TWI672402B - 經磊晶塗布的單晶矽半導體晶圓以及其製造方法 - Google Patents

經磊晶塗布的單晶矽半導體晶圓以及其製造方法 Download PDF

Info

Publication number
TWI672402B
TWI672402B TW107124439A TW107124439A TWI672402B TW I672402 B TWI672402 B TW I672402B TW 107124439 A TW107124439 A TW 107124439A TW 107124439 A TW107124439 A TW 107124439A TW I672402 B TWI672402 B TW I672402B
Authority
TW
Taiwan
Prior art keywords
wafer
substrate wafer
semiconductor wafer
epitaxial layer
single crystal
Prior art date
Application number
TW107124439A
Other languages
English (en)
Other versions
TW201910571A (zh
Inventor
林哈德 蕭爾
約格 哈伯卻特
Original Assignee
德商世創電子材料公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商世創電子材料公司 filed Critical 德商世創電子材料公司
Publication of TW201910571A publication Critical patent/TW201910571A/zh
Application granted granted Critical
Publication of TWI672402B publication Critical patent/TWI672402B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System

Abstract

本發明關於一種直徑不小於300毫米的單晶矽半導體晶圓,以及製造經塗布的單晶矽半導體晶圓的方法。該半導體晶圓包括單晶矽基板晶圓以及在該基板晶圓上之含有摻雜劑的單晶矽磊晶層,其中該磊晶層的厚度不均勻性為不大於0.5%,且該磊晶層的比電阻不均勻性為不大於2%。

Description

經磊晶塗布的單晶矽半導體晶圓以及其製造方法
本發明提供一種直徑不小於300毫米的經磊晶塗布的單晶矽半導體晶圓。本發明還關於一種製造直徑不小於300毫米的經磊晶塗布的單晶矽半導體晶圓的方法。
電子元件的製造需要以經磊晶塗布的單晶矽半導體晶圓作為前驅物。出於優異的電性能之故,它們通常較佳覆於經拋光的單晶矽半導體晶圓。例如,在所謂的CMOS圖像感測器或簡稱CIS元件的製造中就是這種情況。
經磊晶塗布的單晶矽半導體晶圓通常係透過在1100℃至1250℃的溫度下在基板晶圓上氣相沉積(CVD)磊晶層來製造。直徑不小於300毫米的單晶矽基板晶圓通常係在一用於塗布單個晶圓的裝置中被塗布。
US 2010/0062611 A1描述一種用於薄化半導體晶圓背面的方法,該方法可用於製造背照式圖像感測器(backside-illuminated image sensors)的過程中。
為了有效用作CIS元件製造的前驅物,經磊晶塗布的半導體晶圓必須滿足特定的要求。對於磊晶層的厚度和比電阻(電阻率)的要求是特別苛刻的。厚度和比電阻(以下稱為電阻)二者均必須在半導體晶圓的半徑上基本上均勻。用於描述不均勻性的方法為:最大厚度和最小厚度(最大電阻和最小電阻)之差異與最大厚度和最小厚度(最大電阻和最小電阻)之總和的商數乘以係數100%。
US 2010/0213168 A1描述各種用於改善單晶矽的磊晶層的厚度均勻性的方法。
US 2011/0114017 A1描述一種製造經磊晶塗布的單晶矽半導體晶圓的方法,其中沉積一磊晶層,且電阻的不均勻性為4%或更小。
不管這樣的教導如何,仍然需要改進層厚度和電阻的均勻性,特別是因為迄今為止缺乏任何令人滿意的解決方案,使得距離半導體晶圓之邊緣達15毫米的問題邊緣區域中的層厚度和電阻與距離邊緣更遠處的區域的層厚度和電阻相匹配。在該問題邊緣區域中,由於靠近邊緣的熱輻射導致基板晶圓失去熱量,因此基板晶圓朝向邊緣的溫度降低。除非採取對策,否則在該區域中摻雜有p型摻雜劑的磊晶層之層厚度將變得更小而電阻將變得更大。如果摻雜劑是n型的,電阻將變小。已知的對策,例如嘗試影響溫度場,迄今為止都是以損害問題邊緣區域之外的區域中磊晶層的厚度均勻性及/或增加半導體晶圓滑移的傾向為代價。特別是由溫度差異引起的應力鬆弛而產生滑移。這種溫度差異特別發生在邊緣區域中成為徑向及軸向溫度梯度,即成為朝向基板晶圓之邊緣的溫度下降,以及成為此情況下較冷的基板晶圓與較熱的基座之間的溫度差異。
晶格中的應力可以透過SIRD(scanning infrared depolarization,掃描紅外去極化)來測量。US 2012/0007978 A1描述如何測量SIRD應力並以去極化單位DU表示,以及還提供一種合適的測量儀器。
本發明的發明人已經解決了作為本發明的目的之任務,即進一步降低磊晶層的厚度不均勻性和磊晶層的電阻不均勻性而不增加半導體晶圓發展滑移的傾向。
本發明的目的係透過一種直徑不小於300毫米的單晶矽半導體晶圓實現的,該半導體晶圓包含單晶矽基板晶圓以及在該基板晶圓上之含有摻雜劑的單晶矽磊晶層,其中該磊晶層的厚度不均勻性為不大於0.5%,且該磊晶層的比電阻不均勻性為不大於2%。
因此,該半導體晶圓之磊晶層的厚度和電阻是特別均勻的。磊晶層的厚度較佳為1至20微米。該基板晶圓較佳還含有摻雜劑,且還可另外摻雜有碳或氮。該半導體晶圓較佳為一pp+ 晶圓或一nn- 晶圓。
半導體晶圓在距離半導體晶圓之邊緣達15毫米的邊緣區域中,在邊緣排除為0.5毫米的情況下,具有使去極化程度較佳不超過30個去極化單位的SIRD應力。
本發明的目的另外係透過一種製造一經塗布的單晶矽半導體晶圓的方法來實現,該方法包含: 提供直徑不小於300毫米的單晶矽基板晶圓; 將該基板晶圓放置在用於塗布單個晶圓之裝置的基座上面,其中該裝置具有一帶有環形區域的上蓋,其中該環形區域將透射通過該環形區域的輻射集中於該基板晶圓的邊緣區域中; 透過佈置於該裝置上蓋上方的輻射源將該基板晶圓加熱至沉積溫度; 透過使加工氣體通過經加熱的基板晶圓上方而沉積矽磊晶層,其中該加工氣體包含氫氣、惰性氣體及沉積氣體,且該沉積氣體包含摻雜劑及矽源。
該方法包括影響問題邊緣區域中磊晶層之沉積的措施,使得該影響保持很大程度上局部受限。例如,確保在該區域中電阻上升並調節溫度場,同時避免導致滑移的溫度梯度。
為了正面影響沉積結果,特別是在電阻方面,該加工氣體不僅包含氫氣,還包含惰性氣體。有用的惰性氣體特別是氬氣。或者,可使用另一種惰性氣體或二種或更多種惰性氣體的任何混合物作為惰性氣體。較佳使體積比不小於6且不大於20的氫氣及惰性氣體通過基板晶圓上方。額外使用惰性氣體令人驚訝地獲致問題邊緣區域中的電阻增加以及在磊晶層厚度均勻化上的一定改進。此外,藉由在用於塗布單個晶圓的裝置中塗布基板晶圓,從而以受控制的方式改善基板晶圓之問題邊緣區域中磊晶層的厚度,其中該裝置的上蓋以特定的方式構造。該上蓋具有一環形區域,該環形區域與相鄰區域相比,集中了通過其的輻射。穿過該上蓋之環形區域的橫截面較佳具有向上凸的彎曲(curvature)或具有菲涅耳透鏡(Fresnel lens)的輪廓。該集中的輻射入射到基板晶圓的問題邊緣區域中,結果使得其中的溫度被選擇性地增加。該基板晶圓的問題邊緣區域中之溫度的局部增加補償了由於熱輻射而在該處產生的熱量損失,並且其效果為溫度差異朝向更向內的區域變小。最終,以這種方式,該基板晶圓的邊緣區域中磊晶層的厚度與該基板晶圓更向內的區域中磊晶層的厚度相匹配。
下面參照附圖進一步闡述本發明。
第1a圖和第1b圖顯示工藝氣體中的氬氣對磊晶層厚度均勻化的影響。在各別情況下顯示的是磊晶層厚度與目標厚度的偏差Δ相對基板晶圓之直徑d的典型分佈。在第1b圖的情況下磊晶層的厚度分佈比第1a圖的情況更均勻。這種差異歸因於以下事實:在磊晶層沉積中的加工氣體額外含有氬氣(第1b圖)或不含任何氬氣(第1a圖)。氬氣以3 slm的比例進料。二種情況下氫的比例均為50 slm。二種情況下的沉積氣體都是相同的,沉積溫度也都是1115o C。
第2圖顯示加工氣體中的氬氣對磊晶層電阻均勻化的影響。顯示二條曲線,其顯示電阻ρ相對於半導體晶圓之直徑d的分佈曲線。更均勻的電阻曲線(具有正方形資料點的曲線)歸因於以下事實:在磊晶層沉積中的加工氣體額外含有氬氣,而在相比較的情況中(具有菱形資料點的曲線)則沒有。氬氣以3 slm的比例供應。二種情況下氫氣的比例均為60 slm。
第3圖所示的裝置包含由上蓋(『上部圓頂』)1、下蓋(『下部圓頂』)2及側壁3界定的反應室(reactor chamber)。上蓋1和下蓋2對佈置在反應室上方及下方的輻射源6所發射的熱輻射是可透過的。透過使加工氣體通過由熱輻射加熱的基板晶圓上方,在基板晶圓4的上側由氣相沉積磊晶層。加工氣體透過側壁3中的氣體入口而被供給,且反應後剩餘的廢氣透過側壁3中的氣體出口被除去。所示裝置表示的實施態樣具有另外的氣體入口和另外的氣體出口,以便例如能夠將吹掃氣體(purge gas)引入至基板晶圓下方的反應室體積中以及從其中排出。然而,該另外的氣體入口和該另外的氣體出口對實現本發明之目的沒有貢獻。在沉積磊晶層期間,基板晶圓4位於基座5的接觸區域上,並且與基座一起圍繞基板晶圓中心的旋轉軸旋轉。
上蓋1具有環形區域7(第4圖),該環形區域7使通過的輻射集中。上蓋1在環形區域7中的厚度比在鄰近區域中的厚度更大。穿過該上蓋之環形區域的橫截面較佳具有向上凸的彎曲或具有菲涅耳透鏡的輪廓。環形區域7對通過的輻射8之作用就像集中輻射的聚光透鏡。集中的輻射入射到基板晶圓的邊緣區域中,該邊緣區域與基板晶圓4之邊緣的距離較佳達15毫米。入射輻射消除了邊緣區域中的徑向溫度下降,使得預設的材料10之量在該處沉積,且磊晶層9的厚度達到預設值。
如第5圖所示,該上蓋之環形區域7的位置和基板晶圓之邊緣區域的位置根據光束光學的規則(rules of beam optics)相關聯。長度rD 表示上蓋1的環形區域7與穿過上蓋中心之垂線的距離,且由長度rS 與x之間的差值計算。長度rD 可用定義的高度b和h、定義的長度a和定義的角度α作為近似值計算,其中高度b表示輻射源與基板晶圓平面的距離,長度rS 表示輻射源與穿過上蓋中心之垂線的距離,高度h表示上蓋1與基板晶圓4的距離,長度x表示環形區域7與高度b的距離,長度a表示基板晶圓之邊緣區域與高度b的最大距離,以及角度α表示以高度b和長度a為底部的三角形中與底部相對的角度。
根據本發明之實施例詳細說明
透過本發明之方法製造單晶矽半導體晶圓,並且為了比較,還透過不同的方法製造半導體晶圓。
直徑為300毫米的單晶矽基板晶圓在從單晶分離、研磨、蝕刻及拋光之後,在根據第3圖的單個晶圓裝置中被塗布矽磊晶層。
在使用本發明之方法時,該裝置具有一上蓋,該上蓋具有一環形區域,該環形區域將通過的輻射集中於基板晶圓的邊緣區域中。在使用該不同的方法時,上蓋沒有這種結構。
在使用本發明的方法時,加工氣體由氫氣(70 slm)、氬氣(5 slm)及沉積氣體(三氯矽烷(6 slm)、在4l氫氣中稀釋的乙硼烷(氫氣中50 ppm(180 sccm)))組成,且磊晶層在1130℃的溫度下沉積。
在採用該不同的方法時,加工氣體僅由氫氣(55 slm)和沉積氣體(三氯矽烷(10 slm)、在4l氫氣中稀釋的乙硼烷(氫氣中50 ppm(180 sccm)))組成,且磊晶層在1125℃的溫度下沉積。
第6圖示出根據本發明製造的半導體晶圓上之SIRD測量的圖像。去極化的程度保持在較佳的程度內。沒有任一測量單元(measurement cells)的去極化程度大於30 DU。在由該不同的方法製造的半導體晶圓的情況下,由於去極化程度超過30 DU,0.907%的測量單元是顯著的(第7圖)。使用來自PVA TePla AG的SIRD-AB300儀器進行SIRD測量,在測量區域上放置具有1毫米(半徑)和2毫米(方位角)單元尺寸的極座標格柵(polar coordinate grid)用於評估。對於格柵的每個單元,測定去極化程度。去極化單位DU對應於1×10-6 的去極化程度。在各別情況下顯示的是半導體晶圓之展開的圓周區域,該圓周區域距離半導體晶圓的邊緣為4.5毫米或更小,且在中間具有切口位置(pos = 0o )。沒有示出距離半導體晶圓邊緣15毫米至4.5毫米的圓周區域,因為SIRD應力在這二種情況下均不顯著。
第8圖示出在根據本發明製造的半導體晶圓的情況下(實線)以及由該不同的方法製造的半導體晶圓的情況下(虛線),層厚度與目標值的偏差Vth 沿半徑R的分佈曲線。只有根據本發明製造的半導體晶圓在層厚度方面滿足本發明的標準。
第9圖示出在根據本發明製造的半導體晶圓的情況下(實線)以及由該不同的方法製造的半導體晶圓的情況下(虛線),電阻與目標值的偏差Vr 沿半徑R的分佈曲線。只有根據本發明製造的半導體晶圓在電阻方面滿足本發明的標準。
以上對說明性實施態樣的描述應被認為是示例性的。所揭露的內容一來使得本領域技術人員能夠理解本發明和相關優點,二來係涵蓋在本領域技術人員的理解中包括對所描述的結構和方法之明顯改變和修改。因此,所有這些改變和修改以及等同物應該由申請專利範圍的保護範圍所涵蓋。
1‧‧‧上蓋
2‧‧‧下蓋
3‧‧‧側壁
4‧‧‧基板晶圓
5‧‧‧基座
6‧‧‧輻射源
7‧‧‧環形區域
8‧‧‧通過的輻射
9‧‧‧磊晶層
10‧‧‧材料
第1a圖和第1b圖顯示加工氣體中的氬氣對磊晶層厚度均勻化的影響。 第2圖顯示加工氣體中的氬氣對磊晶層電阻均勻化的影響。 第3圖顯示適用於透過CVD塗布單個晶圓的裝置的橫截面。 第4圖示出上蓋的作用模式示意圖,該上蓋具有使通過其的輻射集中的環形區域。 第5圖示出上蓋之環形區域的位置與基板晶圓的邊緣區域之間的幾何關係,其中當輻射穿過該上蓋的環形區域時輻射被集中在該邊緣區域中。 第6圖和第7圖示出根據本發明製造的半導體晶圓上(第6圖)以及非以本發明方式製造的半導體晶圓上(第7圖)之SIRD測量的圖像。 第8圖示出在根據本發明製造的具有本發明層厚度的半導體晶圓的情況下(實線)以及非以本發明方式製造的半導體晶圓的情況下(虛線)之層厚度與目標值的偏差Vth 沿半徑R的分佈曲線。 第9圖示出在根據本發明製造的具有本發明層厚度的半導體晶圓的情況下(實線)以及非以本發明方式製造的半導體晶圓的情況下(虛線)之電阻與目標值的偏差Vr 沿半徑R的分佈曲線。

Claims (6)

  1. 一種直徑不小於300毫米的單晶矽半導體晶圓,其包含單晶矽基板晶圓以及在該基板晶圓上之含有摻雜劑的單晶矽磊晶層,其中該磊晶層的厚度不均勻性為不大於0.5%,且該磊晶層的比電阻不均勻性為不大於2%;其中該半導體晶圓在邊緣排除為0.5毫米的情況下,在距離該半導體晶圓之邊緣達15毫米的邊緣區域中,具有使去極化程度不超過30個去極化單位的SIRD(scanning infrared depolarization,掃描紅外去極化)應力。
  2. 如請求項1所述的半導體晶圓,其中該磊晶層的厚度為不小於1微米且不大於20微米。
  3. 一種製造一經塗布的單晶矽半導體晶圓的方法,該方法包含:提供直徑不小於300毫米的單晶矽基板晶圓;將該基板晶圓放置在用於塗布單個晶圓之裝置的基座上面,其中該裝置具有一帶有環形區域的上蓋,其中該環形區域將透射通過該環形區域的輻射集中於該基板晶圓的邊緣區域中;透過佈置於該裝置上蓋上方的輻射源將該基板晶圓加熱至沉積溫度;透過使加工氣體通過經加熱的基板晶圓上方而沉積矽磊晶層,其中該加工氣體包含氫氣、惰性氣體及沉積氣體,且該沉積氣體包含摻雜劑及矽源。
  4. 如請求項3所述的方法,其中該基板晶圓的邊緣區域距離該基板晶圓之邊緣達15毫米。
  5. 如請求項3或4所述的方法,包含使體積比不小於6且不大於20的氫氣及惰性氣體通過該經加熱的基板晶圓上方。
  6. 如請求項3或4所述的方法,其中穿過該上蓋之環形區域的橫截面具有向上凸的彎曲(curvature)或菲涅耳透鏡(Fresnel lens)的輪廓。
TW107124439A 2017-07-26 2018-07-16 經磊晶塗布的單晶矽半導體晶圓以及其製造方法 TWI672402B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017212799.6A DE102017212799A1 (de) 2017-07-26 2017-07-26 Epitaktisch beschichtete Halbleiterscheibe aus einkristallinem Silizium und Verfahren zu deren Herstellung
??102017212799.6 2017-07-26

Publications (2)

Publication Number Publication Date
TW201910571A TW201910571A (zh) 2019-03-16
TWI672402B true TWI672402B (zh) 2019-09-21

Family

ID=62916662

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107124439A TWI672402B (zh) 2017-07-26 2018-07-16 經磊晶塗布的單晶矽半導體晶圓以及其製造方法

Country Status (10)

Country Link
US (1) US11578424B2 (zh)
EP (1) EP3659173A1 (zh)
JP (1) JP7059351B2 (zh)
KR (1) KR102320760B1 (zh)
CN (1) CN110998787B (zh)
DE (1) DE102017212799A1 (zh)
IL (1) IL271984B2 (zh)
SG (1) SG11202000675TA (zh)
TW (1) TWI672402B (zh)
WO (1) WO2019020387A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019216267A1 (de) 2019-10-23 2021-04-29 Siltronic Ag Verfahren zur Herstellung von Halbleiterscheiben
FI3940124T3 (fi) 2020-07-14 2024-04-03 Siltronic Ag Kidekappale yksikiteisestä piistä
CN114093989B (zh) * 2021-09-30 2023-11-14 华灿光电(浙江)有限公司 深紫外发光二极管外延片及其制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040067052A1 (en) * 2002-10-03 2004-04-08 Goodman Matthew G. Localized heating of substrates using optics

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441212A (en) * 1987-08-07 1989-02-13 Nec Corp Semiconductor crystal growth method
JP2781616B2 (ja) 1989-09-29 1998-07-30 株式会社日立製作所 半導体ウエハの熱処理装置
US5227330A (en) * 1991-10-31 1993-07-13 International Business Machines Corporation Comprehensive process for low temperature SI epit axial growth
JP2822756B2 (ja) * 1992-03-10 1998-11-11 日本電気株式会社 気相成長装置およびその薄膜形成方法
JP2000091237A (ja) 1998-09-09 2000-03-31 Shin Etsu Handotai Co Ltd 半導体ウェーハの製造方法
JP2002064069A (ja) 2000-08-17 2002-02-28 Tokyo Electron Ltd 熱処理装置
US6437290B1 (en) * 2000-08-17 2002-08-20 Tokyo Electron Limited Heat treatment apparatus having a thin light-transmitting window
DE10065895C1 (de) * 2000-11-17 2002-05-23 Infineon Technologies Ag Elektronisches Bauteil mit Abschirmung und Verfahren zu seiner Herstellung
JP5216183B2 (ja) * 2004-04-13 2013-06-19 日産自動車株式会社 半導体装置
US8501594B2 (en) * 2003-10-10 2013-08-06 Applied Materials, Inc. Methods for forming silicon germanium layers
DE102004054564B4 (de) * 2004-11-11 2008-11-27 Siltronic Ag Halbleitersubstrat und Verfahren zu dessen Herstellung
DE102006055038B4 (de) 2006-11-22 2012-12-27 Siltronic Ag Epitaxierte Halbleiterscheibe sowie Vorrichtung und Verfahren zur Herstellung einer epitaxierten Halbleiterscheibe
US7820527B2 (en) * 2008-02-20 2010-10-26 Varian Semiconductor Equipment Associates, Inc. Cleave initiation using varying ion implant dose
DE102008023054B4 (de) 2008-05-09 2011-12-22 Siltronic Ag Verfahren zur Herstellung einer epitaxierten Halbleiterscheibe
US8048807B2 (en) 2008-09-05 2011-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for thinning a substrate
JP5141541B2 (ja) 2008-12-24 2013-02-13 株式会社Sumco エピタキシャルウェーハの製造方法
DE102009010556B4 (de) 2009-02-25 2013-11-07 Siltronic Ag Verfahren zur Herstellung von epitaxierten Siliciumscheiben
JP5446760B2 (ja) 2009-11-16 2014-03-19 株式会社Sumco エピタキシャル成長方法
KR20110087440A (ko) * 2010-01-26 2011-08-03 주식회사 엘지실트론 반도체 제조용 서셉터 및 이를 포함하는 반도체 제조 장치
DE102010026351B4 (de) 2010-07-07 2012-04-26 Siltronic Ag Verfahren und Vorrichtung zur Untersuchung einer Halbleiterscheibe
JP2012146697A (ja) 2011-01-06 2012-08-02 Shin Etsu Handotai Co Ltd エピタキシャルウェーハの製造装置及び製造方法
JP5470414B2 (ja) 2012-03-09 2014-04-16 株式会社半導体エネルギー研究所 発光装置及び電子機器
CN104142259A (zh) * 2013-05-10 2014-11-12 河南协鑫光伏科技有限公司 一种太阳能单晶硅测试样片的制作方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040067052A1 (en) * 2002-10-03 2004-04-08 Goodman Matthew G. Localized heating of substrates using optics

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KUNLE MATTHIAS et al, "Multiple epitaxial Si film deposition by APCVD for power semiconductors", 2015 26TH ANNUAL SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE (ASMC), IEEE, (20150503), doi:10.1109/ASMC.2015.7164439 *
KUNLE MATTHIAS et al, "Multiple epitaxial Si film deposition by APCVD for power semiconductors", 2015 26TH ANNUAL SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE (ASMC), IEEE, (20150503), doi:10.1109/ASMC.2015.7164439。
李明達, 陳濤, 李普生, 薛兵, "平板式外延爐大尺寸矽外延層的均勻性調控", 電子元件與材料第36卷第3期, lectronic Components and Materials, 出版時間:2017-03-10 11:42,第38至41頁 *
李明達, 陳濤, 李普生, 薛兵, "平板式外延爐大尺寸矽外延層的均勻性調控", 電子元件與材料第36卷第3期, lectronic Components and Materials, 出版時間:2017-03-10 11:42,第38至41頁。

Also Published As

Publication number Publication date
JP7059351B2 (ja) 2022-04-25
TW201910571A (zh) 2019-03-16
IL271984B2 (en) 2023-04-01
IL271984B (en) 2022-12-01
IL271984A (en) 2020-02-27
DE102017212799A1 (de) 2019-01-31
JP2020529127A (ja) 2020-10-01
US11578424B2 (en) 2023-02-14
CN110998787A (zh) 2020-04-10
WO2019020387A1 (de) 2019-01-31
CN110998787B (zh) 2023-11-03
KR20200015763A (ko) 2020-02-12
SG11202000675TA (en) 2020-02-27
KR102320760B1 (ko) 2021-11-01
US20210087705A1 (en) 2021-03-25
EP3659173A1 (de) 2020-06-03

Similar Documents

Publication Publication Date Title
US11530491B2 (en) Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
TWI461570B (zh) Cvd用托盤以及使用該托盤的成膜方法
TWI672402B (zh) 經磊晶塗布的單晶矽半導體晶圓以及其製造方法
US20100282170A1 (en) Vapor phase growth susceptor and vapor phase growth apparatus
US9273414B2 (en) Epitaxial growth apparatus and epitaxial growth method
US20170175262A1 (en) Epitaxial growth apparatus, epitaxial growth method, and manufacturing method of semiconductor element
JP2010016183A (ja) 気相成長装置、エピタキシャルウェーハの製造方法
JP5943201B2 (ja) 偏芯評価方法及びエピタキシャルウェーハの製造方法
US20180005816A1 (en) Semiconductor laminate
JP6132163B2 (ja) 偏芯評価方法及びエピタキシャルウェーハの製造方法
JP7083699B2 (ja) 評価方法
JP2023042593A (ja) SiCエピタキシャルウェハ
JP6702485B1 (ja) ウェーハ外周歪みの評価方法
JP5444874B2 (ja) エピタキシャルシリコンウェーハの製造方法
JP7151664B2 (ja) エピタキシャルウェーハの製造方法
KR20110087440A (ko) 반도체 제조용 서셉터 및 이를 포함하는 반도체 제조 장치
US20230197533A1 (en) Method for evaluating peripheral strain of wafer
KR102622605B1 (ko) 서셉터 및 반도체 제조장치
JP2018101707A (ja) サセプタ及びサセプタの製造方法
TW202146845A (zh) 晶圓外周變形之評價方法
CN112514077A (zh) 碳化硅外延衬底