CN110790970B - 一种高血液相容性pet复合薄膜材料的制备方法 - Google Patents

一种高血液相容性pet复合薄膜材料的制备方法 Download PDF

Info

Publication number
CN110790970B
CN110790970B CN201911158341.0A CN201911158341A CN110790970B CN 110790970 B CN110790970 B CN 110790970B CN 201911158341 A CN201911158341 A CN 201911158341A CN 110790970 B CN110790970 B CN 110790970B
Authority
CN
China
Prior art keywords
weight
solution
parts
pet
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911158341.0A
Other languages
English (en)
Other versions
CN110790970A (zh
Inventor
陈志威
岳琳霞
邱煌庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Wanxin Fuli New Material Co ltd
Original Assignee
Liaoning Wanxin Fuli New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Wanxin Fuli New Material Co ltd filed Critical Liaoning Wanxin Fuli New Material Co ltd
Priority to CN201911158341.0A priority Critical patent/CN110790970B/zh
Publication of CN110790970A publication Critical patent/CN110790970A/zh
Application granted granted Critical
Publication of CN110790970B publication Critical patent/CN110790970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

本发明公开了一种高血液相容性PET复合薄膜材料的制备方法,属于塑料薄膜技术领域。本发明技术方案采用牛骨为原料制备胶原蛋白多肽纤维材料,所以本发明技术方案以此作为主要的材料对PET材料表面进行接枝处理,通过如果将胶原蛋白肽固定在PET薄膜的表面,不仅可以保持PET薄膜原有的优异性能不变,同时在PET薄膜的表面有与人体皮肤组织相似的胶原蛋白的存在,提高了PET薄膜材料与皮肤的亲和性以及其生物相容性,同时本发明技术方案酶解处理蛋白质材料,使其形成多肽纤维,进一步提高生物吸收和使用的效率,进一步改善材料的相容性性能。

Description

一种高血液相容性PET复合薄膜材料的制备方法
技术领域
本发明公开了一种高血液相容性PET复合薄膜材料的制备方法,属于塑料薄膜技术领域。
背景技术
PET是乳白色或浅黄色高度结晶性的聚合物,表面平滑而有光泽,分子结构高度对称,具有一定的结晶取向能力,故而具有较高的成膜性,非晶态的PET具有良好的光学透明性。另外PET基材具有耐蠕变、抗疲劳、磨耗小、硬度高、韧性好、电绝缘性能佳、无毒、耐气候性、抗化学药品稳定性好、吸水率低、耐弱酸和有机溶剂以及尺寸稳定等优点。PET基材众多的优良特性决定了其在生活和生产中的广泛应用和重要地位。但是,PET表面能比较低,表面疏水且抗静电性差,使其在应用领域受到一定的限制。因此,人们设想在确保PET基材本身优异性能不受到影响的情况下,可以同时改善PET基材的表面性能,以拓宽其应用范围,满足人们不同的需求。聚合物表面改性技术由于其可在不改变基体材料基本性质的前提下,改善聚合物表面的性能,受到了人们越来越多的关注。目前,关于聚酯基材表面改性方面的研究有很多,其中比较常用的聚酯材料表面改性的方法有等离子体改性、紫外光辐照表面接枝、化学法改性,湿化学法改性等。随着生活水平不断改善,人们对生活质量的要求越来越高,对日常生活用品的质量和性能的要求也越来越高,纺织品作为一种日常生活用品,如何改善纺织材料表面的柔软性,提高基材同皮肤的亲和性,提高纺织品的舒适性成为研究的热点。而PET材料作为一种常见纺织行业的原材料,是人造单丝的重要纤维原材料,具有强度高、模量高、热稳定等优异的性能,但PET表面疏水,抗静电性较差,同时PET纤维表面的活性较低,手感蜡质感强,与皮肤亲和性差,使其的应用领域受到了限制。对于人工血管或血管内支架的研究,目前认为最需要解决的问题是改进生物材料的血液相容性。影响生物材料血液相容性的因素包括:①生物材料表面特性:材料表面亲水性、几何形貌以及编织纤维的方式等;②生物材料的表面固定:粘附蛋白、多肽、细胞生长因子;③自体骨髓组织种植。在医用心血管高分子材料中,聚对苯二甲酸乙二醇酯(PET)由于分子结构高度对称性及对亚苯键的刚性,具有优良的机械和物理性能,对人体体液具有高抗渗透性,故常被用作人工血管、人工心脏瓣膜缝合环、心脏修补片、人工韧带和医用缝合线。但由于聚酯的分子结构对称,结晶度较高,结构中又没有高极性可反应基团,因此本征疏水,容易积累静电,植入体内时血液相容性差,临床应用的长期效果并不令人满意,所以对其相容性改性很有必要。
发明内容
本发明主要解决的技术问题是:针对传统的于聚酯的分子结构对称,结晶度较高,结构中又没有高极性可反应基团,因此本征疏水,容易积累静电,植入体内时血液相容性差的问题,提供了一种高血液相容性PET复合薄膜材料的制备方法。为了解决上述技术问题,本发明所采用的技术方案是:
(1)按重量份数计,分别称量45~50份去离子水、10~15份脱脂牛骨颗粒、3~5份0.5mol/L氢氧化钠溶液和1~2份0.5mol/LEDTA-Na2溶液,搅拌混合并静置,得混合液,按质量比1:10,将质量分数5%乙酸溶液滴加至混合液中,搅拌混合并静置,离心分离,收集上清液;
(2)按质量比1:8,将氯化钠添加至上清液中,静置陈化,收集下层沉淀并按质量比1:3,将下层沉淀添加至缓冲液中,搅拌混合并将胃蛋白酶添加至缓冲液中,保温酶解后,保温水浴灭酶处理,离心分离并收集上层清液,得酶解凝胶液;
(3)取PET薄膜并洗涤处理,待洗涤完成后,再将其置于去离子水中,升温加热,对水中通臭氧处理,待通入30min后,取出PET薄膜并真空干燥,得干燥改性薄膜;
(4)在按重量份数计,分别称量45~50份去离子水、3~5份次氯酸钠和1~2份氢氧化钠置于烧杯中,搅拌混合得基体改性液,将干燥改性薄膜置于基体改性液中,冰水浴条件下反应,收集得预处理薄膜并将其浸泡至酶解凝胶液中,静置后,过滤并收集接枝改性PET薄膜,洗涤、干燥,静置冷却至室温,即可制备得所述的高血液相容性PET复合薄膜材料。
所述的脱脂牛骨颗粒制备步骤为取牛骨并真空冷冻干燥,收集干燥牛骨并破碎研磨,过500目筛,得粉碎牛骨颗粒,并按质量比1:10,将粉碎牛骨颗粒添加至异丙醇中,搅拌混合并置于室温下搅拌混合10~15min,过滤并收集滤饼,用去离子水冲洗3~5次后,得脱脂牛骨颗粒。
所述的质量分数5%乙酸溶液滴加速率为2~3mL/min。
所述的缓冲液为pH为2.0的0.05mol/L甘氨酸/盐酸缓冲液。
所述的胃蛋白酶添加量为100U/g。
所述的洗涤处理为用1mol/L氢氧化钠溶液、1mol/L碳酸钠溶液和去离子水各冲洗3~5次。
所述的臭氧通入速率为45~50mL/min。
所述的冰水浴条件下反应温度为0~5℃。
本发明的有益效果是:
(1)本发明技术方案采用牛骨为原料制备胶原蛋白多肽纤维材料,由于胶原蛋白是动物体内含量最多的蛋白质广泛存在于动物骨骼、肌腱、软骨、皮肤及其它结缔组织中,参与细胞的迁移、分化和增殖,使骨腱、软骨和皮肤具有一定的机械强度因其具有较弱的抗原性和良好的生物相容性,在烧伤、创伤、眼角膜疾病、美容、硬组织修复、创面止血等医药卫生领域用途广泛,但是胶原蛋白的分子量大,难以被人体直接吸收,必须酶解成小分子肽和氨基酸,才能被吸收利用,再经过复杂的生物化学反应,最后合成满足各器官结缔组织所需的胶原蛋白,胶原蛋白肽是胶原蛋白经过降解所得到的介于氨基酸和蛋白质之间的一类化合物,虽然其与胶原蛋白只有肽链长短之别,但是其除保存了胶原蛋白本身特性之外,还具有了更显著的生理活性,所以本发明技术方案以此作为主要的材料对PET材料表面进行接枝处理,通过如果将胶原蛋白肽固定在PET薄膜的表面,不仅可以保持PET薄膜原有的优异性能不变,同时在PET薄膜的表面有与人体皮肤组织相似的胶原蛋白的存在,提高了PET薄膜材料与皮肤的亲和性以及其生物相容性,同时本发明技术方案酶解处理蛋白质材料,使其形成多肽纤维,进一步提高生物吸收和使用的效率,进一步改善材料的相容性性能;
(2)本发明技术方案采用臭氧改性PET薄膜材料,经臭氧处理的薄膜表面粗糙不同,形成有效的间隙孔洞结构,这样粗糙不平的表面不仅能使后续的接枝胶原多肽纤维有更大的接触面积,由于一些锚固点的存在还能提高包覆改性薄膜与PRT薄膜材料之间的结合力,使其使用性能大大提高。
具体实施方式
取牛骨并真空冷冻干燥,收集干燥牛骨并破碎研磨,过500目筛,得粉碎牛骨颗粒,并按质量比1:10,将粉碎牛骨颗粒添加至异丙醇中,搅拌混合并置于室温下搅拌混合10~15min,过滤并收集滤饼,用去离子水冲洗3~5次后,得脱脂牛骨颗粒并按重量份数计,分别称量45~50份去离子水、10~15份脱脂牛骨颗粒、3~5份0.5mol/L氢氧化钠溶液和1~2份0.5mol/LEDTA-Na2溶液,搅拌混合并静置3~5h,得混合液,按质量比1:10,将质量分数5%乙酸溶液滴加至混合液中,搅拌混合并静置20~24h,再在2500~3000r/min下离心分离10~15min,收集上清液并按质量比1:8,将氯化钠添加至上清液中,静置陈化6~8h后,收集下层沉淀并按质量比1:3,将下层沉淀添加至pH为2.0的0.05mol/L甘氨酸/盐酸缓冲液中,搅拌混合并按100U/g,将胃蛋白酶添加至缓冲液中,再在35~37℃下保温酶解3~5h后,再在95~100℃下保温水浴灭酶处理10~15min,在1500~2000r/min下离心分离并收集上层清液,得酶解凝胶液;取PET薄膜并分别用1mol/L氢氧化钠溶液、1mol/L碳酸钠溶液和去离子水各冲洗3~5次,再将其置于去离子水中,升温加热,在45~50℃下对水中通臭氧处理,控制臭氧通入速率为45~50mL/min,待通入30min后,取出PET薄膜并置于45~50℃下真空干燥1~2h,得干燥改性薄膜,在按重量份数计,分别称量45~50份去离子水、3~5份次氯酸钠和1~2份氢氧化钠置于烧杯中,搅拌混合得基体改性液,将干燥改性薄膜置于基体改性液中,在0~5℃冰水浴条件下反应3~5h后,收集得预处理薄膜并将其浸泡至酶解凝胶液中,在0~5℃下静置20~24h后,过滤并收集接枝改性PET薄膜,用去离子水冲洗3~5次后,再在45~50℃下真空干燥6~8h,静置冷却至室温,即可制备得所述的高血液相容性PET复合薄膜材料。
实施例1
取牛骨并真空冷冻干燥,收集干燥牛骨并破碎研磨,过500目筛,得粉碎牛骨颗粒,并按质量比1:10,将粉碎牛骨颗粒添加至异丙醇中,搅拌混合并置于室温下搅拌混合10min,过滤并收集滤饼,用去离子水冲洗3次后,得脱脂牛骨颗粒并按重量份数计,分别称量45份去离子水、10份脱脂牛骨颗粒、3份0.5mol/L氢氧化钠溶液和1份0.5mol/LEDTA-Na2溶液,搅拌混合并静置3h,得混合液,按质量比1:10,将质量分数5%乙酸溶液滴加至混合液中,搅拌混合并静置20h,再在2500r/min下离心分离10min,收集上清液并按质量比1:8,将氯化钠添加至上清液中,静置陈化6h后,收集下层沉淀并按质量比1:3,将下层沉淀添加至pH为2.0的0.05mol/L甘氨酸/盐酸缓冲液中,搅拌混合并按100U/g,将胃蛋白酶添加至缓冲液中,再在35℃下保温酶解3h后,再在95℃下保温水浴灭酶处理10min,在1500r/min下离心分离并收集上层清液,得酶解凝胶液;取PET薄膜并分别用1mol/L氢氧化钠溶液、1mol/L碳酸钠溶液和去离子水各冲洗3次,再将其置于去离子水中,升温加热,在45℃下对水中通臭氧处理,控制臭氧通入速率为45mL/min,待通入30min后,取出PET薄膜并置于45℃下真空干燥1h,得干燥改性薄膜,在按重量份数计,分别称量45份去离子水、3份次氯酸钠和1份氢氧化钠置于烧杯中,搅拌混合得基体改性液,将干燥改性薄膜置于基体改性液中,在0℃冰水浴条件下反应3h后,收集得预处理薄膜并将其浸泡至酶解凝胶液中,在0℃下静置20h后,过滤并收集接枝改性PET薄膜,用去离子水冲洗3次后,再在45℃下真空干燥6h,静置冷却至室温,即可制备得所述的高血液相容性PET复合薄膜材料。
实施例2
取牛骨并真空冷冻干燥,收集干燥牛骨并破碎研磨,过500目筛,得粉碎牛骨颗粒,并按质量比1:10,将粉碎牛骨颗粒添加至异丙醇中,搅拌混合并置于室温下搅拌混合12min,过滤并收集滤饼,用去离子水冲洗4次后,得脱脂牛骨颗粒并按重量份数计,分别称量47份去离子水、12份脱脂牛骨颗粒、1份0.5mol/L氢氧化钠溶液和1份0.5mol/LEDTA-Na2溶液,搅拌混合并静置4h,得混合液,按质量比1:10,将质量分数5%乙酸溶液滴加至混合液中,搅拌混合并静置22h,再在2700r/min下离心分离12min,收集上清液并按质量比1:8,将氯化钠添加至上清液中,静置陈化7h后,收集下层沉淀并按质量比1:3,将下层沉淀添加至pH为2.0的0.05mol/L甘氨酸/盐酸缓冲液中,搅拌混合并按100U/g,将胃蛋白酶添加至缓冲液中,再在36℃下保温酶解4h后,再在97℃下保温水浴灭酶处理12min,在1750r/min下离心分离并收集上层清液,得酶解凝胶液;取PET薄膜并分别用1mol/L氢氧化钠溶液、1mol/L碳酸钠溶液和去离子水各冲洗4次,再将其置于去离子水中,升温加热,在47℃下对水中通臭氧处理,控制臭氧通入速率为47mL/min,待通入30min后,取出PET薄膜并置于47℃下真空干燥1h,得干燥改性薄膜,在按重量份数计,分别称量47份去离子水、4份次氯酸钠和1份氢氧化钠置于烧杯中,搅拌混合得基体改性液,将干燥改性薄膜置于基体改性液中,在2℃冰水浴条件下反应4h后,收集得预处理薄膜并将其浸泡至酶解凝胶液中,在2℃下静置22h后,过滤并收集接枝改性PET薄膜,用去离子水冲洗4次后,再在47℃下真空干燥7h,静置冷却至室温,即可制备得所述的高血液相容性PET复合薄膜材料。
实施例3
取牛骨并真空冷冻干燥,收集干燥牛骨并破碎研磨,过500目筛,得粉碎牛骨颗粒,并按质量比1:10,将粉碎牛骨颗粒添加至异丙醇中,搅拌混合并置于室温下搅拌混合15min,过滤并收集滤饼,用去离子水冲洗5次后,得脱脂牛骨颗粒并按重量份数计,分别称量50份去离子水、15份脱脂牛骨颗粒、5份0.5mol/L氢氧化钠溶液和2份0.5mol/LEDTA-Na2溶液,搅拌混合并静置5h,得混合液,按质量比1:10,将质量分数5%乙酸溶液滴加至混合液中,搅拌混合并静置24h,再在3000r/min下离心分离15min,收集上清液并按质量比1:8,将氯化钠添加至上清液中,静置陈化8h后,收集下层沉淀并按质量比1:3,将下层沉淀添加至pH为2.0的0.05mol/L甘氨酸/盐酸缓冲液中,搅拌混合并按100U/g,将胃蛋白酶添加至缓冲液中,再在37℃下保温酶解5h后,再在100℃下保温水浴灭酶处理15min,在2000r/min下离心分离并收集上层清液,得酶解凝胶液;取PET薄膜并分别用1mol/L氢氧化钠溶液、1mol/L碳酸钠溶液和去离子水各冲洗5次,再将其置于去离子水中,升温加热,在50℃下对水中通臭氧处理,控制臭氧通入速率为50mL/min,待通入30min后,取出PET薄膜并置于50℃下真空干燥2h,得干燥改性薄膜,在按重量份数计,分别称量50份去离子水、5份次氯酸钠和2份氢氧化钠置于烧杯中,搅拌混合得基体改性液,将干燥改性薄膜置于基体改性液中,在5℃冰水浴条件下反应5h后,收集得预处理薄膜并将其浸泡至酶解凝胶液中,在5℃下静置24h后,过滤并收集接枝改性PET薄膜,用去离子水冲洗5次后,再在50℃下真空干燥8h,静置冷却至室温,即可制备得所述的高血液相容性PET复合薄膜材料。
将本发明技术方案制备的薄膜材料和未经改性的PET材料进行对照试验,具体试验数据见表1所示
试验步骤:取抗凝血液8mL加入10mL生理盐水稀释血液,取0.2mL稀释血液再加入10mL生理盐水得到样品A。
将光滑和激光处理的纳米沟槽PET膜样品剪成1cm×1cm小块,取样三份用超纯水、生理盐水依次充分洗净后置于硅烷化的烧杯底部,将A稀释血液加入,37℃水浴60min;
溶血率HR=(A-C)/(B-C)×100%
Figure BDA0002285398350000071
由上表可知本发明制备的薄膜材料具有优异的血液相容性。

Claims (1)

1.一种高血液相容性PET复合薄膜材料的制备方法,其特征在于具体制备步骤为:
(1)按重量份数计,分别称量45~50份去离子水、10~15份脱脂牛骨颗粒、3~5份0.5mol/L氢氧化钠溶液和1~2份0.5mol/LEDTA-Na2溶液,搅拌混合并静置,得混合液,按质量比1:10,将质量分数5%乙酸溶液滴加至混合液中,搅拌混合并静置,离心分离,收集上清液;
(2)按质量比1:8,将氯化钠添加至上清液中,静置陈化,收集下层沉淀并按质量比1:3,将下层沉淀添加至缓冲液中,搅拌混合并将胃蛋白酶添加至缓冲液中,保温酶解后,保温水浴灭酶处理,离心分离并收集上层清液,得酶解凝胶液;
(3)取PET薄膜并洗涤处理,待洗涤完成后,再将其置于去离子水中,升温加热,对水中通臭氧处理,待通入30min后,取出PET薄膜并真空干燥,得干燥改性薄膜;
(4)在按重量份数计,分别称量45~50份去离子水、3~5份次氯酸钠和1~2份氢氧化钠置于烧杯中,搅拌混合得基体改性液,将干燥改性薄膜置于基体改性液中,冰水浴条件下反应,收集得预处理薄膜并将其浸泡至酶解凝胶液中,静置后,过滤并收集接枝改性PET薄膜,洗涤、干燥,静置冷却至室温,即可制备得所述的高血液相容性PET复合薄膜材料;
所述的脱脂牛骨颗粒制备步骤为取牛骨并真空冷冻干燥,收集干燥牛骨并破碎研磨,过500目筛,得粉碎牛骨颗粒,并按质量比1:10,将粉碎牛骨颗粒添加至异丙醇中,搅拌混合并置于室温下搅拌混合10~15min,过滤并收集滤饼,用去离子水冲洗3~5次后,得脱脂牛骨颗粒;
所述的质量分数5%乙酸溶液滴加速率为2~3mL/min;
所述的缓冲液为pH为2.0的0.05mol/L甘氨酸/盐酸缓冲液;
所述的胃蛋白酶添加量为100U/g;
所述的洗涤处理为用1mol/L氢氧化钠溶液、1mol/L碳酸钠溶液和去离子水各冲洗3~5次;
所述的臭氧通入速率为45~50mL/min;
所述的冰水浴条件下反应温度为0~5℃。
CN201911158341.0A 2019-11-22 2019-11-22 一种高血液相容性pet复合薄膜材料的制备方法 Active CN110790970B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911158341.0A CN110790970B (zh) 2019-11-22 2019-11-22 一种高血液相容性pet复合薄膜材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911158341.0A CN110790970B (zh) 2019-11-22 2019-11-22 一种高血液相容性pet复合薄膜材料的制备方法

Publications (2)

Publication Number Publication Date
CN110790970A CN110790970A (zh) 2020-02-14
CN110790970B true CN110790970B (zh) 2022-08-12

Family

ID=69445966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911158341.0A Active CN110790970B (zh) 2019-11-22 2019-11-22 一种高血液相容性pet复合薄膜材料的制备方法

Country Status (1)

Country Link
CN (1) CN110790970B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1665554A (zh) * 2002-05-09 2005-09-07 汉莫堤克科技公司 具有血容性的化合物以及血容性表面的制备方法
WO2011155243A1 (ja) * 2010-06-07 2011-12-15 国立大学法人山形大学 骨・組織再生誘導用メンブレン
CN109762865A (zh) * 2019-03-25 2019-05-17 武汉轻工大学 一种牛骨胶原多肽的生产方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241655B2 (en) * 2004-05-12 2012-08-14 Surmodics, Inc. Coatings for medical articles including natural biodegradable polysaccharides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1665554A (zh) * 2002-05-09 2005-09-07 汉莫堤克科技公司 具有血容性的化合物以及血容性表面的制备方法
WO2011155243A1 (ja) * 2010-06-07 2011-12-15 国立大学法人山形大学 骨・組織再生誘導用メンブレン
CN109762865A (zh) * 2019-03-25 2019-05-17 武汉轻工大学 一种牛骨胶原多肽的生产方法

Also Published As

Publication number Publication date
CN110790970A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
Li et al. Enzymatic degradation behavior of porous silk fibroin sheets
Minoura et al. Attachment and growth of cultured fibroblast cells on silk protein matrices
FI91037C (fi) Bioliimat solujen ja kudosten kiinnittämiseen
Gotoh et al. Effect of the chemical modification of the arginyl residue in Bombyx mori silk fibroin on the attachment and growth of fibroblast cells
Mori et al. New silk protein: modification of silk protein by gene engineering for production of biomaterials
JP4463702B2 (ja) 伸縮性コラーゲン成形体、その製造方法および用途
JP2001503299A (ja) ジェニピンによる生物医学的材料の化学改変
US9090869B2 (en) Temperature responsive sheet that displays reversible properties and cell sheet production method using same
US7396912B2 (en) Collagen production method
WO2002034885A1 (fr) Produit contenant de la sericine, procedes de production et d'utilisation correspondants
JP2006257013A (ja) 魚鱗由来コラーゲンゲルとその作成方法
CN111253481B (zh) 一种仿生智能水凝胶的制备及应用
CN111393521A (zh) 一种水母胶原蛋白的提取方法
CN105457085B (zh) 一种胶原基贻贝仿生黏附性水凝胶及其制备方法
CN110790970B (zh) 一种高血液相容性pet复合薄膜材料的制备方法
CN1544097A (zh) 一种生物医用材料及其制备方法和用途
Pati et al. Fish collagen: A potential material for biomedical application
CN113144290B (zh) 一种促成骨和免疫调节的骨科材料表面涂层及其制备方法
CN1251768C (zh) 全天然体外成型硬组织修复材料制备方法
Ino et al. Improved physical and biochemical features of a collagen membrane by conjugating with soluble egg shell membrane protein
CN114191609A (zh) 胶原微纤维海绵及其制备方法
CN105297456B (zh) 一种改性涤纶材料的制备方法
JPH0931100A (ja) 変性コラーゲン及びその製造方法
CN115245586B (zh) 含海洋生物源的胶原蛋白-基材料及其制备方法
Li et al. Biocompatible and bioactive hydrogels of recombinant fusion elastin with low transition temperature for improved healing of UV-irradiated skin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220718

Address after: 124000 9 Huashan street, Lingang Economic Development Zone, Panjin City, Liaoning Province

Applicant after: Liaoning Wanxin Fuli New Material Co.,Ltd.

Address before: 362700 No. 84, Jinting prosperous district, Hanjiang Town, Shishi City, Quanzhou City, Fujian Province

Applicant before: Chen Zhiwei

GR01 Patent grant
GR01 Patent grant