A1 (de) | 2006-05-31 |
CN100508237C (zh) | 2009-07-01 |
EP1661191B1 (de) | 2008-12-17 |
WO2005024971A1 (de) | 2005-03-17 |
WO2005024970A1 (de) | 2005-03-17 |
KR101071034B1 (ko) | 2011-10-06 |
JP5355857B2 (ja) | 2013-11-27 |
JP5133562B2 (ja) | 2013-01-30 |
CN1849717A (zh) | 2006-10-18 |
EP1671379B8 (de) | 2011-03-23 |
JP2007504657A (ja) | 2007-03-01 |
EP1671379B2 (de) | 2014-10-01 |
EP1671379B1 (de) | 2010-12-22 |
EP1671379A1 (de) | 2006-06-21 |
ATE418161T1 (de) | 2009-01-15 |
ATE492913T1 (de) | 2011-01-15 |
US20060251886A1 (en) | 2006-11-09 |
DE502004008698D1 (de) | 2009-01-29 |
US7901766B2 (en) | 2011-03-08 |
KR20070036014A (ko) | 2007-04-02 |
JP2007504656A (ja) | 2007-03-01 |
KR20060096414A (ko) | 2006-09-11 |
DE10340711A1 (de) | 2005-04-07 |
DE502004012028D1 (de) | 2011-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070034862A1 (en) | Electronic device comprising an organic semiconductor, an organic semiconductor, and an intermediate buffer layer made of a polymer that is cationically polymerizable and contains no photoacid | |
JP5096378B2 (ja) | 有機電子素子、その製造方法及びその使用 | |
CN1943056B (zh) | 交联有机半导体的方法 | |
Zuniga et al. | Approaches to solution-processed multilayer organic light-emitting diodes based on cross-linking | |
Yang et al. | Deep-red electroluminescent polymers: synthesis and characterization of new low-band-gap conjugated copolymers for light-emitting diodes and photovoltaic devices | |
JP5704729B2 (ja) | 硬質アミン | |
JP5798108B2 (ja) | 有機エレクトロルミネッセンス素子および製作方法 | |
WO2005034199A2 (en) | Organic diodes and materials | |
KR101829091B1 (ko) | 광전자 장치용 물질 | |
CN111995733A (zh) | 一种含二苯甲酮基的可光交联型空穴传输材料及其制备方法与应用 | |
JP2008525608A5 (enrdf_load_stackoverflow) | ||
JP2011018922A (ja) | 光学装置 | |
Bolink et al. | Optimization of Polymer Blue‐Light‐Emitting Devices by Introducing a Hole‐Injection Layer Doped with the Molecular Nanomagnet [Mn12O12 (H2O) 4 (C6F5COO) 16] | |
KR102850797B1 (ko) | 가교결합성 벤조시클로부텐기를 갖는 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
KR20250074303A (ko) | 정공 수송용 재료 및 이를 이용한 유기 전기 소자 및 그 전자기기 | |
Dumur et al. | Photoinitiated Cross‐Linking in OLEDs: An Efficient Tool for Addressing the Solution‐Processed Devices Elaboration and Stability Issues | |
JP2010251235A (ja) | 電子素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MERCK OLED MATERIALS GMBH,GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:COVION ORGANIC SEMICONDUCTORS GMBH;REEL/FRAME:018097/0118 Effective date: 20050727 Owner name: MERCK OLED MATERIALS GMBH, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:COVION ORGANIC SEMICONDUCTORS GMBH;REEL/FRAME:018097/0118 Effective date: 20050727 |
|
AS | Assignment |
Owner name: MERCK PATENT GMBH,GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MERCK OLED MATERIALS GMBH;REEL/FRAME:018821/0477 Effective date: 20061114 Owner name: MERCK PATENT GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MERCK OLED MATERIALS GMBH;REEL/FRAME:018821/0477 Effective date: 20061114 |
|
AS | Assignment |
Owner name: COVION ORGANIC SEMICONDUCTORS GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARHAM, AMIR;FALCOU, AURELIE;HEUN, SUSANNE;AND OTHERS;REEL/FRAME:019037/0630;SIGNING DATES FROM 20061108 TO 20070205 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |