US20050176678A1 - Compounds and method for coating surfaces in a haemocompatibe manner - Google Patents

Compounds and method for coating surfaces in a haemocompatibe manner Download PDF

Info

Publication number
US20050176678A1
US20050176678A1 US10/513,982 US51398204A US2005176678A1 US 20050176678 A1 US20050176678 A1 US 20050176678A1 US 51398204 A US51398204 A US 51398204A US 2005176678 A1 US2005176678 A1 US 2005176678A1
Authority
US
United States
Prior art keywords
acid
layer
hemocompatible
heparin
active agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/513,982
Other languages
English (en)
Inventor
Roland Horres
Marita Linssen
Michael Hoffmann
Erika Hoffmann
Donato Di Baise
Volker Faust
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hemoteq AG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10221055A external-priority patent/DE10221055B4/de
Application filed by Individual filed Critical Individual
Priority to US10/513,982 priority Critical patent/US20050176678A1/en
Assigned to HEMOTEQ GMBH reassignment HEMOTEQ GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HORRES, ROLAND, DI BIASE, DONATO, FAUST, VOLKER, HOFFMANN, ERIKA, HOFFMANN, MICHAEL, LINSSEN, MARITA KATARINA
Publication of US20050176678A1 publication Critical patent/US20050176678A1/en
Priority to US12/827,710 priority patent/US8784862B2/en
Assigned to HEMOTEQ AG reassignment HEMOTEQ AG CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: HORRES, ROLAND, DI BIASE, DONATO, FAUST, VOLKER, HOFFMANN, ERIKA, HOFFMANN, MICHAEL, LINSSEN, MARITA KATARINA
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/075Ethers or acetals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/095Sulfur, selenium, or tellurium compounds, e.g. thiols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/11Aldehydes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/722Chitin, chitosan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/727Heparin; Heparan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/06Use of macromolecular materials
    • A61L33/08Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0075Heparin; Heparan sulfate; Derivatives thereof, e.g. heparosan; Purification or extraction methods thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/10Heparin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • C09D105/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to the use of oligo- and/or polysaccharides containing the sugar building block N-acylglucosamine and/or N-acylgalactosamine for the preparation of hemocompatible surfaces, methods for the hemocompatible coating of surfaces with said oligo- and/or polysaccharides as well as the use of the hemocompatibly coated surfaces.
  • non-thrombogenic, hemocompatible materials such as protheses, organ spareparts, membranes, cannulae, tubes, blood containers, stents etc. which do not activate the coagulation system in case of blood contact and do not cause coagulation of the blood.
  • EP-B-0 333 730 describes a method for preparation of hemocompatible substrates by incorporation, adhesion and/or modification and attachment of non-thrombogenic endothelial cell surface polysaccharide (HS-I).
  • HS-I non-thrombogenic endothelial cell surface polysaccharide
  • the immobilization of this specific endothelial cell surface proteoheparan sulphate HS I on biological or artificial surfaces causes that suchlike coated surfaces become blood compatible and suitable for the permanent blood contact.
  • said process for the generation of HS I requires the cultivation of endothelial cells, so that the economical usability of said process is very limited because the cultivation of endothelial cells is time consuming, and relatively large amounts of cultivated endothelial cells are only available at a considerably high cost.
  • the object of the present invention to provide medical products, which allow a continuous controlled ingrowth of the medical product—on the one hand by suppression of the cellular reactions during the first days and weeks after the implantation by means of the chosen active agents and active agent combinations and on the other hand by providing an atrombogeneous resp. inert resp. biocompatible surface, which guarantees, that with decreasing of the active agent influence no reactions on the present alien surface occur anymore, which also can lead to complications on the long-term.
  • the present invention discloses polysaccharides of the general formula Ia as well as structurally very similar polysaccharides of the general formula Ib
  • the polysaccharides according to formula Ia have molecular weights from 2 kD to 400 kD, preferably from 5 kD to 150 kD, more preferably from 10 kD to 100 kD, and particularly preferably from 30 kD to 80 kD.
  • the polysaccharides according to formula Ib have molecular weights from 2 kD to 15 kD, preferably from 4 kD to 13 kD, more preferably from 6 kD to 12 kD, and particularly preferably from 8 kD to 11 kD.
  • the variable n is an integer ranging from 4 to 1050.
  • n is an integer from 9 to 400, more preferably from 14 to 260, and particularly preferably an integer between 19 and 210.
  • the general formulas Ia and Ib represent a disaccharide, which is to be seen as a basic unit of the polysaccharide according to invention and forms the polysaccharide by stringing together said basic unit n times. Said basic unit comprising two sugar molecules does not intend to suggest that the general formulas Ia and Ib only relate to polysaccharides having an even number of sugar molecules. Of course, the general formula Ia and the formula Ib also comprise polysaccharides having an odd number of sugar units. Hydroxy groups are present as terminal groups of the oligosaccharides and polysaccharides, respectively.
  • the groups Y and Z independently of each other, represent the following chemical acyl or carboxyalkyl groups: —CHO, —COCH 3 , —COC 2 H 5 , —COC 3 H 7 , —COC 4 H 9 , —COC 5 H 11 , —COCH(CH 3 ) 2 , —COCH 2 CH(CH 3 ) 2 , —COCH(CH 3 )C 2 H 5 , —COC(CH 3 ) 3 , —CH 2 COO ⁇ , —C 2 H 4 COO ⁇ , —C 3 H 6 COO ⁇ , —C 4 H 8 COO — .
  • the group Y represents an acyl group
  • the group Z represents a carboxyalkyl group. It is more preferred if Y is a group —COCH 3 , —COC 2 H 5 or —COC 3 H 7 and in particular —COCH 3 .
  • Z is a carboxyethyl or carboxymethyl group, the carboxymethyl group being particularly preferred.
  • the disaccharide basic unit shown by formula Ia comprises each a substituent Y and a further group Z.
  • the polysaccharide of the invention comprises two different groups, namely Y and Z.
  • the general formula Ia should not only comprise polysaccharides containing the groups Y and Z in a strictly alternating sequence, which would result from stringing together the disaccharide basic units, but also polysaccharides carrying the groups Y and Z in a completely random sequence at the amino groups. Further, the general formula Ia should also comprise polysaccharides containing the groups Y and Z in different numbers.
  • the ratios of the number of Y groups to the number of X groups can be between 70%:30%, preferably between 60%:40%, and particularly preferably between 45%:55%.
  • polysaccharides of the general formula Ia carrying on substantially half of the amino groups the Y residue and on the other half of the amino groups the Z residue in a merely random distribution.
  • substantially half means exactly 50% in the most suitable case but should also comprise the range from 45% to 55% and especially from 48% to 52% as well.
  • Y is one of the following groups: —CHO, —COCH 3 , —COC 2 H 5 or —COC 3 H 7 .
  • Y is one of the following groups: —CHO, —COCH 3 , —COC 2 H 5 or —COC 3 H 7 .
  • the compounds of the general formula Ib contain only a minor amount of free amino groups. As with the ninhydrine test free amino groups could not be detected anymore, it can be concluded due to the sensitivity of this test, that less than 2%, preferred less than 1% and especially preferred less than 0.5% of all of the —NH—Y groups are present as free amino groups, i.e. at this low percentage of the groups —NH—Y that Y represents hydrogen.
  • the general formulas Ia and Ib also comprise alkali and alkaline earth metal salts of the respective polysaccharides.
  • alkali metal salts such as the sodium salt, potassium salt, lithium salt or alkaline earth metal salts such as the magnesium salt or calcium salt can be mentioned.
  • ammonia primary, secondary, tertiary and quaternary amines, pyridine and pyridine derivatives, ammonium salts, preferably alkyl ammonium salts and pyridinium salts, can be formed.
  • the bases forming salts with the polysaccharides include inorganic and organic bases such as NaOH, KOH, LiOH, CaCO 3 , Fe(OH) 3 , NH 4 OH, tetraalkyl ammonium hydroxides and similar compounds.
  • Heparan sulphates are ubiquitous on cell surfaces of mammals. Depending on the cell type, they are very different with respect to molecular weight, degree of acetylation and degree of sulfation. Liver heparan sulphate, for example, has a degree of acetylation of approximately 50%, whereas the heparan sulphate from the glycocalyx of endothelial cells can show a degree of acetylation of up to 90% and more. Heparin only shows a very small degree of acetylation of up to 5%.
  • liver heparan sulphate and heparin The degree of sulfation of liver heparan sulphate and heparin is ⁇ 2 per disaccharide unit, of endothelial cell heparan sulphate nearly 0, and of heparan sulphates from other cell types between 0 and 2 per disaccharide unit.
  • All heparan sulphates have the process of biosynthesis in common with heparin.
  • the core protein with the xylose-containing bond region is built up. It consists of the xylose and two galactose residues connected therewith.
  • glucuronic acid and galactosamine are then alternately bonded to each other until the respective chain length is achieved.
  • Heparin is built up alternately from D-glucosamine and D-glucuronic acid resp. L-iduronic acid, wherein D-glucosamine and D-glucuronic acid are linked in a ⁇ -1,4-glycosidic manner (resp. L-iduronic acid in an ⁇ -1,4-glycosidic manner) to the disaccharide, which forms the heparin subunits. These subunits, in turn, are linked to each other in a ⁇ -1,4-glycosidic manner and lead to the heparin. The position of the sulfonyl groups can change.
  • a tetrasaccharide unit contains an average of 4 to 5 sulfuric acid groups.
  • Heparan sulphate also referred to as heparitin sulphate, contains, with the exception of liver heparan sulphate, less N— and O-bonded sulfonyl groups than heparin, but more N-acetyl groups.
  • the compounds of the general formula Ia (see FIG. 3 c as example) and the compounds of the general formula Ib (see FIG. 3 b as example) are structurally very similar to the natural heparan sulphate of endothelial cells, but prevent the initially described disadvantages in using endothelial cell heparan sulphates.
  • a special pentasaccharide unit is made responsible which can be found in commercial heparin preparatives in about every 3rd molecule.
  • Heparin preparations of different antithrombotic activity can be produced by special separation techniques.
  • highly active for example by antithrombin-III-affinitychromatography obtained preparations (“High-affinity”-heparin) this active sequence is found in every heparin molecule, while in “No-affinity”-preparations no characteristical pentasaccharide sequences and thus no active inhibition of coagulation can be detected.
  • the amino groups of the heparin are mostly N-sulphated or N-acetylated.
  • the most important O-sulphation positions are the C2 in the iduronic acid as well as the C6 and the C3 in the glucosamine.
  • the sulphate group on C6 is made responsible, in smaller proportion also the other functional groups.
  • heparin or heparansulphates Surfaces of medicinal implants coated with heparin or heparansulphates are and remain only conditionally hemocompatible by the coating.
  • the heparin or heparansulphate which is added onto the artificial surface loses partially in a drastic measure its antithrombotic activity which is related to a restricted interaction due to steric hindrence of the mentioned pentasaccharide units with antithrombin III.
  • heparansulphate still show the hemocompatible properties of heparin and additionally during the immobilisation of the compounds of the general formulas Ia and Ib no noteworthy depositions of plasma proteins which represent an initial step in the activation of the coagulation cascade could be observed.
  • the hemocopatible properties of the compounds according to invention still remain also after their immobilisation on artificial surfaces.
  • the sulphate groups of the heparin resp. the heparansulphates are necessary for the interaction with antithrombin III and impart thereby the heparin resp. the heparansulphate the anticoagulatory effect.
  • the inventive compounds according to formula Ib as well as the compounds according to formula Ia are not actively coagulation suppressive, i.e. anticoagulative, due to an almost complete desulphation the sulphate groups of the compounds of the general formulas Ib are removed up to a low amount of below 0.2 sulphate groups per disaccharide unit.
  • the compounds of the invention according to the general formula Ib can be made from heparin or heparan sulphates by first substantially entirely desulfating and then substantially entirely N-acylating the polysaccharide.
  • substantially entirely desulphated refers to a degree of desulfation of more than 90%, preferred more than 95%, and particularly preferred more than 98%.
  • the degree of desulfation can be determined according the so-called ninhydrine test, which detects free amino groups. Desulfation is effected to such an extent that a color reaction is no longer obtained with DMMB (dimethylmethylene blue). This color test is suitable for detecting sulphated polysaccharides; however, the detection limit thereof is not known in the literature of the art.
  • the desulfation can, for example, be carried out by heating the pyridinium salt in a solvent mixture. In particular, a mixture of DMSO, 1,4-dioxane and methanol proved to be suitable.
  • Heparansulphates as well as heparin were desulphated via total hydrolysis and subsequently reacylated. Thereafter the number of sulphate groups per disaccharide unit (S/D) was determined by 13C-NMR.
  • the following table 1 shows these results on the example of heparin and desulphated, reacetylated heparin (Ac-heparin).
  • the compounds of the general formulas Ia and Ib have a content of sulphate groups per disaccharide unit of less than 0.2, preferred less than 0.07, more preferred less than 0.05 and especially preferred less than 0.03 sulphate groups per disaccharide unit.
  • substantially entirely N-acylated refers to an N-acylating degree of more than 94%, preferably more than 97%, and particularly preferably more than 98%.
  • the acylation is effected in such a complete manner that the ninhydrine detection of free amino groups does no longer show any color reaction.
  • acylation agents carboxylic acid chlorides, bromides or anhydrides are used preferably.
  • Acetic acid anhydride, propionic acid anhydride, butyric acid anhydride, acetic acid chloride, propionic acid chloride or butyric acid chloride, for example, are suitable for preparing the compounds according to the invention.
  • Carboxylic acid anhydrides are particularly suitable as acylation agents.
  • deionized water is used, preferably together with a cosolvent, which is added in an amount of 10 to 30 volume percent.
  • cosolvents methanol, ethanol, DMSO, DMF, acetone, dioxane, THF, acetic acid ethyl ester and other polar solvents are suitable. If carboxylic acid halides are used, polar water-free solvents such as DMSO or DMF are preferably used.
  • solvent deionized water preferably together with a cosolvent, which is added in an amount of 10 to 30 volume percent.
  • cosolvents methanol, ethanol, DMSO, DMF, acetone, dioxane, THF, acetic acid ethyl ester and other polar solvents are suitable.
  • the compounds of the invention according to the general formula Ia have a carboxylate group on half of the sugar molecules, and a N-acyl group on the other half.
  • Such compounds can also be made from the polysaccharides hyaluronic acid, dermatan sulphate, chondroitin sulphate. Differencies to heparin and heparansulphate result from the connection of the monosaccharides, which are here not present in a 1,4-glycosidic but 1,3-glycosidic connection. The disaccharides are again connected to each other 1,4-glycosidically. In the case of the also in the blood coagulation antithrombotically active dermatan sulphates [Biochem.
  • chondroitin sulphate and dermatan sulphate are chondroitin sulphate and dermatan sulphate. Typical for this group ist the ⁇ -1,3-glycosidic bonding of the uronic acid to the galactosamine. Galactosamine is bound on its part ⁇ -1,4-glycosidically to the next uronic acid. Dermatan sulphate differs from chondroitin sulphate by a high amount of another also in heparin and heparan sulphate occurring uronic acid, the L-iduronic acid. The sulphation degree of chondroitin sulphate is at 0.1 to 1.3 sulphate groups per disaccharide.
  • Dermatan sulphate has with 1.0 to 3.0 sulphate groups per disaccharide an averagely higher sulphation degree as chondroitin sulphate and thereby reaches heparin like values.
  • the amino groups are N-acetylated.
  • Heparin and heparan sulphate are solely ⁇ -1,4-bound, whilst in hyaluronan, which is also accounted to this type, the monosaccharids D-glucuronic acid and D-glucosamine are ⁇ -1,3-bound monosaccharids.
  • This polysaccharide has as only polysaccharide no sulphate groups and is N-acetylated. The molecular weight reaches in comparison to heparin and heparan sulphate maximum values up to 8000 kD. The reduction of the chain length and the maintaining of the acetyl groups resp. the N-reacetylation leads to a structure, which is distinguishable from the formula Ib only by the ⁇ -1,3-glycosidic connection of the monosaccharids.
  • Chitin is a nitrogen-containing polysaccharide, the monomer units of which consist of N-acetyl-D-glucosamine, which are linked in a ⁇ -1,4-glycosidic manner. This results in linear polymers consisting of about 2,000 sugar units and having a molecular weight of about 400,000 g/mol. Chitin shows a very poor solubility and is almost insoluble in water, organic solvents and dilute acids or dilute bases. Mixing with strong acids leads to hydrolysis, where D-glucosamine and acetic acid are produced. The treatment with strong bases, however, leads to chitosan and acetate.
  • Chitosan can easily be produced by the saponification of chitin.
  • Chitosan consists of ⁇ -1,4-glycosidically linked glucosamine (2-amino-2-deoxy-D-glucose).
  • Chitosan is known for its film forming properties, and is further used as a basic material for ion exchangers and as an agent for reducing the cholesterol level in the blood serum and for weight reduction.
  • the substances according to the invention of the general formula Ia can be made from chitin by partially deacetylating chitin by means of strong bases and then monocarboxyalkylating the free amino groups (see FIG. 1 ).
  • the deacetylation degree i.e. the amount of demasked primary amino groups, can be determined volumetrically.
  • the quantitative detection of the free amino groups is effected by means of the ninhydrine reaction.
  • deacetylation degrees of 20 to 80% can be obtained.
  • Deacetylation degrees of 40 to 60% are preferred, 45 to 55% are particularly preferred.
  • polysaccharides can be obtained the sugar units of which contain either an N-acetyl group or an N-carboxyalkyl group in a merely random distribution.
  • Chitosan which is easily accessible by the basic hydrolysis of the N-acetyl groups of the chitin (see FIG. 1 ), equally serves as a starting material for the synthesis of the polysaccharides according to formula Ia.
  • the compounds according to the invention can, on the one hand, be obtained by carboxyalkyating substantially the half of the free amino groups in a first step, and then acylating the remaining free amino groups, or by first carrying out the acylation and then reacting the remaining free amino groups with a suitable carboxyalkylation agent. It is preferred if substantially the half of the amino groups is acylated and the remaining half is carboxyalkylated.
  • Partially N-acylated chitosan refers to an N-acylation degree of 30-70%, preferably of 40-60%, and particularly preferably of 45-55%. Particularly preferred are chitosan derivates carrying the Y residue on substantially the half of the amino groups, and on the other half of the amino groups the Z residue in a merely random distribution. The term “substantially the half” means exactly 50% in the most suitable case, but should also include the range of 45% to 55%.
  • the carboxyalkylation and acylation degrees can be determined by means of 13C-NMR, for example (deviation tolerance ⁇ 3%).
  • the present invention describes the use of the compounds of the general formulas Ia and/or Ib as well as salts of said compounds for the coating, in particular a hemocompatible coating of natural and/or artificial surfaces.
  • Hemocompatible refers to the property of the compounds according to the invention, which means not to interact with the substances of the blood coagulation system or the blood platelets and thus not to trigger the blood coagulation cascade.
  • the invention discloses oligosaccharides and/or polysaccharides for the hemocompatible coating of surfaces.
  • Preferred are polysaccharides within the molecular weight limits mentioned above.
  • One of the remarkable features of the oligosaccharides and/or polysaccharides used is, that they contain large amounts of the sugar unit N-acylglucosamine or N-acylgalactosamine. This means that 40-60%, preferred 45-55% and especially preferred 48-52% of the sugar units are N-acylglucosamine or N-acylgalactosamine, and substantially the remaining sugar units each have a carboxyl group.
  • usually more than 95%, preferably more than 98%, of the oligosaccharides and/or polysaccharides consist of only two sugar units, one sugar unit carrying a carboxyl group and the other one an N-acyl group.
  • One sugar unit of the oligosaccharides and/or polysaccharides is N-acylglucosamine resp. N-acylgalactosamine, preferably N-acetylglucosamine resp. N-acetylgalactosamine, and the other one is uronic acid, preferably glucuronic acid and iduronic acid.
  • oligosaccharides and/or polysaccharides substantially consisting of the sugar glucosamine resp. galactosamine, substantially the half of the sugar units carrying an N-acyl group, preferably an N-acetyl group, and the other half of the glucosamine units carrying a carboxyl group directly bonded via the amino group or bonded via one or more methylenyl groups.
  • carboxylic acid groups bonded to the amino group are preferably carboxymethyl or carboxyethyl groups.
  • preferred oligosaccharides and/or polysaccharides wherein substantially the half, i.e. 48-52%, preferred 49-51% and especially preferred 49.5-50.5%, consists of N-acyl glucosamine resp.
  • N-acyl galactosamine preferably of N-acetyl glucosamine or N-acetyl galactosamine, and substantially the other half thereof consists of an uronic acid, preferably glucuronic acid and iduronic acid.
  • oligosaccharides and/or polysaccharides showing a substantially alternating sequence (i.e. despite of the statistic deviation ratio in the case of the alternating connection) of the two sugar units.
  • the ratio of the deviated connections should be under 1%, preferred under 0.1%.
  • a process for the hemocompatible coating of surfaces is disclosed, which are intended for direct blood contact.
  • a natural and/or artificial surface is provided, and the oligosaccharides and/or polysaccharides described above are immobilized on said surface.
  • the immobilisation of the oligosaccharides and/or polysaccharides on these surfaces can be achieved via hydrophobic interactions, van der Waals forces, electrostatic interactions, hydrogen bonds, ionic interactions, cross-linking of the oligosaccharides and/or polysaccharides and/or by covalent bonding onto the surface.
  • Preferred is the covalent linkage of the oligosaccharides and/or polysaccharides (side-on bonding), more preferred the covalent single-point linkage (side-on bonding) and especially preferred the covalent end-point linkage (end-on bonding).
  • any natural and/or artificial surfaces of medical products can be used here such as surfaces of prostheses, organs, vessels, aortas, cardiac valves, tubes, organ replacement parts, implants, fibers, hollow fibers, stents, hypodermic needles, syringes, membranes, conserves, blood containers, titer plates, pacemakers, adsorber media, chromatography media, chromatography columns, dialyzers, connection parts, sensors, ventiles, centrifuge chambers, heat exchangers, endoscopes, filters, pump chambers as well as other surfaces, which should have hemocompatible properties.
  • the term “medical products” is to be understood widely and refers especially to the surfaces of such products, which come into contact with blood shortly (e.g. endoscopes) or permanently (e.g. stents).
  • Biological and/or artificial surfaces of medical devices can be provided with a hemocompatible coating by means of the following method:
  • Deposition shall refer to at least partial coating of a surface with the corresponding compounds, wherein the compounds are deposited and/or introduced and/or immobilized or anyhow anchored on and/or in the subjacent surface.
  • non-hemocompatible surfaces shall refer to such surfaces that can activate the blood coagulatory system, thus are more or less thrombogeneous.
  • the last-mentioned embodiment makes sure, even in the case of mechanical damage of the polymeric layer and therewith also of the exterior hemocompatible layer, e.g. due to inappropriate transport or complicated conditions during the implantation, that the surface coating does not lose its characteristic of being blood compatible.
  • biological and artificial surface is the combination of an artificial medical device with an artificial part to be understood, e.g. a pork heart with an artificial heart valve.
  • the single layers are deposited preferably by dipping or spraying methods, whereas one can deposit at the same time with the deposition of one layer also another or more active agents onto the medical device surface, which is then implemented in the respective layer covalently and/or adhesively bound. In this way one or more active agents can be deposited at the same time with the deposition of a hemocompatible layer onto the medical device.
  • the active agents as well as the substances, which can be used for a biostable or biodegradable layer, are itemized more below.
  • an active agent layer of one or more active agents it is then possible in an additional non compulsory step c) to deposit an active agent layer of one or more active agents.
  • the active agent or agents are bound covalently on the subjacent layer.
  • the active agent is preferably deposited by dipping or spraying methods.
  • an additional step d) can follow, which comprises the deposition of at least one biodegradable layer and/or at least one biostable layer onto the hemocompatible layer resp. the active agent layer.
  • a step d′) can follow, which comprises the deposition or immobilisation of at least one oligosaccharide and/or polysaccharide according to invention according to formula Ia or Ib and/or at least one oligosaccharide and/or polysaccharide, which contains between 40% and 60% the sugar unit N-acyl glucosamine or N-acyl galactosamine and the remaining sugar units substantially contain one carboxyl group per sugar unit, as hemocompatible layer.
  • the step d′) follows.
  • step d) resp. d′) the deposition of another active agent layer of one or more active agents can take place into or onto the subjacent biodegradable and/or biostable layer or the hemocompatible layer.
  • biostable, biodegradable and/or hemocompatible layers can contain further active agents, which were deposited together with the biostable and/or biodegradable substances or the hemocompatible oligosaccharides and/or polysaccharides on the medical device and are contained in the respective layers.
  • the biostable layer is covalently and/or adhesively bound on the surface of the medical device and completely or incompletely covered with a hemocompatible layer, which (preferably covalently) is bound to the biostable layer.
  • the hemocompatible layer comprises heparin of native origin of regioselectively synthesized derivatives of different sulphation coefficients (sulphation degrees) and acylation coefficients (acylation degrees) in the molecular weight range of the pentasaccharide which is responsible for the antithrombotic activity, up to the standard molecular weight of the purchasable heparin of 13 kD, heparansulphate and its derivatives, oligo- and polysaccharides of the erythrocytic glycocalix, desulphated and N-reacetylated heparin, N-carboxymethylated and/or partially N-acetylated chitosan as well as mixtures of these substances.
  • sulphation degrees sulphation coefficients
  • acylation degrees acylation degrees
  • Subject of the invention are also medical devices, which are hemocompatibly coated according to one of the herein mentioned methods.
  • the surface of the medical devices is covered directly or via at least one interjacent biostable and/or biodegradable layer and/or active agent layer with a hemocompatible layer, which consists of at least one oligosaccharide and/or polysaccharide, which contains between 40% and 60% the sugar unit N-acyl glucosamine or N-acyl galactosamine and the remaining sugar units substantially contain one carboxyl group per sugar unit.
  • a hemocompatible layer which consists of at least one oligosaccharide and/or polysaccharide, which contains between 40% and 60% the sugar unit N-acyl glucosamine or N-acyl galactosamine and the remaining sugar units substantially contain one carboxyl group per sugar unit.
  • hemocompatible layer of the afore-mentioned oligosaccharides and/or polysaccharides is at least one biostable layer present, which is additionally preferred covalently bound to the surface of the medical device.
  • At least one biostable and/or at least one biodegradable layer is present, which covers the hemocompatible layer completely or incompletely.
  • a biodegradable layer which covers the hemocompatible layer.
  • a further preferred embodiment contains between the biostable lower layer and the subjacent hemocompatible layer an active agent layer of at least one antiproliferative, antiinflammatory and/or antithrombotic active agent, which is bound covalently and/or adhesively to the hemocompatible layer.
  • an active agent layer of at least one antiproliferative, antiinflammatory and/or antithrombotic active agent, which is bound covalently and/or adhesively to the hemocompatible layer.
  • the lower biostable and/or upper hemocompatible layer can contain further active agents, which are deposited preferably together with the deposition of the respective layer.
  • every layer i.e. a biostable layer, a biodegradable layer and a hemocompatible layer can contain one or more antiproliferative, antiinflammatory and/or antithrombotic active agents and moreover between the afore-mentioned layers active agent layers of one or more active agents can be present.
  • an active agent layer of one or more active agents is present.
  • three-layer systems which consist of a biostable, biodegradable and hemocompatible layer. Thereby preferably the lowest layer is a biostable layer.
  • one or two active agent layers are possible. It is also possible to deposit two active agent layers directly above each other. In a further preferred embodiment at least one active agent is bound covalently on or in a layer.
  • active agents are tacrolimus, pimecrolimus, PI88, thymosin ⁇ -1, PETN (pentaerythritol tetranitrate), baccatin and its derivatives, docetaxel, colchicin, paclitaxel and its derivatives, trapidil, ⁇ - and ⁇ -estradiol, dermicidin, tialin (2-methylthiazolidine-2,4-dicarboxylic acid), tialin-sodium (sodium salt of tialin), simvastatine, macrocyclic suboxide (MCS) and its derivatives, sirolimus, tyrphostines, D24851, colchicin, fumaric acid and fumaric acid esters, activated protein C (aPC), interleucine-1 ⁇ inhibitors, and melanocyte-stimulating hormone ( ⁇ -MSH) as well as mixtures of these active agents.
  • tacrolimus pimecrolimus
  • PI88 thymosin
  • the natural and/or artificial surfaces of the medical devices which are coated according to the herein described methods with a hemocompatible layer of the inventive oligosaccharide and/or polysaccharide resp. the oligosaccharides and/or polysaccharides which contain between 40% and 60% the sugar unit N-acyl glucosamine or N-acyl galactosamine and the remaining sugar units substantially contain one carboxyl group per sugar unit, are especially suitable as implants and organ replacement parts, respectively, which are in direct contact with the blood circuit and the blood.
  • the medical devices coated according to invention are especially suitable, but not only, for the direct and permanent blood contact, but show surprisingly also the characteristic to reduce or even to prevent the adhesion of proteins onto suchlike coated surfaces.
  • the deposition of the inventive coating prevents or at least reduces for example the unspecific adhesion of proteins on micro-titer plates or other support mediums which are used for diagnostic detection methods, that disturb the generally sensitive test reactions and can lead to a falsification of the analysis result.
  • the coating according to invention on adsorption media or chromatography media the unspecific adhesion of proteins is also prevented or reduced, whereby better separations can be achieved and products of greater purity can be generated.
  • stents are coated according to the inventive methods.
  • the implantation of stents using balloon dilatation of occluded vessels increasingly established in the last years. Although stents decrease the risk of a renewed vessel occlusion they are until now not capable of preventing such restenoses completely.
  • restenosis cannot be found in the technical literature.
  • the most commonly used morphologic definition of the restenosis is the one which defines the restenosis after a successful PTA (percutaneous transluminal angioplasty) as a reduction of the vessel diameter to less than 50% of the normal one.
  • PTA percutaneous transluminal angioplasty
  • This is an empirically defined value of which the hemodynamic relevance and its relation to clinical pathology lacks of a massive scientific basis.
  • the clinical aggravation of a patient is often viewed as a sign for a restenosis of the formerly treated vessel segment.
  • U.S. Pat. No. 5,891,108 discloses for example a hollow moulded stent, which can contain pharmaceutical active agents in its interior, that can be released throughout a various number of outlets in the stent.
  • EP-A-1 127 582 describes a stent that shows ditches of 0.1-1 mm depth and 7-15 mm length on its surface which are suitable for the implementation of an active agent. These active agent reservoirs release similarly to the outlets in the hollow stent the contained pharmaceutically active agent in a punctually high concentration and over a relatively long period of time which however leads to the fact that the smooth muscle cells are not anymore or only very delayed capable of enclosing the stent.
  • phosphorylcholine a component of the erythrocyte cell membrane, shall create a non thrombogeneous surface as a component of the coated non biodegradable polymer layer on the stent.
  • Dependent of its molecular weight, thereby the active agent is absorbed by the polymer containing phosphorylcholine layer or adsorbed on the surface.
  • the stents according to invention are coated with a hemocompatible layer and feature one or more additional layers which at least comprise an antiproliferative and/or antiinflammatory and if needed an antithrombotic active agent.
  • the hemocompatible coating of a stent provides the required blood compatibility and the active agent (or active agent combination) which is distributed homogeneously over the total surface of the stent provides that the covering of the stent surface with cells especially smooth muscle and endothelial cells takes place in a controlled way.
  • the covering of the stent surface with cells especially smooth muscle and endothelial cells takes place in a controlled way.
  • the incorporation of active agents guarantees that the active agent or the active agent combination which is bound covalently and/or adhesively to the subjacent layer and/or implemented covalently and/or adhesively into the layer is released continuously and in small doses so that the population of the stent surface by cells is not inhibited however an overgrowth is prevented.
  • This combination of both effects awards the ability to the inventive stent to grow rapidly into the vessel wall and reduces both the risk of restenosis and the risk of thrombosis.
  • the release of one or more active agents spans over a period from 1 to 12 months, preferably 1 to 3 months after implantation.
  • Antiproliferative substances are used as active agents.
  • cytostatics, macrolide antibiotics and/or statins are used as antiproliferative active agents.
  • Applyable antiproliferative active agents are sirolimus (rapamycin), everolimus, pimecrolimus, somatostatin, tacrolimus, roxithromycin, dunaimycin, ascomycin, bafilomycin, erythromycin, midecamycin, josamycin, concanamycin, clarithromycin, troleandomycin, folimycin, cerivastatin, simvastatin, lovastatin, fluvastatin, rosuvastatin, atorvastatin, pravastatin, pitavastatin, vinblastine, vincristine, vindesine, vinorelbine, etoposide, teniposide, nimustine, carmustine, lomustine, cyclophosphamide, 4-hydroxycycl
  • cefadroxil cefazolin, cefaclor, cefotixin, tobramycin, gentamycin are used.
  • Positive influence on the postoperative phase have also the penicillins such as dicloxacillin, oxacillin, sulfonamides, metronidazol, antithrombotics such as argatroban, aspirin, abciximab, synthetic antithrombin, bivalirudin, coumadin, dermicidin, enoxaparin, hemoparin, tissue plasminogen activator, GpIIb/IIIa platelet membrane receptor, factor X a inhibitor, activated protein C, dermicidin, antibodies, heparin, hirudin, r-hirudin, PPACK, protamin, prourokinase, streptokinase, warfarin, urokinase, vasodilators such as dipyramidole, trapid
  • Further active agents are steroids (hydrocortisone, betamethasone, dexamethasone), non-steroidal substances (NSAIDS) such as fenoprofen, ibuprofen, indomethacin, naproxen, phenylbutazone and others.
  • NSAIDS non-steroidal substances
  • Antiviral agents such as acyclovir, ganciclovir and zidovudine are also applyable. Different antimycotics are used in this area. Examples are clotrimazole, flucytosine, griseofulvin, ketoconazole, miconazole, nystatin, terbinafine.
  • Antiprozoal agents such as chloroquine, mefloquine, quinine are effective active agents in equal measure, moreover natural terpenoids such as hippocaesculin, barringtogenol-C21-angelate, 14-dehydroagrostistachin, agroskerin, agrostistachin, 17-hydroxyagrostistachin, ovatodiolids, 4,7-oxycycloanisomelic acid, baccharinoids B1, B2, B3, tubeimoside, bruceanol A, B, C, bruceantinoside C, yadanziosides N and P, isodeoxyelephantopin, tomenphantopin A and B, coronarin A, B, C and D, ursolic acid, hyptatic acid A, zeorin, iso-iridogermanal, maytenfoliol, effusantin A, excisanin A and B, longikaurin B, sculponeatin C, kamebau
  • the active agents are used separately or combined in the same or a different concentration. Especially preferred are active agents which feature also immunosuppressive properties besides their antiproliferative effect. Suchlike active agents are erythromycin, midecamycin, tacrolimus, sirolimus, paclitaxel and josamycin. Furthermore preferred is a combination of several antiproliferatively acting substances or of antiproliferative active agents with immunosuppressive active agents.
  • Preferred for the present invention are tacrolimus, pimecrolimus, PI88, thymosin ⁇ -1, PETN (pentaerythritol tetranitrate), baccatin and its derivatives, docetaxel, colchicin, paclitaxel and its derivatives, trapidil, ⁇ - and ⁇ -estradiol, dermicidin, simvastatine, macrocyclic suboxide (MCS) and its derivatives, sirolimus, tyrphostines, D24851, colchicin, fumaric acid and fumaric acid esters, activated protein C (aPC), interleucine-1 ⁇ inhibitors and melanocyte-stimulating hormone ( ⁇ -MSH) and tialin (2-methylthiazolidine-2,4-dicarboxylic acid) as well as tialin-Na (sodium salt of tialin).
  • aPC activated protein C
  • ⁇ -MSH melanocyte-stimulating hormone
  • the active agent is preferably contained in a pharmaceutical active concentration from 0.001-10 mg per cm 2 stent surface and per active agent layer or active agent containing layer. Additional active agents can be contained in a similar concentration in the same or in other layers.
  • the medical devices coated according to invention especially the stents coated according to invention, can release the active agent or the active agents continuously and controlled and are suitable for the prevention or reduction of restenosis (see FIG. 6 ).
  • the hemocompatible layer which covers directly the stent preferably comprises heparin of native origin as well as synthetically obtained derivatives with different sulphation coefficients (sulphation degrees) and acylation coefficients (acylation degrees) in the molecular weight range of the pentasaccharide which is responsible for the antithrombotic activity up to the standard molecular weight of the purchasable heparin, as well as heparan sulphates and derivatives thereof, oligo- and polysaccharides of the erythrocyte glycocalix, which imitate in a perfect way the athrombogeneous surface of the erythrocytes, since contrary to phosphorylcholine, here the actual contact between blood and erythrocyte surface takes place, completely desulphated and N-reacetylated heparin, desulphated and N-reacetylated heparin, N-carboxymethylated and/or partially N-acetylated chitosan, chitosan and/or mixtures
  • These stents with a hemocompatible coating are prepared by providing conventional normally non coated stents and by preferably covalent deposition of a hemocompatible layer which permanently masks the surface of the implant after the release of the active agent and thus, after the decay of the active agent's influence and the degradation of the matrix.
  • the conventional stents which can be coated according to the inventive methods consist of stainless steel, nitinol or other metals and alloys or of synthetic polymers.
  • Another preferred embodiment of the stents according to invention shows a coating which consists of at least two layers. Multiple layer systems are used as well. In such multiple layer systems the layer which is directly deposited on the stent is labelled first layer. Labelled second layer is that layer which is deposited on the first layer, etc.
  • the first layer consists of a hemocompatible layer which is substantially covered completely by a biodegradable layer which comprises at least an antiproliferative, antiphlogistic and/or antithrombotic active agent bound covalently and/or adhesively. Also applied are active agent combinations which mutually facilitate and replenish themselves.
  • biodegradable substances for the external layer can be used: polyvalerolactones, poly- ⁇ -decalactones, polylactonic acid, polyglycolic acid, polylactides, polyglycolides, copolymers of the polylactides and polyglycolides, poly- ⁇ -caprolactone, polyhydroxybutanoic acid, polyhydroxybutyrates, polyhydroxyvalerates, polyhydroxybutyrate-co-valerates, poly(1,4-dioxane-2,3-diones), poly(1,3-dioxane-2-ones), poly-p-dioxanones, polyanhydrides such as polymaleic anhydrides, polyhydroxymethacrylates, fibrin, polycyanoacrylates, polycaprolactonedimethylacrylates, poly-b-maleic acid, polycaprolactonebutyl-acrylates, multiblock polymers such as from oligocaprolactonedioles and oligodioxanonedioles
  • the layer and layers respectively which contain the active agent is slowly degradated by components of the blood such that the active agent is released of the external layer according to the degradation velocity or resolves itself from the matrix according to its elution behavior.
  • the first hemocompatible layer guarantees the required blood compatibility of the stent once the biodegradable layer is degradated. This biological degradation of the external layer and the corresponding release of the active agent reduces strongly an ongrowth of cells only for a certain period of time and an aimed controlled adhesion is enabled where the external layer has been already widely degradated.
  • the biological degradation of the external layer spans advantageously from 1 to 36 months, preferably from 1 to 6 months, especially preferred from 1 to 2 months. It was shown that suchlike stents prevent or at least very strongly reduce restenosis. In this period of time the important healing processes take place.
  • the hemocompatible layer remains as athrombogeneous surface and masks the foreign surface in such a way that no life-threatening reaction can occur anymore.
  • the amounts of polymer deposited on the surfaces of the medical devices, preferably stents, are between 0.01 mg to 3 mg/layer, preferred between 0.20 mg to 1 mg/layer and especially preferred between 0.2 mg to 0.5 mg/layer.
  • Suchlike stents are preparable via a method for the hemocompatible coating of stents the basis of which is formed by the following principle:
  • the principle of coating offers a big range of variation concerning the contrived requirements for the active agent and is separable into different coating types, which can be combined also among themselves.
  • Another advantageous embodiment is represented by a stent with an at least three layered coating, whereas the first layer covers the surface of the stent with the hemocompatible layer, the second layer contains the active agent and is not biodegradable and is covered by a third hemocompatible layer.
  • the external layer provides the stent herein the necessary blood compatibility and the second layer serves as an active agent reservoir.
  • the active agent which is if needed covalently bound to the matrix via a hydrolysis-weak bonding and/or added in a solvent dissolved matrix which is required for the coating method, is thus released from the second layer continuously and in small concentrations and diffuses uninhibited through the external hemocompatible layer.
  • This layer assembly also yields the result that the population of the stent surface with cells is not prevented but is reduced to an ideal degree.
  • the first layer offers a risk minimization for eventually occurring damages of the coated stent surface during the implantation e.g. by abrasions through the present plaque or during the prearrangement e.g. during the crimping.
  • a second security guarantee results from the fact that even a bio-stable polymer is degradated in the body over a more or less long period of time which at least partially uncovers the stent surface. Combinations especially with biodegradable material as described in the coating principles are possible, too.
  • Suchlike stents can be prepared by providing a conventional stent, depositing a hemocompatible first layer on its surface, depositing a non biodegradable layer which at least comprises one active agent as well as combinations with other active agents from other groups bound covalently and/or adhesively and coating of this layer substantially completely with another hemocompatible layer.
  • polyacrylic acid and polyacrylates such as polymethylmethacrylate, polybutyl methacrylate, polyacrylamide, polyacrylonitriles, polyamides, polyetheramides, polyethylenamine, polyimides, polycarbonates, polycarbourethanes, polyvinylketones, polyvinylhalogenides, polyvinylidenhalogenides, polyvinyl ethers, polyvinylaromates, polyvinyl esters, polyvinylpyrrolidones, polyoxymethylenes, polyethylene, polypropylene, polytetrafluoroethylene, polyurethanes, polyolefin elastomers, polyisobutylenes, EPDM gums, fluorosilicones, carboxymethyl chitosan, polyethylenterephthalate, polyvalerates, carboxymethylcellulose, cellulose, rayon, rayon tri
  • the newly deposited layer covers the subjacent layer substantially completely.
  • substantially means in this context, that at least the stent surface, which comes into contact with the vessel wall, is covered completely resp. at least 90%, preferred 95% and especially preferred at least 98% of the stent surface are covered.
  • the stents according to invention solve both the problem of acute thrombosis and the problem of neointima hyperplasia after a stent implantation.
  • the stents according to invention are well suitable due to their coating whether as single layer or as multi layer system especially for the continuous release of one or more antiproliferative and/or immunosuppressive active agents. Due to this feature of aimed continuous active agent release in a required amount the coated stents according to invention prevent almost completely the danger of restenosis.
  • any plastic surfaces can be coated with a hemocompatible layer of the oligosaccharides and/or polysaccharides.
  • synthetic polymers as well as biopolymers are suitable, comprising, for example, the monomers ethene, vinyl acetate, methacrylic acid, vinylcarbazole, trifluoroethylene, propene, butene, methylpentene, isobutene, styrene, chlorostyrene, aminostyrene, acrylonitrile, butadiene, acrylic ester, divinylbenzene, isoprene, vinyl chloride, vinyl alcohol, vinylpyridine, vinylpyrrolidone, tetrafluoroethylene, trifluorochloroethene, vinyl fluoride, hexafluoroisobutene, acrylic acid, acrolein, acrylamide, methacrylamide, maleic acid, hydroxymethyl methacrylic acid, methyl methacrylic acid
  • polymers can be considered: silicones, cellulose and cellulose derivatives, oils, polycarbonates, polyurethane, agarose, polysaccharides, dextranes, starch, chitin, glycosamino glycans, gelatin, collagen I-XII and other proteins.
  • FIG. 1 shows a disaccharide structure fragment of chitin which can be transformed into chitosan by basic hydrolysis, or into the compounds of the general formula Ia by partial deacetylation and subsequent N-carboxyalkylation.
  • FIG. 2 shows a disaccharide structure fragment of chitosan, which can be transformed into the compounds of the general formula Ia by partial N-acylation and subsequent N-carboxyalkylation or by partial N-carboxyalkylation and subsequent N-acylation.
  • FIG. 3 shows a tetrasaccharide unit of a heparin or heparan sulphate with a random distribution of the sulphate groups and a degree of sulfation of 2 per disaccharide unit as typical for heparin ( FIG. 3 a ).
  • FIG. 3 b shows an example of a compound according to the general formula Ib
  • FIG. 3 c shows a section with a typical structure for a N-carboxymethylated, partially N-acetylated chitosan.
  • FIG. 4 shows the influence of an into a PVC-tube expanded, surface modified stainless steel coronary stent on the platelet loss (PLT-loss).
  • An uncoated stainless steel coronary stent was measured (uncoated) as reference. As zero value the level of the platelet loss in case of the PVC-tube without stainless steel coronary stent was set.
  • SH1 is a with heparin covalently coated stent
  • SH2 is a with chondroitinsulphate coated stent
  • SH3 is a stent coated with polysaccharides gained from the erythrocytic glycocalix
  • SH4 is a with Ac-heparin covalently coated stainless steel coronary stent.
  • FIG. 5 shows a schematic presentation of the restenosis rate of with completely desulphated and N-reacetylated heparin (Ac-heparin) covalently coated stents and with oligo- and polysaccharides of the erythrocytic glycocalix coated stents in comparison to the uncoated stent and with polyacrylic acid (PAS) coated stents after 4 weeks of implantation time in pork.
  • Ac-heparin N-reacetylated heparin
  • FIG. 6 Quantitative coronary angiography:
  • FIG. 7 Elution plot of paclitaxel from the stent (without support medium).
  • FIG. 8 Elution diagram of paclitaxel embedded into PLGA-matrix.
  • FIG. 9 Elution diagram of paclitaxel embedded into PLGA-matrix and of a layer of undiluted paclitaxel which covers the basis coating completely.
  • FIG. 10 Elution diagram of a hydrophilic active agent embedded into the matrix and of a suprajacent active agent free polymer (topcoat) which covers the basis coating completely for diffusion control.
  • FIG. 11 Elution diagram of colchicine from PLGA-matrix.
  • FIG. 12 Elution diagram of simvastatin from PLGA-matrix.
  • FIG. 13 Elution diagram of a statin from the matrix with polystyrene which completely covers the basis coating as diffusion controlling layer.
  • FIG. 14 Comparison of the thrombocyte number (platelet number) in the blood after Chandler loop between coated (coat.) and non coated (unco.) stent as regards the empty tube (control), the platelet number of freshly extracted blood (donor) and after the storage of 60 min in the syringe (syringe 60).
  • FIG. 15 Comparison of the platelet factor 4 concentration in the freshly extracted blood (donor), in the empty tube (control) after 60 minutes and non coated stents (unco.) with coated (coat.) stent.
  • FIG. 16 Comparing diagram to the activated complement factor C5a in the freshly extracted blood (donor), in the empty tube (control) after 60 minutes and non coated (unco.) stents with coated (coat.) stent.
  • FIG. 17 Schematic presentation of the %-diameter restenosis rate of with completely desulphated and N-reacetylated heparin (Ac-heparin) covalently coated stents and with a 2 nd layer of poly(D,L-lactide-co-glycolide) in comparison to the uncoated stent (after 12 weeks of implantation time in the pork).
  • the chronological progression of the stenosis formation in the case of PLGA is shown, whereas “%-diameter restenosis rate” represents the diameter of the vessel related percentually to the initial state directly after implantation of the stent (post).
  • the vessel diameter was measured before (pre) and after the implantation of the stent (Post) via intravascular ultrasound (IVUS).
  • IVUS intravascular ultrasound
  • the stented areas were examined respectively via coronary angiography and with intravascular ultrasound (IVUS).
  • the obtained data show an unexpected remarkably positive effect, which is due to the coating beyond doubt.
  • the values of stenosis after three months hardly differ for the uncoated stent and for the coated stent, the reaction of the vessel wall towards the PLGA-coated stent is substantially smoother.
  • the stenosis value lies with 6% significantly below the value of the uncoated implants with 10.4%.
  • the masking of the metal surface results after four weeks even with 10% (an increase of 33%) in a more than factor two lower stenosis rate than the uncoated stent, which reaches after this period of time its maximum value of 22.6% (an increase of 54%).
  • the coated stent shows a maximum after six weeks with only 12.33%. After 12 weeks the values of both systems equal each other with approx. 11%.
  • FIG. 18 Pictures of the quantitative coronary angiography of the animal experiments respectively to FIG. 17 after 1 week, 4 weeks, 6 weeks and 3 months of hemocompatibly supplied PLGA-coated stents in the pig.
  • heparin pyridinium salt 0.9 g were added to 90 ml of a 6/3/1 mixture of DMSO/1,4-dioxane/methanol (v/v/v) in a round bottomed flask with reflux cooler and heated to 90° C. for 24 hours. Then, 823 mg of pyridinium chloride were added and heating to 90° C. was effected for further 70 hours. Subsequently, dilution was carried out with 100 ml of water, and titration to pH 9 with dilute soda lye was effected. The desulphated heparin was dialyzed against water and freeze-dried.
  • N-carboxymethylated, Partially N-acetylated chitosan N-carboxymethylated, Partially N-acetylated chitosan:
  • heparin-pyridinium-salt 0.9 g heparin-pyridinium-salt were added in a round flask with a reflux condenser with 90 ml of a 6/3/1 mixture of DMSO/1,4-dioxan/methanol (v/v/v) and heated for 24 hours to 90° C. Then 823 mg pyridiniumchloride were added and heated additional 70 hours to 90° C. Afterwards it was diluted with 100 ml of water and titrated with dilute sodium hydroxide to pH 9. The desulphated heparin was dialyzed contra water and freeze-dried.
  • N-carboxymethylated, Partially N-propionylated chitosan N-carboxymethylated, Partially N-propionylated chitosan:
  • the chamber is composed of four building parts plus conical nipples and threaded joints and is manufactured of polymethylmethacrylate and allows the parallel investigation of two modified membranes, so that in every run already a statistic coverage is included.
  • the construction of this chamber permits quasi_laminar perfusion conditions.
  • the membranes After 5 minutes of perfusion at 37° C. the membranes are extracted and after fixation of the adherent platelets the platelet occupancy is measured. The respective results are set into relation to the highly thrombogeneous subendothelial matrix as negative standard with a 100% platelet occupancy.
  • the adhesion of the platelets takes place secondary before the formation of the plasma protein layer on the foreign material.
  • the plasma protein fibrinogen acts as cofactor of the platelet aggregation.
  • the such induced activation of the platelets results in the bonding of several coagulation associated plasma proteins, such as vitronectin, fibronectin and von Willebrand-factor on the platelet surface. By their influence finally the irreversible aggregation of the platelets occurs.
  • the platelet occupancy presents because of the described interactions an accepted quantum for the thrombogenity of surfaces in case of the foreign surface contact of blood. From this fact the consequence arises: the lower the platelet occupancy is on the perfunded surface the higher is the hemocompatibility of the examined surface to be judged.
  • heparin as an antithrombotic is not transferable to covalently immobilised heparin. In the systemic application in dissolved form it can fully unfold its properties. But if heparin is not covalently immobilised, its antithrombotic properties, if at all, is only short-lived. Different is the Ac-heparin (“No-affinity”-heparin), that due to the desulphation and N-reacetylation in fact totally loses the active antithrombotic properties of the initial molecule, but acquires in return distinctive athrombogeneous properties, that are demonstrably founded in the passivity versus antithrombin III and the missing affinity towards coagulation initiating processes and remain after covalent bonding.
  • the recess holes of the syringes were closed by pushing the glass tubes over them and the tube was clamp taut into a dialysis pump.
  • the blood was pumped for 10 minutes with a flow rate of 150 ml/min.
  • the platelet content of the blood was measured before and after the perfusion with a Coulter counter.
  • the stent covered surface which solely accounts for about 0.84% of the total test surface, causes a significant and reproducable effect on the platelet content.
  • the analysis of the polished, chemically not surface coated stent yields an additional average platelet loss of 22.7%. Therewith causes this compared to the PVC empty tube less than 1% measurable foreign surface an approximately comparable platelet loss.
  • the medicinal stainless steel 316 LVM used as stent material induces an about 100 times stronger platelet damage compared to a medical grade PVC surface, although this test surface only accounts for 0.84% of the total surface.
  • Not expanded stents of medicinal stainless steel LVM 316 were degreased in the ultrasonic bath for 15 minutes with acetone and ethanol and dried at 100° C. in the drying closet. Then they were dipped for 5 minutes into a 2% solution of 3_aminopropyltriethoxysilane in a mixture of ethanol/water (50/50:(v/v)) and then dried for 5 minutes at 100° C. Afterwards the stents were washed with demineralised water over night.
  • the coated stents are given in small hydrolysis tubes and are abandoned with 3 ml 3 M HCl for exactly one minute at room temperature.
  • the metal probes are removed and the tubes are incubated after sealing for 16 hours in the drying closet at 100° C. Then they are allowed to cool down, evaporated three times until dryness and taken up in 1 ml degassed and filtered water and measured contra an also hydrolysated standard in the HPLC: desulphat. + desulphat. + desulphat. + reacet. reacet. reacet. reacet.
  • sample heparin area heparin heparin stent area [g/sample] [cm 2 ] [g/cm 2 ] [pmol/cm 2 ] 1 129.021 2.70647E ⁇ 07 0.74 3.65739E ⁇ 07 41.92 2 125.615 2.63502E ⁇ 07 0.74 3.56084E ⁇ 07 40.82 3 98.244 1.93072E ⁇ 07 0.74 2.60908E ⁇ 07 29.91 4 105.455 2.07243E ⁇ 07 0.74 2.80058E ⁇ 07 32.10 5 119.061 2.33982E ⁇ 07 0.74 3.16192E ⁇ 07 36.24 6 129.202 2.53911E ⁇ 07 0.74 3.43124E ⁇ 07 39.33 7 125.766 2.53957E ⁇ 07 0.74 3.43185E ⁇ 07 39.34
  • the difference between the uncoated control stent and the Ac-heparin coated stent is unambiguous.
  • the generation of a distinct neointima layer is in case of the uncoated control stent very well observable.
  • the proliferation promotional effect of the uncoated stent surface on the surrounding tissue occurs in such a degree, that ultimately the danger of the vessel occlusion in the stent area is given.
  • Donor blood is taken up into 1.5 U/ml of heparin.
  • the 4 tubes (K3-K6) and two empty tubes (L1, L2) are filled in each case with 7.5 ml isotonic sodium chloride solution and rotated for 15 minutes at 5 r/min at 37° C. in the Chandler loop.
  • the completely emptied tubes are filled carefully with heparinated donor blood (7.5 ml) and rotated for 60 min at 5 r/min. Accordingly to the anticoagulants samples are taken in monovettes and sample jars respectively (PF4-CTAD, C5a-EDTA, BB-EDTA) and processed.
  • the determination of the platelet number shows no significant difference between the empty control tubes, the coated and non coated stents.
  • the released PF4 is in case of the coated and non coated tubes at the same level.
  • the determination of the activated complement factor 5 (C5a) shows in case of the coated stents a smaller activation as in case of the non coated stents.
  • the aim of the experiments was primarily to evaluate the influence of the PLGA-coating towards the stent induced vessel reaction.
  • 28 six to nine month old domestic porks were used.
  • the stented areas were examined after one week (1 WoFUP), one month (4 WoFUP), six weeks (6 WoFUP) and after three months (12 WoFUP).
  • the obtained data show an unexpected incredibly positive effect, which is due to the the presence of PLGA 50/50 beyond doubt.
  • the values of stenosis after three months hardly differ for the uncoated stent and for the coated stent, the reaction of the vessel wall towards the PLGA-coated stent is substantially smoother.
  • the stenosis value lies with 6% significantly below the value of the uncoated implants with 10.4%.
  • the masking of the metal surface results after four weeks even with 10% (an increase of 33%) in a more than factor two lower stenosis rate than the uncoated stent, which reaches after this period of time its maximum value of 22.6% (an increase of 54%).
  • the coated stent shows a maximum after six weeks with only 12.33%. After 12 weeks the values of both systems equal each other with approx. 11% ( FIG. 16 ).
  • the data for the restenotic processes were determined via quantitative coronary angiography (QCA) and intravascular ultra sound examinations (IVUS).
  • the stent is weighed out on the analytical balance and the weight is noted.
  • a small hydrolysis tube 0.5 g polylactide are dissolved in 2 ml of CHCl 3 . Therefore, it is heated to 65° C. in the water bath. The solution is cooled down in the freezing compartment. Thereto are added 200 ⁇ g toluidine blue in 200 ⁇ l of CHCl 3 .
  • the stent is dipped into this solution. After a couple of minutes the stent is taken out of the solution with tweezers and moved within the fume hood until the solvent evaporates. Then the stent is dipped in for a second time. After air drying the stent is freeze dried for about 10 min. After the drying the stent is balanced again. The amount of the immobilized polylactide with toluidine blue is measured from the weight difference (sample 1).
  • sample 3 the dipping solution (1.93 ml) which results from experiment 1 (sample 1) and experiment 2 (sample 2) is mixed with 0.825 mg toluidine blue in 0.825 ml of CHCl 3 and 250 mg polylactide. The polylactide is dissolved during heating. Then a stent is dipped into it two times as described above.
  • the untreated stents had a weight of 176.0 mg and 180.9 mg. After dipping into the polylactide solution the stents balanced 200.9 and 205.2 mg.
  • the dipping solution contains 500 mg polylactide and 200 ⁇ g toluidine blue.
  • the bound amount of toluidine blue can be measured for the samples 1 and 2 from this ratio.
  • sample 3 2.755 ml solution contain 1 mg toluidine blue and 638.6 mg polylactide (initial weight-consumption sample 1+2; approx. 50 mg).
  • two stents are given into one preparation to obtain higher absorptions.
  • As the dipping solution was very viscous which yielded a very thick coating it was diluted from 2.625 ml with chloroform to 4 ml.
  • a stent is hung into a beaker with 25 ml of physiological sodium chloride solution in a phosphate buffer pH 7.4 (14.24 g NaH 2 PO 4 , 2.72 g K 2 HPO 4 and 9 g NaCl) and stirred gently at room temperature. After 0.5, 1, 2, 3, 6, 24, 48 and 120 hours, each time a sample of 3 ml is taken, measured spectroscopically and given back into the preparation. c c c c time/ (ng/ (ng/ (ng/ (ng/ (ng/ (ng/ h abs. s1 ml) abs. s2 ml) abs. s3 ml) abs.
  • the dipping solution may not be too thick and should be cooled so that the chloroform cannot evaporate too fast during the extraction as else the thickness of the coating becomes too large and inhomogeneous.
  • the polylactide concentration in sample 4 (134 mg/ml) seems to be sufficient, above all in case of higher concentrations the solution becomes extremely viscous and the polylactide is only very difficult to dissolve.
  • the stents are fixed in such way, that the interior of the stents does not touch the bar.
  • the stent is sprayed with the respective spray solution. After the drying (about 15 minutes) at room temperature and proximately in the fume hood over night it is balanced again.
  • the stents are sprayed in each case with 3 ml of the spraying solution, balanced before and after the spraying and the yielding layer thickness is determined by measuring under the microscope 100-times magnified.
  • layer stent No. before coating after coating weight of coating thickness 0.0193 g 0.0205 g 1.2 mg 10.4 ⁇ m 2 0.0193 g 0.0205 g 1.2 mg 10.4 ⁇ m 3 0.0204 g 0.0216 g 1.2 mg 10.4 ⁇ m 4 0.0206 g 0.0217 g 1.1 mg 10.4 ⁇ m
  • the stents are balanced before and after the spraying. stent No. before coating after coating weight of coating 1 0.0194 g 0.0197 g 0.30 mg
  • Spray solution Polylactide RG502/taxol—solution is replenished from 145.2 mg polylactide and 48.4 mg taxol to 22 g with chloroform.
  • Basis coat 19.8 mg polylactide and 6.6. mg taxol are replenished with chloroform to 3 g.
  • Topcoat 8.8 mg taxol are replenished with chloroform to 2 g. weight weight weight of active layer spray before weight of active agent thick- stent solution (g) after (g) coating agent ⁇ g/mm 2 ness 1 0.85 ml 0.0235 0.0238 0.30 mg 131 ⁇ g 1.56 9.7 ⁇ m 2 0.85 ml 0.0260 0.0264 0.40 mg 175 ⁇ g 2.09 10.1 ⁇ m
  • Basis coating 22 mg polylactide and 22 mg hydrophilic active agent are balanced and replenished with chloroform to 5 g.
  • Topcoat 22 mg polylactide and 22 mg polystyrene are balanced and replenished with chloroform to 5 g. weight of weight of spray solution before coating after coating coating active agent 0.85 ml 0.0135 g 0.0143 g 0.8 mg 200 ⁇ g

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Materials Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Polymers & Plastics (AREA)
  • Immunology (AREA)
  • Emergency Medicine (AREA)
  • Biomedical Technology (AREA)
  • Dermatology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Diabetes (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Obesity (AREA)
  • Transplantation (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
US10/513,982 2002-05-09 2003-04-15 Compounds and method for coating surfaces in a haemocompatibe manner Abandoned US20050176678A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/513,982 US20050176678A1 (en) 2002-05-09 2003-04-15 Compounds and method for coating surfaces in a haemocompatibe manner
US12/827,710 US8784862B2 (en) 2002-05-09 2010-06-30 Compounds and method for coating surfaces in a hemocompatible manner

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US37867602P 2002-05-09 2002-05-09
DE10221055A DE10221055B4 (de) 2002-05-10 2002-05-10 Verbindungen zur hämokompatiblen Beschichtung von Oberflächen, Verfahren zu deren Herstellung und deren Verwendung
DE10221055.1 2002-05-10
PCT/DE2003/001253 WO2003094990A1 (de) 2002-05-09 2003-04-15 Verbindungen und verfahren zur hemokompatiblen beschichtung von oberflächen
US10/513,982 US20050176678A1 (en) 2002-05-09 2003-04-15 Compounds and method for coating surfaces in a haemocompatibe manner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/827,710 Division US8784862B2 (en) 2002-05-09 2010-06-30 Compounds and method for coating surfaces in a hemocompatible manner

Publications (1)

Publication Number Publication Date
US20050176678A1 true US20050176678A1 (en) 2005-08-11

Family

ID=29421502

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/483,545 Abandoned US20040234575A1 (en) 2002-05-09 2003-04-15 Medical products comprising a haemocompatible coating, production and use thereof
US10/513,982 Abandoned US20050176678A1 (en) 2002-05-09 2003-04-15 Compounds and method for coating surfaces in a haemocompatibe manner
US12/827,710 Expired - Fee Related US8784862B2 (en) 2002-05-09 2010-06-30 Compounds and method for coating surfaces in a hemocompatible manner

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/483,545 Abandoned US20040234575A1 (en) 2002-05-09 2003-04-15 Medical products comprising a haemocompatible coating, production and use thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/827,710 Expired - Fee Related US8784862B2 (en) 2002-05-09 2010-06-30 Compounds and method for coating surfaces in a hemocompatible manner

Country Status (20)

Country Link
US (3) US20040234575A1 (pl)
EP (2) EP1501566B1 (pl)
JP (3) JP5106750B2 (pl)
CN (2) CN1665554B (pl)
AT (2) ATE344064T1 (pl)
AU (2) AU2003243885B8 (pl)
BR (2) BR0310008A (pl)
CA (2) CA2484374C (pl)
DE (4) DE50310322D1 (pl)
DK (2) DK1501566T3 (pl)
EA (1) EA009092B1 (pl)
ES (2) ES2321082T3 (pl)
IL (3) IL164947A (pl)
MX (2) MXPA04011112A (pl)
NZ (2) NZ536330A (pl)
PL (2) PL208277B1 (pl)
PT (2) PT1501566E (pl)
SI (1) SI1501566T1 (pl)
WO (2) WO2003094990A1 (pl)
ZA (2) ZA200408791B (pl)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040234575A1 (en) * 2002-05-09 2004-11-25 Roland Horres Medical products comprising a haemocompatible coating, production and use thereof
US20050129731A1 (en) * 2003-11-03 2005-06-16 Roland Horres Biocompatible, biostable coating of medical surfaces
US20060128777A1 (en) * 2004-11-05 2006-06-15 Bendall Heather H Cancer treatments
US20060159713A1 (en) * 2005-01-14 2006-07-20 Cephalon, Inc. Bendamustine pharmaceutical compositions
US20060165962A1 (en) * 2003-06-21 2006-07-27 Borck Alexander J Coating system for implants for increasing tissue compatibility
US20070048350A1 (en) * 2005-08-31 2007-03-01 Robert Falotico Antithrombotic coating for drug eluting medical devices
US20070142905A1 (en) * 2005-12-16 2007-06-21 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20070207183A1 (en) * 2006-01-05 2007-09-06 Med Institute, Inc. Zein coated medical device
US20070213382A1 (en) * 2004-05-03 2007-09-13 Susilo Rudy 2-methylthiazolidine-2, 4-dicarboxylic acid-containing combination preparations
US20070212387A1 (en) * 2006-03-08 2007-09-13 Sahajanand Medical Technologies Pvt. Ltd. Coatings for implantable medical devices
US20070254002A1 (en) * 2006-04-26 2007-11-01 Sheng-Qian Wu Biocompatible devices coated with activated protein C
EP1887355A1 (de) * 2006-08-02 2008-02-13 F.Hoffmann-La Roche Ag Mikrofluidiksystem und Beschichtungsverfahren dafür
WO2008128567A1 (en) * 2007-04-19 2008-10-30 Medovent Gmbh Device made at least partially of n-acetylchitosan with controlled biodissolution
US20080299170A1 (en) * 2005-07-21 2008-12-04 Aston University Medical Devices and Coatings Therefor
US20090092664A1 (en) * 2007-10-08 2009-04-09 University Of Kentucky Research Foundation Polymer-metal chelator conjugates and uses thereof
EP2105459A1 (en) * 2007-01-16 2009-09-30 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Aqueous solution composition
US20090258050A1 (en) * 2007-11-20 2009-10-15 Med Institute, Inc. Controlled Drug Delivery Using a Zein Layer Modified with Levulinic Acid
US20090264488A1 (en) * 2008-03-26 2009-10-22 Cephalon, Inc. Novel solid forms of bendamustine hydrochloride
US20100161021A1 (en) * 2007-06-07 2010-06-24 National University Corporation Kanazawa University Myocardial pad
US7761130B2 (en) 2003-07-25 2010-07-20 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20100210701A1 (en) * 2009-01-15 2010-08-19 Cephalon, Inc. Novel Forms of Bendamustine Free Base
US7792562B2 (en) 1997-03-04 2010-09-07 Dexcom, Inc. Device and method for determining analyte levels
US20100272773A1 (en) * 2009-04-24 2010-10-28 Boston Scientific Scimed, Inc. Use of Drug Polymorphs to Achieve Controlled Drug Delivery From a Coated Medical Device
US7828728B2 (en) 2003-07-25 2010-11-09 Dexcom, Inc. Analyte sensor
US20100322992A1 (en) * 2004-06-30 2010-12-23 Stephen Dugan Anti-Proliferative And Anti-Inflammatory Agent Combination For Treatment Of Vascular Disorders With An Implantable Medical Device
US20110008260A1 (en) * 2009-07-10 2011-01-13 Boston Scientific Scimed, Inc. Use of Nanocrystals for Drug Delivery from a Balloon
US7885697B2 (en) 2004-07-13 2011-02-08 Dexcom, Inc. Transcutaneous analyte sensor
US20110117139A1 (en) * 2008-05-30 2011-05-19 Ls Medcap Gmbh Fully synthetic albumin analog
US20110190363A1 (en) * 2008-09-25 2011-08-04 Cephalon, Inc. Liquid formulations of bendamustine
US8050731B2 (en) 2002-05-22 2011-11-01 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US8064977B2 (en) 2002-05-22 2011-11-22 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US8070798B2 (en) 2007-07-20 2011-12-06 Josiah Wilcox Drug eluting medical device and method
US20110301697A1 (en) * 2009-04-10 2011-12-08 Hemoteq Ag Manufacture, method and use of drug-eluting medical devices for permanently keeping blood vessels open
WO2012094565A1 (en) * 2011-01-06 2012-07-12 Cytosorbents Corporation Polymeric sorbent for removal of impurities from whole blood and blood products
US8255030B2 (en) 2003-07-25 2012-08-28 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US8317776B2 (en) 2007-12-18 2012-11-27 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8409132B2 (en) 2007-12-18 2013-04-02 The Invention Science Fund I, Llc Treatment indications informed by a priori implant information
US20130136657A1 (en) * 2010-07-23 2013-05-30 Roche Diagnostics Operations, Inc. Method for hydrophilizing surfaces of fluidic components and parts containing such components
US8509871B2 (en) 2001-07-27 2013-08-13 Dexcom, Inc. Sensor head for use with implantable devices
US8560039B2 (en) 2008-09-19 2013-10-15 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8591571B2 (en) 2009-03-02 2013-11-26 Japan Stent Technology Co., Ltd. Drug-eluting stent
US8597720B2 (en) 2007-01-21 2013-12-03 Hemoteq Ag Medical product for treating stenosis of body passages and for preventing threatening restenosis
US8636670B2 (en) 2008-05-13 2014-01-28 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US8641756B2 (en) 2007-09-04 2014-02-04 Japan Stent Technology Co., Ltd. Sustained drug-releasing stent
US8669360B2 (en) 2011-08-05 2014-03-11 Boston Scientific Scimed, Inc. Methods of converting amorphous drug substance into crystalline form
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US8889211B2 (en) 2010-09-02 2014-11-18 Boston Scientific Scimed, Inc. Coating process for drug delivery balloons using heat-induced rewrap memory
US8929968B2 (en) 2003-12-05 2015-01-06 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US9056152B2 (en) 2011-08-25 2015-06-16 Boston Scientific Scimed, Inc. Medical device with crystalline drug coating
US9192697B2 (en) 2007-07-03 2015-11-24 Hemoteq Ag Balloon catheter for treating stenosis of body passages and for preventing threatening restenosis
US9439589B2 (en) 1997-03-04 2016-09-13 Dexcom, Inc. Device and method for determining analyte levels
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US9986942B2 (en) 2004-07-13 2018-06-05 Dexcom, Inc. Analyte sensor
US10080821B2 (en) 2009-07-17 2018-09-25 Boston Scientific Scimed, Inc. Nucleation of drug delivery balloons to provide improved crystal size and density
US10610136B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10791928B2 (en) 2007-05-18 2020-10-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US10813577B2 (en) 2005-06-21 2020-10-27 Dexcom, Inc. Analyte sensor
US11007307B2 (en) 2006-04-26 2021-05-18 Micell Technologies, Inc. Coatings containing multiple drugs
US11399745B2 (en) 2006-10-04 2022-08-02 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003261100A1 (en) * 2002-07-25 2004-02-16 Avantec Vascular Corporation Devices delivering therapeutic agents and methods regarding the same
CN1714085A (zh) * 2002-11-15 2005-12-28 诺瓦提斯公司 药物递送系统
FR2847474B1 (fr) * 2002-11-25 2006-03-24 Inst Rech Developpement Ird Utilisation de la canthin-6-one, des extraits de plantes la contenant et de ses derives dans le traitement de la maladie de chagas
US7758881B2 (en) * 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
AR043504A1 (es) * 2003-03-17 2005-08-03 Novartis Ag Composiciones farmaceuticas que comprenden rapamicina para el tratamiento de enfermedades inflamatorias
EP1649260A4 (en) 2003-07-25 2010-07-07 Dexcom Inc ELECTRODE SYSTEMS FOR ELECTROCHEMICAL DETECTORS
US7488343B2 (en) 2003-09-16 2009-02-10 Boston Scientific Scimed, Inc. Medical devices
WO2005049105A2 (en) * 2003-11-10 2005-06-02 Angiotech International Ag Medical implants and anti-scarring agents
US8137397B2 (en) 2004-02-26 2012-03-20 Boston Scientific Scimed, Inc. Medical devices
US20050214339A1 (en) 2004-03-29 2005-09-29 Yiwen Tang Biologically degradable compositions for medical applications
US7803182B2 (en) * 2004-05-28 2010-09-28 Cordis Corporation Biodegradable vascular device with buffering agent
WO2005122870A2 (en) 2004-06-14 2005-12-29 Pneumrx, Inc. Lung access device
US20050281798A1 (en) * 2004-06-16 2005-12-22 Glen Gong Targeting sites of damaged lung tissue using composition
US20050281740A1 (en) * 2004-06-16 2005-12-22 Glen Gong Imaging damaged lung tissue
US7608579B2 (en) * 2004-06-16 2009-10-27 Pneumrx, Inc. Lung volume reduction using glue compositions
US7678767B2 (en) 2004-06-16 2010-03-16 Pneumrx, Inc. Glue compositions for lung volume reduction
US20050281739A1 (en) * 2004-06-16 2005-12-22 Glen Gong Imaging damaged lung tissue using compositions
US7468350B2 (en) 2004-06-16 2008-12-23 Pneumrx, Inc. Glue composition for lung volume reduction
US7766891B2 (en) 2004-07-08 2010-08-03 Pneumrx, Inc. Lung device with sealing features
CA2570261C (en) 2004-07-08 2014-06-10 Pneumrx, Inc. Pleural effusion treatment device, method and material
WO2006058195A2 (en) 2004-11-23 2006-06-01 Pneumrx, Inc. Steerable device for accessing a target site and methods
US20090130163A1 (en) * 2005-02-18 2009-05-21 Abraxis Bio Scoence, Inc. Drugs With Improved Hydrophobicity For Incorporation in Medical Devices
US20060204547A1 (en) * 2005-03-14 2006-09-14 Conor Medsystems, Inc. Drug delivery stent with extended in vivo release of anti-inflammatory
JP5026004B2 (ja) * 2005-06-28 2012-09-12 江崎グリコ株式会社 リン酸化糖を含有するチタンインプラント材
DE102005040211B4 (de) * 2005-08-16 2010-02-11 Maquet Cardiopulmonary Ag Verwendung von nichtionischen Estern in einer Beschichtung für mit Blut in Kontakt kommende Oberflächen und medizinische Vorrichtung
CN104013996B (zh) * 2005-11-15 2018-02-02 奥巴斯尼茨医学公司 夺取祖内皮细胞的药物洗脱可移植的医疗设备
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8157837B2 (en) 2006-03-13 2012-04-17 Pneumrx, Inc. Minimally invasive lung volume reduction device and method
US8888800B2 (en) 2006-03-13 2014-11-18 Pneumrx, Inc. Lung volume reduction devices, methods, and systems
US9402633B2 (en) 2006-03-13 2016-08-02 Pneumrx, Inc. Torque alleviating intra-airway lung volume reduction compressive implant structures
JP2007244601A (ja) * 2006-03-15 2007-09-27 Kanazawa Univ 心筋用パッド
WO2008003298A2 (de) 2006-07-03 2008-01-10 Hemoteq Ag Herstellung, verfahren und verwendung von wirkstofffreisetzenden medizinprodukten zur permanenten offenhaltung von blutgefässen
JP5602432B2 (ja) * 2007-01-11 2014-10-08 ロバート ラマール ジュニア ビョーク 経皮的冠動脈インターベンション用の多剤溶出冠動脈ステント
JP2010526625A (ja) * 2007-05-15 2010-08-05 カメレオン バイオサーフェセズ リミテッド 医療器具へのポリマー・コーティング
EP2214748B1 (en) * 2007-10-19 2016-12-07 Interface Biologics Inc. Self-eliminating coatings
PT2215480E (pt) * 2007-11-30 2012-07-18 Univ Maastricht Ferramentas de diagnóstico e terapêuticas para doenças que alteram a função vascular
CN101234217B (zh) * 2008-03-07 2013-12-18 苏州盖依亚生物医药有限公司 一种功能性靶向治疗可降解的生物支架及其用途
DE102008002471A1 (de) * 2008-06-17 2009-12-24 Biotronik Vi Patent Ag Stent mit einer Beschichtung oder einem Grundkörper, der ein Lithiumsalz enthält, und Verwendung von Lithiumsalzen zur Restenoseprophylaxe
US8632605B2 (en) 2008-09-12 2014-01-21 Pneumrx, Inc. Elongated lung volume reduction devices, methods, and systems
GB0816783D0 (en) * 2008-09-15 2008-10-22 Carmeda Ab Immobilised biological entities
JP2012524131A (ja) * 2009-04-15 2012-10-11 ビーエーエスエフ ソシエタス・ヨーロピア モノエチレン系不飽和グリコシルアミンの製造方法
CA2716502C (en) 2009-05-15 2015-06-16 Interface Biologics, Inc. Antithrombogenic hollow fiber membranes and filters
CN102573700B (zh) 2009-05-18 2014-12-17 纽姆克斯股份有限公司 细长的肺减容装置在部署过程中的横截面变化
US8591932B2 (en) * 2009-09-17 2013-11-26 W. L. Gore & Associates, Inc. Heparin entities and methods of use
CA2784689A1 (en) 2009-12-18 2011-06-23 Interface Biologics, Inc. Local delivery of drugs from self assembled coatings
JP2013521836A (ja) * 2010-03-03 2013-06-13 エドワーズ ライフサイエンシーズ コーポレイション 抗凝固輸液流体源
GB201004101D0 (en) 2010-03-12 2010-04-28 Carmeda Ab Immobilised biological entities
EP2569026A1 (en) * 2010-05-14 2013-03-20 Boston Scientific Scimed, Inc. Endoprosthesis
WO2012028310A2 (en) * 2010-08-31 2012-03-08 Avidal Vascular Gmbh Pharmaceutical compositions comprising a taxane
ES2673026T3 (es) * 2010-12-04 2018-06-19 Aachen Scientific International Pte. Ltd. Revestimiento y procedimiento de revestimiento para el balón de un catéter de balón, así como catéter de balón con balón revestido
JP5944925B2 (ja) 2011-01-28 2016-07-05 ザ ジェネラル ホスピタル コーポレイション 皮膚を再表面化するための方法および装置
US10278677B2 (en) 2011-01-28 2019-05-07 The General Hospital Corporation Apparatus and method for tissue biopsy
ES2518493T3 (es) 2011-04-07 2014-11-05 Fresenius Medical Care Deutschland Gmbh Hormona estimulante de melanocitos para suprimir reacciones inflamatorias en la hemodiálisis
ES2514322T3 (es) 2011-04-07 2014-10-28 Fresenius Medical Care Deutschland Gmbh Péptidos para suprimir reacciones de inflamación en hemodiálisis
TW201311774A (zh) * 2011-06-23 2013-03-16 Toray Industries 具有抗血液凝固作用的疏水性高分子化合物
BR112014001248B1 (pt) 2011-07-21 2020-12-08 The General Hospital Corporation aparelho e método para afetar o tecido adiposo subcutâneo
RU2484178C2 (ru) * 2011-09-08 2013-06-10 Федеральное Государственное Бюджетное Учреждение Науки Институт Биохимической Физики Им. Н.М. Эмануэля Российской Академии Наук (Ибхф Ран) Способ получения белковых покрытий на поверхности твердых тел, содержащих ионы металлов переменной валентности
US8669314B2 (en) 2012-02-03 2014-03-11 Sabic Innovative Plastics Ip B.V. Hydrolytic stability in polycarbonate compositions
CN104168927B (zh) * 2012-03-27 2016-10-05 泰尔茂株式会社 涂布组合物及医疗器械
US20130303983A1 (en) * 2012-05-09 2013-11-14 Cook Medical Technologies Llc Coated medical devices including a water-insoluble therapeutic agent
CN102691083B (zh) * 2012-05-29 2014-12-03 上海大学 一种改善金属材料表面血液相容性的电化学方法
DE102012010800A1 (de) * 2012-06-01 2013-12-05 Alexander Rübben Beschichtung von Ballonkathetern
US9395468B2 (en) 2012-08-27 2016-07-19 Ocular Dynamics, Llc Contact lens with a hydrophilic layer
WO2014112956A1 (en) 2013-01-17 2014-07-24 Center Odličnosti Polimerni Marteriali In Tehnologije Method for treatment of a vascular graft
CA2900505C (en) 2013-02-20 2023-10-24 Cytrellis Biosystems, Inc. Methods and devices for skin tightening
CN105263536B (zh) * 2013-03-15 2017-10-31 巴克斯特国际公司 活性剂在衬底上的固定
JP6513643B2 (ja) 2013-06-07 2019-05-15 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated トリヒドロキシフェニル基を含む化合物を使用する基体上の活性剤の固定化
US20160279297A1 (en) * 2013-10-22 2016-09-29 ConcieValve LLC Methods for inhibiting stenosis, obstruction, or calcification of a stented heart valve or bioprosthesis
AU2014348502B2 (en) 2013-11-15 2019-08-15 Tangible Science, Inc. Contact lens with a hydrophilic layer
IL229645A0 (en) * 2013-11-26 2014-03-31 Omrix Biopharmaceuticals Ltd A dry bandage containing thrombin and pectin
CN103721300B (zh) * 2013-12-19 2015-05-20 华中科技大学 一种抗凝血涂层材料及其制备方法
US11839698B2 (en) 2014-03-13 2023-12-12 W. L. Gore & Associates, Inc. Drug composition and coating
US10390838B1 (en) 2014-08-20 2019-08-27 Pneumrx, Inc. Tuned strength chronic obstructive pulmonary disease treatment
CA2966249C (en) * 2014-10-30 2019-06-18 Chengdu Baiyu Pharmaceutical Co., Ltd. Pharmaceutical composition containing ginkgolide b and xa factor inhibitor, preparation method thereof and use thereof
BR112017009805A2 (pt) 2014-11-14 2017-12-26 Cytrellis Biosystems Inc dispositivos e métodos para ablação da pele
CA2970010A1 (en) * 2014-12-09 2016-06-16 Karen Havenstrite Medical device coating with a biocompatible layer
US20170145475A1 (en) 2015-11-20 2017-05-25 Streck, Inc. Single spin process for blood plasma separation and plasma composition including preservative
US11166743B2 (en) 2016-03-29 2021-11-09 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing
CN106119820B (zh) * 2016-06-01 2018-06-22 华南理工大学 一种利用可控接枝技术提高材料表面血液相容性的方法
EP3258260B1 (en) 2016-06-16 2020-01-15 Lake Region Manufacturing, Inc. Composite column for use in high pressure liquid chromatography
BR112019005312A2 (pt) 2016-09-21 2019-07-16 Cytrellis Biosystems Inc dispositivos e métodos para a recomposição cosmética da pele
EP3529300A4 (en) 2016-10-18 2020-03-18 Evonik Canada Inc. PLASTIFIED PVC ADDITIVES WITH SURFACE-MODIFYING MACROMOLECULES AND ARTICLES MADE THEREOF
IT201700075956A1 (it) * 2017-07-12 2019-01-12 Mediplasma S R L Immobilizzazione covalente di Eparina su lenti a contatto (LAC) e dispositivi di interesse medico-chirurgico trattati via plasma
CN110891997B (zh) 2017-07-14 2022-05-24 费森尤斯医疗保健控股公司 利用改进的副产物去除来提供表面改性组合物的方法
CN107456611A (zh) * 2017-07-23 2017-12-12 北京化工大学 一种抗凝血复合涂层的制备方法
CN111372451B (zh) * 2017-10-19 2022-08-12 斯特雷克股份有限公司 用于胞外囊泡的溶血和凝血调节以及稳定化的组合物
CN109925536B (zh) * 2017-12-15 2021-01-26 先健科技(深圳)有限公司 可吸收铁基植入式器械
CN112638436A (zh) 2018-05-22 2021-04-09 界面生物公司 用于将药物递送至血管壁的组合物和方法
CN108715875B (zh) * 2018-05-30 2021-05-25 上海交通大学 酶化学法合成结构明确的硫酸肝素寡糖的方法
CN109293961B (zh) * 2018-09-25 2021-08-13 湖南博隽生物医药有限公司 一种心脏瓣膜用聚合物材料及其制备方法
CN109568676A (zh) * 2018-12-29 2019-04-05 张桂玲 一种抗菌超滑医用留置导管用材料
CN109821076B (zh) * 2019-03-13 2021-05-07 陕西师范大学 一种抗凝抗感染的多功能涂层的制备方法及抗凝抗感染的多功能材料
US11931482B2 (en) 2019-03-18 2024-03-19 Brown University Auranofin-releasing antibacterial and antibiofilm polyurethane intravascular catheter coatings
CN109806850B (zh) * 2019-03-25 2021-12-10 东华大学 一种具有吸附性能的粘胶无纺布材料及其制备方法
CN109943068B (zh) * 2019-03-28 2022-01-25 金旸(厦门)新材料科技有限公司 一种耐高温尼龙材料和电镀尼龙材料及其准备方法和应用
CN110506634B (zh) * 2019-09-29 2022-07-05 上海市农业科学院 一种鸢尾化学诱变剂量筛选方法
TWI749395B (zh) * 2019-11-08 2021-12-11 高鼎精密材料股份有限公司 具有高暢通率的高分子纖維管材結構的製備方法
CN110790970B (zh) * 2019-11-22 2022-08-12 辽宁万鑫富利新材料有限公司 一种高血液相容性pet复合薄膜材料的制备方法
BR112022010381A2 (pt) * 2019-11-30 2022-09-13 Smart Reactors Service Ltd Revestimento para dispositivos médicos
CN111729083B (zh) * 2020-04-03 2022-08-23 广州医科大学附属第二医院 内皮蛋白c受体的新用途
CN111644084A (zh) * 2020-06-15 2020-09-11 齐松松 一种改性羧甲基壳聚糖聚四氟乙烯纳滤膜及其制备方法
CN113171499A (zh) * 2021-03-17 2021-07-27 广东粤港澳大湾区国家纳米科技创新研究院 一种抗凝血材料、双层水凝胶管路及其制备方法和应用
CN115607750B (zh) * 2021-07-16 2024-02-23 中国科学院宁波材料技术与工程研究所 一种原位抗凝改性医用pvc材料、其制备方法及应用
CN113616861A (zh) * 2021-08-03 2021-11-09 广州维力医疗器械股份有限公司 逐层自组装复合抗凝血涂层、其制备方法及医疗器械
CN113648013A (zh) * 2021-08-25 2021-11-16 心凯诺医疗科技(上海)有限公司 一种血流导向密网支架
CN114042441B (zh) * 2021-12-09 2024-05-03 云南师范大学 在血液灌流树脂微球表面修饰并固载肝素的方法及其制备的吸附剂
CN114949347B (zh) * 2022-05-31 2023-05-12 四川大学 一种改性交联生物瓣膜及其制备方法和用途
CN115490827A (zh) * 2022-11-16 2022-12-20 北京新尖科技有限公司 聚碳酸酯聚二甲基硅氧烷型聚氨酯脲及制备方法
CN117696017B (zh) * 2024-02-05 2024-05-07 四川大学华西医院 一种血液净化吸附改性材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718862A (en) * 1996-04-24 1998-02-17 Hercules Incorporated Secondary shaping of ionically crosslinked polymer compositions for medical devices
US5767269A (en) * 1996-10-01 1998-06-16 Hamilton Civic Hospitals Research Development Inc. Processes for the preparation of low-affinity, low molecular weight heparins useful as antithrombotics
US6179817B1 (en) * 1995-02-22 2001-01-30 Boston Scientific Corporation Hybrid coating for medical devices
US20010000802A1 (en) * 1998-04-30 2001-05-03 Medtronic, Inc. Implantable system with drug-eluting cells for on-demand local drug delivery
US20020193516A1 (en) * 2001-03-30 2002-12-19 Bucevschi Mircea Dan Biocompatible, Biodegradable, water-absorbent material and methods for its preparation
US20030059454A1 (en) * 2001-09-24 2003-03-27 Barry James J. Optimized dosing for drug coated stents

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152513A (en) * 1977-06-01 1979-05-01 University Of Delaware Preparation of alkyl glycosides of amino sugars
DE2862107D1 (en) * 1977-12-02 1982-11-18 Takeda Chemical Industries Ltd Glucosamine-peptide derivatives and their pharmaceutical compositions
JPS56161803A (en) 1980-05-17 1981-12-12 Nitto Electric Ind Co Ltd Treatment of resin containing organic solution
US4572901A (en) * 1983-06-23 1986-02-25 Children's Hospital Medical Center Of Northern California Method and composition for protein immobilization
US4661345A (en) * 1985-02-26 1987-04-28 The Rockefeller University Method for treating pertussis
SE8501613D0 (sv) 1985-04-01 1985-04-01 Bio Carb Ab Foreningar for terapeutisk eller diagnostisk anvendning jemte forfarande for terapeutisk behandling
US5155110A (en) * 1987-10-27 1992-10-13 Warner-Lambert Company Fenamic acid hydroxamate derivatives having cyclooxygenase and 5-lipoxygenase inhibition
US5206318A (en) * 1989-04-20 1993-04-27 Mitsui Toatsu Chemicals, Inc. Styrene derivatives having N-acetylchito-oligosaccharide chains and method for the same
US5510077A (en) * 1992-03-19 1996-04-23 Dinh; Thomas Q. Method of making an intraluminal stent
US5583121A (en) 1994-01-12 1996-12-10 Michigan State University Non-anticoagulant chemically modified heparinoids for treating hypovolemic shock and related shock syndromes
WO1996001278A1 (fr) * 1994-07-01 1996-01-18 Seikagaku Corporation Procede pour produire un polysaccharide desulfate et une heparine desulfatee
US5997517A (en) * 1997-01-27 1999-12-07 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
DE19705366C2 (de) * 1997-02-12 2002-08-01 Fresenius Ag Trägermaterial zur Reinigung proteinhaltiger Lösungen, Verfahren zur Herstellung des Trägermaterials und Verwendung des Trägermaterials
DE19724869C2 (de) 1997-06-12 1999-05-12 Henkel Kgaa Verwendung von Citosanderivaten zur Oberflächenbeschichtung
US6306166B1 (en) * 1997-08-13 2001-10-23 Scimed Life Systems, Inc. Loading and release of water-insoluble drugs
FI974321A0 (fi) 1997-11-25 1997-11-25 Jenny Ja Antti Wihurin Rahasto Multipel heparinglykosaminoglykan och en proteoglykan innehaollande dessa
IT1296581B1 (it) * 1997-11-28 1999-07-14 Istituto Scient Di Chimica E B Materiali polimerici non trombogenici e ad esaltata compatibilita' con fluidi e tessuti organici
US5922692A (en) * 1998-03-11 1999-07-13 Marino; Richard P. Concentration of glycosaminoglycans and precursors thereto in food products
JP4583597B2 (ja) * 1998-05-05 2010-11-17 ボストン サイエンティフィック リミテッド 末端が滑らかなステント
ITPD980169A1 (it) 1998-07-06 2000-01-06 Fidia Advanced Biopolymers Srl Ammidi dell'acido ialuronico e dei suoi derivati e processo per la loro preparazione.
EP1105169A1 (en) * 1998-08-20 2001-06-13 Cook Incorporated Coated implantable medical device
AU1923200A (en) * 1999-01-22 2000-08-07 Dow Chemical Company, The Surface modified divinylbenzene resin having a hemocompatible coating
DE19908318A1 (de) * 1999-02-26 2000-08-31 Michael Hoffmann Hämokompatible Oberflächen und Verfahren zu deren Herstellung
US6258121B1 (en) * 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US7781416B2 (en) * 2000-01-25 2010-08-24 Sigma-Tau Research Switzerland S.A. Derivatives of partially desulphated glycosaminoglycans as heparanase inhibitors, endowed with antiangiogenic activity and devoid of anticoagulating effect
EP1278559B1 (en) * 2000-04-28 2008-03-26 Baylor College Of Medicine Decellularised vascular prostheses
US6489311B1 (en) * 2000-05-02 2002-12-03 Charlotte-Mecklenburg Hospital Authoirty Method for the prevention of apoptosis
EP1175906B1 (en) * 2000-07-18 2005-11-09 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Blood flow improvers and thrombosis preventives or remedies comprising glucosamine
US6503538B1 (en) * 2000-08-30 2003-01-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US20020087123A1 (en) * 2001-01-02 2002-07-04 Hossainy Syed F.A. Adhesion of heparin-containing coatings to blood-contacting surfaces of medical devices
ES2327031T3 (es) * 2001-10-15 2009-10-23 Hemoteq Ag Recubrimiento de stents para impedir la restenosis.
BR0310008A (pt) * 2002-05-09 2005-02-15 Hemoteq Gmbh Preparação, método e uso de revestimentos hemocompatìveis para a prevenção de restenose

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6179817B1 (en) * 1995-02-22 2001-01-30 Boston Scientific Corporation Hybrid coating for medical devices
US5718862A (en) * 1996-04-24 1998-02-17 Hercules Incorporated Secondary shaping of ionically crosslinked polymer compositions for medical devices
US5767269A (en) * 1996-10-01 1998-06-16 Hamilton Civic Hospitals Research Development Inc. Processes for the preparation of low-affinity, low molecular weight heparins useful as antithrombotics
US20010000802A1 (en) * 1998-04-30 2001-05-03 Medtronic, Inc. Implantable system with drug-eluting cells for on-demand local drug delivery
US20020193516A1 (en) * 2001-03-30 2002-12-19 Bucevschi Mircea Dan Biocompatible, Biodegradable, water-absorbent material and methods for its preparation
US20030059454A1 (en) * 2001-09-24 2003-03-27 Barry James J. Optimized dosing for drug coated stents

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Casu, b., Grazioli, G., Hannesson, H., Jann, B., Jann, K., Lindahl, U., Naggi, A., Oreste, P., Razi, N., Torri, G., Tursi, F., Zoppetti, G. (1994) Biologically Active, Heparan Sulfate-Like Species by Combined Chemical and Enzymic Modification of the Escherichia coli Polysaccharide K5. Carbohydrate Letters, vol. 1, p. 107-114. *
Hirano, S., Ohashi, W. (1976) N-Acylation of N-Desulfated Heparin. Agricultural and Biological Chemistry, vol. 40, no. 12, p. 2501-2502. *

