US20050214339A1 - Biologically degradable compositions for medical applications - Google Patents

Biologically degradable compositions for medical applications Download PDF

Info

Publication number
US20050214339A1
US20050214339A1 US10812780 US81278004A US2005214339A1 US 20050214339 A1 US20050214339 A1 US 20050214339A1 US 10812780 US10812780 US 10812780 US 81278004 A US81278004 A US 81278004A US 2005214339 A1 US2005214339 A1 US 2005214339A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
poly
lactide
hydroxybutyrate
article
glycolide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10812780
Inventor
Yiwen Tang
Syed Hossainy
Andrew Tung
Stephen Pacetti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Cardiovascular Systems Inc
Original Assignee
Abbott Cardiovascular Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/06Coatings containing a mixture of two or more compounds

Abstract

A medical article is disclosed, comprising a biologically degradable AB block copolymer and a biologically degradable polymer that is capable, at equilibrium and at room temperature, of absorbing less than about 5 mass % water.

Description

    BACKGROUND
  • 1. Field of the Invention
  • This invention is relates to biologically degradable compositions for medical applications such as for coatings for implantable medical devices.
  • 2. Description of the State of the Art
  • A wide spectrum of devices, from vascular devices such as catheters, stents, and guidewires, to ocular devices such as intra-ocular lenses is incorporating polymeric material. Polymeric materials are being used for a variety of reasons, including making a surface of a device more biocompatible or as a vehicle for delivering a drug. Since polymeric materials are treated as a foreign object by the body's immune system, the challenge has been to make the polymers highly biocompatible as well as to reduce any fouling effects that the polymer may produce or harbor. As a better option, it may be better to make the polymer not only highly biocompatible and non-fouling, but also biodegradable such that the polymer is eliminated by the body after it has served its function. The degradation of the polymer should not create any residues that can provide adverse effects for the patient, such as excess inflammation. To the contrary, the products of degradation should enhance the treatment that is being provided to the patient or should provide medicinal effects. Should the polymeric material include a drug for local application, the composition should be capable of carrying the drug so as to release the drug at an efficacious rate for a therapeutically effective duration of time. Finally, if the material is used as a coating, the properties of the composition should be suitable so as to allow a film layer to be formed on the medical device. For devices that include body geometry that expand or fold, such as a stent or a balloon, the polymer must be flexible enough so as to expand or fold with the device without significant detachment or delamination of the coating. Tradeoffs do exist between biocompatibility, structural integrity and drug delivery capabilities of the polymer. Enhancing one characteristic may determinately affect the other. Accordingly, a proper balance must be drawn to provide for a polymeric composition that meets the specific need of the application for which it is being used.
  • The embodiments of the present invention provide for biocompatible polymeric compositions that can be used medical applications.
  • SUMMARY
  • A medical article is provided comprising a biologically degradable AB block copolymer and a biologically degradable polymer that is capable, at equilibrium and at room temperature, of absorbing less than about 5 mass % water. The medical article can be a stent, a graft or a stent graft. The AB block-copolymer can be capable of absorbing, at equilibrium and at room temperature, about 5 mass % or more water. The AB block-copolymer can include a biocompatible polymeric moiety and a structural polymeric moiety. The biocompatible polymeric moiety can be, for example, poly(alkylene glycol), poly(2-hydroxyethyl methacrylate), poly(3-hydroxypropyl methacrylamide), hydroxylated poly(vinyl pyrrolidone), sulfonated dextran, sulfonated polystyrene, fibrin, fibrinogen, cellulose, starch, collagen, hyaluronic acid, heparin, a graft copolymer of poly(L-lysine)-graft-co-poly(ethylene glycol), and copolymers thereof. The structural polymeric moiety can be poly(D,L-lactide), poly(caprolactone), poly(caprolactone-co-D,L-lactide), poly(butylene terephthalate), poly(ester amide), poly(aspirin), poly(L-lactide), poly(glycolide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(hydroxyvalerate), poly(3-hydroxybutyrate-co-valerate), poly(4-hydroxybutyrate-co-valerate), and polydioxanone. The second polymer can be poly(L-lactide), poly(D,L-lactide), poly(glycolide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(caprolactone), poly(L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone), poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(hydroxyvalerate), poly(3-hydroxybutyrate-co-valerate), poly(4-hydroxybutyrate-co-valerate), poly(ester amides), poly(anhydrides), poly(carbonates), poly(trimethylene carbonate-co-glycolide), poly(trimethylene carbonate-co-L-lactide), poly(trimethylene carbonate-co-D,L-lactide), poly(dioxanone), poly(phosphazenes), poly(orthoesters), poly(tyrosine-co-carbonates), polyalkylene oxalates, poly(glycerol-co-sebacic acid esters), cyanoacrylates, poly(amino acids), poly(lysine), poly(glutamic acid) and combinations thereof.
  • DETAILED DESCRIPTION Terms and Definitions
  • For the purposes of the present invention, the following terms and definitions apply:
  • The terms “biologically degradable” and “biodegradable” are used interchangeably and refer to polymers that are capable of being completely degraded and/or eroded when exposed to bodily fluids such as blood and can be gradually resorbed, absorbed and/or eliminated by the body. The processes of breaking down and eventual absorption and elimination of the polymer can be caused by, for example, hydrolysis, metabolic processes, bulk or surface erosion, and the like. For coating applications, it is understood that after the process of degradation, erosion, absorption, and/or resorption has been completed, no polymer will remain on the device. In some embodiments, very negligible traces or residue may be left behind. Whenever the terms “degradable,” “biodegradable,” or “biologically degradable” are used in this application, they are intended to broadly include biologically erodable, bioabsorbable, and bioresorbable polymers as well as other types of polymers that are broken down and/or eliminated by the body.
  • “Biodegradable polymer composition” or “biodegradable composition” is defined as a composition having a combination of at least two biologically degradable polymers. In some embodiments, the composition can also include a non-biologically degradable component or polymer. The polymers can be blended, combined, mixed, bonded, linked by linking agent, or conjugated.
  • The term “block-copolymer” is defined in accordance with the terminology used by the International Union for Pure and Applied Chemistry (IUPAC). “Block-copolymer” refers to a copolymer containing a linear arrangement of blocks. The block is defined as a portion of a polymer molecule in which the monomeric units have at least one constitutional or configurational feature absent from the adjacent portions. The term “AB block-copolymer” is defined as a block-copolymer having moieties A and B arranged according to the general formula
    Figure US20050214339A1-20050929-C00001
      • where each of “m,” “n,” and “x” is a positive integer, and m can be ≧2 and n can be ≧2. The blocks of the AB block-copolymers, could be, but need not be linked on the ends, since the values of the integers “m” and “n” determining the number of blocks are such as to ensure that the individual blocks are usually long enough to be considered polymers in their own right. An AB block copolymer can be, accordingly, named poly A-block-co-poly B block polymer. In some embodiments, the AB block-copolymer can be part of a chain of another polymer such as in the backbone or as a pendant or side group.
  • The term “moiety” is defined as a portion of a complete structure of a copolymer, the portion to include at least 2 atoms joined together in a particular way. The term “moiety” includes functional groups and/or discreet bonded residues that are present in the macromolecule of a copolymer. The term “moiety” as used in the present application is inclusive of individual units in the copolymers. The term “moiety” as used in the present application is also inclusive of entire polymeric blocks in the copolymers.
  • Embodiments of the Invention
  • The biodegradable polymer composition includes at least one biodegradable AB block-copolymer or a polymer that includes biodegradable AB blocks (“the first component”) and at least one other biodegradable polymer (“the second component”). The first component can be capable of absorbing, at equilibrium and at room temperature, about 2 mass % or more water, preferably 5 mass % or more water. The second component can be capable of absorbing, at equilibrium and at room temperature, less than about 2 mass % water, preferably less than about 5 mass % water. The second component is not or does not include an AB polymeric block or can include a polymer that is substantially free of AB polymeric blocks. In other words, the second component can include a polymer the molecular structure of which is substantially free of fragments shown by formula (I) above. The ratio between the first component and the second component in the biodegradable polymer composition can be between about 1:1 and about 1:99, more narrowly, between about 1:2 and about 1:49, for example, about 1:19.
  • The First Component (AB Block-Copolymer)
  • The AB block copolymer can be capable of absorbing, at equilibrium and at room temperature, about 2 mass %, preferably about 5 mass % or more water. AB block copolymers that can be used comprise two polymeric moieties A and B. The first polymeric moiety is a biocompatible moiety that can be capable of providing the block-copolymer with blood compatibility. The second polymeric moiety is a structural moiety that can be capable of providing the block-copolymer with mechanical and/or adhesive properties. The structural moiety allows the copolymer to form a film layer on substrates, such as metallic stents. Moiety A can be the biocompatible moiety and moiety B can be the structural moiety. In some embodiments, Moiety B can be the biocompatible moiety and moiety A can be the structural moiety. The mass ratio between be the biocompatible moiety and the structural moiety can be between about 1:9 and about 1:0.7, for example, about 1:0.81. The mass ratio 1:0.81 corresponds to an AB block-copolymer comprising about 55 mass % the biocompatible moiety and the balance, the structural moiety.
  • The biocompatible and the structural moieties can be selected to make the AB block-copolymers biologically degradable. Molecular weight of a biocompatible moiety that can be used can be below 40,000 Daltons, for example, between about 300 and 20,000 Daltons. To illustrate, one example of a biocompatible moiety A that can be used is poly(ethylene glycol) (PEG) having the molecular weight between about 300 and 20,000 Daltons. In this example (when the A moiety is PEG), the value of “m” in formula (I) can be between about 5 and about 1,000.
  • In addition to PEG, other poly(alkylene glycols) can be used to form the biocompatible moiety, for example, poly(propylene glycol) (PPG), poly(tetramethylene glycol), or poly(ethylene oxide-co-propylene oxide). Examples of other biocompatible moieties that can be used include poly(2-hydroxyethyl methacrylate), poly(3-hydroxypropyl methacrylamide), hydroxylated poly(vinyl pyrrolidone), sulfonated dextran, sulfonated polystyrene, fibrin, fibrinogen, cellulose, starch, collagen, hyaluronic acid, heparin, poly(L-lysine)-graft-co-poly(ethylene glycol), which is a graft copolymer of poly(L-lysine) and PEG, or copolymers thereof.
  • Molecular weight of a structural moiety that can be used can be between about 20,000 and about 200,000 Daltons, more narrowly, between about 40,000 and about 100,000 Daltons, for example, about 60,000 Daltons. To illustrate, one example of a structural moiety B that can be used is poly(D,L-lactide) having the molecular weight between about 20,000 and about 200,000 Daltons. In this example, the value of “n” in formula (I) can be between about 250 and about 3,000.
  • In addition to poly(D,L-lactide), other structural moieties can be used. Some examples of such moieties include poly(caprolactone) (PCL), poly(caprolactone-co-D,L-lactide), poly(butylene terephthalate) (PBT), poly(ester amide), poly(aspirin), poly(L-lactide), poly(glycolide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(hydroxyvalerate), poly(3-hydroxybutyrate-co-valerate), poly(4-hydroxybutyrate-co-valerate), and polydioxanone.
  • One example of the biodegradable AB block copolymer is poly(ethylene-glycol)-block-co-poly(caprolactone) (PEG-PCL). One possible structure of the PEG-PCL block copolymer can be illustrated by formula (II):
    Figure US20050214339A1-20050929-C00002

    wherein m are n are positive integers.
  • In PEG-PCL block copolymer shown by formula (II), the PEG blocks constitute the biocompatible moiety A, while the PCL block constitutes the structural moiety B. Block copolymer shown by formula (II) can be synthesized by standard methods known to those having ordinary skill in the art, for example, copolycondensation of PEG with PCL. The process of copolycondensation can be catalyzed by a catalyst which can be selected by those having ordinary skill in the art, for example, by an acid catalyst or a base catalyst.
  • Another example of the PEG-containing polyester includes a block-copolymer of PEG with PBT, such as poly(ethylene-glycol)-block-poly(butyleneterephthalate)(PEG-PBT), shown by formula (III):
    Figure US20050214339A1-20050929-C00003

    wherein m, n, I and K are positive integers.
  • The PEG-PBT block-copolymer can be obtained by a synthetic process that can be selected by those having ordinary skill in the art. One example of the synthetic process that can be used includes trans-esterification of dibutyleneterephthalate with PEG. One brand of PEG-PBT block copolymer is known under a trade name PolyActive™ and is available from IsoTis Corp. of Holland. In PEG-PBT, the ratio between the PEG units and the PBT units can be between about 0.67:1 and about 9:1. The molecular weight of the PEG units can be between about 300 and about 4,000 Daltons.
  • PEG-PCL and PEG-PBT block copolymers all contain fragments with ester bonds. Ester bonds are known to be water-labile bonds. When in contact with slightly alkaline blood, ester bonds are subject to catalyzed hydrolysis, thus ensuring biological degradability of the block-copolymer. One product of degradation of every block polymer, belonging to the group PEG-PCL and PEG-PBT, is expected to be PEG, which is highly biologically compatible. PEG also has an additional advantage of being biologically active, reducing smooth muscle cells proliferation at the lesion site and thus capable of treating, delaying, preventing or inhibiting restenosis.
  • The Second Component
  • The second component of the composition can comprise at least one biodegradable polymer capable of absorbing, at equilibrium and at room temperature, less than about 2 mass %, preferably less than 5 mass % water.
  • Examples of suitable biodegradable polymers that can be used as a second component of the biodegradable polymer composition include poly(L-lactide), poly(D,L-lactide), poly(glycolide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(caprolactone), poly(L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone), polyhydroxyalkanoates, poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(hydroxyvalerate), poly(3-hydroxybutyrate-co-valerate), poly(4-hydroxybutyrate-co-valerate), poly(ester amides), poly(anhydrides), poly(carbonates), poly(trimethylene carbonate-co-glycolide), poly(trimethylene carbonate-co-L-lactide), poly(trimethylene carbonate-co-D,L-lactide), poly(dioxanone), poly(phosphazenes), poly(orthoesters), poly(tyrosine-co-carbonates), polyalkylene oxalates, poly(glycerol-co-sebacic acid esters), cyanoacrylates, poly(amino acids), poly(lysine), poly(glutamic acid) and mixtures thereof.
  • Optional Third Components
  • In some embodiments, a third component can be included, mixed, blended, bonded, conjugated or linked with the composition. This can be a drug, an active agent, or a therapeutic substance. In some embodiments, another polymer can be included, mixed, blended, bonded, conjugated or linked with the composition. These polymers need not be biodegradable. Examples include polyacrylates, such as poly(butyl methacrylate), poly(ethyl methacrylate), and poly(ethyl methacrylate-co-butyl methacrylate), and fluorinated polymers and/or copolymers, such as poly(vinylidene fluoride) and poly(vinylidene fluoride-co-hexafluoro propene), poly(vinyl pyrrolidone), polyurethanes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, vinyl halide polymers and copolymers (such as polyvinyl chloride), polyvinyl ethers (such as polyvinyl methyl ether), polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics (such as polystyrene), polyvinyl esters (such as polyvinyl acetate), copolymers of vinyl monomers with each other and olefins, e.g., poly(ethylene-co-vinyl alcohol) (EVAL), ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers, polyamides (such as Nylon 66 and polycaprolactam), alkyd resins, polyoxymethylenes, polyimides, polyethers, epoxy resins, rayon, rayon-triacetate, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethyl cellulose.
  • The therapeutic substance can include any substance capable of exerting a therapeutic, diagnostic or prophylactic effect for a patient. The therapeutic substance may include small molecule substances, peptides, proteins, oligonucleotides, and the like. The therapeutic substance could be designed, for example, to inhibit the activity of vascular smooth muscle cells. It can be directed at inhibiting abnormal or inappropriate migration and/or proliferation of smooth muscle cells to inhibit restenosis.
  • Examples of therapeutic substances include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich of Milwaukee, Wis., or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin II, actinomycin X1, and actinomycin C1. The active agent can also fall under the genus of antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g. TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g. Taxotere®, from Aventis S. A., Frankfurt, Germany) methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as ANGIOMAX (Biogen, Inc., Cambridge, Mass.). Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.); calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, tacrolimus, dexamethasone, and rapamycin and structural derivatives or functional analogs thereof, such as 40-O-(2-hydroxy)ethyl-rapamycin (known by the trade name of EVEROLIMUS available from Novartis), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
  • Application of the Composition
  • The composition can have a variety of medical applications, such as coatings for medical devices, coatings for implantable prostheses, capsules for drugs, drug delivery particles as well as devices made at least in part from the composition. Examples of medical devices, that can be used in conjunction with the embodiments of this invention include stents (e.g., self expandable or balloon expandable), biodegradable stents, stent-grafts, grafts (e.g., aortic grafts), catheters, balloons, coating on balloons, guidewires, artificial hearts and valves, blood oxygenerators, ventricular assist devices, cardiopulmonary bypass systems, cerebrospinal fluid shunts, pacemaker electrodes, axius coronary shunts and leads as well as other devices such as intraocular lenses. The devices, e.g., the stent, can be made from a metallic material or an alloy such as, but not limited to, cobalt-chromium alloys (e.g., ELGILOY), stainless steel (316L), “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, tantalum-based alloys, nickel-titanium alloy, platinum, platinum-based alloys such as, e.g., platinum-iridium alloy, iridium, gold, magnesium, titanium, titanium-based alloys, zirconium-based alloys, or combinations thereof. Devices made from bioabsorbable or biostable polymers can also be used or coated with the embodiments of the present invention. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co. of Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum.
  • Drug Delivery Stent
  • A coating for a stent made from the composition of the present invention can be a multi-layer structure and can include a primer layer; a drug-polymer layer (also referred to as “reservoir” or “reservoir layer”) or alternatively a polymer free drug layer; and/or a topcoat layer. Intermediary layers can also be provided. Each layer of the stent coating can be formed on the stent by dissolving the biodegradable polymer composition in a solvent, or a mixture of solvents, and applying the resulting solution on the stent by spraying or immersing the stent in the solution. At least one of the layers should include the bidegradable polymeric composition of the present invention. The remaining portion of a layer or the other layers can be made from other polymeric material, such as poly(butyl methacrylate), poly(ethyl methacrylate), and poly(ethyl methacrylate-co-butyl methacrylate), or the others disclosed above.
  • Preferably, the outer most layer (e.g., the reservoir layer or the topcoat layer) is made from the biodegradable composition. If a topcoat layer is used, the topcoat layer can be made from the biodegradable polymer. The reservoir layer or the optional primer layer can be made from the same composition, the same composition but with different ratios of the first to second component, the same composition but with different ratios of the first to second to third component or from a different polymeric material.
  • In some embodiments at least two of the layers can be made from the embodiments of the biodegradable polymeric composition such that for each layer the ratio of the first to second component is different. In some embodiments, if a third component is used, the ratio of the first to second to third component can be different for each layer.
  • After the solution has been applied onto the stent, the coating is dried by allowing the solvent to evaporate. The process of drying can be accelerated if the drying is conducted at an elevated temperature.
  • Representative examples of some solvents suitable for making the coating solution include N,N-dimethylacetamide (DMAC), N,N-dimethylformamide (DMF), tethrahydrofurane (THF), cyclohexanone, xylene, toluene, acetone, i-propanol, methyl ethyl ketone, propylene glycol monomethyl ether, methyl butyl ketone, ethyl acetate, n-butyl acetate, and dioxane. Some solvent mixtures can be used as well. Representative examples of the mixtures include DMAC and methanol (e.g., a 50:50 by mass mixture); water, i-propanol, and DMAC (e.g., a 10:3:87 by mass mixture); i-propanol and DMAC (e.g., 80:20, 50:50, or 20:80 by mass mixtures); acetone and cyclohexanone (e.g., 80:20, 50:50, or 20:80 by mass mixtures); acetone and xylene (e.g. a 50:50 by mass mixture); acetone, FLUX REMOVER AMS, and xylene (e.g., a 10:50:40 by mass mixture); and 1,1,2-trichloroethane and chloroform (e.g., a 80:20 by mass mixture). FLUX REMOVER AMS is trade name of a solvent manufactured by Tech Spray, Inc. of Amarillo, Tex. comprising about 93.7% of a mixture of 3,3-dichloro-1,1,1,2,2-pentafluoropropane and 1,3-dichloro-1,1,2,2,3-pentafluoropropane, and the balance of methanol, with trace amounts of nitromethane. Those having ordinary skill in the art will select the solvent or a mixture of solvents suitable for a particular polymer being dissolved.
  • To incorporate a drug into the reservoir layer, the drug in a form of a solution can be combined with the polymer solution that is applied onto the stent as described above. Alternatively, to fabricate a polymer free drug layer, the drug can be dissolved in a suitable solvent or mixture of solvents, and the resulting drug solution can be applied on the stent by spraying or immersing the stent in the drug solution. Instead of introducing the drug in a solution, the drug can be introduced as a colloid system, such as a suspension in an appropriate solvent phase. To make the suspension, the drug can be dispersed in the solvent phase using conventional techniques used in colloid or emulsion chemistry. Depending on a variety of factors, e.g., the nature of the drug, those having ordinary skill in the art can select the suitable solvent to form the solvent phase of the suspension, as well as the quantity of the drug to be dispersed in the solvent phase. The suspension can be mixed with a polymer solution and the mixture can be applied on the stent as described above. Alternatively, the drug suspension can be applied on the stent without being mixed with the polymer solution.
  • The biological degradation of the biodegradable polymer composition is expected to cause an increase of the rate of release of the drug due to the gradual disappearance of the polymer that forms the reservoir and/or the topcoat layer. By choosing an appropriate biodegradable polymer composition or by varying the ratio of the components of the composition, or by including a third polymeric component to the matrix, a stent coating having a costumed release rate can be engineered.
  • Method of Use
  • In accordance with embodiments of the invention, a coating of the various described embodiments can be formed on an implantable device or prosthesis, e.g., a stent. For coatings including one or more active agents, the agent will be retain on the medical device such as a stent during delivery and expansion of the device, and released at a desired rate and for a predetermined duration of time at the site of implantation. Preferably, the medical device is a stent. A stent having the above-described coating is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.
  • The compositions of the invention can be used for the treatment of a variety of disorder in mammals including atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, cancer as well as other disorders.
  • For implantation of a stent, an angiogram is first performed to determine the appropriate positioning for stent therapy. An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having the above-described coating may then be expanded at the desired area of treatment. A post-insertion angiogram may also be utilized to confirm appropriate positioning.
  • EXAMPLES
  • The following examples are provided to further illustrate embodiments of the present invention.
  • Example 1
  • A first composition can be prepared by mixing about 1.0 mass % to about 15 mass %, for example, about 2.0 mass % poly(caprolactone) (PCL); and the balance, mixture of tetrahydrofuran (THF) and xylene solvents, where a mass ratio between THF and xylene was about 3:1. The first composition can be applied onto the surface of a bare 12 mm VISION stent (available from Guidant Corporation) by spraying and dried to form a primer layer. A spray coater was used, having a 0.014 fan nozzle maintained at about 60° C. with a feed pressure of about 0.2 atm (about 3 psi) and an atomization pressure of about 1.3 atm (about 20 psi). About 75 μg of the wet coating can be applied. The primer was baked at about 60° C. for about 2 hours, yielding a dry primer layer.
  • A second composition can be prepared by mixing about 1.0 mass % to about 15 mass %, for example, about 2.0 mass % PCL; about 0.05 mass % to about 2.0 mass %, for example, about 1.0 mass % EVEROLIMUS; and the balance, THF/xylene solvent mixture described above. The second composition can contain about 300 μg PCL and about 150 μg EVEROLIMUS. The second composition can be applied onto the dried primer layer to form the reservoir layer, using the same spraying technique and equipment used for applying the primer layer, followed by drying, e.g., by baking at about 50° C. for about 1 hour. A third composition can prepared by mixing about 1.0 mass % to about 15 mass %, for example, about 2.0 mass % PCL; about 1.0 mass % to about 15 mass %, for example, about 2.0 mass % PEG-PBT (4000PEGT80PBT20); and the balance, THF/xylene solvent mixture described above.
  • The brand of PEG-PBT that can be used can have about 20 molar % PBT units and about 80 molar % PEG units. The molecular weight of the PEG units was about 4,000 Daltons. The third composition can contain about 50 μg PCL and about 50 μg PEG-PBT. The third composition can be applied onto the dried reservoir layer to form a topcoat layer, using the same spraying technique and equipment used for applying the primer layer and the reservoir layer, followed by drying at about 50° C. for about 1 hour.
  • Example 2
  • A primer and reservoir layers can be formed on a stent as described in Example 1. A composition can be prepared by mixing about 1.0 mass % to about 15 mass %, for example, about 2.0 mass % poly(L-lactide); about 1.0 mass % to about 15 mass %, for example, about 2.0 mass % PEG-PBT; and the balance, the mixture of chloroform and tricholoethane solvents, wherein the mass ratio between chloroform and trichlorethane can be about 1:1. The same brand of PEG-PBT as described in Example 1 can be used. The composition can contain about 60 μg poly(L-lactide), about 40 μg PEG-PBT, and if desired, about 200 μg paclitaxel. The composition can be applied onto the dried reservoir layer to form a topcoat layer.
  • Example 3
  • A primer and reservoir layers can be formed on a stent as described in Example 1, except rapamycin can be used instead of EVEROLIMUS. A composition can be prepared by mixing about 1.0 mass % to about 15 mass %, for example, about 1.5 mass % poly(ester amide); about 1.0 mass % to about 15 mass %, for example, about 0.5 mass % PEG-PBT; and the balance, a mixture of ethanol and DMAC solvents, wherein mass ratio between ethanol and DMAC can be about 1:1.
  • The same brand of PEG-PBT as described in Example 1 can be used. Poly(ester amide)-8,4 having the formula (IV) can be used:
    Figure US20050214339A1-20050929-C00004

