CN110998787A - 由单晶硅构成的外延涂覆的半导体晶片及其制造方法 - Google Patents

由单晶硅构成的外延涂覆的半导体晶片及其制造方法 Download PDF

Info

Publication number
CN110998787A
CN110998787A CN201880050070.4A CN201880050070A CN110998787A CN 110998787 A CN110998787 A CN 110998787A CN 201880050070 A CN201880050070 A CN 201880050070A CN 110998787 A CN110998787 A CN 110998787A
Authority
CN
China
Prior art keywords
semiconductor wafer
epitaxial layer
substrate wafer
wafer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880050070.4A
Other languages
English (en)
Other versions
CN110998787B (zh
Inventor
R·绍尔
J·哈贝雷希特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siltronic AG
Original Assignee
Siltronic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siltronic AG filed Critical Siltronic AG
Publication of CN110998787A publication Critical patent/CN110998787A/zh
Application granted granted Critical
Publication of CN110998787B publication Critical patent/CN110998787B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种由直径不小于300mm的单晶硅构成的半导体晶片,以及一种用于制造由直径不小于300mm的单晶硅构成的涂覆的半导体晶片的方法。所述半导体晶片包括由单晶硅构成的衬底晶片以及位于所述衬底晶片上的由硅构成的外延层,所述外延层包含掺杂剂,其中,所述外延层的厚度的不均匀性不超过0.5%,且所述外延层的电阻率的不均匀性不超过2%。

Description

由单晶硅构成的外延涂覆的半导体晶片及其制造方法
技术领域
本发明的主题是由直径不小于300mm的单晶硅构成的外延涂覆的半导体晶片。此外,本发明涉及一种用于制造由直径不小于300mm的单晶硅构成的外延涂覆的半导体晶片的方法。
背景技术
为了制造电子构件,需要由单晶硅构成的外延涂覆的半导体晶片作为初级产品。由于优越的电特性,其通常优选由单晶硅构成的抛光半导体晶片。例如这适用于涉及制造图像传感器时的情况,所述图像传感器基于CMOS技术,所谓的CMOS图像传感器或简称CIS构件。
通常通过在1100℃至1250℃的温度下在衬底晶片上进行外延层的气相沉积(CVD)来制造由单晶硅构成的外延涂覆的半导体晶片。通常将由直径不小于300mm的单晶硅构成的衬底晶片涂覆在用于涂覆各个晶片的设备中。
US 2010/0062611 A1描述一种用于使半导体晶片的背侧变薄的方法,该方法可以在制造在背侧照明的图像传感器(英语:backside-illuminated imagesensors,背照式图像传感器)的过程中使用。
为了可以考虑作为制造CIS构件的初级产品,外延涂覆的半导体晶片必须满足特别的要求。该要求特别苛刻,其涉及外延层的厚度和电阻率(英语resistivity)。不仅厚度而且电阻率(以下称为电阻)必须在半导体晶片的整个半径上尽可能地均匀。描述不均匀性的度量是最大厚度和最小厚度(最大和最小电阻)之差与最大厚度和最小厚度(最大电阻和最小电阻)之和的商乘以因子100%。
US 2010/0213168 A1描述用于改善由单晶硅构成的外延层的厚度的均匀性的各种措施。
US 2011/0114017 A1描述一种用于制造由单晶硅构成的外延涂覆的半导体晶片的方法,其中,使外延层沉积并且电阻的不均匀性为4%或更小。
尽管有这样的原理,仍然存在改善层厚度和电阻的均匀性的需求,尤其因为对以下问题迄今缺乏令人满意的解决方案:使有问题的边缘区域(其具有距半导体晶片的边缘直至15mm的间距)中的层厚度和电阻适合于距边缘较大间距的区域的层厚度和电阻。在有问题的边缘区域中,衬底晶片的温度朝向边缘降低,这是因为衬底晶片在边缘附近由于热辐射而损失热量。如果不采取对策,则掺杂有p型掺杂剂的外延层的层厚度在该区域中变小,而电阻变大。如果掺杂剂是n型,则电阻变小。迄今,已知的对策(如对温度场施加影响)不利于有问题的边缘区域以外的区域中的外延层的厚度的均匀性,和/或提高半导体晶片在发生滑动(英语slip)方面的易受影响性。当由于温度差引起应力松弛时,尤其发生滑动。这样的温度差主要在边缘区域中作为径向和轴向的温度梯度出现,也就是说,作为朝向衬底晶片的边缘的温度下降出现,或作为在那里较冷的衬底晶片与在那里较热的基座(Suszeptor)之间的温度差出现。
可以借助SIRD(英语:scanning infrared depolarization,扫描红外去极化)来测量晶格中的应力。US 2012/0007978 A1包含如何测量SIRD应力和以去极化单位来表示的描述,以及对合适的测量仪器的参考。
发明内容
本发明的发明人将自己的任务设定为,在半导体晶片不会更易于形成滑动的情况下,进一步减小外延层的厚度的不均匀性和外延层的电阻的不均匀性。
本发明的任务通过一种由直径不小于300mm的单晶硅构成的半导体晶片来实现,该半导体晶片包括由单晶硅构成的衬底晶片和位于该衬底晶片上的由单晶硅构成的外延层,外延层包含掺杂剂,其中,外延层的厚度的不均匀性不超过0.5%并且外延层的电阻率的不均匀性不超过2%。
因此,半导体晶片的外延层的厚度和电阻特别均匀。外延层的厚度优选为1至20μm。衬底晶片优选还包含掺杂剂,并且还可以附加地掺杂有碳或氮。半导体晶片优选是pp+晶片或nn-晶片。
在具有距半导体晶片的边缘直至15mm的间距的边缘区域中,半导体晶片在0.5mm的边缘除外区域(Randausschluss)处具有SIRD应力,该SIRD应力导致去极化程度优选不超过30个去极化单位。
此外,该任务通过一种用于制造由单晶硅构成的涂覆的半导体晶片的方法来实现,该方法包括:提供由直径不小于300mm的单晶硅构成的衬底晶片;将衬底晶片置于用于涂覆单个晶片的设备的基座上,其中,该设备具有拥有环状区域的上盖,该上盖通过环状区域将辐射通过的辐射聚束在衬底晶片的边缘区域中;通过布置在设备的上盖的上方的辐射源将衬底晶片加热到沉积温度;通过引导过程气体(Prozessgas)通过经加热的衬底晶片来沉积由硅构成的外延层,其中,过程气体包含氢气、惰性气体和沉积气体,并且沉积气体包含掺杂剂和硅源。
该方法包括如下措施:该措施如此影响有问题的边界区域中的外延层的沉积,使得影响在很大程度上保持限制在局部。如此确保在该区域中电阻增加并且匹配温度场,其中,同时避免产生引起滑动的温度梯度。
为了尤其在电阻方面积极地影响沉积结果,过程气体除氢气外还包含惰性气体。尤其可以考虑氩气作为惰性气体。然而同样能够使用另一稀有气体、或两个或多个稀有气体的任意混合物作为惰性气体。优选以不小于6且不大于20的体积比来引导氢气和惰性气体通过衬底晶片。令人惊讶的是,附加地使用惰性气体实现有问题的边缘区域中的电阻增大,以及实现外延层的厚度的均匀性方面的一定改善。此外,有针对性地改善衬底晶片的有问题的边缘区域中的外延层的厚度,其方式是:将衬底晶片涂覆在用于涂覆各个晶片的设备中,该设备的上盖以特别的方式构造。上盖具有环状区域,与相邻的区域不同,该环状区域对进行穿透的辐射进行聚束。上盖的环状区域的横截面优选向上凸起地拱曲或具有菲涅耳透镜的轮廓。所聚束的辐射照射到衬底晶片的有问题的边缘区域,由此在那里选择性地升高温度。衬底晶片的有问题的边缘区域中的局部温度升高补偿在那里通过热辐射产生的热量损失,并且导致与位于更内部的区域的温度差变小。最终,以这种方式使衬底晶片的边缘区域中的外延层的厚度适合于衬底晶片的位于更内部的区域中的外延层的厚度。
附图说明
以下参考附图进一步阐述本发明。
图1a和图1b示出过程气体中氩气对外延层厚度的均匀性的影响;
图2示出过程气体中氩气对外延层的电阻的均匀性的影响;
图3示出适用于借助CVD涂覆各个晶片的设备的横截面;
图4示意性地示出具有环状区域的上盖的作用方式,该环状区域对进行穿透的辐射进行聚束;
图5示出上盖的环状区域的位置与衬底晶片的边缘区域的位置之间的几何关系,在该边缘区域中在辐射穿透上盖的环状区域时对该辐射进行聚束;
图6和图7示出在根据本发明制造的半导体晶片(图6)处和在未以根据本发明的方式制造的半导体晶片(图7)处的SIRD测量的记录;
图8示出在根据本发明制造的半导体晶片(实线)的情况下和在未以根据本发明的方法制造的半导体晶片(虚线)的情况下层厚度与目标值的偏差Vth随半径R的变化过程;
图9示出在根据本发明制造的半导体晶片(实线)的情况下和在未以根据本发明的方法制造的半导体晶片(虚线)的情况下电阻与目标值的偏差Vr随半径R的变化过程。
所使用的附图标记列表
1 上盖
2 下盖
3 侧壁
4 衬底晶片
5 基座
6 辐射源
7 上盖的环状区域
8 进行穿透的辐射
9 外延层
10 材料
具体实施方式
图1a和1b示出过程气体中的氩气对外延层厚度均匀性的影响。分别示出外延层的厚度与目标厚度的偏差Δ随衬底晶片直径d的典型的变化过程。与图1a的情况相比,在图1b的情况下外延层的厚度的变化过程更加均匀。该差异归因于以下事实:在沉积外延层时,过程气体附加地包含氩气(图1b)或不包含氩气(图1a)。以3slm的含量供应氩气。在两种情况下氢气的含量均为50slm。在两种情况下沉积气体相同,沉积温度同样也相同,即1115℃。
图2示出过程气体中的氩气对外延层的电阻的均匀性的影响。示出两个曲线,其表示电阻ρ随半导体晶片的直径d的变化过程。更均匀的电阻变化过程(具有方形数据点的曲线)归因于如下:在沉积外延层时过程气体附加地包含氩气,而在对比情况下(具有菱形数据点的曲线)不包含氩气。氩气的供应含量为3slm。在两种情况下氢气的含量均为60slm。
图3中示出的设备包括反应器室,该反应器室由上盖(英语“upper dome”)1、下盖(英语“lower dome”)2和侧壁3限界。上盖和下盖1、2允许从布置在反应器室的上方和下方的辐射源6辐射出的热辐射通过。外延层由气相沉积在衬底晶片4的上侧上,其方式是:将过程气体引导穿过通过热辐射加热的衬底晶片。过程气体通过进气口输送入侧壁3,并且通过侧壁3中的出气口排出在反应后剩余的废气。所示出的设备代表一种实施方式,该实施方式具有其他进气口和其他出气口,用以例如能够将冲吹气体(Spülgas)引入和引出反应器室的存在于衬底晶片以下的体积中。然而,其他进气口和其他出气口对解决本任务没有贡献。在沉积外延层期间,衬底晶片4位于基座5的存放面上并且与基座一起绕着衬底晶片的中心的旋转轴线旋转。
上盖1具有环状区域7(图4),该环状区域对进行穿透的辐射进行聚束。上盖1的厚度在环状区域7中比在相邻区域中更厚。上盖的环状区域的横截面优选向上凸起地拱曲或具有菲涅耳透镜的轮廓。对于进行穿透的辐射8,环状区域7如对辐射进行聚束的会聚透镜(Sammellinse)那样地起作用。所聚束的辐射照射衬底晶片的边缘区域,所述边缘区域优选具有距衬底晶片4的边缘直至15mm的间距。照射的辐射在边缘区域中消除径向温度下降,使得在此沉积所设置的量的材料10,并且外延层9的厚度达到所设置的值。
如图5所描绘的那样,上盖的环状区域7的位置与衬底晶片的边缘区域的位置根据辐射光学的规则相关。长度rD表示上盖1的环状区域7至通过上盖的中心的垂线的间距,并且可以由长度rS和x的差得出。在预给定高度b和h、预给定长度a并且预给定角度α的情况下,可以近似计算长度rD,其中,高度b表示辐射源至衬底晶片平面的间距,长度rS表示光源至通过上盖的中心的垂线的间距,高度h表示上盖1至衬底晶片4的间距,长度x表示环状区域7至高度b的间距,长度a表示衬底晶片的边缘区域至高度b的最大间距,角度α表示以下三角形的相对于底边的角度:该三角形具有高度b且具有长度a作为底边。
根据本发明的实施例的详细描述
参照根据本发明的方法制造由单晶硅构成的半导体晶片,并且出于比较的目的,也参照与其不同的方法来制造半导体晶片。
在根据图3的单晶片设备中,在对由直径300mm的单晶硅构成的衬底晶片与单晶进行分离、磨光、蚀刻和抛光之后,给该衬底晶片涂覆由硅构成的外延层。
在应用根据本发明的方法时,设备具有上盖,上盖具有环状区域,环状区域将辐射通过的辐射聚束在衬底晶片的边缘区域中。在应用不同的方法时,这些结构缺少上盖。
在应用根据本发明的方法时,过程气体由氢气(70slm)、氩气(5slm)和沉积气体(三氯硅烷(6slm)、乙硼烷(在氢气(180sccm)中占50ppm),用4l氢气稀释)构成,并且在1130℃的温度下沉积外延层。
在应用不同的方法时,过程气体仅由氢气(55slm)和沉积气体(三氯硅烷(10slm)、乙硼烷(在氢气(180sccm)中占50ppm),用4l氢气稀释)并且在1125℃的温度下沉积外延层。
图6示出在根据本发明制造的半导体晶片上的SIRD测量的记录。去极化程度保持在优选的范围内。在任何测量单元中,去极化程度均不大于30DU。在根据不同方法制造的半导体晶片的情况下,测量单元格中的0.907%由于去极化程度大于30DU而突出(图7)。借助PVA TePla AG的SIRD-AB300仪器实施SIRD测量,其中,在测量区域上方放置一个单元尺寸为1mm(半径)和2mm(方位角)的极坐标网格,以进行分析处理。确定网格的每个单元的去极化程度。去极化单位DU相应于1×10-6的去极化程度。分别示出半导体晶片的展开的周边区域(Umfangsbereich),其中,距半导体晶片的边缘的间距为4.5mm或更少并且凹口位置(pos=0°)位于中间。至半导体晶片的边缘的间距为15mm至4.5mm的周边区域未示出,因为在那里在两种情况下SIRD应力都不突出。
图8示出,在根据本发明制造的半导体晶片(实线)的情况下和在根据不同方法制造的半导体晶片(虚线)的情况下,层厚度与目标值的偏差Vth随半径R的变化过程。在层厚度方面,仅根据本发明制造的半导体晶片满足根据本发明的标准。
图9示出,在根据本发明制造的半导体晶片(实线)的情况下和在根据不同方法制造的半导体晶片(虚线)的情况下电阻与目标值的偏差Vr随半径R的变化过程。在电阻方面,仅根据本发明制造的半导体晶片满足根据本发明的标准。
示例性的实施方式的以上描述应理解为示范性的。借此实现的公开一方面使得本领域技术人员能够理解本发明及与其相关的优点,并且另一方面在本领域技术人员的理解中,还包括对所描述的结构和方法的显而易见的改变和修改。因此,通过权利要求的保护范围应覆盖所有这种类型的改变、修改以及等效方案。

Claims (7)

1.一种半导体晶片,所述半导体晶片由直径不小于300mm的单晶硅构成,所述半导体晶片包括衬底晶片和外延层,所述衬底晶片由单晶硅构成,所述外延层处在所述衬底晶片上并且由单晶硅构成并且包含掺杂剂,其中,所述外延层的厚度的不均匀性不超过0.5%,并且所述外延层的电阻率的不均匀性不超过2%。
2.根据权利要求1所述的半导体晶片,其中,所述外延层的厚度不小于1μm且不大于20μm。
3.根据权利要求1或2所述的半导体晶片,其中,在具有距所述半导体晶片的边缘直至15mm的间距的边缘区域中,所述半导体晶片在0.5mm的边缘除外区域处具有SIRD应力,所述SIRD应力导致去极化程度不超过30个去极化单位。
4.一种用于制造由单晶硅构成的涂覆的半导体晶片的方法,所述方法包括,
提供由直径不小于300mm的单晶硅构成的衬底晶片;
将所述衬底晶片置于用于涂覆各个晶片的设备的基座上,其中,所述设备具有上盖,所述上盖具有环状区域,所述上盖通过所述环状区域将辐射通过的辐射聚束在所述衬底晶片的边缘区域中;
通过辐射源将所述衬底晶片加热到沉积温度,所述辐射源布置在所述设备的上盖的上方;
通过引导过程气体通过所加热的衬底晶片来沉积由硅构成的外延层,其中,所述过程气体包含氢气、惰性气体和沉积气体,并且所述沉积气体包含掺杂剂和硅源。
5.根据权利要求4所述的方法,其中,所述衬底晶片的边缘区域具有距所述衬底晶片的边缘直至15mm的间距。
6.根据权利要求4或5所述的方法,所述方法包括以下步骤:以不小于6且不大于20的体积比来引导氢气和惰性气体通过所加热的衬底晶片。
7.根据权利要求4至6中任一项所述的方法,其中,所述上盖的环状区域的横截面向上凸起地拱曲或具有菲涅耳透镜的轮廓。
CN201880050070.4A 2017-07-26 2018-07-12 由单晶硅构成的外延涂覆的半导体晶片及其制造方法 Active CN110998787B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017212799.6 2017-07-26
DE102017212799.6A DE102017212799A1 (de) 2017-07-26 2017-07-26 Epitaktisch beschichtete Halbleiterscheibe aus einkristallinem Silizium und Verfahren zu deren Herstellung
PCT/EP2018/068888 WO2019020387A1 (de) 2017-07-26 2018-07-12 Epitaktisch beschichtete halbleiterscheibe aus einkristallinem silizium und verfahren zu deren herstellung

Publications (2)

Publication Number Publication Date
CN110998787A true CN110998787A (zh) 2020-04-10
CN110998787B CN110998787B (zh) 2023-11-03

Family

ID=62916662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880050070.4A Active CN110998787B (zh) 2017-07-26 2018-07-12 由单晶硅构成的外延涂覆的半导体晶片及其制造方法

Country Status (10)

Country Link
US (1) US11578424B2 (zh)
EP (1) EP3659173A1 (zh)
JP (1) JP7059351B2 (zh)
KR (1) KR102320760B1 (zh)
CN (1) CN110998787B (zh)
DE (1) DE102017212799A1 (zh)
IL (1) IL271984B2 (zh)
SG (1) SG11202000675TA (zh)
TW (1) TWI672402B (zh)
WO (1) WO2019020387A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019216267A1 (de) 2019-10-23 2021-04-29 Siltronic Ag Verfahren zur Herstellung von Halbleiterscheiben
EP3940124B1 (de) 2020-07-14 2024-01-03 Siltronic AG Kristallstück aus monokristallinem silizium
CN114093989B (zh) * 2021-09-30 2023-11-14 华灿光电(浙江)有限公司 深紫外发光二极管外延片及其制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227330A (en) * 1991-10-31 1993-07-13 International Business Machines Corporation Comprehensive process for low temperature SI epit axial growth
US20020030047A1 (en) * 2000-08-17 2002-03-14 Shouqian Shao Heat treatment apparatus having a thin light-transmitting window
US20020081819A1 (en) * 2000-11-17 2002-06-27 Robert-Christian Hagen Electronic component with shielding and method for its production
US20040067052A1 (en) * 2002-10-03 2004-04-08 Goodman Matthew G. Localized heating of substrates using optics
JP2005303025A (ja) * 2004-04-13 2005-10-27 Nissan Motor Co Ltd 半導体装置
CN1773677A (zh) * 2004-11-11 2006-05-17 硅电子股份公司 半导体基材及其制造方法
US20090209084A1 (en) * 2008-02-20 2009-08-20 Peter Nunan Cleave initiation using varying ion implant dose
CN101575701A (zh) * 2008-05-09 2009-11-11 硅电子股份公司 用于制造外延半导体晶片的方法
US20100317177A1 (en) * 2003-10-10 2010-12-16 Applied Materials, Inc. Methods for forming silicon germanium layers
CN104142259A (zh) * 2013-05-10 2014-11-12 河南协鑫光伏科技有限公司 一种太阳能单晶硅测试样片的制作方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441212A (en) * 1987-08-07 1989-02-13 Nec Corp Semiconductor crystal growth method
JP2781616B2 (ja) * 1989-09-29 1998-07-30 株式会社日立製作所 半導体ウエハの熱処理装置
JP2822756B2 (ja) * 1992-03-10 1998-11-11 日本電気株式会社 気相成長装置およびその薄膜形成方法
JP2000091237A (ja) 1998-09-09 2000-03-31 Shin Etsu Handotai Co Ltd 半導体ウェーハの製造方法
JP2002064069A (ja) * 2000-08-17 2002-02-28 Tokyo Electron Ltd 熱処理装置
DE102006055038B4 (de) 2006-11-22 2012-12-27 Siltronic Ag Epitaxierte Halbleiterscheibe sowie Vorrichtung und Verfahren zur Herstellung einer epitaxierten Halbleiterscheibe
US8048807B2 (en) 2008-09-05 2011-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for thinning a substrate
JP5141541B2 (ja) * 2008-12-24 2013-02-13 株式会社Sumco エピタキシャルウェーハの製造方法
DE102009010556B4 (de) 2009-02-25 2013-11-07 Siltronic Ag Verfahren zur Herstellung von epitaxierten Siliciumscheiben
JP5446760B2 (ja) 2009-11-16 2014-03-19 株式会社Sumco エピタキシャル成長方法
KR20110087440A (ko) * 2010-01-26 2011-08-03 주식회사 엘지실트론 반도체 제조용 서셉터 및 이를 포함하는 반도체 제조 장치
DE102010026351B4 (de) 2010-07-07 2012-04-26 Siltronic Ag Verfahren und Vorrichtung zur Untersuchung einer Halbleiterscheibe
JP2012146697A (ja) 2011-01-06 2012-08-02 Shin Etsu Handotai Co Ltd エピタキシャルウェーハの製造装置及び製造方法
JP5470414B2 (ja) 2012-03-09 2014-04-16 株式会社半導体エネルギー研究所 発光装置及び電子機器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227330A (en) * 1991-10-31 1993-07-13 International Business Machines Corporation Comprehensive process for low temperature SI epit axial growth
US20020030047A1 (en) * 2000-08-17 2002-03-14 Shouqian Shao Heat treatment apparatus having a thin light-transmitting window
US20020081819A1 (en) * 2000-11-17 2002-06-27 Robert-Christian Hagen Electronic component with shielding and method for its production
US20040067052A1 (en) * 2002-10-03 2004-04-08 Goodman Matthew G. Localized heating of substrates using optics
US20100317177A1 (en) * 2003-10-10 2010-12-16 Applied Materials, Inc. Methods for forming silicon germanium layers
JP2005303025A (ja) * 2004-04-13 2005-10-27 Nissan Motor Co Ltd 半導体装置
CN1773677A (zh) * 2004-11-11 2006-05-17 硅电子股份公司 半导体基材及其制造方法
US20090209084A1 (en) * 2008-02-20 2009-08-20 Peter Nunan Cleave initiation using varying ion implant dose
CN101575701A (zh) * 2008-05-09 2009-11-11 硅电子股份公司 用于制造外延半导体晶片的方法
CN104142259A (zh) * 2013-05-10 2014-11-12 河南协鑫光伏科技有限公司 一种太阳能单晶硅测试样片的制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李明达等: "平板式外延炉大尺寸外延硅的均匀性调控" *

Also Published As

Publication number Publication date
WO2019020387A1 (de) 2019-01-31
EP3659173A1 (de) 2020-06-03
DE102017212799A1 (de) 2019-01-31
KR102320760B1 (ko) 2021-11-01
IL271984B2 (en) 2023-04-01
TWI672402B (zh) 2019-09-21
US20210087705A1 (en) 2021-03-25
SG11202000675TA (en) 2020-02-27
JP7059351B2 (ja) 2022-04-25
TW201910571A (zh) 2019-03-16
JP2020529127A (ja) 2020-10-01
IL271984B (en) 2022-12-01
IL271984A (en) 2020-02-27
US11578424B2 (en) 2023-02-14
CN110998787B (zh) 2023-11-03
KR20200015763A (ko) 2020-02-12

Similar Documents

Publication Publication Date Title
US11530491B2 (en) Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
US20120244703A1 (en) Tray for cvd and method for forming film using same
US20050092439A1 (en) Low/high temperature substrate holder to reduce edge rolloff and backside damage
US20100282170A1 (en) Vapor phase growth susceptor and vapor phase growth apparatus
US20160068996A1 (en) Susceptor and pre-heat ring for thermal processing of substrates
CN110998787A (zh) 由单晶硅构成的外延涂覆的半导体晶片及其制造方法
JP6291478B2 (ja) リアクタ装置内においてウェハを支持するためのサセプタアセンブリ
JP5446760B2 (ja) エピタキシャル成長方法
US9011599B2 (en) Method of temperature determination for deposition reactors
JP2017109900A (ja) エピタキシャル成長装置、エピタキシャル成長方法及び半導体素子の製造方法
US7289865B2 (en) Optimization algorithm to optimize within substrate uniformities
US20180005816A1 (en) Semiconductor laminate
US20130074773A1 (en) Heating systems for thin film formation
US10184193B2 (en) Epitaxy reactor and susceptor system for improved epitaxial wafer flatness
US20130074774A1 (en) Heating systems for thin film formation
US20220367236A1 (en) Heater pedestal with improved uniformity
JP2019204912A (ja) 評価方法
JPWO2006046308A1 (ja) 半導体基板の支持体
KR20110087440A (ko) 반도체 제조용 서셉터 및 이를 포함하는 반도체 제조 장치
JP2901546B2 (ja) 半導体装置の製造装置
US20220298672A1 (en) Wafer temperature gradient control to suppress slip formation in high-temperature epitaxial film growth
CN111542911B (zh) 气相生长装置的污染管理方法和外延晶片的制备方法
KR102417484B1 (ko) 에피택셜 웨이퍼 및 그 제조 방법
CN115161623A (zh) 用于膜沉积期间衬底温度控制的双高温计系统
JP2023096893A (ja) 絶縁膜形成装置用トレー、絶縁膜形成装置および絶縁膜形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant