US9381279B2 - Implantable devices formed on non-fouling methacrylate or acrylate polymers - Google Patents

Implantable devices formed on non-fouling methacrylate or acrylate polymers Download PDF

Info

Publication number
US9381279B2
US9381279B2 US12763113 US76311310A US9381279B2 US 9381279 B2 US9381279 B2 US 9381279B2 US 12763113 US12763113 US 12763113 US 76311310 A US76311310 A US 76311310A US 9381279 B2 US9381279 B2 US 9381279B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
poly
stent
polymer
rapamycin
peg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12763113
Other versions
US20100266659A1 (en )
Inventor
Stephen D. Pacetti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Cardiovascular Systems Inc
Original Assignee
Abbott Cardiovascular Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/06Use of macromolecular materials
    • A61L33/064Use of macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen

Abstract

Implantable devices formed of or coated with a material that includes a polymer having a non-fouling acrylate or methacrylate polymer are provided. The implantable device can be used for treating or preventing a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, patent foramen ovale, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.

Description

CROSS-REFERENCE TO RELATED APPLICATION

This is a continuation-in-part application of U.S. application Ser. No. 11/089,774, filed on Mar. 24, 2005, the teaching of which is incorporated herein in its entirety by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention generally relates to coatings or implantable devices, such as stents or coatings on a stent, formed of a material that contains methacrylates or acrylates having non-fouling pendant groups.

2. Description of the Background

Although stents work well mechanically, the chronic issues of restenosis and, to a lesser extent, stent thrombosis remain. Pharmacological therapy in the form of a drug-delivery stent appears a feasible means to tackle these biologically derived issues. Polymeric coatings placed onto the stent serve to act both as the drug reservoir, and to control the release of the drug. One of the commercially available polymer coated products is stents manufactured by Boston Scientific. For example, U.S. Pat. Nos. 5,869,127; 6,099,563; 6,179,817; and 6,197,051, assigned to Boston Scientific Corporation, describe various compositions for coating medical devices. These compositions provide to stents described therein an enhanced biocompatibility and may optionally include a bioactive agent. U.S. Pat. No. 6,231,590 to Scimed Life Systems, Inc., describes a coating composition, which includes a bioactive agent, a collagenous material, or a collagenous coating optionally containing or coated with other bioactive agents.

A current paradigm in biomaterials is the control of protein adsorption on the implant surface. Uncontrolled protein adsorption, leading to mixed layer of partially denatured proteins, is a hallmark of current biomaterials when implanted. Such a surface presents different cell binding sites from adsorbed plasma proteins such as fibrogen and immunogloblulin G. Platelets and inflammatory cells such as monocyte/macrophages and neutrophils adhere to these surfaces. Unfavorable events can be controlled by the use of non-fouling surfaces. These are materials, which absorb little or no protein, primarily due to their hydrophilic surface properties.

Another limitation of current drug-delivery stents stems from the fact that the stent is a foreign body. Use of drug-delivery stents has proved successful by use of controlled release of anti-proliferative or anti-inflammatory drugs to control restenosis. However, drug-delivery stents still have a small, but measurable, incidence of sub-acute thrombosis. Moreover, drug-delivery stents have not driven restenosis to zero levels, especially in more challenging patient subsets such as diabetics or patients with small vessels, and/or long, diffuse lesions. A biomaterials-based strategy for further improving the outcome of drug-delivery stents is by the use of biobeneficial materials or surfaces in stent coatings. A biobeneficial material is one which enhances the biocompatibility of a device by being non-fouling, hemocompatible, actively non-thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent.

Some of the currently used polymeric materials such as poly(vinylidene fluoride-co-hexafluoropropene) have good mechanical properties, and acceptable biocompatibility, but also have low permeability to drugs. One proposed solution to ameliorate this issue is to blend in hydrophilic polymers. However, it is well known in the art that many hydrophilic materials such as polyethylene oxide or hyaluronic acid are water-soluble and can be leached out of the composition such that the coating may lose biobeneficiality. Such polymeric blends can also have compromised mechanical properties, particularly the ultimate elongation.

The present invention addresses such problems by providing a polymeric material for coating implantable devices by providing polymeric materials from which the device can be made.

SUMMARY OF THE INVENTION

Provided herein is a coating or implantable medical device formed of a polymer having non-fouling pendant groups.

In one embodiment, the polymer can be a polymer that contains repeating units of Formula I:

Figure US09381279-20160705-C00001

where:

R1 and R2 are independently H, C1-C4 alkyl, silyl groups, siloxy groups, or phenyl,

R3, and R4, R5 are independently H, C1-C4 alkyl, silyl groups, siloxy groups, phenyl, poly(ethylene glycol) (PEG), polypropylene glycol), or poly(alkylene oxide),

Z is O, S or NR6 where R6 is H, C1-C4 alkyl such as CH3, ethyl, propyl, isopropyl, isobutyl, sec-butyl, or n-butyl, or phenyl,

X is absence, O, S, or NR7 where R7 is H, C1-C4 alkyl such as CH3, ethyl, propyl, isopropyl, isobutyl, sec-butyl, or n-butyl, or phenyl, and

n is a positive integer ranging from, e.g., 1 to 100,000.

In some embodiments, in the polymer of formula I, where Z is O, X can be absent, O, S, or NR7 where R7 is as defined above.

In some embodiments, in the polymer of formula I, where Z is S, X can be absent, O, S, or NR7 where R7 is as defined above.

In some embodiments, in the polymer of formula I, where Z is NR6, X can be absent, O, S, or NR7 where R6 and R7 are as defined above.

In some embodiments, in the polymer of formula I, where X is absent, Z is O, S or NR6 where R6 is as defined above.

In some embodiments, in the polymer of formula I, where X is O, Z is S or NR6 where R6 is as defined above.

In some embodiments, in the polymer of formula I, where X is S, Z is O, S or NR6 where R6 is as defined above.

In some embodiments, in the polymer of formula I, where X is NR7, Z is O, S or NR6 where R6 and R7 are as defined above.

In some embodiments, in the polymer of formula I, where Z is NH, X is NH.

In some embodiments, in the polymer of formula I, where Z is S, X is S.

In some embodiments, in the polymer of Formula I, X is O.

The polymer disclosed herein containing units of formula I can be a homopolymer or a copolymer. The copolymer can be statistical, random, alternating, period block or graft copolymer including the repeating units of Formula I and/or other repeating units such as a biocompatible polymer, and/or a biobeneficial material, both defined below.

The polymer defined herein can be used alone or in combination with another biocompatible polymer and/or a biobeneficial material to form coatings on implantable medical devices or to form the implantable medical devices themselves. In some embodiments, the coatings or medical devices optionally include a bioactive agent.

The polymer or polymer blends described herein can be used to form a coating(s) on an implantable device. The polymers or polymer blends described herein can also be used to form the implantable device itself. The implantable device can optionally include a bioactive agent. Some exemplary bioactive agents are paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, ABT-578, clobetasol, prodrugs thereof, co-drugs thereof, and combinations thereof. The implantable device can be implanted in a patient to treat or prevent a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the number of platelets adhered to the surface of a poly(methacrylate) polymer coating.

FIG. 2 shows the total amount of proteins from human plasma adsorbed onto the surface of a poly(methacrylate) polymer coating.

DETAILED DESCRIPTION

Provided herein is coating or implantable medical device formed of a polymer having non-fouling pendant groups. The polymer defined herein can be used alone or in combination with another biocompatible polymer and/or a biobeneficial material to form coatings on implantable medical devices or to form the implantable medical devices themselves. In some embodiments, the coatings or medical devices optionally include a bioactive agent. Some exemplary bioactive agents are paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, 40-O-tetrazole-rapamycin, ABT-578, clobetasol, prodrugs thereof, co-drugs thereof, and combinations thereof. The implantable device can be implanted in a patient to treat, prevent or ameliorate a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, plaque rupture in type 2 diabetes, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.

Polymers Formed of Monomers Having Non-Fouling Pendant Groups

In one embodiment, the polymer can be a polymer that contains repeating units of Formula I:

Figure US09381279-20160705-C00002

where:

R1 and R2 are independently H, C1-C4 alkyl, silyl groups, siloxy groups, or phenyl,

R3, and R4, R5 are independently H, C1-C4 alkyl, silyl groups, siloxy groups, phenyl, poly(ethylene glycol) (PEG), polypropylene glycol), or poly(alkylene oxide),

Z is O, S or NR6 where R6 is H, C1-C4 alkyl such as CH3, ethyl, propyl, isopropyl, isobutyl, sec-butyl, or n-butyl, or phenyl,

X is absence, O, S, or NR7 where R7 is H, C1-C4 alkyl such as CH3, ethyl, propyl, isopropyl, isobutyl, sec-butyl, or n-butyl, or phenyl, and

n is a positive integer ranging from, e.g., 1 to 100,000.

In some embodiments, in the polymer of formula I, where Z is O, X can be absent, O, S, or NR7 where R7 is as defined above.

In some embodiments, in the polymer of formula I, where Z is S, X can be absent, O, S, or NR7 where R7 is as defined above.

In some embodiments, in the polymer of formula I, where Z is NR6, X can be absent, O, S, or NR7 where R6 and R7 are as defined above.

In some embodiments, in the polymer of formula I, where X is absent, Z is O, S or NR6 where R6 is as defined above.

In some embodiments, in the polymer of formula I, where X is O, Z is S or NR6 where R6 is as defined above.

In some embodiments, in the polymer of formula I, where X is S, Z is O, S or NR6 where R6 is as defined above.

In some embodiments, in the polymer of formula I, where X is NR7, Z is O, S or NR6 where R6 and R7 are as defined above.

In some embodiments, in the polymer of formula I, where Z is NH, X is NH.

In some embodiments, in the polymer of formula I, where Z is S, X is S.

In some embodiments, in the polymer of Formula I, X is O.

The polymer disclosed herein containing units of formula I can be a homopolymer or a copolymer. The copolymer can be statistical, random, alternating, period block or graft copolymer including the repeating units of Formula I and/or other repeating units such as a biocompatible polymer, and/or a biobeneficial material, both defined below.

Some representative polymers of Formula I are: poly(2-methoxyethyl acrylate) (PMEA), poly(2-hydroxyethyl acrylate) (PHEA), poly(ethyl acrylate) (PEA), (poly(2-ethylhexyl acrylate) (PEHA), poly(2-phenoxyethyl acrylate) (PPEA), poly(2-ethoxyethyl acrylate) (PEEA), poly(2-hydroxyethyl methacrylate) (PHEMA), poly(2-methoxyethyl methacrylate) (PMEMA), poly(ethyl methacrylate) (PEMA), (poly(2-ethylhexyl methacrylate) (PEHMA), poly(2-phenoxyethyl methacrylate) (PPEMA), poly(hydroxypropyl methacrylamide), poly(2-ethoxyethyl methacrylate) (PEEM), and combinations thereof.

In some embodiments, R1, R2, R3, R4, R5, Z and X of Formula I are selected to exclude from Formula I any of the methacrylate or acrylate polymers described in the sections entitled “Polymer blends” or “Biobeneficial material”, below.

The polymers described herein can be synthesized by methods known in the art (see, for example, D. Braun, et al., Polymer Synthesis: Theory and Practice. Fundamentals, Methods, Experiments. 3rd Ed., Springer, 2001; Hans R. Kricheldorf, Handbook of Polymer Synthesis, Marcel Dekker Inc., 1992; G. Odian, Principles of Polymerization, 3rd ed. John Wiley & Sons, 1991). For example, one method that can be used to make the polymer can be free radical methods (see, for example, D. Braun, et al., Polymer Synthesis: Theory and Practice. Fundamentals, Methods, Experiments. 3rd Ed., Springer, 2001; Hans R. Kricheldorf, Handbook of Polymer Synthesis, Marcel Dekker Inc., 1992). Polymerization by suspension or emulsion techniques utilizing free radical initiation is commonly employed. Block copolymers and terpolymers can be produced by atom transfer polymerization. Polymerization in solvent can also be used to synthesize the polymers described herein.

Polymer Blends or Conjugation

In another embodiment, the polymers described herein can be blended with one or more additional biocompatible polymers having different hydrophilicity and/or flexibility to generate a polymer blend coating material that has desired biocompatibility, flexibility and drug permeability. In other embodiments, the polymers of the present invention can be bonded, conjugated, grafted or crosslinked with one or more additional biocompatible polymers. In some embodiments, the polymers can be coated in separate layers.

The additional biocompatible polymer can be biodegradable (both bioerodable or bioabsorbable) or nondegradable, and can be hydrophilic or hydrophobic. In some embodiments, hydrophilic is defined to have a Hildebrand solubility parameter δ value greater than about 8.5 (cal/cm3)1/2, e.g., greater than about 9.5 (cal/cm3)1/2, greater than about 10.5 (cal/cm3)1/2 or about 11.5 (cal/cm3)1/2. The δ is determined by the following equation:
δ=(ΔE/V)1/2

where ΔE is the energy of vaporization, cal/mole, and V is the molar volume, cm3/mole.

Representative biocompatible polymers include, but are not limited to, poly(ester amide), polyhydroxyalkanoates (PHA), poly(3-hydroxyalkanoates) such as poly(3-hydroxypropanoate), poly(3-hydroxybutyrate), poly(3-hydroxyvalerate), poly(3-hydroxyhexanoate), poly(3-hydroxyheptanoate) and poly(3-hydroxyoctanoate), poly(4-hydroxyalkanoate) such as poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanoate), poly(4-hydroxyheptanoate), poly(4-hydroxyoctanoate) and copolymers including any of the 3-hydroxyalkanoate or 4-hydroxyalkanoate monomers or blends thereof, poly polyesters, poly(D,L-lactide), poly(L-lactide), polyglycolide, poly(D,L-lactide-co-glycolide), poly(L-lactide-co-glycolide), polycaprolactone, poly(lactide-co-caprolactone), poly(glycolide-co-caprolactone), poly(dioxanone), poly(ortho esters), poly(anhydrides), poly(tyrosine carbonates) and derivatives thereof, poly(tyrosine ester) and derivatives thereof, poly(imino carbonates), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), polycyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), polyurethanes, polyphosphazenes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers, such as polyvinyl chloride, polyvinyl ethers, such as polyvinyl methyl ether, polyvinylidene halides, such as polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics, such as polystyrene, polyvinyl esters, such as polyvinyl acetate, copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers, polyamides, such as Nylon 66 and polycaprolactam, alkyd resins, polycarbonates, polyoxymethylenes, polyimides, polyethers, poly(glyceryl sebacate), poly(propylene fumarate), epoxy resins, polyurethanes, rayon, rayon-triacetate, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, carboxymethyl cellulose, polyethers such as poly(ethylene glycol) (PEG), copoly(ether-esters) (e.g. poly(ethylene oxide/poly(lactic acid) (PEO/PLA)), polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, polyphosphazenes, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers other than the polymers of Formula I (defined above), PEG acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(styrene-isoprene-styrene)-PEG (SIS-PEG), polystyrene-PEG, polyisobutylene-PEG, polycaprolactone-PEG (PCL-PEG), PLA-PEG, poly(methyl methacrylate)-PEG (PMMA-PEG), polydimethylsiloxane-co-PEG (PDMS-PEG), poly(vinylidene fluoride)-PEG (PVDF-PEG), PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), hydroxy functional poly(vinyl pyrrolidone), biomolecules such as collagen, alginate, fibrin, fibrinogen, albumin, cellulose, starch, collagen, dextran, dextrin, fragments and derivatives of hyaluronic acid, heparin, fragments and derivatives of heparin, glycosamino glycan (GAG), GAG derivatives, polysaccharide, elastin, chitosan, alginate, and combinations thereof. In some embodiments, the polymer can exclude any one of the aforementioned polymers.

As used herein, the terms poly(D,L-lactide), poly(L-lactide), poly(D,L-lactide-co-glycolide), and poly(L-lactide-co-glycolide) can be used interchangeably with the terms poly(D,L-lactic acid), poly(L-lactic acid), poly(D,L-lactic acid-co-glycolic acid), and poly(L-lactic acid-co-glycolic acid), respectively.

Biobeneficial Material

The polymers or polymer blends described herein may form a coating on an implantable device such as a stent or form the implantable device such as the stent optionally with a biobeneficial material. The combination can be mixed, blended, bonded, conjugated, crosslinked, grafted, or coated in separate layers. In some embodiments, it can be an interpenetrating polymer network (IPN). The biobeneficial material useful in the coatings described herein can be a polymeric material or non-polymeric material. The biobeneficial material is preferably non-toxic, non-antigenic and non-immunogenic. A biobeneficial material is one which enhances the biocompatibility of a device by being non-fouling, hemocompatible, actively non-thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent.

Representative biobeneficial materials include, but are not limited to, polyethers such as poly(ethylene glycol), copoly(ether-esters) (e.g. PEO/PLA); polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, polyphosphazenes, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers such as hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, poly (ethylene glycol) acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(styrene-isoprene-styrene)-PEG (SIS-PEG), polystyrene-PEG, polyisobutylene-PEG, polycaprolactone-PEG (PCL-PEG), PLA-PEG, poly(methyl methacrylate)-PEG (PMMA-PEG), polydimethylsiloxane-co-PEG (PDMS-PEG), poly(vinylidene fluoride)-PEG (PVDF-PEG), PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), hydroxy functional poly(vinyl pyrrolidone), biomolecules such as fibrin, fibrinogen, albumin, cellulose, starch, collagen, dextran, dextrin, hyaluronic acid, fragments and derivatives of hyaluronic acid, heparin, fragments and derivatives of heparin, glycosamino glycan (GAG), GAG derivatives, polysaccharide, elastin, chitosan, alginate, silicones, PolyActive™, and combinations thereof. In some embodiments, the coating can exclude any one of the aforementioned polymers.

The term PolyActive™ refers to a block copolymer having flexible poly(ethylene glycol) and poly(butylene terephthalate) blocks (PEGT/PBT). PolyActive™ is intended to include AB, ABA, BAB copolymers having such segments of PEG and PBT (e.g., poly(ethylene glycol)-block-poly(butyleneterephthalate)-block poly(ethylene glycol) (PEG-PBT-PEG).

In a preferred embodiment, the biobeneficial material can be a polyether such as poly (ethylene glycol) (PEG) or polyalkylene oxide.

Bioactive Agents

The polymer of Formula I or a polymer blend or conjugation (e.g., bonded or grafted) having the polymer of Formula I may form a coating or an implantable device optionally with one or more bioactive agents. These bioactive agents can be any agent which can be a therapeutic, prophylactic, ameliorative or diagnostic agent. These agents can have anti-proliferative or anti-inflammatory properties or can have other properties such as antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombonic, antimitotic, antibiotic, antiallergic, antioxidant as well as cystostatic agents. Examples of suitable therapeutic, prophylactic or ameliorative agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes. Some other examples of other bioactive agents include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy. Examples of anti-proliferative agents include rapamycin and its functional or structural derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), and its functional or structural derivatives, and paclitaxel and its functional and structural derivatives. Examples of rapamycin derivatives include 40-epi-(N1-tetrazolyl)-rapamycin (ABT-578), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin. Examples of paclitaxel derivatives include docetaxel. Examples of antineoplastics and/or antimitotics include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Angiomax ä (Biogen, Inc., Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), nitric oxide or nitric oxide donors, super oxide dismutases, super oxide dismutase mimetic, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), estradiol, anticancer agents, dietary supplements such as various vitamins, and a combination thereof. Examples of anti-inflammatory agents including steroidal and non-steroidal anti-inflammatory agents include tacrolimus, dexamethasone, clobetasol, combinations thereof. Examples of such cytostatic substance include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.). An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include midostaurin, pimecrolimus, imatinib mesylate, alpha-interferon, bioactive RGD, and genetically engineered epithelial cells. The foregoing substances can also be used in the form of prodrugs or co-drugs thereof. The foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.

The dosage or concentration of the bioactive agent required to produce a favorable therapeutic effect should be less than the level at which the bioactive agent produces toxic effects and greater than the level at which non-therapeutic results are obtained. The dosage or concentration of the bioactive agent can depend upon factors such as the particular circumstances of the patient; the nature of the trauma; the nature of the therapy desired; the time over which the ingredient administered resides at the vascular site; and if other active agents are employed, the nature and type of the substance or combination of substances. Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.

Examples of Implantable Device

As used herein, an implantable device may be any suitable medical substrate that can be implanted in a human or veterinary patient. Examples of such implantable devices include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, Calif.). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention. The device itself, such as a stent, can also be made from the described inventive polymers or polymer blends.

Method of Use

In accordance with embodiments of the invention, a coating of the various described embodiments can be formed on an implantable device or prosthesis, e.g., a stent. For coatings including one or more active agents, the agent will retain on the medical device such as a stent during delivery and expansion of the device, and released at a desired rate and for a predetermined duration of time at the site of implantation. In accordance with some other embodiments of the invention, bioabsorbable or non-degradable devices can be formed of a material containing the polymer of Formula I. The material can be the polymer of Formula I or a polymer blend containing the polymer of Formula I with one or more biocompatible polymers, optionally with a biobeneficial material and/or a bioactive agents, which are defined above. Preferably, the medical device is a stent. A stent having the above-described coating is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.

For implantation of a stent, an angiogram is first performed to determine the appropriate positioning for stent therapy. An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter, which allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having the above-described coating may then be expanded at the desired area of treatment. A post-insertion angiogram may also be utilized to confirm appropriate positioning.

EXAMPLES

The embodiments of the present invention will be illustrated by the following set forth examples. All parameters and data are not to be construed to unduly limit the scope of the embodiments of the invention.

Example 1 Hemocompatibility Study of poly(2-methoxyethyl acrylate) (PMEA)

The measures of in vitro hemocompatibility, including human platelet adhesion, changes in platelet morphology, total absorbed protein from human plasma, amount of absorbed BSA (bovine serum albumin), absorbed human fibrinogen, and changes in protein conformation by circular dichroism of polymers PPEA, PEHA, PEA, PMEA, PHEMA and PHEA were measured (see M, Tanaka M, et al., Biomaterials 21:1471-1481 (2000)). FIG. 1 shows number of platelets adhered to the surface of the polymers (**P<0.01 vs. PMEA, mean±SD, n=5), and FIG. 2 shows the total amount of proteins from human plasma adsorbed onto polymers (*P<0.05 vs. PMEA; **P<0.01 vs. PMEA, mean±SD, n=5). In this statistical analysis, the P value comes from hypothesis testing to determine if, in fact, the levels of protein absorption between the various polymers are equivalent (null hypothesis). Here, P is the probability, on a scale of zero to one, of wrongly rejecting the null hypothesis if it is in fact true. Consequently, P<0.05 means there is less than a 5% chance that the difference seen between the two groups was caused by sampling error. This is often restated to mean there is a 95% confidence that the two groups are different.

As can be seen, the PMEA coating has both the lowest number of platelets absorbed and the lowest plasma protein absorption of the polymers tested.

Example 2 Fabrication of a Polymer-Coated Implantable Medical Device

Primer Layer

Poly(n-butyl methacrylate) is dissolved in 1:1 acetone:xylene (by weight) to give a 2% by weight solution. An EFD 780S spray nozzle with a VALVEMATE 7040 control system, manufactured by EFD, Inc., East Providence, R.I. is used to spray the polymer solution onto a stent. During the process of applying the composition, the stent can be optionally rotated about its longitudinal axis, at a speed of 50 to about 150 rpm. The stent can also be linearly moved along the same axis during the application.

The 2% solution of the polymer is applied to a 12-mm VISION™ stent (available from Guidant Corporation) in a series of 10-second passes, to deposit 10 μg of coating per spray pass. Between the spray passes, the stent is dried for 10 seconds using a flow of air at 80° C. Five spray passes are applied to form a 50 μg primer layer, followed by baking the primer layer at 80° C. for one hour.

Drug-Containing Layer

A mixture is prepared that consists of, by weight, 2% of poly(n-butyl methacrylate), 1.0% of everolimus, and 97% of the 1:1 (by weight) acetone:cyclohexanone. The same apparatus used to spray the primer layer on the stent is used to apply the drug layer. 10 spray passes are performed to form a 175 μg drug-polymer layer, followed by drying the drug-polymer layer at 50° C. for 1 hour.

Biobeneficial Topcoat Layer

A topcoat layer comprising, by weight, 2% poly(2-methoxyethyl acrylate) and 98% 60:40 acetone:cyclohexanone is then applied over the drug-containing layer using the same apparatus used to coat the primer layer and the drug-containing layer. Six spray passes are performed to form a 100 μg topcoat layer, followed by drying at 50° C. for 1 hour.

While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims (11)

What is claimed is:
1. An stent having a coating comprising a polymer that comprises repeating units of Formula I:
Figure US09381279-20160705-C00003
wherein:
R1 and R2 are independently H, C1-C4 alkyl, silyl groups, siloxy groups, or phenyl,
R3, R4, and R5 are independently H, C1-C4 alkyl, silyl groups, siloxy groups, phenyl, poly(ethylene glycol) (PEG), poly(propylene glycol), or poly(alkylene oxide),
Z is S,
X is absence, O, S, or NR7 where R7 is H, CH3, ethyl, propyl, isopropyl, isobutyl, sec-butyl, n-butyl, or phenyl, and
n is a positive integer ranging from 1 to 100,000.
2. The stent of claim 1,
wherein:
X is absent.
3. The stent of claim 1,
wherein:
X is O.
4. The stent of claim 1,
wherein:
X is S.
5. The stent of claim 1,
wherein:
X is NR7.
6. The stent of claim 1,
wherein:
R3, R4, and R5 are independently H, CH3, ethyl, propyl, isopropyl, isobutyl, sec-butyl, n-butyl, or phenyl, silyl groups, siloxy groups, phenyl, poly(ethylene glycol) (PEG), poly(propylene glycol), or poly(alkylene oxide).
7. The stent of claim 1,
wherein:
R3, and R4 are independently H and CH3; and
R5 is silyl groups, siloxy groups, phenyl, poly(ethylene glycol) (PEG), poly(propylene glycol), or poly(alkylene oxide).
8. The stent of claim 1, further comprising a bioactive agent.
9. The stent of claim 8, wherein the bioactive agent is selected from the group consisting of paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, ABT-578, clobetasol, prodrugs thereof, co-drugs thereof, and a combination thereof.
10. A method of fabricating a stent, comprising forming on the stent a coating according to claim 1.
11. A method of treating a disorder in a patient comprising implanting in the patient the implantable device of claim 1, wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, patent foramen ovale, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
US12763113 2005-03-24 2010-04-19 Implantable devices formed on non-fouling methacrylate or acrylate polymers Active 2028-10-22 US9381279B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11089774 US7700659B2 (en) 2005-03-24 2005-03-24 Implantable devices formed of non-fouling methacrylate or acrylate polymers
US12763113 US9381279B2 (en) 2005-03-24 2010-04-19 Implantable devices formed on non-fouling methacrylate or acrylate polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12763113 US9381279B2 (en) 2005-03-24 2010-04-19 Implantable devices formed on non-fouling methacrylate or acrylate polymers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11089774 Continuation-In-Part US7700659B2 (en) 2005-03-24 2005-03-24 Implantable devices formed of non-fouling methacrylate or acrylate polymers

Publications (2)

Publication Number Publication Date
US20100266659A1 true US20100266659A1 (en) 2010-10-21
US9381279B2 true US9381279B2 (en) 2016-07-05

Family

ID=42981150

Family Applications (1)

Application Number Title Priority Date Filing Date
US12763113 Active 2028-10-22 US9381279B2 (en) 2005-03-24 2010-04-19 Implantable devices formed on non-fouling methacrylate or acrylate polymers

Country Status (1)

Country Link
US (1) US9381279B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228594B2 (en) * 2013-04-18 2017-11-08 国立大学法人山形大学 Biliary indwelling stent, and a manufacturing method thereof

Citations (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000958A (en) 1974-04-17 1977-01-04 Sumitomo Chemical Company, Limited Method for treating leather
US4117235A (en) 1971-09-23 1978-09-26 Owens-Illinois, Inc. Novel preparation of novel low molecular weight, liquid polymer
US4156034A (en) 1974-03-20 1979-05-22 Hitachi, Ltd. Liquid developer for electro photography
US4273760A (en) 1979-02-05 1981-06-16 National Starch And Chemical Corporation Shampoo compositions
US4612209A (en) 1983-12-27 1986-09-16 Ciba-Geigy Corporation Process for the preparation of heat-curable adhesive films
US4931287A (en) 1988-06-14 1990-06-05 University Of Utah Heterogeneous interpenetrating polymer networks for the controlled release of drugs
US4954424A (en) 1987-07-27 1990-09-04 Hitachi, Ltd. Pattern fabrication by radiation-induced graft copolymerization
US5019096A (en) 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
JPH04152952A (en) 1990-10-18 1992-05-26 Terumo Corp Organism-compatible medical material
US5163952A (en) 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
US5194459A (en) 1990-02-05 1993-03-16 Junkosha Co., Ltd. Fluoropolymer insulating material containing hollow microspheres
US5214541A (en) 1991-06-12 1993-05-25 Nippon Oil Co., Ltd. Method for producing color filter
EP0243160B1 (en) 1986-04-22 1993-09-15 Nippon Paint Co., Ltd. Blocked isocyanatocarbonyl group-containing polymers
US5258020A (en) 1990-09-14 1993-11-02 Michael Froix Method of using expandable polymeric stent with memory
US5314770A (en) 1991-04-26 1994-05-24 Nippon Oil Co., Ltd. Method for producing color filter
US5334468A (en) 1991-07-09 1994-08-02 Nippon Oil Co., Ltd. Method for producing color filter
US5357636A (en) 1992-06-30 1994-10-25 Dresdner Jr Karl P Flexible protective medical gloves and methods for their use
US5385795A (en) 1991-03-08 1995-01-31 Nippon Oil Co., Ltd. Method for producing color filter
US5422207A (en) 1992-08-04 1995-06-06 Nippon Oil Co., Ltd. Method for producing color filter
US5453530A (en) * 1994-03-11 1995-09-26 The Curators Of The University Of Missouri S-(ω-hydroxyalkyl) esters of thioacrylic and thiomethacrylic acids
US5500760A (en) 1991-09-06 1996-03-19 Donnelly Corporation Electrochemichromic solutions, processes for preparing and using the same, and devices manufactured with the same
US5674242A (en) 1995-06-06 1997-10-07 Quanam Medical Corporation Endoprosthetic device with therapeutic compound
US5681611A (en) 1993-12-15 1997-10-28 Bridgestone Corporation Light guide and method for making
US5684913A (en) 1994-12-22 1997-11-04 Bridgestone Corporation Optical waveguide tube and method of making
US5721299A (en) 1989-05-26 1998-02-24 International Business Machines Corporation Electrically conductive and abrasion/scratch resistant polymeric materials, method of fabrication thereof and uses thereof
US5723219A (en) 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
US5730966A (en) 1993-07-01 1998-03-24 The Procter & Gamble Company Thermoplastic elastomeric copolymers used in hair and skin care compositions
US5753146A (en) 1996-03-29 1998-05-19 Transitions Optical, Inc. Photochromic naphthopyran compositions of neutral color
US5770115A (en) 1996-04-19 1998-06-23 Ppg Industries, Inc. Photochromic naphthopyran compositions of improved fatigue resistance
US5821300A (en) 1996-11-07 1998-10-13 Witco Gmbh Process for preparing polymeric binders and their use for antifouling paint systems
US5824049A (en) 1995-06-07 1998-10-20 Med Institute, Inc. Coated implantable medical device
US5859127A (en) 1996-11-29 1999-01-12 Shin-Etsu Polymer Co., Ltd. Thermosetting resin composition and two-parts composite body thereof with silcone rubber
US5879713A (en) 1994-10-12 1999-03-09 Focal, Inc. Targeted delivery via biodegradable polymers
JPH1189929A (en) 1997-09-17 1999-04-06 Terumo Corp Indwelling catheter
US5910854A (en) 1993-02-26 1999-06-08 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
US5919439A (en) 1993-08-23 1999-07-06 The Procter & Gamble Company Silicone grafted thermoplastic elastomeric copolymers and hair and skin care compositions containing the same
US5919879A (en) 1997-04-25 1999-07-06 The Procter & Gamble Company Linear toughened silicone grafted polymers
US5919867A (en) 1994-12-22 1999-07-06 Mitsubishi Rayon Co., Ltd. Block copolymer and a preparation process thereof
US5922633A (en) 1993-09-06 1999-07-13 Nof Corporation Thermal latent acid catalyst
US5929173A (en) 1997-05-12 1999-07-27 The Procter & Gamble Company Toughened grafted polymers
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US5980878A (en) 1993-07-01 1999-11-09 The Procter & Gamble Company Thermoplastic elastomeric copolymers and hair and skin care compositions containing the same
US5986015A (en) 1997-05-16 1999-11-16 The Procter & Gamble Company Method of making graft polymers
US5994022A (en) 1996-11-14 1999-11-30 Jsr Corporation Radiation sensitive resin composition
US5997517A (en) 1997-01-27 1999-12-07 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
US6002511A (en) 1993-02-26 1999-12-14 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
WO2000002599A1 (en) 1998-07-08 2000-01-20 Advanced Biocompatible Coatings Inc. Biocompatible metallic stents with hydroxy methacrylate coating
US6039872A (en) 1997-10-27 2000-03-21 Pall Corporation Hydrophilic membrane
US6083393A (en) 1997-10-27 2000-07-04 Pall Corporation Hydrophilic membrane
US6096070A (en) 1995-06-07 2000-08-01 Med Institute Inc. Coated implantable medical device
US6099563A (en) 1995-02-22 2000-08-08 Boston Scientific Corporation Substrates, particularly medical devices, provided with bio-active/biocompatible coatings
US6110483A (en) 1997-06-23 2000-08-29 Sts Biopolymers, Inc. Adherent, flexible hydrogel and medicated coatings
US6113883A (en) 1997-04-25 2000-09-05 The Procter & Gamble Company Hair styling compositions comprising silicone-containing copolymers
US6117447A (en) 1997-12-12 2000-09-12 Nitto Denko-Corporation Percutaneous absorption type preparation
US6133391A (en) 1998-03-17 2000-10-17 3M Innovative Properties Company Adhesive compositions and adhesive tapes comprising zwitterionic copolymers, and novel zwitterionic copolymers
US6136296A (en) 1997-04-25 2000-10-24 The Procter & Gamble Company Personal care compositions
US6143354A (en) 1999-02-08 2000-11-07 Medtronic Inc. One-step method for attachment of biomolecules to substrate surfaces
US6159978A (en) 1997-05-28 2000-12-12 Aventis Pharmaceuticals Product, Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6165455A (en) 1994-06-30 2000-12-26 The Procter & Gamble Company Personal care compositions containing thermoplastic elastomeric graft copolymers
US6165457A (en) 1997-05-12 2000-12-26 The Procter & Gamble Company Personal care compositions containing toughened grafted polymers
US6174329B1 (en) 1996-08-22 2001-01-16 Advanced Cardiovascular Systems, Inc. Protective coating for a stent with intermediate radiopaque coating
US6179817B1 (en) 1995-02-22 2001-01-30 Boston Scientific Corporation Hybrid coating for medical devices
US6180632B1 (en) 1997-05-28 2001-01-30 Aventis Pharmaceuticals Products Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6197051B1 (en) 1997-06-18 2001-03-06 Boston Scientific Corporation Polycarbonate-polyurethane dispersions for thromobo-resistant coatings
US6197844B1 (en) 1996-09-13 2001-03-06 3M Innovative Properties Company Floor finish compositions
US6210856B1 (en) 1999-01-27 2001-04-03 International Business Machines Corporation Resist composition and process of forming a patterned resist layer on a substrate
US6214901B1 (en) 1998-04-27 2001-04-10 Surmodics, Inc. Bioactive agent release coating
US6231590B1 (en) 1998-11-10 2001-05-15 Scimed Life Systems, Inc. Bioactive coating for vaso-occlusive devices
US6246508B1 (en) 1996-08-08 2001-06-12 Danionics A/S High voltage electrochromic device
US6245760B1 (en) 1997-05-28 2001-06-12 Aventis Pharmaceuticals Products, Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6248129B1 (en) 1990-09-14 2001-06-19 Quanam Medical Corporation Expandable polymeric stent with memory and delivery apparatus and method
US20010007083A1 (en) 1999-12-29 2001-07-05 Roorda Wouter E. Device and active component for inhibiting formation of thrombus-inflammatory cell matrix
US6258371B1 (en) 1998-04-03 2001-07-10 Medtronic Inc Method for making biocompatible medical article
US6262034B1 (en) 1994-03-15 2001-07-17 Neurotech S.A. Polymeric gene delivery system
US20010014717A1 (en) 1999-12-23 2001-08-16 Hossainy Syed F.A. Coating for implantable devices and a method of forming the same
US6291620B1 (en) 1994-11-09 2001-09-18 E. I. Du Pont De Nemours And Company Polymer synthesis
US6299604B1 (en) 1998-08-20 2001-10-09 Cook Incorporated Coated implantable medical device
US20010029351A1 (en) 1998-04-16 2001-10-11 Robert Falotico Drug combinations and delivery devices for the prevention and treatment of vascular disease
US20020007214A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020005206A1 (en) 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US20020007215A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007213A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020009604A1 (en) 1999-12-22 2002-01-24 Zamora Paul O. Plasma-deposited coatings, devices and methods
US20020016625A1 (en) 2000-05-12 2002-02-07 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
JP2002095756A (en) 2000-06-01 2002-04-02 Terumo Corp Intraluminal retained material
EP1192959A2 (en) 2000-09-29 2002-04-03 Terumo Kabushiki Kaisha Antithrombotic surface treating agent and medical apparatus
US20020051730A1 (en) 2000-09-29 2002-05-02 Stanko Bodnar Coated medical devices and sterilization thereof
US6387379B1 (en) 1987-04-10 2002-05-14 University Of Florida Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
US20020065551A1 (en) 2000-09-22 2002-05-30 Koole Levinas H. Method for immobilizing poly(HEMA) on stents
US20020082679A1 (en) 2000-12-22 2002-06-27 Avantec Vascular Corporation Delivery or therapeutic capable agents
US6423787B1 (en) 1997-04-18 2002-07-23 Kaneka Corporation Polymers, processes for producing the same, and curable compositions produced therefrom
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US6440429B1 (en) 1995-09-06 2002-08-27 Kao Corporation Emulsified, water-in-oil type composition and skin cosmetic preparation
US20020123801A1 (en) 2000-12-28 2002-09-05 Pacetti Stephen D. Diffusion barrier layer for implantable devices
US6458906B1 (en) 1993-07-01 2002-10-01 The Procter & Gamble Company Thermoplastic elastomeric copolymers and hair and skin care compositions containing the same
US20020165608A1 (en) 2001-05-07 2002-11-07 Llanos Gerard H. Local drug delivery devices and methods for maintaining the drug coatings thereon
US20020176849A1 (en) 2001-02-09 2002-11-28 Endoluminal Therapeutics, Inc. Endomural therapy
US20020188037A1 (en) 1999-04-15 2002-12-12 Chudzik Stephen J. Method and system for providing bioactive agent release coating
US6498163B1 (en) 1997-02-05 2002-12-24 Warner-Lambert Company Pyrido[2,3-D]pyrimidines and 4-aminopyrimidines as inhibitors of cellular proliferation
US20030004141A1 (en) 2001-03-08 2003-01-02 Brown David L. Medical devices, compositions and methods for treating vulnerable plaque
US20030028243A1 (en) 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US20030028244A1 (en) 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US20030036794A1 (en) 1995-06-07 2003-02-20 Cook Incorporated Coated implantable medical device
US20030039689A1 (en) 2001-04-26 2003-02-27 Jianbing Chen Polymer-based, sustained release drug delivery system
US20030040790A1 (en) 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US6530951B1 (en) 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
US6530950B1 (en) 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
US6537532B1 (en) 1993-08-23 2003-03-25 The Procter & Gamble Company Silicone grafted thermoplastic elastomeric copolymers and hair and skin care compositions containing the same
US20030060877A1 (en) 2001-09-25 2003-03-27 Robert Falotico Coated medical devices for the treatment of vascular disease
US6541537B1 (en) 2001-01-19 2003-04-01 Renaissance Technology Llc Acrylate polymeric compositions and methods
US20030065377A1 (en) 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices
JP2003111836A (en) 2001-06-28 2003-04-15 Terumo Corp Heat-lung machine circuitry system
US6555117B2 (en) 1997-04-25 2003-04-29 The Procter & Gamble Company Personal care compositions containing linear toughened silicone grafted polymers
US20030083646A1 (en) 2000-12-22 2003-05-01 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
US20030083739A1 (en) 2001-09-24 2003-05-01 Robert Cafferata Rational drug therapy device and methods
US6592990B2 (en) 2000-09-06 2003-07-15 Appleton Papers Inc. In situ microencapsulated adhesive
US6627584B2 (en) 2002-01-28 2003-09-30 Ethyl Corporation Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US6630133B1 (en) 1999-09-16 2003-10-07 L'oreal S.A. Cosmetic composition comprising at least one silicone/acrylate copolymer and at least one thickening agent
US6642335B2 (en) 2001-05-23 2003-11-04 Kusumoto Chemicals Ltd Flow-and-leveling agents for powder coatings
US6646354B2 (en) 1997-08-22 2003-11-11 Micron Technology, Inc. Adhesive composition and methods for use in packaging applications
US6663855B2 (en) 2000-10-03 2003-12-16 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Cosmetic and personal care compositions
WO2004002546A1 (en) 2002-06-28 2004-01-08 Bausch & Lomb Incorporated Intraocular lenses with modified surface
US20040063805A1 (en) 2002-09-19 2004-04-01 Pacetti Stephen D. Coatings for implantable medical devices and methods for fabrication thereof
US6727344B2 (en) 1999-12-28 2004-04-27 Omnova Solutions Inc. Monohydric polyfluorooxetane polymer and radiation curable coatings containing a monofunctional polyfluorooxetane polymer
WO2004000383A3 (en) 2002-06-21 2004-05-27 Advanced Cardiovascular System Polyacrylates coatings for implantable medical devices
US6746770B1 (en) 1989-05-26 2004-06-08 Internatonal Business Machines Corporation Electrically conductive and abrasion/scratch resistant polymeric materials, method of fabrication thereof and uses thereof
JP2004298223A (en) 2003-03-28 2004-10-28 Terumo Corp Biocompatible material
US20040225345A1 (en) 2003-05-05 2004-11-11 Fischell Robert E. Means and method for stenting bifurcated vessels
JP2004357826A (en) 2003-06-03 2004-12-24 Terumo Corp Medical instrument
US6939376B2 (en) 2001-11-05 2005-09-06 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US7005137B1 (en) 2002-06-21 2006-02-28 Advanceed Cardiovascular Systems, Inc. Coating for implantable medical devices
US7070798B1 (en) 2002-06-21 2006-07-04 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices incorporating chemically-bound polymers and oligomers of L-arginine
US7094256B1 (en) 2002-12-16 2006-08-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical device containing polycationic peptides
US20060216326A1 (en) * 2005-03-24 2006-09-28 Pacetti Stephen D Implantable devices formed of non-fouling methacrylate or acrylate polymers
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US20080015322A1 (en) * 2002-03-11 2008-01-17 Ture Kindt-Larsen Low polydispersity poly-hema compositions
US7396539B1 (en) 2002-06-21 2008-07-08 Advanced Cardiovascular Systems, Inc. Stent coatings with engineered drug release rate
US7563454B1 (en) 2003-05-01 2009-07-21 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices

Patent Citations (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117235A (en) 1971-09-23 1978-09-26 Owens-Illinois, Inc. Novel preparation of novel low molecular weight, liquid polymer
US4156034A (en) 1974-03-20 1979-05-22 Hitachi, Ltd. Liquid developer for electro photography
US4000958A (en) 1974-04-17 1977-01-04 Sumitomo Chemical Company, Limited Method for treating leather
US4273760A (en) 1979-02-05 1981-06-16 National Starch And Chemical Corporation Shampoo compositions
US4612209A (en) 1983-12-27 1986-09-16 Ciba-Geigy Corporation Process for the preparation of heat-curable adhesive films
EP0243160B1 (en) 1986-04-22 1993-09-15 Nippon Paint Co., Ltd. Blocked isocyanatocarbonyl group-containing polymers
US6387379B1 (en) 1987-04-10 2002-05-14 University Of Florida Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
US4954424A (en) 1987-07-27 1990-09-04 Hitachi, Ltd. Pattern fabrication by radiation-induced graft copolymerization
US5616338A (en) 1988-02-11 1997-04-01 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
US5019096A (en) 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
US4931287A (en) 1988-06-14 1990-06-05 University Of Utah Heterogeneous interpenetrating polymer networks for the controlled release of drugs
US5721299A (en) 1989-05-26 1998-02-24 International Business Machines Corporation Electrically conductive and abrasion/scratch resistant polymeric materials, method of fabrication thereof and uses thereof
US6746770B1 (en) 1989-05-26 2004-06-08 Internatonal Business Machines Corporation Electrically conductive and abrasion/scratch resistant polymeric materials, method of fabrication thereof and uses thereof
US5194459A (en) 1990-02-05 1993-03-16 Junkosha Co., Ltd. Fluoropolymer insulating material containing hollow microspheres
US6248129B1 (en) 1990-09-14 2001-06-19 Quanam Medical Corporation Expandable polymeric stent with memory and delivery apparatus and method
US5258020A (en) 1990-09-14 1993-11-02 Michael Froix Method of using expandable polymeric stent with memory
US5163952A (en) 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
US5607467A (en) 1990-09-14 1997-03-04 Froix; Michael Expandable polymeric stent with memory and delivery apparatus and method
JPH04152952A (en) 1990-10-18 1992-05-26 Terumo Corp Organism-compatible medical material
US5385795A (en) 1991-03-08 1995-01-31 Nippon Oil Co., Ltd. Method for producing color filter
US5314770A (en) 1991-04-26 1994-05-24 Nippon Oil Co., Ltd. Method for producing color filter
US5214541A (en) 1991-06-12 1993-05-25 Nippon Oil Co., Ltd. Method for producing color filter
US5334468A (en) 1991-07-09 1994-08-02 Nippon Oil Co., Ltd. Method for producing color filter
US5500760A (en) 1991-09-06 1996-03-19 Donnelly Corporation Electrochemichromic solutions, processes for preparing and using the same, and devices manufactured with the same
US5357636A (en) 1992-06-30 1994-10-25 Dresdner Jr Karl P Flexible protective medical gloves and methods for their use
US5422207A (en) 1992-08-04 1995-06-06 Nippon Oil Co., Ltd. Method for producing color filter
US5910854A (en) 1993-02-26 1999-06-08 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
US6002511A (en) 1993-02-26 1999-12-14 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
US6154306A (en) 1993-02-26 2000-11-28 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
US6245262B1 (en) 1993-02-26 2001-06-12 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such films and devices
US5980878A (en) 1993-07-01 1999-11-09 The Procter & Gamble Company Thermoplastic elastomeric copolymers and hair and skin care compositions containing the same
US5730966A (en) 1993-07-01 1998-03-24 The Procter & Gamble Company Thermoplastic elastomeric copolymers used in hair and skin care compositions
US6458906B1 (en) 1993-07-01 2002-10-01 The Procter & Gamble Company Thermoplastic elastomeric copolymers and hair and skin care compositions containing the same
US6537532B1 (en) 1993-08-23 2003-03-25 The Procter & Gamble Company Silicone grafted thermoplastic elastomeric copolymers and hair and skin care compositions containing the same
US5919439A (en) 1993-08-23 1999-07-06 The Procter & Gamble Company Silicone grafted thermoplastic elastomeric copolymers and hair and skin care compositions containing the same
US5922633A (en) 1993-09-06 1999-07-13 Nof Corporation Thermal latent acid catalyst
US5681611A (en) 1993-12-15 1997-10-28 Bridgestone Corporation Light guide and method for making
US5453530A (en) * 1994-03-11 1995-09-26 The Curators Of The University Of Missouri S-(ω-hydroxyalkyl) esters of thioacrylic and thiomethacrylic acids
US6262034B1 (en) 1994-03-15 2001-07-17 Neurotech S.A. Polymeric gene delivery system
US20010020011A1 (en) 1994-03-15 2001-09-06 Edith Mathiowitz Polymeric gene delivery system
US20010051608A1 (en) 1994-03-15 2001-12-13 Edith Mathiowitz Polymeric gene delivery
US6165455A (en) 1994-06-30 2000-12-26 The Procter & Gamble Company Personal care compositions containing thermoplastic elastomeric graft copolymers
US5879713A (en) 1994-10-12 1999-03-09 Focal, Inc. Targeted delivery via biodegradable polymers
US6291620B1 (en) 1994-11-09 2001-09-18 E. I. Du Pont De Nemours And Company Polymer synthesis
US5919867A (en) 1994-12-22 1999-07-06 Mitsubishi Rayon Co., Ltd. Block copolymer and a preparation process thereof
US5684913A (en) 1994-12-22 1997-11-04 Bridgestone Corporation Optical waveguide tube and method of making
US6099563A (en) 1995-02-22 2000-08-08 Boston Scientific Corporation Substrates, particularly medical devices, provided with bio-active/biocompatible coatings
US6179817B1 (en) 1995-02-22 2001-01-30 Boston Scientific Corporation Hybrid coating for medical devices
US5674242A (en) 1995-06-06 1997-10-07 Quanam Medical Corporation Endoprosthetic device with therapeutic compound
US20030028243A1 (en) 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US5824049A (en) 1995-06-07 1998-10-20 Med Institute, Inc. Coated implantable medical device
US20030036794A1 (en) 1995-06-07 2003-02-20 Cook Incorporated Coated implantable medical device
US5873904A (en) 1995-06-07 1999-02-23 Cook Incorporated Silver implantable medical device
US6096070A (en) 1995-06-07 2000-08-01 Med Institute Inc. Coated implantable medical device
US20030028244A1 (en) 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US6440429B1 (en) 1995-09-06 2002-08-27 Kao Corporation Emulsified, water-in-oil type composition and skin cosmetic preparation
US6277449B1 (en) 1995-10-19 2001-08-21 Omprakash S. Kolluri Method for sequentially depositing a three-dimensional network
US5723219A (en) 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
US5962138A (en) 1995-12-19 1999-10-05 Talison Research, Inc. Plasma deposited substrate structure
US5753146A (en) 1996-03-29 1998-05-19 Transitions Optical, Inc. Photochromic naphthopyran compositions of neutral color
US5770115A (en) 1996-04-19 1998-06-23 Ppg Industries, Inc. Photochromic naphthopyran compositions of improved fatigue resistance
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US6246508B1 (en) 1996-08-08 2001-06-12 Danionics A/S High voltage electrochromic device
US6174329B1 (en) 1996-08-22 2001-01-16 Advanced Cardiovascular Systems, Inc. Protective coating for a stent with intermediate radiopaque coating
US6197844B1 (en) 1996-09-13 2001-03-06 3M Innovative Properties Company Floor finish compositions
US6530951B1 (en) 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
US5821300A (en) 1996-11-07 1998-10-13 Witco Gmbh Process for preparing polymeric binders and their use for antifouling paint systems
US5994022A (en) 1996-11-14 1999-11-30 Jsr Corporation Radiation sensitive resin composition
US5859127A (en) 1996-11-29 1999-01-12 Shin-Etsu Polymer Co., Ltd. Thermosetting resin composition and two-parts composite body thereof with silcone rubber
US5997517A (en) 1997-01-27 1999-12-07 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
US6306176B1 (en) 1997-01-27 2001-10-23 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
US6498163B1 (en) 1997-02-05 2002-12-24 Warner-Lambert Company Pyrido[2,3-D]pyrimidines and 4-aminopyrimidines as inhibitors of cellular proliferation
US6420036B1 (en) 1997-03-26 2002-07-16 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
US6423787B1 (en) 1997-04-18 2002-07-23 Kaneka Corporation Polymers, processes for producing the same, and curable compositions produced therefrom
US6136296A (en) 1997-04-25 2000-10-24 The Procter & Gamble Company Personal care compositions
US5919879A (en) 1997-04-25 1999-07-06 The Procter & Gamble Company Linear toughened silicone grafted polymers
US6555117B2 (en) 1997-04-25 2003-04-29 The Procter & Gamble Company Personal care compositions containing linear toughened silicone grafted polymers
US6113883A (en) 1997-04-25 2000-09-05 The Procter & Gamble Company Hair styling compositions comprising silicone-containing copolymers
US6165457A (en) 1997-05-12 2000-12-26 The Procter & Gamble Company Personal care compositions containing toughened grafted polymers
US5929173A (en) 1997-05-12 1999-07-27 The Procter & Gamble Company Toughened grafted polymers
US5986015A (en) 1997-05-16 1999-11-16 The Procter & Gamble Company Method of making graft polymers
US6524347B1 (en) 1997-05-28 2003-02-25 Avantis Pharmaceuticals Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6528526B1 (en) 1997-05-28 2003-03-04 Aventis Pharmaceuticals Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6482834B2 (en) 1997-05-28 2002-11-19 Aventis Pharmaceuticals Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6245760B1 (en) 1997-05-28 2001-06-12 Aventis Pharmaceuticals Products, Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6180632B1 (en) 1997-05-28 2001-01-30 Aventis Pharmaceuticals Products Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6159978A (en) 1997-05-28 2000-12-12 Aventis Pharmaceuticals Product, Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6197051B1 (en) 1997-06-18 2001-03-06 Boston Scientific Corporation Polycarbonate-polyurethane dispersions for thromobo-resistant coatings
US6110483A (en) 1997-06-23 2000-08-29 Sts Biopolymers, Inc. Adherent, flexible hydrogel and medicated coatings
US6646354B2 (en) 1997-08-22 2003-11-11 Micron Technology, Inc. Adhesive composition and methods for use in packaging applications
JPH1189929A (en) 1997-09-17 1999-04-06 Terumo Corp Indwelling catheter
US6083393A (en) 1997-10-27 2000-07-04 Pall Corporation Hydrophilic membrane
US6039872A (en) 1997-10-27 2000-03-21 Pall Corporation Hydrophilic membrane
US6117447A (en) 1997-12-12 2000-09-12 Nitto Denko-Corporation Percutaneous absorption type preparation
US6133391A (en) 1998-03-17 2000-10-17 3M Innovative Properties Company Adhesive compositions and adhesive tapes comprising zwitterionic copolymers, and novel zwitterionic copolymers
US6270788B1 (en) 1998-04-03 2001-08-07 Medtronic Inc Implantable medical device
US6258371B1 (en) 1998-04-03 2001-07-10 Medtronic Inc Method for making biocompatible medical article
US20030040790A1 (en) 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US20010029351A1 (en) 1998-04-16 2001-10-11 Robert Falotico Drug combinations and delivery devices for the prevention and treatment of vascular disease
US20020032434A1 (en) 1998-04-27 2002-03-14 Chudzik Stephen J. Bioactive agent release coating
US20030031780A1 (en) 1998-04-27 2003-02-13 Chudzik Stephen J. Bioactive agent release coating
US6214901B1 (en) 1998-04-27 2001-04-10 Surmodics, Inc. Bioactive agent release coating
US6344035B1 (en) 1998-04-27 2002-02-05 Surmodics, Inc. Bioactive agent release coating
WO2000002599A1 (en) 1998-07-08 2000-01-20 Advanced Biocompatible Coatings Inc. Biocompatible metallic stents with hydroxy methacrylate coating
US20020032414A1 (en) 1998-08-20 2002-03-14 Ragheb Anthony O. Coated implantable medical device
US6299604B1 (en) 1998-08-20 2001-10-09 Cook Incorporated Coated implantable medical device
US6231590B1 (en) 1998-11-10 2001-05-15 Scimed Life Systems, Inc. Bioactive coating for vaso-occlusive devices
US6530950B1 (en) 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
US6210856B1 (en) 1999-01-27 2001-04-03 International Business Machines Corporation Resist composition and process of forming a patterned resist layer on a substrate
US6143354A (en) 1999-02-08 2000-11-07 Medtronic Inc. One-step method for attachment of biomolecules to substrate surfaces
US20020188037A1 (en) 1999-04-15 2002-12-12 Chudzik Stephen J. Method and system for providing bioactive agent release coating
US6630133B1 (en) 1999-09-16 2003-10-07 L'oreal S.A. Cosmetic composition comprising at least one silicone/acrylate copolymer and at least one thickening agent
US20020009604A1 (en) 1999-12-22 2002-01-24 Zamora Paul O. Plasma-deposited coatings, devices and methods
US20010014717A1 (en) 1999-12-23 2001-08-16 Hossainy Syed F.A. Coating for implantable devices and a method of forming the same
US6727344B2 (en) 1999-12-28 2004-04-27 Omnova Solutions Inc. Monohydric polyfluorooxetane polymer and radiation curable coatings containing a monofunctional polyfluorooxetane polymer
US20010007083A1 (en) 1999-12-29 2001-07-05 Roorda Wouter E. Device and active component for inhibiting formation of thrombus-inflammatory cell matrix
US20020016625A1 (en) 2000-05-12 2002-02-07 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020005206A1 (en) 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US20020007214A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007215A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007213A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
JP2002095756A (en) 2000-06-01 2002-04-02 Terumo Corp Intraluminal retained material
US7699886B2 (en) 2000-06-01 2010-04-20 Terumo Kabushiki Kaisha Implantable tubular device
US6592990B2 (en) 2000-09-06 2003-07-15 Appleton Papers Inc. In situ microencapsulated adhesive
US20020065551A1 (en) 2000-09-22 2002-05-30 Koole Levinas H. Method for immobilizing poly(HEMA) on stents
WO2002024249A3 (en) 2000-09-22 2002-08-01 Levinas H Koole Method for immobilizing poly(hema) on stents
US20020051730A1 (en) 2000-09-29 2002-05-02 Stanko Bodnar Coated medical devices and sterilization thereof
US20020064558A1 (en) 2000-09-29 2002-05-30 Masaru Tanaka Antithrombotic surface treating agent and medical apparatus
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
JP2002105136A (en) 2000-09-29 2002-04-10 Terumo Corp Antithrombotic surface-treating agent and medical tool
EP1192959A2 (en) 2000-09-29 2002-04-03 Terumo Kabushiki Kaisha Antithrombotic surface treating agent and medical apparatus
US6663855B2 (en) 2000-10-03 2003-12-16 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Cosmetic and personal care compositions
US6685925B2 (en) 2000-10-03 2004-02-03 Jean M. J. Frechet Cosmetic and personal care compositions
US20030083646A1 (en) 2000-12-22 2003-05-01 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
US20020082679A1 (en) 2000-12-22 2002-06-27 Avantec Vascular Corporation Delivery or therapeutic capable agents
US20020123801A1 (en) 2000-12-28 2002-09-05 Pacetti Stephen D. Diffusion barrier layer for implantable devices
US6541537B1 (en) 2001-01-19 2003-04-01 Renaissance Technology Llc Acrylate polymeric compositions and methods
US20020176849A1 (en) 2001-02-09 2002-11-28 Endoluminal Therapeutics, Inc. Endomural therapy
US20030004141A1 (en) 2001-03-08 2003-01-02 Brown David L. Medical devices, compositions and methods for treating vulnerable plaque
US20030039689A1 (en) 2001-04-26 2003-02-27 Jianbing Chen Polymer-based, sustained release drug delivery system
US20020165608A1 (en) 2001-05-07 2002-11-07 Llanos Gerard H. Local drug delivery devices and methods for maintaining the drug coatings thereon
US6642335B2 (en) 2001-05-23 2003-11-04 Kusumoto Chemicals Ltd Flow-and-leveling agents for powder coatings
US20050106203A1 (en) 2001-06-27 2005-05-19 Roorda Wouter E. Polyacrylates coating for implantable medical devices
US7247313B2 (en) 2001-06-27 2007-07-24 Advanced Cardiovascular Systems, Inc. Polyacrylates coatings for implantable medical devices
JP2003111836A (en) 2001-06-28 2003-04-15 Terumo Corp Heat-lung machine circuitry system
US20030083739A1 (en) 2001-09-24 2003-05-01 Robert Cafferata Rational drug therapy device and methods
US20030060877A1 (en) 2001-09-25 2003-03-27 Robert Falotico Coated medical devices for the treatment of vascular disease
US20030065377A1 (en) 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices
US6939376B2 (en) 2001-11-05 2005-09-06 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US6627584B2 (en) 2002-01-28 2003-09-30 Ethyl Corporation Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US20080015322A1 (en) * 2002-03-11 2008-01-17 Ture Kindt-Larsen Low polydispersity poly-hema compositions
WO2004000383A3 (en) 2002-06-21 2004-05-27 Advanced Cardiovascular System Polyacrylates coatings for implantable medical devices
US7396539B1 (en) 2002-06-21 2008-07-08 Advanced Cardiovascular Systems, Inc. Stent coatings with engineered drug release rate
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US7005137B1 (en) 2002-06-21 2006-02-28 Advanceed Cardiovascular Systems, Inc. Coating for implantable medical devices
US7070798B1 (en) 2002-06-21 2006-07-04 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices incorporating chemically-bound polymers and oligomers of L-arginine
US7083646B2 (en) 2002-06-28 2006-08-01 Bausch & Lomb Incorporated Surface modification of functional group-containing intraocular lenses
WO2004002546A1 (en) 2002-06-28 2004-01-08 Bausch & Lomb Incorporated Intraocular lenses with modified surface
US20040063805A1 (en) 2002-09-19 2004-04-01 Pacetti Stephen D. Coatings for implantable medical devices and methods for fabrication thereof
US7094256B1 (en) 2002-12-16 2006-08-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical device containing polycationic peptides
JP2004298223A (en) 2003-03-28 2004-10-28 Terumo Corp Biocompatible material
US7563454B1 (en) 2003-05-01 2009-07-21 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices
US20040225345A1 (en) 2003-05-05 2004-11-11 Fischell Robert E. Means and method for stenting bifurcated vessels
JP2004357826A (en) 2003-06-03 2004-12-24 Terumo Corp Medical instrument
US20060216326A1 (en) * 2005-03-24 2006-09-28 Pacetti Stephen D Implantable devices formed of non-fouling methacrylate or acrylate polymers

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
"A more biocompatible oxygenerator New Terumo CAPIOX RX", Terumo Corp. Press Release 2000, www.terumo.co.jp/English/press/2000/00-03.html, downloaded Mar. 19, 2004, 2 pp.
"Biocompatible Coatings", Terumo Cardiovascular Systems, www.terumo-us.com/about-us/core-competencies/biocompatible-coatings.asp, downloaded Mar. 19, 2004, 1 p.
Braun, et al., "Polymer Synthesis: Theory and Practice", Fundamentals, Methods, Experiments, 3rd Ed., Springer, (book) 12 pp., 2001.
Chemical Book, 2-methoxyethyl methacrylate (accessed Dec. 3, 2015), pp. 1-2.
Hamming, Lesely M., et al, Material Matters, (2008), 3.3, pp. 1-5. *
Handbook of Polymer Synthesis, Marcel Dekker Inc., Edited by H. R. Kricheldorf, 1992.
Imai, Biomaterials vol. 23, No. 1, pp. 44-45 (2005) without English translation.
International Search Report for PCT/US2006/010420 filed Mar. 20, 2006, mailed Jan. 25, 2007, 14 pgs.
Kenji Ikeda, Clinical Engineering vol. 9, No. 10, pp. 956-962 (1998) without English Translation.
Kocakulak et al., "Investigation of Blood Compatibility of PMEA Coated Extracorporeal Circuits", J. Bioactive and Compatible Polymers vol. 17, 2002, pp. 343-356.
Lim, VYT, et al, Singapore Med J, vol. 44(9) (2003), pp. 482-487.
Odian, Principles of Polymerization, 3rd ed. John Wiley & Sons, 18 pp., 1991.
Sigma-Aldrich, Ethyl tiglate (accessed Jul. 1, 2015) pp. 1-2.
Tanaka et al., 21 Biomaterials 1471 Elsevier (2000).
Translation of Notice of Reasons for Rejection from Japanese Patent Office in application No. P2008-503133, mailed Feb. 7, 2002, 2 pp.
Translation of Notice of Reasons for Rejection from JPO for Appl. No. P2008-503133, mailed Feb. 7, 2002, 2 pgs.
Translation of Notice of Reasons for Rejection from the Japanese Patent Office in application No. P2008-503133, mailed May 7, 2014 and its translation, 13 pp.
U.S. Appl. No. 10/376,348, filed Feb. 26, 2003, Ding et al.
Vickers, N.J., et al, Grafting of PEG-Macromonomers to Plasma Polymers Using Ceric Ion Initiation, European Cells and Materials, (2005), vol. 10, Suppl. 2., p. 58. *
Wikipedia, (Hydroxyethyl)methacrylate, (accessed Jan. 10, 2010), pp. 1-2. *

Also Published As

Publication number Publication date Type
US20100266659A1 (en) 2010-10-21 application

Similar Documents

Publication Publication Date Title
US7220816B2 (en) Biologically absorbable coatings for implantable devices based on poly(ester amides) and methods for fabricating the same
US20050112170A1 (en) Coatings for implantable devices comprising polymers of lactic acid and methods for fabricating the same
US20050208091A1 (en) Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US20050287184A1 (en) Drug-delivery stent formulations for restenosis and vulnerable plaque
US20070148251A1 (en) Nanoparticle releasing medical devices
US7166680B2 (en) Blends of poly(ester amide) polymers
US20060062824A1 (en) Medicated coatings for implantable medical devices including polyacrylates
US20050245637A1 (en) Methods for modulating thermal and mechanical properties of coatings on implantable devices
US20050106204A1 (en) Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US7261946B2 (en) Block copolymers of acrylates and methacrylates with fluoroalkenes
US20050175666A1 (en) High-density lipoprotein coated medical devices
US7169404B2 (en) Biologically absorbable coatings for implantable devices and methods for fabricating the same
US20050112172A1 (en) Biobeneficial coating compostions and methods of making and using thereof
US20070128246A1 (en) Solventless method for forming a coating
US20060142541A1 (en) Poly(ester amide) block copolymers
US20070259101A1 (en) Microporous coating on medical devices
US20050271700A1 (en) Poly(ester amide) coating composition for implantable devices
US20060115449A1 (en) Bioabsorbable, biobeneficial, tyrosine-based polymers for use in drug eluting stent coatings
US20050208093A1 (en) Phosphoryl choline coating compositions
US20050214339A1 (en) Biologically degradable compositions for medical applications
US20090238854A1 (en) Plasticizers for coating compositions
US20050266038A1 (en) Antifouling heparin coatings
US20060089485A1 (en) End-capped poly(ester amide) copolymers
US20070003589A1 (en) Coatings for implantable medical devices containing attractants for endothelial cells
US20090110711A1 (en) Implantable device having a slow dissolving polymer

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABBOTT CARDIOVASCULAR SYSTEMS INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PACETTI, STEPHEN D.;REEL/FRAME:029111/0656

Effective date: 20121008