    wherein n is a positive integer.
  • The composition can contain about 75 μg poly(ester amide), and about 25 μg PEG-PBT. The composition can be applied onto the dried reservoir layer to form a topcoat layer, using the same spraying technique and equipment as described above, followed by drying, e.g., by baking. The poly(ester amide) shown by formula (IV) is expected to degrade when exposed to bodily fluids such as blood to yield sebacic and glycolic acids and 1,4-butanediamine (putrescine), all of which are biocompatible.
  • While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims (27)

  1. 1. A medical article, comprising:
    (a) a medical substrate; and
    (b) a coating deposited on the substrate, the coating comprising a first polymer and a second polymer, wherein the first polymer includes a biologically degradable AB block copolymer, and the second polymer includes a biologically degradable polymer that is capable, at equilibrium and at room temperature, of absorbing less than about 5 mass % water.
  2. 2. The medical article of claim 1, wherein the medical article is a stent, graft, or a stent-graft.
  3. 3. The medical article of claim 1, wherein the AB block-copolymer is capable of absorbing, at equilibrium and at room temperature, about 5 mass % or more water.
  4. 4. The medical article of claim 1, wherein the second polymer does not include or is substantially free from AB polymeric blocks.
  5. 5. The medical article of claim 1, wherein the AB block-copolymer comprises a biocompatible polymeric moiety and a structural polymeric moiety.
  6. 6. The medical article of claim 5, wherein the biocompatible polymeric moiety is selected from a group consisting of a poly(alkylene glycol), poly(2-hydroxyethyl methacrylate), poly(3-hydroxypropyl methacrylamide), hydroxylated poly(vinyl pyrrolidone), sulfonated dextran, sulfonated polystyrene, fibrin, fibrinogen, cellulose, starch, collagen, hyaluronic acid, heparin, a graft copolymer of poly(L-lysine)-graft-co-poly(ethylene glycol), and copolymers thereof.
  7. 7. The medical article of claim 6, wherein the poly(alkylene glycol) is selected from a group consisting of poly(ethylene glycol), poly(propylene glycol), poly(tetramethylene glycol), and poly(ethylene oxide-co-propylene oxide).
  8. 8. The medical article of claim 5, wherein the structural polymeric moiety is selected from a group consisting of poly(D,L-lactide), poly(caprolactone), poly(caprolactone-co-D,L-lactide), poly(butylene terephthalate), poly(ester amide), poly(aspirin), poly(L-lactide), poly(glycolide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(hydroxyvalerate), poly(3-hydroxybutyrate-co-valerate), poly(4-hydroxybutyrate-co-valerate), and polydioxanone.
  9. 9. The medical article of claim 1, wherein the AB block-copolymer is selected from poly(ethylene-glycol)-block-co-poly(caprolactone) and poly(ethylene-glycol)-block-co-poly(butyleneterephthalate).
  10. 10. The medical article of claim 1, wherein the AB block-copolymer is:
    Figure US20050214339A1-20050929-C00005
    wherein m, n, I, K, and r are positive integers.
  11. 11. The medical article of claim 1, wherein the second polymer is selected from a group consisting of poly(L-lactide), poly(D,L-lactide), poly(glycolide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(caprolactone), poly(L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone), polyhydroxyalkanoates, poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(hydroxyvalerate), poly(3-hydroxybutyrate-co-valerate), poly(4-hydroxybutyrate-co-valerate), poly(ester amides), poly(anhydrides), poly(carbonates), poly(trimethylene carbonate-co-glycolide), poly(trimethylene carbonate-co-L-lactide), poly(trimethylene carbonate-co-D,L-lactide), poly(dioxanone), poly(phosphazenes), poly(orthoesters), poly(tyrosine-co-carbonates), polyalkylene oxalates, poly(glycerol-co-sebacic acid esters), cyanoacrylates, poly(amino acids), poly(lysine), poly(glutamic acid) and combinations thereof.
  12. 12. The medical article of claim 1, wherein the second polymer has the formula:
    Figure US20050214339A1-20050929-C00006
    wherein n is a positive integer.
  13. 13. The medical article of claim 1, additionally including a therapeutic substance.
  14. 14. A medical article, comprising a biologically degradable AB block copolymer and a biologically degradable polymer that is capable, at equilibrium and at room temperature, of absorbing less than about 5 mass % water.
  15. 15. The article of claim 14, wherein the medical article is a stent, a graft or a stent graft.
  16. 16. The article of claim 14, wherein the AB block-copolymer is capable of absorbing, at equilibrium at room temperature, about 5 mass % or more water.
  17. 17. The article of claim 14, wherein the second polymer does not include or is substantially free from AB polymeric blocks.
  18. 18. The article of claim 14, wherein the AB block-copolymer comprises a biocompatible polymeric moiety and a structural polymeric moiety.
  19. 19. The article of claim 18, wherein the biocompatible polymeric moiety is selected from a group consisting of a poly(alkylene glycol), poly(2-hydroxyethyl methacrylate), poly(3-hydroxypropyl methacrylamide), hydroxylated poly(vinyl pyrrolidone), sulfonated dextran, sulfonated polystyrene, fibrin, fibrinogen, cellulose, starch, collagen, hyaluronic acid, heparin, a graft copolymer of poly(L-lysine)-graft-co-poly(ethylene glycol), and copolymers thereof.
  20. 20. The article of claim 19, wherein the poly(alkylene glycol) is selected from a group consisting of poly(ethylene glycol), poly(propylene glycol), poly(tetramethylene glycol), and poly(ethylene oxide-co-propylene oxide).
  21. 21. The article of claim 18, wherein the structural polymeric moiety is selected from a group consisting of poly(D,L-lactide), poly(caprolactone), poly(caprolactone-co-D,L-lactide), poly(butylene terephthalate), poly(ester amide), poly(aspirin), poly(L-lactide), poly(glycolide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(hydroxyvalerate), poly(3-hydroxybutyrate-co-valerate), poly(4-hydroxybutyrate-co-valerate), and polydioxanone.
  22. 22. The article of claim 14, wherein the AB block-copolymer is selected from poly(ethylene-glycol)-block-co-poly(caprolactone) and poly(ethylene-glycol)-block-co-poly(butyleneterephthalate).
  23. 23. The article of claim 14, wherein the AB block-copolymer is
    Figure US20050214339A1-20050929-C00007
    wherein m, n, I, K, and r are positive integers.
  24. 24. The article of claim 14, wherein the biologically degradable polymer that is capable, at equilibrium and at room temperature, of absorbing less than about 5 mass % water is selected from a group consisting of poly(L-lactide), poly(D,L-lactide), poly(glycolide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(caprolactone), poly(L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone), polyhydroxyalkanoates, poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(hydroxyvalerate), poly(3-hydroxybutyrate-co-valerate), poly(4-hydroxybutyrate-co-valerate), poly(ester amides), poly(anhydrides), poly(carbonates), poly(trimethylene carbonate-co-glycolide), poly(trimethylene carbonate-co-L-lactide), poly(trimethylene carbonate-co-D,L-lactide), poly(dioxanone), poly(phosphazenes), poly(orthoesters), poly(tyrosine-co-carbonates), polyalkylene oxalates, poly(glycerol-co-sebacic acid esters), cyanoacrylates, poly(amino acids), poly(lysine), poly(glutamic acid) and combinations thereof.
  25. 25. The article of claim 14, wherein the biologically degradable polymer that is capable, at equilibrium and at room temperature, of absorbing less than about 5 mass % water is:
    Figure US20050214339A1-20050929-C00008
    wherein n is a positive integer.
  26. 26. The article of claim 14, additionally including a therapeutic agent mixed, bonded, conjugated, linked or blended with the block copolymer and/or the polymer.
  27. 27. A method of treating a disorder in a human being, comprising:
    implanting in the human being a medical article as defined in claim 14, wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
US10812780 2004-03-29 2004-03-29 Biologically degradable compositions for medical applications Abandoned US20050214339A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10812780 US20050214339A1 (en) 2004-03-29 2004-03-29 Biologically degradable compositions for medical applications

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US10812780 US20050214339A1 (en) 2004-03-29 2004-03-29 Biologically degradable compositions for medical applications
PCT/US2005/009881 WO2005097220A1 (en) 2004-03-29 2005-03-24 Biologically degradable compositions for coating medical applications
JP2007506274A JP5463003B2 (en) 2004-03-29 2005-03-24 Medical biodegradable composition
EP20050731208 EP1737505B1 (en) 2004-03-29 2005-03-24 Biologically degradable compositions for coating medical equipment
ES05731208T ES2570001T3 (en) 2004-03-29 2005-03-24 Biodegradable compositions for coating medical equipment
US12182066 US8846070B2 (en) 2004-03-29 2008-07-29 Biologically degradable compositions for medical applications
US14475379 US20140370073A1 (en) 2004-03-29 2014-09-02 Biologically degradable compositions for medical applications

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12182066 Continuation US8846070B2 (en) 2004-03-29 2008-07-29 Biologically degradable compositions for medical applications

Publications (1)

Publication Number Publication Date
US20050214339A1 true true US20050214339A1 (en) 2005-09-29

Family

ID=34964338

Family Applications (3)

Application Number Title Priority Date Filing Date
US10812780 Abandoned US20050214339A1 (en) 2004-03-29 2004-03-29 Biologically degradable compositions for medical applications
US12182066 Active 2026-04-24 US8846070B2 (en) 2004-03-29 2008-07-29 Biologically degradable compositions for medical applications
US14475379 Abandoned US20140370073A1 (en) 2004-03-29 2014-09-02 Biologically degradable compositions for medical applications

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12182066 Active 2026-04-24 US8846070B2 (en) 2004-03-29 2008-07-29 Biologically degradable compositions for medical applications
US14475379 Abandoned US20140370073A1 (en) 2004-03-29 2014-09-02 Biologically degradable compositions for medical applications

Country Status (5)

Country Link
US (3) US20050214339A1 (en)
EP (1) EP1737505B1 (en)
JP (1) JP5463003B2 (en)
ES (1) ES2570001T3 (en)
WO (1) WO2005097220A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060018948A1 (en) * 2004-06-24 2006-01-26 Guire Patrick E Biodegradable implantable medical devices, methods and systems
US20060088572A1 (en) * 2004-10-21 2006-04-27 Medtronic, Inc. Angiotensin-(1-7) eluting polymer-coated medical device to reduce restenosis and improve endothelial cell function
US20060198868A1 (en) * 2005-01-05 2006-09-07 Dewitt David M Biodegradable coating compositions comprising blends
US20070021772A1 (en) * 2005-07-12 2007-01-25 Abbott Laboratories Medical device balloon
US7247364B2 (en) * 2003-02-26 2007-07-24 Advanced Cardiovascular Systems, Inc. Coating for implantable medical devices
US20080249281A1 (en) * 2004-12-22 2008-10-09 California Institute Of Technology Degradable polymers and methods of preparation thereof
US20080299164A1 (en) * 2007-05-30 2008-12-04 Trollsas Mikael O Substituted polycaprolactone for coating
US20090104241A1 (en) * 2007-10-23 2009-04-23 Pacetti Stephen D Random amorphous terpolymer containing lactide and glycolide
US20090110713A1 (en) * 2007-10-31 2009-04-30 Florencia Lim Biodegradable polymeric materials providing controlled release of hydrophobic drugs from implantable devices
US20090110711A1 (en) * 2007-10-31 2009-04-30 Trollsas Mikael O Implantable device having a slow dissolving polymer
US20090259302A1 (en) * 2008-04-11 2009-10-15 Mikael Trollsas Coating comprising poly (ethylene glycol)-poly (lactide-glycolide-caprolactone) interpenetrating network
US20090285873A1 (en) * 2008-04-18 2009-11-19 Abbott Cardiovascular Systems Inc. Implantable medical devices and coatings therefor comprising block copolymers of poly(ethylene glycol) and a poly(lactide-glycolide)
US20090297584A1 (en) * 2008-04-18 2009-12-03 Florencia Lim Biosoluble coating with linear over time mass loss
US20100030313A1 (en) * 2008-07-31 2010-02-04 Boston Scientific Scimed, Inc. Medical articles comprising biodegradable block copolymers
US20100080795A1 (en) * 2006-04-12 2010-04-01 Jun Li Biodegradable thermogelling polymer
US20100209476A1 (en) * 2008-05-21 2010-08-19 Abbott Cardiovascular Systems Inc. Coating comprising a terpolymer comprising caprolactone and glycolide
US8133553B2 (en) 2007-06-18 2012-03-13 Zimmer, Inc. Process for forming a ceramic layer
US8309521B2 (en) 2007-06-19 2012-11-13 Zimmer, Inc. Spacer with a coating thereon for use with an implant device
US8602290B2 (en) 2007-10-10 2013-12-10 Zimmer, Inc. Method for bonding a tantalum structure to a cobalt-alloy substrate
US8685430B1 (en) 2006-07-14 2014-04-01 Abbott Cardiovascular Systems Inc. Tailored aliphatic polyesters for stent coatings
US8697110B2 (en) 2009-05-14 2014-04-15 Abbott Cardiovascular Systems Inc. Polymers comprising amorphous terpolymers and semicrystalline blocks
US8916188B2 (en) 2008-04-18 2014-12-23 Abbott Cardiovascular Systems Inc. Block copolymer comprising at least one polyester block and a poly (ethylene glycol) block
US9090745B2 (en) 2007-06-29 2015-07-28 Abbott Cardiovascular Systems Inc. Biodegradable triblock copolymers for implantable devices
US9468706B2 (en) 2004-03-22 2016-10-18 Abbott Cardiovascular Systems Inc. Phosphoryl choline coating compositions
US9539332B2 (en) 2004-08-05 2017-01-10 Abbott Cardiovascular Systems Inc. Plasticizers for coating compositions
US9737638B2 (en) 2007-06-20 2017-08-22 Abbott Cardiovascular Systems, Inc. Polyester amide copolymers having free carboxylic acid pendant groups
US9814553B1 (en) 2007-10-10 2017-11-14 Abbott Cardiovascular Systems Inc. Bioabsorbable semi-crystalline polymer for controlling release of drug from a coating

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087214A1 (en) 2003-03-28 2004-10-14 Conor Medsystems, Inc. Implantable medical device with beneficial agent concentration gradient
US20050214339A1 (en) * 2004-03-29 2005-09-29 Yiwen Tang Biologically degradable compositions for medical applications
US7390497B2 (en) * 2004-10-29 2008-06-24 Advanced Cardiovascular Systems, Inc. Poly(ester amide) filler blends for modulation of coating properties
US20060147491A1 (en) * 2005-01-05 2006-07-06 Dewitt David M Biodegradable coating compositions including multiple layers
US20070237803A1 (en) * 2006-04-11 2007-10-11 Medtronic Vascular, Inc. Biodegradable Biocompatible Amphiphilic Copolymers for Coating and Manufacturing Medical Devices
JP2009542671A (en) * 2006-06-28 2009-12-03 サーモディクス,インコーポレイティド Active agent elution matrix containing fine particles
US8597673B2 (en) * 2006-12-13 2013-12-03 Advanced Cardiovascular Systems, Inc. Coating of fast absorption or dissolution

Citations (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321711A (en) * 1978-10-18 1982-03-30 Sumitomo Electric Industries, Ltd. Vascular prosthesis
US4633873A (en) * 1984-04-26 1987-01-06 American Cyanamid Company Surgical repair mesh
US4656083A (en) * 1983-08-01 1987-04-07 Washington Research Foundation Plasma gas discharge treatment for improving the biocompatibility of biomaterials
US4718907A (en) * 1985-06-20 1988-01-12 Atrium Medical Corporation Vascular prosthesis having fluorinated coating with varying F/C ratio
US4722335A (en) * 1986-10-20 1988-02-02 Vilasi Joseph A Expandable endotracheal tube
US4723549A (en) * 1986-09-18 1988-02-09 Wholey Mark H Method and apparatus for dilating blood vessels
US4732152A (en) * 1984-12-05 1988-03-22 Medinvent S.A. Device for implantation and a method of implantation in a vessel using such device
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4740207A (en) * 1986-09-10 1988-04-26 Kreamer Jeffry W Intralumenal graft
US4743252A (en) * 1986-01-13 1988-05-10 Corvita Corporation Composite grafts
US4816339A (en) * 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US4850999A (en) * 1980-05-24 1989-07-25 Institute Fur Textil-Und Faserforschung Of Stuttgart Flexible hollow organ
US4902289A (en) * 1982-04-19 1990-02-20 Massachusetts Institute Of Technology Multilayer bioreplaceable blood vessel prosthesis
US4994298A (en) * 1988-06-07 1991-02-19 Biogold Inc. Method of making a biocompatible prosthesis
US5019090A (en) * 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US5028597A (en) * 1986-04-07 1991-07-02 Agency Of Industrial Science And Technology Antithrombogenic materials
US5084065A (en) * 1989-07-10 1992-01-28 Corvita Corporation Reinforced graft assembly
US5085629A (en) * 1988-10-06 1992-02-04 Medical Engineering Corporation Biodegradable stent
US5100429A (en) * 1989-04-28 1992-03-31 C. R. Bard, Inc. Endovascular stent and delivery system
US5108755A (en) * 1989-04-27 1992-04-28 Sri International Biodegradable composites for internal medical use
US5112457A (en) * 1990-07-23 1992-05-12 Case Western Reserve University Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
US5123917A (en) * 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5192311A (en) * 1988-04-25 1993-03-09 Angeion Corporation Medical implant and method of making
US5197977A (en) * 1984-01-30 1993-03-30 Meadox Medicals, Inc. Drug delivery collagen-impregnated synthetic vascular graft
US5279594A (en) * 1990-05-23 1994-01-18 Jackson Richard R Intubation devices with local anesthetic effect for medical use
US5282860A (en) * 1991-10-16 1994-02-01 Olympus Optical Co., Ltd. Stent tube for medical use
US5289831A (en) * 1989-03-09 1994-03-01 Vance Products Incorporated Surface-treated stent, catheter, cannula, and the like
US5290271A (en) * 1990-05-14 1994-03-01 Jernberg Gary R Surgical implant and method for controlled release of chemotherapeutic agents
US5306294A (en) * 1992-08-05 1994-04-26 Ultrasonic Sensing And Monitoring Systems, Inc. Stent construction of rolled configuration
US5306286A (en) * 1987-06-25 1994-04-26 Duke University Absorbable stent
US5328471A (en) * 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US5330500A (en) * 1990-10-18 1994-07-19 Song Ho Y Self-expanding endovascular stent with silicone coating
US5383925A (en) * 1992-09-14 1995-01-24 Meadox Medicals, Inc. Three-dimensional braided soft tissue prosthesis
US5385580A (en) * 1990-08-28 1995-01-31 Meadox Medicals, Inc. Self-supporting woven vascular graft
US5502158A (en) * 1988-08-08 1996-03-26 Ecopol, Llc Degradable polymer composition
US5514379A (en) * 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
US5527337A (en) * 1987-06-25 1996-06-18 Duke University Bioabsorbable stent and method of making the same
US5591607A (en) * 1994-03-18 1997-01-07 Lynx Therapeutics, Inc. Oligonucleotide N3→P5' phosphoramidates: triplex DNA formation
US5593434A (en) * 1992-01-31 1997-01-14 Advanced Cardiovascular Systems, Inc. Stent capable of attachment within a body lumen
US5593403A (en) * 1994-09-14 1997-01-14 Scimed Life Systems Inc. Method for modifying a stent in an implanted site
US5599301A (en) * 1993-11-22 1997-02-04 Advanced Cardiovascular Systems, Inc. Motor control system for an automatic catheter inflation system
US5605696A (en) * 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
US5629077A (en) * 1994-06-27 1997-05-13 Advanced Cardiovascular Systems, Inc. Biodegradable mesh and film stent
US5637113A (en) * 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5707385A (en) * 1994-11-16 1998-01-13 Advanced Cardiovascular Systems, Inc. Drug loaded elastic membrane and method for delivery
US5716981A (en) * 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
US5726297A (en) * 1994-03-18 1998-03-10 Lynx Therapeutics, Inc. Oligodeoxyribonucleotide N3' P5' phosphoramidates
US5725549A (en) * 1994-03-11 1998-03-10 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US5728751A (en) * 1996-11-25 1998-03-17 Meadox Medicals, Inc. Bonding bio-active materials to substrate surfaces
US5733925A (en) * 1993-01-28 1998-03-31 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5741881A (en) * 1996-11-25 1998-04-21 Meadox Medicals, Inc. Process for preparing covalently bound-heparin containing polyurethane-peo-heparin coating compositions
US5756476A (en) * 1992-01-14 1998-05-26 The United States Of America As Represented By The Department Of Health And Human Services Inhibition of cell proliferation using antisense oligonucleotides
US5756457A (en) * 1993-08-26 1998-05-26 Genetics Institute, Inc. Neural regeneration using human bone morphogenetic proteins
US5855618A (en) * 1996-09-13 1999-01-05 Meadox Medicals, Inc. Polyurethanes grafted with polyethylene oxide chains containing covalently bonded heparin
US5858746A (en) * 1992-04-20 1999-01-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US5865814A (en) * 1995-06-07 1999-02-02 Medtronic, Inc. Blood contacting medical device and method
US5874165A (en) * 1996-06-03 1999-02-23 Gore Enterprise Holdings, Inc. Materials and method for the immobilization of bioactive species onto polymeric subtrates
US5873904A (en) * 1995-06-07 1999-02-23 Cook Incorporated Silver implantable medical device
US5877263A (en) * 1996-11-25 1999-03-02 Meadox Medicals, Inc. Process for preparing polymer coatings grafted with polyethylene oxide chains containing covalently bonded bio-active agents
US5876743A (en) * 1995-03-21 1999-03-02 Den-Mat Corporation Biocompatible adhesion in tissue repair
US5879713A (en) * 1994-10-12 1999-03-09 Focal, Inc. Targeted delivery via biodegradable polymers
US5891192A (en) * 1997-05-22 1999-04-06 The Regents Of The University Of California Ion-implanted protein-coated intralumenal implants
US5897955A (en) * 1996-06-03 1999-04-27 Gore Hybrid Technologies, Inc. Materials and methods for the immobilization of bioactive species onto polymeric substrates
US5916870A (en) * 1995-12-12 1999-06-29 Stryker Corporation Compositions and therapeutic methods using morphogenic proteins and stimulatory factors
US6015541A (en) * 1997-11-03 2000-01-18 Micro Therapeutics, Inc. Radioactive embolizing compositions
US6042875A (en) * 1997-04-30 2000-03-28 Schneider (Usa) Inc. Drug-releasing coatings for medical devices
US6051648A (en) * 1995-12-18 2000-04-18 Cohesion Technologies, Inc. Crosslinked polymer compositions and methods for their use
US6056993A (en) * 1997-05-30 2000-05-02 Schneider (Usa) Inc. Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
US6060451A (en) * 1990-06-15 2000-05-09 The National Research Council Of Canada Thrombin inhibitors based on the amino acid sequence of hirudin
US6071266A (en) * 1996-04-26 2000-06-06 Kelley; Donald W. Lubricious medical devices
US6080177A (en) * 1991-03-08 2000-06-27 Igaki; Keiji Luminal stent, holding structure therefor and device for attaching luminal stent
US6080488A (en) * 1995-02-01 2000-06-27 Schneider (Usa) Inc. Process for preparation of slippery, tenaciously adhering, hydrophilic polyurethane hydrogel coating, coated polymer and metal substrate materials, and coated medical devices
US6171609B1 (en) * 1995-02-15 2001-01-09 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US6174330B1 (en) * 1997-08-01 2001-01-16 Schneider (Usa) Inc Bioabsorbable marker having radiopaque constituents
US6177523B1 (en) * 1999-07-14 2001-01-23 Cardiotech International, Inc. Functionalized polyurethanes
US6224626B1 (en) * 1998-02-17 2001-05-01 Md3, Inc. Ultra-thin expandable stent
US6228845B1 (en) * 1996-11-08 2001-05-08 Medtronic, Inc. Therapeutic intraluminal stents
US6240616B1 (en) * 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US6245103B1 (en) * 1997-08-01 2001-06-12 Schneider (Usa) Inc Bioabsorbable self-expanding stent
US6251135B1 (en) * 1997-08-01 2001-06-26 Schneider (Usa) Inc Radiopaque marker system and method of use
US6251142B1 (en) * 1996-12-10 2001-06-26 Sorin Biomedica Cardio S.P.A. Implantation device and a kit including the device
US20020002399A1 (en) * 1999-12-22 2002-01-03 Huxel Shawn Thayer Removable stent for body lumens
US20020004101A1 (en) * 1995-04-19 2002-01-10 Schneider (Usa) Inc. Drug coating with topcoat
US20020004060A1 (en) * 1997-07-18 2002-01-10 Bernd Heublein Metallic implant which is degradable in vivo
US6395326B1 (en) * 2000-05-31 2002-05-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
US6527801B1 (en) * 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US20030100865A1 (en) * 1999-11-17 2003-05-29 Santini John T. Implantable drug delivery stents
US20040098095A1 (en) * 1997-12-18 2004-05-20 Burnside Diane K. Stent-graft with bioabsorbable structural support
US6746773B2 (en) * 2000-09-29 2004-06-08 Ethicon, Inc. Coatings for medical devices
US6752826B2 (en) * 2001-12-14 2004-06-22 Thoratec Corporation Layered stent-graft and methods of making the same

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US559922A (en) * 1896-05-12 Fare indicator and recorder
US3900632A (en) 1970-02-27 1975-08-19 Kimberly Clark Co Laminate of tissue and random laid continuous filament web
US3839743A (en) 1972-04-21 1974-10-08 A Schwarcz Method for maintaining the normal integrity of blood
US4110497A (en) 1976-07-02 1978-08-29 Snyder Manufacturing Co., Ltd. Striped laminate and method and apparatus for making same
US4346028A (en) 1979-12-14 1982-08-24 Monsanto Company Asbestiform crystalline calcium sodium or lithium phosphate, preparation and compositions
US4517687A (en) 1982-09-15 1985-05-21 Meadox Medicals, Inc. Synthetic woven double-velour graft
US4594407A (en) 1983-09-20 1986-06-10 Allied Corporation Prosthetic devices derived from krebs-cycle dicarboxylic acids and diols
US4879135A (en) 1984-07-23 1989-11-07 University Of Medicine And Dentistry Of New Jersey Drug bonded prosthesis and process for producing same
EP0556940A1 (en) 1986-02-24 1993-08-25 Robert E. Fischell Intravascular stent
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
DK530787D0 (en) 1987-10-09 1987-10-09 Bukh Meditec A device for insertion into a body cavity
US4877030A (en) 1988-02-02 1989-10-31 Andreas Beck Device for the widening of blood vessels
FR2627460B1 (en) 1988-02-19 1990-06-29 Cebal for pasty product dispenser comprising an axial pusher has lateral distribution and a masking element to its outlet
CA1322628C (en) 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
FI85223C (en) 1988-11-10 1992-03-25 Biocon Oy Biodegraderande kirurgiska implant and means.
US4977901A (en) 1988-11-23 1990-12-18 Minnesota Mining And Manufacturing Company Article having non-crosslinked crystallized polymer coatings
CA2004833A1 (en) 1988-12-08 1990-06-08 Leonard Armand Trudell Prosthesis of foam polyurethane and collagen and uses thereof
US5163958A (en) 1989-02-02 1992-11-17 Cordis Corporation Carbon coated tubular endoprosthesis
US4990158A (en) 1989-05-10 1991-02-05 United States Surgical Corporation Synthetic semiabsorbable tubular prosthesis
US5455040A (en) 1990-07-26 1995-10-03 Case Western Reserve University Anticoagulant plasma polymer-modified substrate
US5971954A (en) 1990-01-10 1999-10-26 Rochester Medical Corporation Method of making catheter
DE69108423T2 (en) 1990-02-08 1995-07-27 Howmedica Inflatable dilator.
US5545208A (en) 1990-02-28 1996-08-13 Medtronic, Inc. Intralumenal drug eluting prosthesis
US5156623A (en) 1990-04-16 1992-10-20 Olympus Optical Co., Ltd. Sustained release material and method of manufacturing the same
EP0737453A3 (en) 1990-05-18 1997-02-05 Richard S Stack Intraluminal stent
US5236447A (en) 1990-06-29 1993-08-17 Nissho Corporation Artificial tubular organ
US5342395A (en) 1990-07-06 1994-08-30 American Cyanamid Co. Absorbable surgical repair devices
US5163952A (en) 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
JPH06506366A (en) 1990-12-06 1994-07-21
US5163951A (en) 1990-12-27 1992-11-17 Corvita Corporation Mesh composite graft
US5356433A (en) 1991-08-13 1994-10-18 Cordis Corporation Biocompatible metal surfaces
US5981568A (en) 1993-01-28 1999-11-09 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
WO1993006792A1 (en) 1991-10-04 1993-04-15 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5234457A (en) 1991-10-09 1993-08-10 Boston Scientific Corporation Impregnated stent
US5167614A (en) 1991-10-29 1992-12-01 Medical Engineering Corporation Prostatic stent
US5352515A (en) * 1992-03-02 1994-10-04 American Cyanamid Company Coating for tissue drag reduction
DE4222380A1 (en) 1992-07-08 1994-01-13 Ernst Peter Prof Dr M Strecker In the body of a patient percutaneously implantable endoprosthesis
US5342621A (en) 1992-09-15 1994-08-30 Advanced Cardiovascular Systems, Inc. Antithrombogenic surface
US5830461A (en) 1992-11-25 1998-11-03 University Of Pittsburgh Of The Commonwealth System Of Higher Education Methods for promoting wound healing and treating transplant-associated vasculopathy
US5342348A (en) 1992-12-04 1994-08-30 Kaplan Aaron V Method and device for treating and enlarging body lumens
EP0604022A1 (en) 1992-12-22 1994-06-29 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method for its manufacture
US5443458A (en) 1992-12-22 1995-08-22 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method of manufacture
JP3583801B2 (en) 1993-03-03 2004-11-04 ボストン サイエンティフィック リミテッドBoston Scientific Limited Stent and graft of the luminal cavity
WO1994021196A3 (en) 1993-03-18 1995-02-16 Bard Inc C R Endovascular stents
US5474563A (en) * 1993-03-25 1995-12-12 Myler; Richard Cardiovascular stent and retrieval apparatus
US5441515A (en) 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5723004A (en) 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5626611A (en) 1994-02-10 1997-05-06 United States Surgical Corporation Composite bioabsorbable materials and surgical articles made therefrom
JP3482209B2 (en) 1994-03-18 2003-12-22 ジェロン・コーポレーション Oligonucleotides n3 '→ p5' phosphoramidate Synthesis and compounds; hybridization and nuclease resistance properties
DE69527141T2 (en) 1994-04-29 2002-11-07 Scimed Life Systems Inc Stent with collagen
US5670558A (en) 1994-07-07 1997-09-23 Terumo Kabushiki Kaisha Medical instruments that exhibit surface lubricity when wetted
US5554120A (en) 1994-07-25 1996-09-10 Advanced Cardiovascular Systems, Inc. Polymer blends for use in making medical devices including catheters and balloons for dilatation catheters
US5578073A (en) 1994-09-16 1996-11-26 Ramot Of Tel Aviv University Thromboresistant surface treatment for biomaterials
US5919570A (en) 1995-02-01 1999-07-06 Schneider Inc. Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices
JP3586815B2 (en) * 1995-03-24 2004-11-10 タキロン株式会社 Manufacturing method of the cell structure
US6120536A (en) 1995-04-19 2000-09-19 Schneider (Usa) Inc. Medical devices with long term non-thrombogenic coatings
US5837313A (en) 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US6129761A (en) 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
US5667767A (en) 1995-07-27 1997-09-16 Micro Therapeutics, Inc. Compositions for use in embolizing blood vessels
US5830879A (en) 1995-10-02 1998-11-03 St. Elizabeth's Medical Center Of Boston, Inc. Treatment of vascular injury using vascular endothelial growth factor
WO1997033628A1 (en) 1996-03-11 1997-09-18 Focal, Inc. Polymeric delivery of radionuclides and radiopharmaceuticals
WO1998012243A1 (en) 1996-09-23 1998-03-26 Focal, Inc. Polymerizable biodegradable polymers including carbonate or dioxanone linkages
US5800516A (en) 1996-08-08 1998-09-01 Cordis Corporation Deployable and retrievable shape memory stent/tube and method
US5830178A (en) 1996-10-11 1998-11-03 Micro Therapeutics, Inc. Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide
US5980972A (en) 1996-12-20 1999-11-09 Schneider (Usa) Inc Method of applying drug-release coatings
DE69812903T2 (en) * 1997-01-28 2003-12-04 United States Surgical Corp Polyesteramide, its production and thus produced surgical devices
US6159951A (en) 1997-02-13 2000-12-12 Ribozyme Pharmaceuticals Inc. 2'-O-amino-containing nucleoside analogs and polynucleotides
US5980928A (en) 1997-07-29 1999-11-09 Terry; Paul B. Implant for preventing conjunctivitis in cattle
US5980564A (en) 1997-08-01 1999-11-09 Schneider (Usa) Inc. Bioabsorbable implantable endoprosthesis with reservoir
US6121027A (en) 1997-08-15 2000-09-19 Surmodics, Inc. Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups
US6117979A (en) 1997-08-18 2000-09-12 Medtronic, Inc. Process for making a bioprosthetic device and implants produced therefrom
US5854382A (en) * 1997-08-18 1998-12-29 Meadox Medicals, Inc. Bioresorbable compositions for implantable prostheses
WO1999016871A3 (en) 1997-09-22 1999-05-20 Fritz Eckstein Nucleic acid catalysts with endonuclease activity
US6093463A (en) 1997-12-12 2000-07-25 Intella Interventional Systems, Inc. Medical devices made from improved polymer blends
US5957975A (en) 1997-12-15 1999-09-28 The Cleveland Clinic Foundation Stent having a programmed pattern of in vivo degradation
US6110188A (en) 1998-03-09 2000-08-29 Corvascular, Inc. Anastomosis method
US6113629A (en) 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
EP0966979B1 (en) 1998-06-25 2006-03-08 Biotronik AG Implantable bioresorbable support for the vascular walls, in particular coronary stent
DE19856983A1 (en) 1998-06-25 1999-12-30 Biotronik Mess & Therapieg Implantable bioresorbable vascular stent, particularly a coronary stent
US6153252A (en) 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
WO2000012147A1 (en) 1998-09-02 2000-03-09 Scimed Life Systems, Inc. Drug delivery device for stent
DE19843254C2 (en) * 1998-09-10 2000-07-06 Schering Ag Use of polymer blends which contain cyanoacrylate or Methylenmalonester, for coating medical devices and implants, medical implants and methods for their preparation
CA2497640C (en) * 2002-09-06 2012-02-07 Abbott Laboratories Medical device having hydration inhibitor
US6350277B1 (en) 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
US6656489B1 (en) * 1999-02-10 2003-12-02 Isotis N.V. Scaffold for tissue engineering cartilage having outer surface layers of copolymer and ceramic material
WO2000064506A9 (en) 1999-04-23 2002-06-06 Agion Technologies L L C Stent having antimicrobial agent
US6258121B1 (en) 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US6790228B2 (en) * 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6713119B2 (en) * 1999-09-03 2004-03-30 Advanced Cardiovascular Systems, Inc. Biocompatible coating for a prosthesis and a method of forming the same
JP3499475B2 (en) * 1999-09-10 2004-02-23 株式会社トップ Method of manufacturing a synthetic resin-made medical devices
US6461631B1 (en) * 1999-11-16 2002-10-08 Atrix Laboratories, Inc. Biodegradable polymer composition
US6338739B1 (en) 1999-12-22 2002-01-15 Ethicon, Inc. Biodegradable stent
US7875283B2 (en) * 2000-04-13 2011-01-25 Advanced Cardiovascular Systems, Inc. Biodegradable polymers for use with implantable medical devices
US20020103526A1 (en) * 2000-12-15 2002-08-01 Tom Steinke Protective coating for stent
US20020082679A1 (en) * 2000-12-22 2002-06-27 Avantec Vascular Corporation Delivery or therapeutic capable agents
EP1247537A1 (en) * 2001-04-04 2002-10-09 Isotis B.V. Coating for medical devices
US7291165B2 (en) * 2002-01-31 2007-11-06 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
US6756449B2 (en) * 2002-02-27 2004-06-29 Medtronic, Inc. AnB block copolymers containing poly (vinyl pyrrolidone) units, medical devices, and methods
WO2003090807A1 (en) * 2002-04-24 2003-11-06 Poly-Med, Inc. Multifaceted endovascular stent coating for preventing restenosis
JP2003325655A (en) * 2002-05-09 2003-11-18 Actment Co Ltd Stent and stent graft for treating inside of blood vessel
EP1539038A2 (en) 2002-09-13 2005-06-15 Linvatec Corporation Drawn expanded stent
US7169404B2 (en) * 2003-07-30 2007-01-30 Advanced Cardiovasular Systems, Inc. Biologically absorbable coatings for implantable devices and methods for fabricating the same
US7329413B1 (en) * 2003-11-06 2008-02-12 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices having gradient of hydration and methods for fabricating thereof
US20050112170A1 (en) * 2003-11-20 2005-05-26 Hossainy Syed F. Coatings for implantable devices comprising polymers of lactic acid and methods for fabricating the same
US20050214339A1 (en) * 2004-03-29 2005-09-29 Yiwen Tang Biologically degradable compositions for medical applications
US7311980B1 (en) * 2004-08-02 2007-12-25 Advanced Cardiovascular Systems, Inc. Polyactive/polylactic acid coatings for an implantable device
US7229471B2 (en) 2004-09-10 2007-06-12 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices

Patent Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321711A (en) * 1978-10-18 1982-03-30 Sumitomo Electric Industries, Ltd. Vascular prosthesis
US4850999A (en) * 1980-05-24 1989-07-25 Institute Fur Textil-Und Faserforschung Of Stuttgart Flexible hollow organ
US4902289A (en) * 1982-04-19 1990-02-20 Massachusetts Institute Of Technology Multilayer bioreplaceable blood vessel prosthesis
US4656083A (en) * 1983-08-01 1987-04-07 Washington Research Foundation Plasma gas discharge treatment for improving the biocompatibility of biomaterials
US5197977A (en) * 1984-01-30 1993-03-30 Meadox Medicals, Inc. Drug delivery collagen-impregnated synthetic vascular graft
US4633873A (en) * 1984-04-26 1987-01-06 American Cyanamid Company Surgical repair mesh
US4732152A (en) * 1984-12-05 1988-03-22 Medinvent S.A. Device for implantation and a method of implantation in a vessel using such device
US4718907A (en) * 1985-06-20 1988-01-12 Atrium Medical Corporation Vascular prosthesis having fluorinated coating with varying F/C ratio
US4739762B1 (en) * 1985-11-07 1998-10-27 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665B1 (en) * 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US4739762A (en) * 1985-11-07 1988-04-26 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4743252A (en) * 1986-01-13 1988-05-10 Corvita Corporation Composite grafts
US5028597A (en) * 1986-04-07 1991-07-02 Agency Of Industrial Science And Technology Antithrombogenic materials
US4740207A (en) * 1986-09-10 1988-04-26 Kreamer Jeffry W Intralumenal graft
US4723549A (en) * 1986-09-18 1988-02-09 Wholey Mark H Method and apparatus for dilating blood vessels
US4722335A (en) * 1986-10-20 1988-02-02 Vilasi Joseph A Expandable endotracheal tube
US4816339A (en) * 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US5527337A (en) * 1987-06-25 1996-06-18 Duke University Bioabsorbable stent and method of making the same
US5306286A (en) * 1987-06-25 1994-04-26 Duke University Absorbable stent
US5192311A (en) * 1988-04-25 1993-03-09 Angeion Corporation Medical implant and method of making
US4994298A (en) * 1988-06-07 1991-02-19 Biogold Inc. Method of making a biocompatible prosthesis
US5502158A (en) * 1988-08-08 1996-03-26 Ecopol, Llc Degradable polymer composition
US5019090A (en) * 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US5085629A (en) * 1988-10-06 1992-02-04 Medical Engineering Corporation Biodegradable stent
US5289831A (en) * 1989-03-09 1994-03-01 Vance Products Incorporated Surface-treated stent, catheter, cannula, and the like
US5108755A (en) * 1989-04-27 1992-04-28 Sri International Biodegradable composites for internal medical use
US5100429A (en) * 1989-04-28 1992-03-31 C. R. Bard, Inc. Endovascular stent and delivery system
US5084065A (en) * 1989-07-10 1992-01-28 Corvita Corporation Reinforced graft assembly
US5328471A (en) * 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US5123917A (en) * 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5290271A (en) * 1990-05-14 1994-03-01 Jernberg Gary R Surgical implant and method for controlled release of chemotherapeutic agents
US5279594A (en) * 1990-05-23 1994-01-18 Jackson Richard R Intubation devices with local anesthetic effect for medical use
US6060451A (en) * 1990-06-15 2000-05-09 The National Research Council Of Canada Thrombin inhibitors based on the amino acid sequence of hirudin
US5112457A (en) * 1990-07-23 1992-05-12 Case Western Reserve University Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
US5385580A (en) * 1990-08-28 1995-01-31 Meadox Medicals, Inc. Self-supporting woven vascular graft
US5330500A (en) * 1990-10-18 1994-07-19 Song Ho Y Self-expanding endovascular stent with silicone coating
US6080177A (en) * 1991-03-08 2000-06-27 Igaki; Keiji Luminal stent, holding structure therefor and device for attaching luminal stent
US6074659A (en) * 1991-09-27 2000-06-13 Noerx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5282860A (en) * 1991-10-16 1994-02-01 Olympus Optical Co., Ltd. Stent tube for medical use
US5756476A (en) * 1992-01-14 1998-05-26 The United States Of America As Represented By The Department Of Health And Human Services Inhibition of cell proliferation using antisense oligonucleotides
US5593434A (en) * 1992-01-31 1997-01-14 Advanced Cardiovascular Systems, Inc. Stent capable of attachment within a body lumen
US5858746A (en) * 1992-04-20 1999-01-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US5306294A (en) * 1992-08-05 1994-04-26 Ultrasonic Sensing And Monitoring Systems, Inc. Stent construction of rolled configuration
US5514379A (en) * 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
US5383925A (en) * 1992-09-14 1995-01-24 Meadox Medicals, Inc. Three-dimensional braided soft tissue prosthesis
US5733925A (en) * 1993-01-28 1998-03-31 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5716981A (en) * 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
US5756457A (en) * 1993-08-26 1998-05-26 Genetics Institute, Inc. Neural regeneration using human bone morphogenetic proteins
US5599301A (en) * 1993-11-22 1997-02-04 Advanced Cardiovascular Systems, Inc. Motor control system for an automatic catheter inflation system
US5725549A (en) * 1994-03-11 1998-03-10 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US5726297A (en) * 1994-03-18 1998-03-10 Lynx Therapeutics, Inc. Oligodeoxyribonucleotide N3' P5' phosphoramidates
US6169170B1 (en) * 1994-03-18 2001-01-02 Lynx Therapeutics, Inc. Oligonucleotide N3′→N5′Phosphoramidate Duplexes
US5599922A (en) * 1994-03-18 1997-02-04 Lynx Therapeutics, Inc. Oligonucleotide N3'-P5' phosphoramidates: hybridization and nuclease resistance properties
US5631135A (en) * 1994-03-18 1997-05-20 Lynx Therapeutics, Inc. Oligonucleotide N3'→P5' phosphoramidates: hybridization and nuclease resistance properties
US5591607A (en) * 1994-03-18 1997-01-07 Lynx Therapeutics, Inc. Oligonucleotide N3→P5' phosphoramidates: triplex DNA formation
US5766710A (en) * 1994-06-27 1998-06-16 Advanced Cardiovascular Systems, Inc. Biodegradable mesh and film stent
US5629077A (en) * 1994-06-27 1997-05-13 Advanced Cardiovascular Systems, Inc. Biodegradable mesh and film stent
US5593403A (en) * 1994-09-14 1997-01-14 Scimed Life Systems Inc. Method for modifying a stent in an implanted site
US5879713A (en) * 1994-10-12 1999-03-09 Focal, Inc. Targeted delivery via biodegradable polymers
US5707385A (en) * 1994-11-16 1998-01-13 Advanced Cardiovascular Systems, Inc. Drug loaded elastic membrane and method for delivery
US5637113A (en) * 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US6080488A (en) * 1995-02-01 2000-06-27 Schneider (Usa) Inc. Process for preparation of slippery, tenaciously adhering, hydrophilic polyurethane hydrogel coating, coated polymer and metal substrate materials, and coated medical devices
US6171609B1 (en) * 1995-02-15 2001-01-09 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5876743A (en) * 1995-03-21 1999-03-02 Den-Mat Corporation Biocompatible adhesion in tissue repair
US5605696A (en) * 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
US20020004101A1 (en) * 1995-04-19 2002-01-10 Schneider (Usa) Inc. Drug coating with topcoat
US5873904A (en) * 1995-06-07 1999-02-23 Cook Incorporated Silver implantable medical device
US5865814A (en) * 1995-06-07 1999-02-02 Medtronic, Inc. Blood contacting medical device and method
US5916870A (en) * 1995-12-12 1999-06-29 Stryker Corporation Compositions and therapeutic methods using morphogenic proteins and stimulatory factors
US6048964A (en) * 1995-12-12 2000-04-11 Stryker Corporation Compositions and therapeutic methods using morphogenic proteins and stimulatory factors
US6051648A (en) * 1995-12-18 2000-04-18 Cohesion Technologies, Inc. Crosslinked polymer compositions and methods for their use
US6071266A (en) * 1996-04-26 2000-06-06 Kelley; Donald W. Lubricious medical devices
US5897955A (en) * 1996-06-03 1999-04-27 Gore Hybrid Technologies, Inc. Materials and methods for the immobilization of bioactive species onto polymeric substrates
US5914182A (en) * 1996-06-03 1999-06-22 Gore Hybrid Technologies, Inc. Materials and methods for the immobilization of bioactive species onto polymeric substrates
US5874165A (en) * 1996-06-03 1999-02-23 Gore Enterprise Holdings, Inc. Materials and method for the immobilization of bioactive species onto polymeric subtrates
US5855618A (en) * 1996-09-13 1999-01-05 Meadox Medicals, Inc. Polyurethanes grafted with polyethylene oxide chains containing covalently bonded heparin
US6228845B1 (en) * 1996-11-08 2001-05-08 Medtronic, Inc. Therapeutic intraluminal stents
US5877263A (en) * 1996-11-25 1999-03-02 Meadox Medicals, Inc. Process for preparing polymer coatings grafted with polyethylene oxide chains containing covalently bonded bio-active agents
US5741881A (en) * 1996-11-25 1998-04-21 Meadox Medicals, Inc. Process for preparing covalently bound-heparin containing polyurethane-peo-heparin coating compositions
US5728751A (en) * 1996-11-25 1998-03-17 Meadox Medicals, Inc. Bonding bio-active materials to substrate surfaces
US6251142B1 (en) * 1996-12-10 2001-06-26 Sorin Biomedica Cardio S.P.A. Implantation device and a kit including the device
US6240616B1 (en) * 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US6042875A (en) * 1997-04-30 2000-03-28 Schneider (Usa) Inc. Drug-releasing coatings for medical devices
US5891192A (en) * 1997-05-22 1999-04-06 The Regents Of The University Of California Ion-implanted protein-coated intralumenal implants
US6056993A (en) * 1997-05-30 2000-05-02 Schneider (Usa) Inc. Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
US20020004060A1 (en) * 1997-07-18 2002-01-10 Bernd Heublein Metallic implant which is degradable in vivo
US6245103B1 (en) * 1997-08-01 2001-06-12 Schneider (Usa) Inc Bioabsorbable self-expanding stent
US6174330B1 (en) * 1997-08-01 2001-01-16 Schneider (Usa) Inc Bioabsorbable marker having radiopaque constituents
US6251135B1 (en) * 1997-08-01 2001-06-26 Schneider (Usa) Inc Radiopaque marker system and method of use
US6015541A (en) * 1997-11-03 2000-01-18 Micro Therapeutics, Inc. Radioactive embolizing compositions
US20040098095A1 (en) * 1997-12-18 2004-05-20 Burnside Diane K. Stent-graft with bioabsorbable structural support
US6224626B1 (en) * 1998-02-17 2001-05-01 Md3, Inc. Ultra-thin expandable stent
US6177523B1 (en) * 1999-07-14 2001-01-23 Cardiotech International, Inc. Functionalized polyurethanes
US20030100865A1 (en) * 1999-11-17 2003-05-29 Santini John T. Implantable drug delivery stents
US20020002399A1 (en) * 1999-12-22 2002-01-03 Huxel Shawn Thayer Removable stent for body lumens
US20030105518A1 (en) * 2000-04-13 2003-06-05 Debashis Dutta Biodegradable drug delivery material for stent
US6527801B1 (en) * 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US6395326B1 (en) * 2000-05-31 2002-05-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
US6746773B2 (en) * 2000-09-29 2004-06-08 Ethicon, Inc. Coatings for medical devices
US6752826B2 (en) * 2001-12-14 2004-06-22 Thoratec Corporation Layered stent-graft and methods of making the same

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247364B2 (en) * 2003-02-26 2007-07-24 Advanced Cardiovascular Systems, Inc. Coating for implantable medical devices
US9468706B2 (en) 2004-03-22 2016-10-18 Abbott Cardiovascular Systems Inc. Phosphoryl choline coating compositions
US20060018948A1 (en) * 2004-06-24 2006-01-26 Guire Patrick E Biodegradable implantable medical devices, methods and systems
US9539332B2 (en) 2004-08-05 2017-01-10 Abbott Cardiovascular Systems Inc. Plasticizers for coating compositions
US20060088572A1 (en) * 2004-10-21 2006-04-27 Medtronic, Inc. Angiotensin-(1-7) eluting polymer-coated medical device to reduce restenosis and improve endothelial cell function
US7176261B2 (en) * 2004-10-21 2007-02-13 Medtronic, Inc. Angiotensin-(1-7) eluting polymer-coated medical device to reduce restenosis and improve endothelial cell function
US20080249281A1 (en) * 2004-12-22 2008-10-09 California Institute Of Technology Degradable polymers and methods of preparation thereof
US7717363B2 (en) * 2004-12-22 2010-05-18 California Institute Of Technology Degradable polymers and methods of preparation thereof
US20060198868A1 (en) * 2005-01-05 2006-09-07 Dewitt David M Biodegradable coating compositions comprising blends
US8052637B2 (en) * 2005-07-12 2011-11-08 Abbott Laboratories Medical device balloon
US20070021772A1 (en) * 2005-07-12 2007-01-25 Abbott Laboratories Medical device balloon
US8350087B2 (en) 2006-04-12 2013-01-08 Agency For Science, Technology And Research Biodegradable thermogelling polymer
US20100080795A1 (en) * 2006-04-12 2010-04-01 Jun Li Biodegradable thermogelling polymer
US8685430B1 (en) 2006-07-14 2014-04-01 Abbott Cardiovascular Systems Inc. Tailored aliphatic polyesters for stent coatings
US20080299164A1 (en) * 2007-05-30 2008-12-04 Trollsas Mikael O Substituted polycaprolactone for coating
US8663337B2 (en) 2007-06-18 2014-03-04 Zimmer, Inc. Process for forming a ceramic layer
US8133553B2 (en) 2007-06-18 2012-03-13 Zimmer, Inc. Process for forming a ceramic layer
US8309521B2 (en) 2007-06-19 2012-11-13 Zimmer, Inc. Spacer with a coating thereon for use with an implant device
US9737638B2 (en) 2007-06-20 2017-08-22 Abbott Cardiovascular Systems, Inc. Polyester amide copolymers having free carboxylic acid pendant groups
US9468707B2 (en) 2007-06-29 2016-10-18 Abbott Cardiovascular Systems Inc. Biodegradable triblock copolymers for implantable devices
US9090745B2 (en) 2007-06-29 2015-07-28 Abbott Cardiovascular Systems Inc. Biodegradable triblock copolymers for implantable devices
US8602290B2 (en) 2007-10-10 2013-12-10 Zimmer, Inc. Method for bonding a tantalum structure to a cobalt-alloy substrate
US9814553B1 (en) 2007-10-10 2017-11-14 Abbott Cardiovascular Systems Inc. Bioabsorbable semi-crystalline polymer for controlling release of drug from a coating
US8608049B2 (en) 2007-10-10 2013-12-17 Zimmer, Inc. Method for bonding a tantalum structure to a cobalt-alloy substrate
US20090104241A1 (en) * 2007-10-23 2009-04-23 Pacetti Stephen D Random amorphous terpolymer containing lactide and glycolide
US8889170B2 (en) 2007-10-31 2014-11-18 Abbott Cardiovascular Systems Inc. Implantable device having a coating with a triblock copolymer
US8642062B2 (en) 2007-10-31 2014-02-04 Abbott Cardiovascular Systems Inc. Implantable device having a slow dissolving polymer
US20090110711A1 (en) * 2007-10-31 2009-04-30 Trollsas Mikael O Implantable device having a slow dissolving polymer
US9345668B2 (en) 2007-10-31 2016-05-24 Abbott Cardiovascular Systems Inc. Implantable device having a slow dissolving polymer
US9629944B2 (en) 2007-10-31 2017-04-25 Abbott Cardiovascular Systems Inc. Implantable device with a triblock polymer coating
US20090110713A1 (en) * 2007-10-31 2009-04-30 Florencia Lim Biodegradable polymeric materials providing controlled release of hydrophobic drugs from implantable devices
US8128983B2 (en) 2008-04-11 2012-03-06 Abbott Cardiovascular Systems Inc. Coating comprising poly(ethylene glycol)-poly(lactide-glycolide-caprolactone) interpenetrating network
US20090259302A1 (en) * 2008-04-11 2009-10-15 Mikael Trollsas Coating comprising poly (ethylene glycol)-poly (lactide-glycolide-caprolactone) interpenetrating network
US8916188B2 (en) 2008-04-18 2014-12-23 Abbott Cardiovascular Systems Inc. Block copolymer comprising at least one polyester block and a poly (ethylene glycol) block
US20090285873A1 (en) * 2008-04-18 2009-11-19 Abbott Cardiovascular Systems Inc. Implantable medical devices and coatings therefor comprising block copolymers of poly(ethylene glycol) and a poly(lactide-glycolide)
US20090297584A1 (en) * 2008-04-18 2009-12-03 Florencia Lim Biosoluble coating with linear over time mass loss
US8697113B2 (en) 2008-05-21 2014-04-15 Abbott Cardiovascular Systems Inc. Coating comprising a terpolymer comprising caprolactone and glycolide
US20100209476A1 (en) * 2008-05-21 2010-08-19 Abbott Cardiovascular Systems Inc. Coating comprising a terpolymer comprising caprolactone and glycolide
US20100030313A1 (en) * 2008-07-31 2010-02-04 Boston Scientific Scimed, Inc. Medical articles comprising biodegradable block copolymers
US8697110B2 (en) 2009-05-14 2014-04-15 Abbott Cardiovascular Systems Inc. Polymers comprising amorphous terpolymers and semicrystalline blocks

Also Published As

Publication number Publication date Type
US8846070B2 (en) 2014-09-30 grant
WO2005097220A1 (en) 2005-10-20 application
US20080279898A1 (en) 2008-11-13 application
EP1737505B1 (en) 2016-03-16 grant
ES2570001T3 (en) 2016-05-13 grant
EP1737505A1 (en) 2007-01-03 application
JP5463003B2 (en) 2014-04-09 grant
JP2007530231A (en) 2007-11-01 application
US20140370073A1 (en) 2014-12-18 application

Similar Documents

Publication Publication Date Title
US7396539B1 (en) Stent coatings with engineered drug release rate
US20070003589A1 (en) Coatings for implantable medical devices containing attractants for endothelial cells
US20070280991A1 (en) Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US20060089485A1 (en) End-capped poly(ester amide) copolymers
US20050287184A1 (en) Drug-delivery stent formulations for restenosis and vulnerable plaque
US7357793B2 (en) Polymers of fluorinated and hydrophilic monomers
US20060115449A1 (en) Bioabsorbable, biobeneficial, tyrosine-based polymers for use in drug eluting stent coatings
US20050208093A1 (en) Phosphoryl choline coating compositions
US20090110711A1 (en) Implantable device having a slow dissolving polymer
US20050233062A1 (en) Thermal treatment of an implantable medical device
US20070259101A1 (en) Microporous coating on medical devices
US20060115513A1 (en) Derivatized poly(ester amide) as a biobeneficial coating
US20060062824A1 (en) Medicated coatings for implantable medical devices including polyacrylates
US20130129794A1 (en) Poly(Ester Amide)-Based Drug Delivery Systems
US7220816B2 (en) Biologically absorbable coatings for implantable devices based on poly(ester amides) and methods for fabricating the same
US20080008739A1 (en) Phase-separated block copolymer coatings for implantable medical devices
US7005137B1 (en) Coating for implantable medical devices
US20050175666A1 (en) High-density lipoprotein coated medical devices
US7294329B1 (en) Poly(vinyl acetal) coatings for implantable medical devices
US20060067908A1 (en) Methacrylate copolymers for medical devices
US20060136048A1 (en) Abluminal, multilayer coating constructs for drug-delivery stents
US20080014241A1 (en) Implantable medical device comprising a pro-healing poly(ester-amide)
US20060095122A1 (en) Implantable devices comprising biologically absorbable star polymers and methods for fabricating the same
US20050244363A1 (en) Hyaluronic acid based copolymers
US6926919B1 (en) Method for fabricating a coating for a medical device

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED CARDIOVASCULAR SYSTEMS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANG, YIWEN;HOSSAINY, SYED F. A.;TUNG, ANDREW C.;AND OTHERS;REEL/FRAME:020967/0783;SIGNING DATES FROM 20040401 TO 20040409