Cited By (184)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8527025B1 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US7835777B2 (en) 1997-03-04 2010-11-16 Dexcom, Inc. Device and method for determining analyte levels
US7974672B2 (en) 1997-03-04 2011-07-05 Dexcom, Inc. Device and method for determining analyte levels
US7970448B2 (en) 1997-03-04 2011-06-28 Dexcom, Inc. Device and method for determining analyte levels
US9339223B2 (en) 1997-03-04 2016-05-17 Dexcom, Inc. Device and method for determining analyte levels
US9439589B2 (en) 1997-03-04 2016-09-13 Dexcom, Inc. Device and method for determining analyte levels
US7792562B2 (en) 1997-03-04 2010-09-07 Dexcom, Inc. Device and method for determining analyte levels
US8676288B2 (en) 1997-03-04 2014-03-18 Dexcom, Inc. Device and method for determining analyte levels
US9931067B2 (en) 1997-03-04 2018-04-03 Dexcom, Inc. Device and method for determining analyte levels
US9328371B2 (en) 2001-07-27 2016-05-03 Dexcom, Inc. Sensor head for use with implantable devices
US9804114B2 (en) 2001-07-27 2017-10-31 Dexcom, Inc. Sensor head for use with implantable devices
US8509871B2 (en) 2001-07-27 2013-08-13 Dexcom, Inc. Sensor head for use with implantable devices
US20110009955A1 (en) * 2002-05-09 2011-01-13 Hemoteq Gmbh Compounds and method for coating surfaces in a hemocompatible manner
US8784862B2 (en) 2002-05-09 2014-07-22 Hemoteq Ag Compounds and method for coating surfaces in a hemocompatible manner
US20040234575A1 (en) * 2002-05-09 2004-11-25 Roland Horres Medical products comprising a haemocompatible coating, production and use thereof
US8064977B2 (en) 2002-05-22 2011-11-22 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US9801574B2 (en) 2002-05-22 2017-10-31 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US10154807B2 (en) 2002-05-22 2018-12-18 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US10052051B2 (en) 2002-05-22 2018-08-21 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US9179869B2 (en) 2002-05-22 2015-11-10 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US9549693B2 (en) 2002-05-22 2017-01-24 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US8050731B2 (en) 2002-05-22 2011-11-01 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US11020026B2 (en) 2002-05-22 2021-06-01 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US8053018B2 (en) 2002-05-22 2011-11-08 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US8865249B2 (en) 2002-05-22 2014-10-21 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US8543184B2 (en) 2002-05-22 2013-09-24 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US20060165962A1 (en) * 2003-06-21 2006-07-27 Borck Alexander J Coating system for implants for increasing tissue compatibility
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US10376143B2 (en) 2003-07-25 2019-08-13 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8255030B2 (en) 2003-07-25 2012-08-28 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US7828728B2 (en) 2003-07-25 2010-11-09 Dexcom, Inc. Analyte sensor
US8255033B2 (en) 2003-07-25 2012-08-28 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US9993186B2 (en) 2003-07-25 2018-06-12 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US10610140B2 (en) 2003-07-25 2020-04-07 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US9597027B2 (en) 2003-07-25 2017-03-21 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US8909314B2 (en) 2003-07-25 2014-12-09 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8255032B2 (en) 2003-07-25 2012-08-28 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US7761130B2 (en) 2003-07-25 2010-07-20 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20050129731A1 (en) * 2003-11-03 2005-06-16 Roland Horres Biocompatible, biostable coating of medical surfaces
US8929968B2 (en) 2003-12-05 2015-01-06 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US10188333B2 (en) 2003-12-05 2019-01-29 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20070213382A1 (en) * 2004-05-03 2007-09-13 Susilo Rudy 2-methylthiazolidine-2, 4-dicarboxylic acid-containing combination preparations
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US9138337B2 (en) 2004-06-30 2015-09-22 Abbott Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8709469B2 (en) 2004-06-30 2014-04-29 Abbott Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US20100322992A1 (en) * 2004-06-30 2010-12-23 Stephen Dugan Anti-Proliferative And Anti-Inflammatory Agent Combination For Treatment Of Vascular Disorders With An Implantable Medical Device
US9566373B2 (en) 2004-06-30 2017-02-14 Abbott Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7885697B2 (en) 2004-07-13 2011-02-08 Dexcom, Inc. Transcutaneous analyte sensor
US11064917B2 (en) 2004-07-13 2021-07-20 Dexcom, Inc. Analyte sensor
US10709363B2 (en) 2004-07-13 2020-07-14 Dexcom, Inc. Analyte sensor
US10993641B2 (en) 2004-07-13 2021-05-04 Dexcom, Inc. Analyte sensor
US10993642B2 (en) 2004-07-13 2021-05-04 Dexcom, Inc. Analyte sensor
US10980452B2 (en) 2004-07-13 2021-04-20 Dexcom, Inc. Analyte sensor
US11026605B1 (en) 2004-07-13 2021-06-08 Dexcom, Inc. Analyte sensor
US10932700B2 (en) 2004-07-13 2021-03-02 Dexcom, Inc. Analyte sensor
US11045120B2 (en) 2004-07-13 2021-06-29 Dexcom, Inc. Analyte sensor
US10827956B2 (en) 2004-07-13 2020-11-10 Dexcom, Inc. Analyte sensor
US10799159B2 (en) 2004-07-13 2020-10-13 Dexcom, Inc. Analyte sensor
US10709362B2 (en) 2004-07-13 2020-07-14 Dexcom, Inc. Analyte sensor
US8792953B2 (en) 2004-07-13 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US10722152B2 (en) 2004-07-13 2020-07-28 Dexcom, Inc. Analyte sensor
US9414777B2 (en) 2004-07-13 2016-08-16 Dexcom, Inc. Transcutaneous analyte sensor
US10813576B2 (en) 2004-07-13 2020-10-27 Dexcom, Inc. Analyte sensor
US10918315B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US11883164B2 (en) 2004-07-13 2024-01-30 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10524703B2 (en) 2004-07-13 2020-01-07 Dexcom, Inc. Transcutaneous analyte sensor
US10918313B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10918314B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US9986942B2 (en) 2004-07-13 2018-06-05 Dexcom, Inc. Analyte sensor
US10799158B2 (en) 2004-07-13 2020-10-13 Dexcom, Inc. Analyte sensor
US20060128777A1 (en) * 2004-11-05 2006-06-15 Bendall Heather H Cancer treatments
US20090209606A1 (en) * 2004-11-05 2009-08-20 Heather Helene Bendall Cancer Treatments
US8461350B2 (en) 2005-01-14 2013-06-11 Cephalon, Inc. Bendamustine pharmaceutical compositions
US8791270B2 (en) 2005-01-14 2014-07-29 Cephalon, Inc. Bendamustine pharmaceutical compositions
US8436190B2 (en) 2005-01-14 2013-05-07 Cephalon, Inc. Bendamustine pharmaceutical compositions
US8895756B2 (en) 2005-01-14 2014-11-25 Cephalon, Inc. Bendamustine pharmaceutical compositions
US8609863B2 (en) 2005-01-14 2013-12-17 Cephalon, Inc. Bendamustine pharmaceutical compositions
US20060159713A1 (en) * 2005-01-14 2006-07-20 Cephalon, Inc. Bendamustine pharmaceutical compositions
US10925524B2 (en) 2005-03-10 2021-02-23 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10856787B2 (en) 2005-03-10 2020-12-08 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11051726B2 (en) 2005-03-10 2021-07-06 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918318B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10617336B2 (en) 2005-03-10 2020-04-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918317B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610136B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10743801B2 (en) 2005-03-10 2020-08-18 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10898114B2 (en) 2005-03-10 2021-01-26 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918316B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10709364B2 (en) 2005-03-10 2020-07-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11000213B2 (en) 2005-03-10 2021-05-11 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610135B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610137B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10716498B2 (en) 2005-03-10 2020-07-21 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10300507B2 (en) 2005-05-05 2019-05-28 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US10813577B2 (en) 2005-06-21 2020-10-27 Dexcom, Inc. Analyte sensor
US20080299170A1 (en) * 2005-07-21 2008-12-04 Aston University Medical Devices and Coatings Therefor
US20070048350A1 (en) * 2005-08-31 2007-03-01 Robert Falotico Antithrombotic coating for drug eluting medical devices
EP1759724A1 (en) * 2005-08-31 2007-03-07 Cordis Corporation Antithrombotic coating for drug eluting medical devices
US7947302B2 (en) 2005-08-31 2011-05-24 Cordis Corporation Antithrombotic coating for drug eluting medical devices
US20090311299A1 (en) * 2005-08-31 2009-12-17 Robert Falotico Antithrombotic coating for drug eluting medical devices
US20070142905A1 (en) * 2005-12-16 2007-06-21 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20070207183A1 (en) * 2006-01-05 2007-09-06 Med Institute, Inc. Zein coated medical device
US20070212387A1 (en) * 2006-03-08 2007-09-13 Sahajanand Medical Technologies Pvt. Ltd. Coatings for implantable medical devices
US20070212386A1 (en) * 2006-03-08 2007-09-13 Sahajanand Medical Technologies Pvt. Ltd. Coatings for implantable medical devices
US20070212393A1 (en) * 2006-03-08 2007-09-13 Sahajanand Medical Technologies Pvt. Ltd. Compositions and coatings for implantable medical devices
US20070254002A1 (en) * 2006-04-26 2007-11-01 Sheng-Qian Wu Biocompatible devices coated with activated protein C
US11850333B2 (en) 2006-04-26 2023-12-26 Micell Medtech Inc. Coatings containing multiple drugs
US11007307B2 (en) 2006-04-26 2021-05-18 Micell Technologies, Inc. Coatings containing multiple drugs
US8961901B2 (en) 2006-08-02 2015-02-24 Roche Diagnostics Operations, Inc. Microfluidic system and coating method therefor
EP1887355A1 (de) * 2006-08-02 2008-02-13 F.Hoffmann-La Roche Ag Mikrofluidiksystem und Beschichtungsverfahren dafür
US11399745B2 (en) 2006-10-04 2022-08-02 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20100062262A1 (en) * 2007-01-16 2010-03-11 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Aqueous solution composition
EP2105459A4 (en) * 2007-01-16 2013-05-22 Dainichiseika Color Chem AQUEOUS SOLUTION COMPOSITION
EP2105459A1 (en) * 2007-01-16 2009-09-30 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Aqueous solution composition
US9359718B2 (en) 2007-01-16 2016-06-07 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Aqueous solution composition
US8597720B2 (en) 2007-01-21 2013-12-03 Hemoteq Ag Medical product for treating stenosis of body passages and for preventing threatening restenosis
US20100129423A1 (en) * 2007-04-19 2010-05-27 Medovent Gmbh Device made at least partially of n-acetylchitosan with controlled biodissolution
WO2008128567A1 (en) * 2007-04-19 2008-10-30 Medovent Gmbh Device made at least partially of n-acetylchitosan with controlled biodissolution
US10791928B2 (en) 2007-05-18 2020-10-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US20100161021A1 (en) * 2007-06-07 2010-06-24 National University Corporation Kanazawa University Myocardial pad
US9192697B2 (en) 2007-07-03 2015-11-24 Hemoteq Ag Balloon catheter for treating stenosis of body passages and for preventing threatening restenosis
US8070798B2 (en) 2007-07-20 2011-12-06 Josiah Wilcox Drug eluting medical device and method
US8968392B2 (en) 2007-09-04 2015-03-03 Japan Stent Technology Co., Ltd. Method of inhibiting vascular intimal hyperplasia using stent
US8641756B2 (en) 2007-09-04 2014-02-04 Japan Stent Technology Co., Ltd. Sustained drug-releasing stent
US9040111B2 (en) 2007-09-04 2015-05-26 Japan Stent Technology Co., Ltd. Method of making a stent
US20090092664A1 (en) * 2007-10-08 2009-04-09 University Of Kentucky Research Foundation Polymer-metal chelator conjugates and uses thereof
US20090258050A1 (en) * 2007-11-20 2009-10-15 Med Institute, Inc. Controlled Drug Delivery Using a Zein Layer Modified with Levulinic Acid
US8523937B2 (en) 2007-11-20 2013-09-03 Cook Medical Technologies Llc Controlled drug delivery using a zein layer modified with levulinic acid
US8870813B2 (en) 2007-12-18 2014-10-28 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US8317776B2 (en) 2007-12-18 2012-11-27 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US8403881B2 (en) 2007-12-18 2013-03-26 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US9717896B2 (en) 2007-12-18 2017-08-01 Gearbox, Llc Treatment indications informed by a priori implant information
US8409132B2 (en) 2007-12-18 2013-04-02 The Invention Science Fund I, Llc Treatment indications informed by a priori implant information
US8445524B2 (en) 2008-03-26 2013-05-21 Cephalon, Inc. Solid forms of bendamustine hydrochloride
US10517852B2 (en) 2008-03-26 2019-12-31 Cephalon, Inc. Solid forms of bendamustine hydrochloride
US8669279B2 (en) 2008-03-26 2014-03-11 Cephalon, Inc. Solid forms of bendamustine hydrochloride
US20090264488A1 (en) * 2008-03-26 2009-10-22 Cephalon, Inc. Novel solid forms of bendamustine hydrochloride
US10039750B2 (en) 2008-03-26 2018-08-07 Cephalon, Inc. Solid forms of bendamustine hydrochloride
US8883836B2 (en) 2008-03-26 2014-11-11 Cephalon, Inc. Solid forms of bendamustine hydrochloride
US9533955B2 (en) 2008-03-26 2017-01-03 Cephalon, Inc. Solid forms of bendamustine hydrochloride
US9566026B2 (en) 2008-03-28 2017-02-14 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9173607B2 (en) 2008-03-28 2015-11-03 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11147483B2 (en) 2008-03-28 2021-10-19 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US10143410B2 (en) 2008-03-28 2018-12-04 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8954128B2 (en) 2008-03-28 2015-02-10 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9173606B2 (en) 2008-03-28 2015-11-03 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9549699B2 (en) 2008-03-28 2017-01-24 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9572523B2 (en) 2008-03-28 2017-02-21 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9693721B2 (en) 2008-03-28 2017-07-04 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8636670B2 (en) 2008-05-13 2014-01-28 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US8309520B2 (en) 2008-05-30 2012-11-13 Ls Medcap Gmbh Fully synthetic albumin analog
US20110117139A1 (en) * 2008-05-30 2011-05-19 Ls Medcap Gmbh Fully synthetic albumin analog
US10028683B2 (en) 2008-09-19 2018-07-24 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US11918354B2 (en) 2008-09-19 2024-03-05 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US8560039B2 (en) 2008-09-19 2013-10-15 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US10561352B2 (en) 2008-09-19 2020-02-18 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US9339222B2 (en) 2008-09-19 2016-05-17 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US10028684B2 (en) 2008-09-19 2018-07-24 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US20110190363A1 (en) * 2008-09-25 2011-08-04 Cephalon, Inc. Liquid formulations of bendamustine
US8344006B2 (en) 2008-09-25 2013-01-01 Cephalon, Inc. Liquid formulations of bendamustine
US8076366B2 (en) 2009-01-15 2011-12-13 Cephalon, Inc. Forms of bendamustine free base
US20100210701A1 (en) * 2009-01-15 2010-08-19 Cephalon, Inc. Novel Forms of Bendamustine Free Base
US8591571B2 (en) 2009-03-02 2013-11-26 Japan Stent Technology Co., Ltd. Drug-eluting stent
US20110301697A1 (en) * 2009-04-10 2011-12-08 Hemoteq Ag Manufacture, method and use of drug-eluting medical devices for permanently keeping blood vessels open
US20100272773A1 (en) * 2009-04-24 2010-10-28 Boston Scientific Scimed, Inc. Use of Drug Polymorphs to Achieve Controlled Drug Delivery From a Coated Medical Device
US20110008260A1 (en) * 2009-07-10 2011-01-13 Boston Scientific Scimed, Inc. Use of Nanocrystals for Drug Delivery from a Balloon
US10369256B2 (en) 2009-07-10 2019-08-06 Boston Scientific Scimed, Inc. Use of nanocrystals for drug delivery from a balloon
US11278648B2 (en) 2009-07-10 2022-03-22 Boston Scientific Scimed, Inc. Use of nanocrystals for drug delivery from a balloon
US10080821B2 (en) 2009-07-17 2018-09-25 Boston Scientific Scimed, Inc. Nucleation of drug delivery balloons to provide improved crystal size and density
US20130136657A1 (en) * 2010-07-23 2013-05-30 Roche Diagnostics Operations, Inc. Method for hydrophilizing surfaces of fluidic components and parts containing such components
US9623440B2 (en) * 2010-07-23 2017-04-18 Roche Diagnostics Operations, Inc. Method for hydrophilizing surfaces of fluidic components and parts containing such components
US8889211B2 (en) 2010-09-02 2014-11-18 Boston Scientific Scimed, Inc. Coating process for drug delivery balloons using heat-induced rewrap memory
CN109847403A (zh) * 2011-01-06 2019-06-07 西托索尔本茨公司 用于从全血和血液制品中移除杂质的聚合物吸附剂
WO2012094565A1 (en) * 2011-01-06 2012-07-12 Cytosorbents Corporation Polymeric sorbent for removal of impurities from whole blood and blood products
CN103533830A (zh) * 2011-01-06 2014-01-22 西托索尔本茨公司 用于从全血和血液制品中移除杂质的聚合物吸附剂
US10064406B2 (en) 2011-01-06 2018-09-04 Cytosorbents Corporation Polymeric sorbent for removal of impurities from whole blood and blood products
US8669360B2 (en) 2011-08-05 2014-03-11 Boston Scientific Scimed, Inc. Methods of converting amorphous drug substance into crystalline form
US9056152B2 (en) 2011-08-25 2015-06-16 Boston Scientific Scimed, Inc. Medical device with crystalline drug coating

Also Published As

Publication number Publication date
CN1318103C (zh) 2007-05-30
NZ536331A (en) 2007-08-31
US8784862B2 (en) 2014-07-22
CA2484374A1 (en) 2003-11-20
IL164948A0 (en) 2005-12-18
EP1501566A1 (de) 2005-02-02
PT1501566E (pt) 2008-11-13
CN1665554B (zh) 2011-05-18
ZA200408791B (en) 2005-07-27
CA2484269A1 (en) 2003-11-20
ES2276065T3 (es) 2007-06-16
DK1501565T3 (da) 2007-03-19
BR0310008A (pt) 2005-02-15
JP4208830B2 (ja) 2009-01-14
PL208277B1 (pl) 2011-04-29
SI1501566T1 (sl) 2008-12-31
PL208115B1 (pl) 2011-03-31
WO2003094991A1 (de) 2003-11-20
ZA200408757B (en) 2005-07-27
JP2005528149A (ja) 2005-09-22
JP2005534724A (ja) 2005-11-17
AU2003240391A1 (en) 2003-11-11
ATE344064T1 (de) 2006-11-15
PL373226A1 (pl) 2005-08-22
AU2003240391B8 (en) 2009-08-06
EP1501566B1 (de) 2008-08-13
EA200401485A1 (ru) 2005-06-30
CA2484269C (en) 2012-01-17
CN1665554A (zh) 2005-09-07
DE10393059D2 (de) 2005-05-04
JP2010189649A (ja) 2010-09-02
BR0311446A (pt) 2005-03-15
ATE404232T1 (de) 2008-08-15
ES2321082T3 (es) 2009-06-02
AU2003243885A1 (en) 2003-11-11
US20040234575A1 (en) 2004-11-25
AU2003243885B2 (en) 2007-05-24
CN1543362A (zh) 2004-11-03
DE10393060D2 (de) 2005-05-04
US20110009955A1 (en) 2011-01-13
AU2003240391B2 (en) 2007-05-17
AU2003243885B8 (en) 2009-08-06
PL373225A1 (pl) 2005-08-22
CA2484374C (en) 2011-05-17
MXPA04011112A (es) 2005-07-14
EP1501565A1 (de) 2005-02-02
MXPA04011111A (es) 2005-07-14
JP5106750B2 (ja) 2012-12-26
WO2003094990A1 (de) 2003-11-20
DE50305580D1 (de) 2006-12-14
NZ536330A (en) 2007-08-31
IL164947A (en) 2009-06-15
EA009092B1 (ru) 2007-10-26
PT1501565E (pt) 2007-02-28
EP1501565B1 (de) 2006-11-02
DE50310322D1 (de) 2008-09-25
DK1501566T3 (da) 2008-12-15
IL164947A0 (en) 2005-12-18

Similar Documents

Publication Publication Date Title
US8784862B2 (en) Compounds and method for coating surfaces in a hemocompatible manner
US8679520B2 (en) Coating of stents for preventing restenosis
JP2005534724A5 (pl)
KR100859995B1 (ko) 혈친화성 방식으로 표면을 코팅하기 위한 화합물 및 방법

Legal Events

Date Code Title Description
AS Assignment

Owner name: HEMOTEQ GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HORRES, ROLAND;LINSSEN, MARITA KATARINA;HOFFMANN, MICHAEL;AND OTHERS;REEL/FRAME:016505/0826;SIGNING DATES FROM 20041103 TO 20041105

AS Assignment

Owner name: HEMOTEQ AG, GERMANY

Free format text: CHANGE OF NAME;ASSIGNORS:HORRES, ROLAND;LINSSEN, MARITA KATARINA;HOFFMANN, MICHAEL;AND OTHERS;SIGNING DATES FROM 20041103 TO 20041105;REEL/FRAME:024761/0642

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION