TWI600614B - 矽石質膜之形成方法及以相同方法形成之矽石質膜 - Google Patents

矽石質膜之形成方法及以相同方法形成之矽石質膜 Download PDF

Info

Publication number
TWI600614B
TWI600614B TW102142618A TW102142618A TWI600614B TW I600614 B TWI600614 B TW I600614B TW 102142618 A TW102142618 A TW 102142618A TW 102142618 A TW102142618 A TW 102142618A TW I600614 B TWI600614 B TW I600614B
Authority
TW
Taiwan
Prior art keywords
film
vermiculite
forming
substrate
vermiculite film
Prior art date
Application number
TW102142618A
Other languages
English (en)
Other versions
TW201427899A (zh
Inventor
林昌伸
長原達郎
Original Assignee
Az電子材料盧森堡有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Az電子材料盧森堡有限公司 filed Critical Az電子材料盧森堡有限公司
Publication of TW201427899A publication Critical patent/TW201427899A/zh
Application granted granted Critical
Publication of TWI600614B publication Critical patent/TWI600614B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Formation Of Insulating Films (AREA)
  • Silicon Polymers (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

矽石質膜之形成方法及以相同方法形成之矽石質膜
本發明關於矽石質膜之形成方法及以相同方法形成之不含雜質的蝕刻速率經改善之矽石質膜。更詳細而言,本發明關於在半導體裝置例如大型積體電路等之元件分離膜(STI:淺溝渠隔離)、絕緣膜(例如PMD)等之形成中可較佳使用之矽石質膜之形成方法及由其所形成之矽石質膜。
矽石質膜由於耐熱性、耐磨耗性、耐蝕性等優異,至今廣泛利用作為半導體裝置中的半導體基板與金屬配線層之間、金屬配線層間、或半導體基板上的各種元件上所設置的絕緣膜或半導體基板上所設置的各元件間之元件分離膜、鈍化膜、保護膜、平坦化膜、應力調整膜、犠牲膜等,而且作為液晶顯示裝置中的玻璃基板與ITO膜之間、透明電極與配向膜之間等所設置的絕緣膜,或作為畫素電極或彩色濾光片上所設置的保護膜。如此之領域中使用之矽石質被膜,一般係藉由CVD法、濺鍍法等之氣相成長法或使用矽石質被膜形成用塗 佈液之塗佈法,形成在基板上。於此等方法之中,氣相成長法由於費功夫同時需要大型設備,而且有當於凹凸面上形成被膜時,凹凸面無法平坦化等之問題,故近年來廣泛採用塗佈法。
另外,於半導體裝置等之電子裝置領域中,近年來往高密度化及高積體化進展,為了對應於如此的高密度及高積體度化,採用在半導體基板之表面上形成微細的溝,在該溝之內部填充絕緣物,而將在溝之兩側所形成的元件之間予以電分離之溝渠隔離(trench isolation)結構。
當藉由CVD法或高密度電漿CVD法等來形成如此的溝渠隔離結構之元件分離膜時,會在微細的溝內形成空隙(void)。又,為了改良溝渠溝之埋設性,亦檢討使用溶膠凝膠法,於作為烷氧基矽氧烷溶液塗佈後,將所形成塗膜予以熱處理而使其轉化成二氧化矽之方法(例如參考專利文獻1),但於此方法中,在烷氧基矽氧烷轉化成二氧化矽之際,會引起體積收縮而發生裂紋。
作為抑制如此的裂紋之方法,有提案代替溶膠凝膠法,使用聚矽氮烷作為矽石(二氧化矽;SiO2)之前驅物(例如專利文獻1及2),現在被廣泛利用。含有聚矽氮烷的組成物由於對溝渠隔離結構的埋設性優異,而具有不易發生空隙之優點。例如,已知若將全氫聚矽氮烷等之聚矽氮烷埋設於溝渠內,於氧化環境下處理,則會以高純度形成緻密的矽石質膜。然而,於矽石質膜的形成之際,一般施加稱為退火的高溫燒固步驟。此時,於 氮或氧環境下進行退火,但膜之密度未能充分變高,有所形成的膜之蝕刻速率變快之問題。所埋設的矽石膜係必須藉由蝕刻來加工膜厚,但此時若蝕刻速率快,則相對於目標之膜厚的誤差容易變大,故退火後的矽石膜宜具有慢的蝕刻速率。亦已知藉由在水蒸氣環境下進行高溫退火,可減慢蝕刻速率,但此時有矽石質膜以外之氧化,非所欲的材料亦氧化之問題,此外還有矽晶圓的表面在400℃以上的水蒸氣環境或氧環境下被氧化,發生氧化增膜,於快閃記憶體等中為了避免因增膜而造成矽基板上部表面的高度之不整齊,必須將水蒸氣氧化環境或氧環境溫度保持在400℃以下等,於半導體製造技術領域中變得無法接納高溫下水蒸氣處理或氧處理。又,以全氫聚矽氮烷為基礎所形成之STI或PMD係必須為高純度SiO2膜。此係因為若金屬或碳等之雜質殘留在膜中,則會對裝置特性造成不良影響。
藉由塗佈法在溝渠內形成矽石質膜者,係不限定於上述使用聚矽氮烷之方法,例如可使用藉由溶膠凝膠法所形成之矽石溶液等的適宜方法進行,但於如此的情況下,與使用聚矽氮烷時同樣地,由於在非活性氣體環境下退火後蝕刻速率變快,而亦要求減慢蝕刻速率。又,雖然於上述舉出元件分離膜(STI)具體地說明,惟矽石質膜之蝕刻速率改善的必要性,係在層間絕緣膜(PMD)等之絕緣膜、鈍化膜、保護膜、平坦化膜等之形成中亦同樣。
[先前技術文獻] [專利文獻]
[專利文獻1]日本發明專利第3178412號公報
[專利文獻2]日本特開平2001-308090號公報
本發明係根據如上述之情事而完成者,目的在於提供:於將聚矽氮烷轉化成矽石質膜後,或藉由將由以溶膠凝膠法之矽石溶液所形成之塗膜予以退火,而可形成具有與以往同樣之良好絕緣性、膜平坦性、對酸‧鹼、溶劑等之耐性、高障壁性等之諸特性之高純度矽石質膜,同時退火後之矽石質膜係具有比以往慢的蝕刻速率之膜形成方法。
又,本發明之另一目的在於提供由上述方法所形成之溝渠隔離結構的元件分離膜之形成法。再者,本發明的又一目的在於提供由上述方法所形成之高純度且蝕刻速率慢之矽石質膜。
本發明者們進行專心致力的檢討,結果發現藉由將聚矽氮烷溶液塗佈於基板上,將此在氧化環境下焙燒而使聚矽氮烷轉化成矽石後,或將由溶膠凝膠法所形成的矽石溶液塗佈於基板後,於特定的含氮化合物或特定的含鹵素化合物之存在下,在氮氣環境等之非活性氣體環境中退火(燒固),可解決前述問題,即與於前述含氮化合物或含鹵素化合物之不存在下在非活性氣體中 退火之情況相比,可形成蝕刻速率慢之矽石質膜,並以此知識見解為基礎而完成本發明。
即,本發明關於以下所示之無機聚矽氮烷樹脂、使用該樹脂來形成矽石質膜之方法,由此方法所形成之矽石質膜
(1)一種矽石質膜之形成方法,其包含:(a)藉由將聚矽氮烷溶液塗佈於基板上後在氧化環境下硬化(固化),或藉由將由溶膠凝膠法所形成的矽石溶液塗佈於基板上,而在基板上形成矽石質膜之步驟,及(b)將該矽石質膜,在含有鹼解離常數(pKb)為4.5以下之含氮化合物或鹵素原子的鍵能為60kcal/mol以下之含鹵素化合物的非活性氣體環境下加熱、退火之步驟。
(2)如上述(1)記載之矽石質膜之形成方法,其中前述鹼解離常數(pKb)為4.5以下之含氮化合物係通式(II)所示的胺、DBU(1,8-二氮雜雙環[5,4,0]十一烯)、或DBN(1,5-二氮雜雙環[4,3,0]5-壬烯);R4R5R6N (II)(式中、R4表示可分支的烷基、烯基、環烷基或芳基,R5及R6各自獨立地表示氫原子、可分支的烷基、烯基、環烷基或芳基)。
(3)如上述(2)記載之矽石質膜之形成方法,其中退火係在乾燥環境下於400~1,200℃進行。
(4)如上述(1)記載之矽石質膜之形成方法,其中前述含鹵素化合物係Br2、F2或NF3
(5)如上述(4)記載之矽石質膜之形成方法,其中退火係在乾燥環境下於200~500℃進行。
(6)如上述(1)~(5)中任一項記載之矽石質膜之形成方法,其中前述聚矽氮烷係全氫聚矽氮烷,硬化係在水蒸氣環境下於200~500℃進行。
(7)一種溝渠隔離結構之形成法,其基板為溝渠隔離結構形成用之附溝基板,藉由如上述(1)~(6)中任一項記載之矽石質膜之形成方法埋封前述溝。
(8)一種矽石質膜,其係由如上述(1)~(6)中任一項記載之方法所形成。
藉由本發明的矽石質膜之形成方法,可不改變以往之塗佈法的步驟、條件,而形成蝕刻速率慢的高純度之矽石質膜。藉此,可高精度地良好進行溝渠內的高純度矽石質膜、或高純度層間絕緣膜等之絕緣膜、鈍化膜、保護膜、平坦化膜等之蝕刻。
以下,更詳細說明本發明。於本發明中,首先(i)在基板上塗佈、焙燒聚矽氮烷,或(ii)在基板上藉由塗佈溶膠凝膠法的矽石溶液,而形成矽石質膜。
本發明中使用之聚矽氮烷,只要是在分子內至少具有Si-H鍵及N-H鍵之聚矽氮烷即可,亦可為聚矽氮烷改性物。於聚矽氮烷中,有具有鏈狀、環狀或交聯結構者,或在分子內同時具有此等複數之結構者,此等係可以單獨或混合物利用。作為代表之例,可舉出具有 下述通式(I)所示之重複單元者。
具有由下式所示的結構單元所成之骨架的數量平均分子量約100~50,000之聚矽氮烷或其改性物, (式中,R1、R2及R3各自獨立地表示氫原子、烷基、烯基、環烷基、芳基、或此等之基以外之氟烷基等直接連結於矽的基為碳之基、烷基矽烷基、烷基胺基或烷氧基。惟,R1、R2及R3之至少1者為氫原子)。
上述通式(I)中R1、R2及R3為氫原子者係全氫聚矽氮烷,關於其製造方法,在例如日本特開昭60-145903號公報、D.Seyferth等人的Communication of Am.Cer.Soc.,C-13,January 1983.中有報告。此等方法所得者係具有各種結構之聚合物的混合物,基本上在分子內含有鏈狀部分與環狀部分,可以下述之化學式表示。本發明中,從耐熱性之觀點來看,由於最終生成物必須為矽石,較宜使用全氫聚矽氮烷。
全氫聚矽氮烷之結構的一例係如下述。
通式(I)中在R1及R2具有氫原子、在R3具有甲基的聚矽氮烷之製造方法,係在D.Seyferth等人的Polym.Prepr.Am.Chem.Soc.,Div.Polym.Chem.,25,10(1984)中有報告。由此方法所得之聚矽氮烷,係重複單元為-(SiH2NCH3)-之鏈狀聚合物與環狀聚合物,皆不帶有交聯結構。
通式(I)中在R1及R2具有氫原子、在R3具有有機基之聚有機(氫)矽氮烷之製造方法,係在D.Seyferth等人的Polym.Prepr.Am.Chem.Soc.,Div.Polym.Chem.,25,10(1984)、日本特開昭61-89230號公報中有報告。於由此等方法所得之聚矽氮烷中,有以-(R2SiHNH)-作為重複單元,主要具有聚合度為3~5之環狀結構者,或(R3SiHNH)x[(R2SiH)1.5N]1-X(0.4<X<1)的化學式所示之在分子內同時具有鏈狀結構與環狀結構者。
通式(I)中在R1具有氫原子、在R2、R3具有有機基之聚矽氮烷,或在R1及R2具有有機基、在R3具有氫原子者係以-(R1R2SiNR3)-作為重複單元,主要具有聚合度為3~5之環狀結構。
作為上述式(I)以外者,可舉出在分子內具有交聯結構之例如具有以下之結構者(D.Seyferth等人的Communication of Am.Cer.Soc.C-132,July 1984.)。
R=CH3
又,亦可為如日本特開昭49-69717號公報中所報告之藉由R1SiX3(X:鹵素)的氨分解而得之具有交聯結構的聚矽氮烷R1Si(NH)x,或藉由R1SiX3及R2 2SiX2之共氨分解而得之具有下述結構的聚矽氮烷。
(m、n:正整數)
作為合成聚矽氮烷之方法,日本特公昭63-16325號公報中記載使二鹵矽烷和鹼之加成物與氨反應之方法,但亦有提案(a)使SiCl4、SiH2Cl2等之矽鹵化物與胺反應之方法,(b)使用可將矽氮烷予以脫氫化之KH等的鹼金屬氫氧化物觸媒而作成聚矽氮烷之方法,(c) 使用過渡金屬錯合物觸媒,藉由矽烷化合物與胺化合物之脫氫反應來合成矽氮烷之方法,(d)使用CF4SO3H之酸觸媒,進行胺基矽烷與氨之胺交換之方法,(e)以大量的氨或胺將胺基矽烷予以胺交換之方法,(f)以使多價胺基矽烷化合物與多氫化含氮化合物在鹼性觸媒之存在下進行胺交換反應之方法為代表的各種方法(例如參照WO97/24391)。
舉出聚矽氮烷組成物之調製方法的具體例之一例,其如以下。即,將純度99%以上之二氯矽烷邊攪拌邊注入於經調溫至-20~20℃之範圍的脫水吡啶中。接著,調溫至-20~20℃之溫度,邊攪拌邊將純度99%以上的氨注入。於此在反應液中,生成粗製聚矽氮烷與副生成物之氯化銨。藉由過濾而去除反應所生成之氯化銨。將濾液加熱至30~150℃,一邊去除所殘留的氨,一邊以聚矽氮烷的分子量成為重量平均分子量1,500~15,000之範圍的方式進行調整。添加有機溶劑,加熱至30~50℃,藉由50mmHg以下之減壓蒸餾,去除殘存的吡啶。藉由減壓蒸餾去除吡啶,但亦同時進行有機溶劑之去除,將聚矽氮烷濃度例如調整至5~30重量%之範圍。使用過濾精度0.1μm以下之過濾器,循環過濾所得之聚矽氮烷組成物,使粒徑為0.2μm以上之粗大粒子減低至50個/cc以下為止。如此所得之聚矽氮烷溶液係可直接作為塗佈液使用,也可更稀釋或濃縮而作為塗佈液使用。
例示可用的有機溶劑,可舉出(I)芳香族化合物,例如苯、甲苯、二甲苯、乙基苯、二乙基苯、三甲 基苯、三乙基苯及十氫萘,(II)鏈狀飽和烴,例如正戊烷、異戊烷、正己烷、異己烷、正庚烷、異庚烷、正辛烷、異辛烷、正壬烷、異壬烷、正癸烷及異癸烷,(III)環狀飽和烴,例如環己烷、乙基環己烷、甲基環己烷及對烷,(IV)環狀不飽和烴,例如環己烯及雙戊烯(檸檬烯),(V)醚,例如二丙基醚、二丁基醚及茴香醚,(VI)酯,例如醋酸正丁酯、醋酸異丁酯、醋酸正戊酯及醋酸異戊酯,(VII)酮,例如甲基異丁基酮等。
前述聚矽氮烷組成物之調製方法係僅顯示一例,聚矽氮烷組成物之調製方法係不受此方法所限定。亦可取得固體狀態的聚矽氮烷,使其溶解或分散於前述適當的溶劑中而使用,也可使用市售的聚矽氮烷組成物,例如AZ電子材料製造股份有限公司製之Spinfil 200、400、600、65001等(「Spinfil」為註冊商標)。溶液之濃度係可按照最終形成的聚矽氮烷塗膜之厚度等而適當地調整。
以聚矽氮烷塗覆組成物之總重量為基準,聚矽氮烷之含有率較佳為0.1~40重量%,更佳為0.2~30重量%,尤佳為0.3~25重量%。再者,為了形成高純度的矽石質膜,較宜使用添加劑,若有必要,亦可更使用矽石轉化反應促進化合物等。此處,所謂的矽石轉化反應促進化合物,就是指藉由與聚矽氮烷化合物之相互反應而促進聚矽氮烷轉化成矽石質物質之反應的化合物。
聚矽氮烷組成物係可用任意的方法塗佈在基板上。具體而言,可舉出噴塗法、浸漬法、噴霧法、輥 塗法、轉印法、縫塗法、簾幕塗佈等。於此等之中,從塗膜面的均勻性等之觀點來看,特佳為噴塗。塗膜係可按照需要重複1次或2次以上,藉由塗佈而成為所欲的膜厚。
塗膜之厚度係隨著膜之使用目的等而不同,一般而言以乾燥膜厚計為10~2,000nm,較佳為20~1,000nm。當聚矽氮烷組成物作為元件分離膜使用時,為了使塗佈後之溝渠溝埋設性及聚矽氮烷塗膜表面之平坦性並存,所塗佈的聚矽氮烷塗膜之厚度一般較佳為10~1,000nm,更佳為50~800nm。塗佈之條件係隨著基板的大小或塗佈方法、聚矽氮烷組成物之濃度、溶劑之種類等各種條件而變化。例如,以下顯示噴塗塗佈之一例,惟不因此而限定塗佈法。
首先,於矽基板的中心部或於基板全面,以平均地形成塗膜之方式,在包含中心部的數個地方,每1片矽基板例如滴下0.5~20cc之聚矽氮烷組成物。其次,為了使所滴下的聚矽氮烷溶液在矽基板全面上擴展,以比較低速且短時間,例如以50~500rpm的旋轉速度使其旋轉(預旋轉)0.5~10秒。隨後,為了使塗膜成為所欲的厚度,以比較高速,例如以500~4,000rpm的旋轉速度使其旋轉(主旋轉)0.5~800秒。再者,為了減低在矽基板之周邊部的聚矽氮烷塗膜之隆起而且儘可能地使聚矽氮烷塗膜中的溶劑乾燥,以相對於前述主旋轉之旋轉速度而言快500rpm以上的旋轉速度,例如以1,000~5,000rpm的旋轉速度使其旋轉(最終旋轉)5~300秒。
將聚矽氮烷組成物塗佈於基板上後,例如較佳為在加熱板上預烘烤(加熱處理)塗膜。此步驟之目的係為了塗膜中所含有的溶劑之完全去除,與最終塗佈步驟的塗膜之預備硬化。通常,於預烘烤步驟中,採取在大氣中實質上以一定溫度加熱之方法,但為了防止硬化時塗膜收縮、基板凹部變成陷下、或在溝內部發生空隙,亦可控制溫度,使其邊經時地上升邊進行預烘烤。預烘烤溫度通常為50℃~400℃,較佳為100~300℃。又,預烘烤時間通常為10秒~30分鐘,較佳為30秒~10分鐘。於形成溝渠隔離結構之絕緣膜時,較佳為採取邊經時地使預烘烤溫度上升邊進行之方法。此時,最高預烘烤溫度,從自被膜去除溶劑之觀點來看,一般為設定在比聚矽氮烷組成物所用的溶劑之沸點還高的溫度。於預烘烤後,若有需要亦可在聚矽氮烷塗膜上塗佈含有氧化(硬化)促進劑的處理液。
如此所形成之聚矽氮烷塗膜係為了隨後用於將聚矽氮烷轉化成矽石質膜而被硬化(固化)。硬化係使用硬化爐或加熱板,在含水蒸氣的非活性氣體或氧環境下進行加熱處理之方法,在含過氧化氫蒸氣的水蒸氣環境下進行加熱處理之方法等適宜的方法。為了使聚矽氮烷充分轉化成矽石質膜(即二氧化矽),水蒸氣係重要的因素,較佳為30%以上,更佳為50%以上,最佳為70%以上。尤其若水蒸氣濃度為80%以上,則由於聚矽氮烷到矽石質膜之轉化變得容易進行,或空隙等缺陷的發生變少,改良矽石質膜之特性而較佳。使用非活性氣體作 為環境氣體時,非活性氣體通常使用氮、氬或氦等。硬化溫度係隨著所使用的聚矽氮烷化合物之種類、水蒸氣濃度等而變化,但一般而言高溫者係轉化至矽石質膜之速度快,另一方面溫度低者係有使因矽基板的氧化或結晶結構之變化而對裝置特性造成不良的影響變小之傾向。於本發明中,由於後步驟為在退火步驟進行高溫加熱,一般只要在200~500℃左右例如350℃之溫度進行即可。此處,到目標溫度為止之升溫速度一般為0.1~100℃/分鐘,到達目標溫度後的硬化時間一般為1分鐘~10小時,較佳為15分鐘~3小時。若有需要,亦可使處理溫度或處理環境之組成階段地變化。
再者,於使塗佈膜暴露於過氧化氫蒸氣中之方法的情況,可將塗佈膜保持在50~200℃,在過氧化氫蒸氣環境下放置1分鐘~2小時。又此時,亦可含有水蒸氣等其它蒸氣或稀釋氣體。塗佈膜之氧化速度一般係過氧化氫蒸氣濃度愈高愈快。
另一方面,矽石質膜係可藉由塗佈由溶膠凝膠法所形成之矽石溶液而形成。作為代表之方法,使通式:Si(ORa)4(惟式中,Ra表示低級烷基)所示的四烷氧基矽烷在醇等之有機溶劑中,藉由使用鹽酸等的酸觸媒或鹼觸媒來進行水解‧聚縮合反應,而使醇脫離,進行矽石之合成。於上述通式中,係使用甲基、乙基、正丙基、正丁基等作為Ra。作為四烷氧基矽烷之具體例,例如可舉出四甲氧基矽烷:Si(OCH3)4、四乙氧基矽烷:Si(OC2H5)4、四丙氧基矽烷:Si(OC3H7)4、四丁氧基矽烷: Si(OC4H9)4等。又,作為有機溶劑,較宜使用甲醇、乙基、正丙醇、異丙醇、正丁醇等之醇類。作為溶膠凝膠法之具體的一例,可舉出藉由混合TEOS(原矽酸四乙酯;四乙氧基矽烷)、乙醇、水與鹽酸,而形成矽石溶液之方法。
作為塗佈聚矽氮烷溶液或溶膠凝膠法的矽石溶液之基板,可舉出矽基板等之半導體基板、玻璃基板等,於矽基板等中可藉由蝕刻而形成溝渠溝。又,於形成層間絕緣膜等的絕緣膜或平坦化膜、鈍化膜、應力調整膜、犠牲膜等之情況等,作為基板,使用在形成半導體元件之過程中之設有半導體膜或電路等之矽基板等。
如上述在基板上形成矽石質膜後,於本發明中,為了使聚矽氮烷塗膜全體進一步地完全轉化成矽石質而硬化,進行加熱基板全體的退火(燒固)處理步驟。退火處理一般為將基板全體投入硬化爐等中而加熱。此時,於本發明中,在加熱環境中使含有鹼解離常數(pKb)為4.5以下之含氮化合物或鹵素原子的鍵能為60kcal/mol以下之含鹵素化合物。此時,當含氮化合物或含鹵素化合物為液體或固體時,較佳為在預備加熱爐中使化合物氣化成氣體狀,將其與非活性氣體一起供給至加熱爐。
再者,本發明中,鹼解離常數(pKb)係指在水中的解離常數。鹼解離常數(pKb)及鹵素原子之鍵能係在廣泛的化合物為廣泛已知。
作為鹼解離常數(pKb)為4.5以下之含氮化合 物,例如可舉出下述通式(II)所示的胺、DBU(1,8-二氮雜雙環[5,4,0]7-十一烯)、DBN(1,5-二氮雜雙環[4,3,0]5-壬烯)等。
R4R5R6N (II)(式中,R4表示可分支的烷基、烯基、環烷基或芳基,R5及R6各自獨立地表示氫原子、可分支的烷基、烯基、環烷基或芳基)。
作為上述通式(II)所示的胺之較佳例,可舉出甲胺、二甲胺、三甲胺、乙胺、二乙胺、三乙胺、丙胺、二丙胺、三丙胺、丁胺、二丁胺、三丁胺、戊胺、二戊胺、三戊胺、己胺、二己胺、三己胺、庚胺、二庚胺、辛胺、二辛胺、三辛胺、苯胺、二苯胺、三苯胺等。
另一方面,作為鹵素原子的鍵能為60kcal/mol以下之含鹵素化合物,例如可舉出Br2、F2、NF3等。
退火係在含有前述胺或含鹵素氣體的非活性氣體環境中進行。作為非活性氣體,通常使用氮、氦、氬氣等。當含有胺或DBU、DBN等之含氮化合物時,退火溫度通常為400~1,200℃,較佳為450~1,000℃。於含有含氮化合物的退火環境中含有水蒸氣時,無法得到本發明之效果。另一方面,於含有含鹵素化合物的環境中進行退火時,在乾燥環境下於200~1,200℃,較佳在乾燥環境下於200~500℃,更佳於300~500℃進行。至處理目標溫度為止之升溫時間一般較佳為1~100℃/分鐘。又, 在處理目標溫度的處理時間為1分鐘~10小時,較佳為15分鐘~3小時。
又,鹼解離常數(pKb)為4.5以下之含氮化合物或鹵素原子的鍵能為60kcal/mol以下之含鹵素化合物之含量,於環境中通常為0.01容量%以上即可,較佳為0.5~20容量%,更佳為1~10容量%。當此等化合物之含量太少時,會發生無法發揮本發明之效果的情況。另一方面,化合物之含量若變高,則一般而言蝕刻速率有變快的傾向,若含量過高則本發明之效果變少。
藉由在含有此鹼解離常數(pKb)為4.5以下之含氮化合物或鍵能為60kcal/mol以下之含鹵素化合物的非活性氣體環境下加熱,可以高純度形成蝕刻速率經改善(蝕刻速率慢)的緻密矽石質膜。茲認為其理由係如以下,惟本發明完全不受此所限定。
例如,以烷基胺為例作說明,烷基胺是供電子性,具有孤對(lone pair)電子。此烷基胺之孤對電子係在退火中與矽石質膜中所殘存的Si-H鍵或Si-O鍵反應,而將Si負離子化,將烷基胺的N正離子化。經負離子化的Si係與其它的Si-O分子鍵結,而增大Si-O環。例如由(Si-O)3所成之環係變大,若成為(Si-O)5則蝕刻速率變慢。
相對於此,若H2O分子存在於環境中,則烷基胺進行水合,由於經水合的胺為安定,故無法與Si-H鍵反應,或經負離子化的Si立刻與H2O分子再鍵結,而無法增大Si-O環。
另一方面,於含鹵素化合物之情況,藉由200~500℃之加熱而例如切斷N-F鍵或F-F鍵,經切斷的F陰離子係與矽石暫時地鍵結。如此所生成的Si-F鍵係在被500~1,200℃的加熱所切斷後,藉由交聯反應而可增大Si-O環。
[實施例]
以下舉出實施例、比較例來更具體說明本發明,惟本發明完全不受此等實施例、比較例所限定。
實施例1
將約1mL的全氫聚矽氮烷之二丁基醚20wt%溶液(AZ電子材料製造(股)製Spinfil 65001,「Spinfil」為註冊商標)滴下至4吋矽晶圓上,藉由旋塗機進行1000rpm、20秒的旋轉塗佈後,於加熱板上在大氣中以150℃進行3分鐘的軟烘烤。膜厚為600nm。接著,於350℃、80%水蒸氣(80%H2O/20%O2)進行60分鐘處理(焙燒),使全氫聚矽氮烷變化(硬化)成矽石質膜。然後,保持於N2環境下升溫至700℃為止,於此溫度下在2%三甲胺(N2稀釋)環境中處理60分鐘後,更在此溫度於N2環境下處理60分鐘。藉由下述方法算出所得之矽石質膜的相對蝕刻速率。相對蝕刻速率為4.1。
<相對蝕刻速率之算出>
將所形成的矽石質膜浸漬於0.5%氟化氫水溶液中,觀察每單位浸漬時間的膜厚變化。具體而言係浸漬每隔5分鐘測量膜厚,以nm/min之形式算出隨著蝕刻進行而膜厚變薄之速度。又,於熱氧化膜亦進行同樣之操作, 算出蝕刻速率,自所求得的蝕刻速率,求出[矽石膜的蝕刻速率:單位為nm/min]/[熱氧化膜的蝕刻速率:單位為nm/min]之比,將此當作相對蝕刻速率。此值由於表示比率而為無因次數。於膜厚之測定中使用大塚電子(股)製反射分光膜厚計:FE-3000。
再者,上述基準之熱氧化膜係使用藉由將完全無塗佈的矽晶圓在1,050℃的水蒸氣下放置1小時,而使矽表面氧化,形成膜厚約500nm的熱氧化膜者。此熱氧化膜係在以下所有的實施例、比較例中皆作為基準膜使用。
實施例2及3
除了將在2%三甲胺(N2稀釋)環境中處理代替為於4%三甲胺(N2稀釋)環境(實施例2)或10%三甲胺(N2稀釋)環境(實施例3)中處理以外,藉由與實施例1同樣之方法,形成矽石質膜。所得之矽石質膜的相對蝕刻速率係分別為4.6及4.8。
實施例4~7
除了將在2%三甲胺(N2稀釋)環境中處理代替為於2%甲胺(N2稀釋)環境(實施例4)、2%單甲胺(N2稀釋)環境(實施例5)、2%三乙胺(N2稀釋)環境(實施例6)及2%DBU(1,8-二氮雜雙環[5,4,0]十一烯)(N2稀釋)環境(實施例7)中處理以外,藉由與實施例1同樣之方法,形成矽石質膜。所得之矽石質膜的相對蝕刻速率係分別為4.1、4.2、4.5及4.8。再者,三乙胺及DBU係藉由將經預備加熱爐所氣化之氣體,使用N2載體氣體,導入爐中 而進行。
比較例1及2
除了將在2%三甲胺(N2稀釋)環境中處理代替為於N2氣體環境(比較例1)或2%氨(N2稀釋)環境(比較例2)中處理以外,藉由與實施例1同樣之方法,形成矽石質膜。所得之矽石質膜的相對蝕刻速率係分別為5.6及6.1。
於使用全氫聚矽氮烷之例中,根據比較例1~2,僅在N2氣體或在含氨的環境下之退火,所得之矽石質膜的相對蝕刻速率為5.6或6.1,相對於此,除了含有三甲胺、二甲胺、單甲胺DBU以外,在相同條件下退火的實施例1~7中為3.9~4.8,可知藉由在含有此等化合物之環境下的退火,蝕刻速率變慢。
再者,實施例1~10所使用之含氮化合物的鹼解離常數pKb係三甲胺=4.13、二甲胺=3.26、單甲胺=3.36、三乙胺=3.28、DBU=1.5,相對於此,比較例2所使用之含氮化合物的氨之鹼解離常數pKb為4.75。因此,可知若鹼解離常數pKb為4.5以下,則發揮本發明之效果。
又,對於實施例1所形成之矽石質膜與比較例1所得之矽石質膜,進行雜質分析,結果皆為極高純度之矽石質膜,雜質含量亦兩者幾乎沒有不同。
再者,對於實施例1所形成之矽石質膜與比較例1所得之矽石質膜,測定膜之物性。表1中顯示結果。
由表1可知,由於實施例1的崩潰電壓(Vbd:Break Down Voltage)高於比較例1,而且介電常數係接近純粹的二氧化矽之介電常數(約3.9),故藉由進行胺環境下的退火,可形成緻密的矽石膜。
比較例3及4
除了將在2%三甲胺(N2稀釋)環境中處理代替為於由40%水蒸氣與60%N2氣體所構成之環境(比較例3)或由2%三甲胺、40%水蒸氣、58%N2氣體所構成之環境(比較例4)中處理以外,藉由與實施例1同樣之方法,形成矽石質膜。測定膜厚減少速度,所得之矽石質膜的相對蝕刻速率係分別為2.3及2.4。
由上述比較例3、4之結果可知,若水蒸氣共存,則變得沒有胺之添加效果。
實施例8
於塑膠容器中,將8.36g(0.04莫耳)TEOS(原矽酸四乙酯)、11.5g(0.25莫耳)乙醇、4.32g(0.24莫耳)水及1g 1莫耳/升HCl水溶液在室溫下攪拌1日,然後用乙醇將此混合溶液稀釋至4倍,而調製溶膠凝膠法之矽石溶液。
將約1mL的如此所得之矽石溶液滴下至4吋矽晶圓上,藉由旋塗機進行1,500rpm、20秒的旋轉塗佈,於加熱板上在大氣中以150℃進行3分鐘的軟烘烤。膜厚為100nm。接著,保持於N2環境下升溫至700℃,於此溫度下在2%三甲胺(N2稀釋)環境中處理60分鐘。用與實施例1同樣之方法算出所得之矽石質膜的相對蝕刻速率。相對蝕刻速率為7.3。
比較例5
除了將在2%三甲胺(N2稀釋)環境中處理代替為於N2氣體環境中處理以外,藉由與實施例8同樣之方法,形成矽石質膜。所得之矽石質膜的相對蝕刻速率為11.5。
由實施例8與比較例5可知,於使用溶膠凝膠法之矽石溶液的矽石質膜之形成中,亦與使用聚矽氮烷之情況同樣地蝕刻速率變慢。
實施例9
除了將升溫至700℃為止代替為升溫至500℃為止,並且於此溫度下進行在2%三甲胺(N2稀釋)環境中的處理以外,藉由與實施例1同樣之方法,形成矽石質膜。所得之矽石質膜的相對蝕刻速率為6.4。
比較例6
除了將在2%三甲胺(N2稀釋)環境中處理代替為於N2氣體環境中處理以外,藉由與實施例9同樣之方法,形成矽石質膜。所得之矽石質膜的相對蝕刻速率為6.9。
由實施例9與比較例6可知,即使退火溫度為500℃,亦發揮本發明之效果。
實施例10
於塑膠容器中,將3.30g(0.02莫耳)三乙氧基矽烷、4.318g(0.02莫耳)TEOS、9.2g(0.2莫耳)乙醇、3.6g(0.2莫耳)水及0.1g 1莫耳/升HCl水溶液在室溫下攪拌1日,然後用乙醇將此混合溶液稀釋至4倍,而調製溶膠凝膠法之矽石溶液。
將約1mL的如此所得之矽石溶液滴下至4吋 矽晶圓上,藉由旋塗機進行1,500rpm、20秒的旋轉塗佈,於加熱板上以150℃進行3分鐘的軟烘烤。膜厚為100nm。接著,保持於N2環境下升溫至700℃為止,於此溫度下在2%三甲胺(N2稀釋)環境中處理60分鐘。用與實施例1同樣之方法算出所得之矽石質膜的相對蝕刻速率。相對蝕刻速率為9.3。
比較例7
除了將在2%三甲胺(N2稀釋)環境中處理代替為於N2氣體環境中處理以外,藉由與實施例10同樣之方法,形成矽石質膜。所得之矽石質膜的相對蝕刻速率為10.8。
由實施例10與比較例7可知,於藉由溶膠凝膠法之情況中,亦在700℃的退火溫度下發揮本發明之效果。
比較例8
將約1mL的全氫聚矽氮烷之二丁基醚20%溶液(AZ電子材料製造(股)製Spinfil 65001,「Spinfil」為註冊商標)滴下至4吋矽晶圓上,藉由旋塗機進行1000rpm、20秒的旋轉塗佈,於加熱板上在大氣中以150℃進行3分鐘的軟烘烤。膜厚為600nm。接著,於350℃以80%水蒸氣(80%H2O/20%O2)進行60分鐘處理(焙燒),使全氫聚矽氮烷變化成矽石質膜。然後,保持於N2環境下降溫至150℃為止,於此溫度下於N2環境中處理(退火)60分鐘。所得之矽石質膜的相對蝕刻速率為8.5。
比較例9
除了將在N2環境下於150℃之退火處理代替為於2% 三甲胺(N2稀釋)環境下進行150℃的退火處理以外,藉由與比較例8同樣之方法,形成矽石質膜。所得之矽石質膜的相對蝕刻速率為8.6。
根據比較例8、9,藉由在150℃的低溫下之退火處理,未看到胺添加效果。
實施例11
將約1mL的全氫聚矽氮烷之二丁基醚20wt%溶液(AZ電子材料製造(股)製Spinfil 65001,「Spinfil」為註冊商標)滴下至4吋矽晶圓上,藉由旋塗機進行1000rpm、20秒的旋轉塗佈,於加熱板上在大氣中以150℃進行3分鐘的軟烘烤。膜厚為600nm。接著,於350℃以80%水蒸氣(80%H2O/20%O2)進行60分鐘處理(焙燒),使全氫聚矽氮烷變化成矽石質膜。然後,於350℃、2%NF3(N2稀釋)環境中處理60分鐘。對於此膜,接著在850℃、N2環境下進行退火,結果所得之矽石質膜的相對蝕刻速率為1.5。
實施例12~13
除了將在2%三甲胺(N2稀釋)環境中處理代替為於2%Br2(N2稀釋)環境(實施例12)或2%F2(N2稀釋)環境(實施例13)中處理以外,藉由與實施例11同樣之方法,形成矽石質膜。所得之矽石質膜的相對蝕刻速率係分別為1.7及1.4。
比較例10
除了將在350℃、2%NF3(N2稀釋)環境中處理代替為於N2環境中處理以外,藉由與實施例11同樣之方法, 形成矽石質膜。所得之矽石質膜的相對蝕刻速率為2.6。
比較例11及12
除了將在2%NF3(N2稀釋)環境中處理代替為於2%CF4(N2稀釋)環境(比較例11)或2%HF(N2稀釋)環境(比較例12)中處理以外,藉由與實施例11同樣之方法,形成矽石質膜。所得之矽石質膜的相對蝕刻速率皆為2.7。
由實施例11~13與比較例10可知,於退火時使用NF3、Br2、2%F2之情況中,亦蝕刻速率變慢。
再者,實施例11~13所使用之鹵素化合物的鹵素鍵能係N-F為57kcal/mol,Br-Br為46kcal/mol,F-F為38kcal/mol,相對於此,比較例11~12所使用之鹵素化合物的鹵素鍵能係H-F為135kcal/mol,C-F為117kcal/mol。因此,可知若鹵素鍵能為60kcal/mol以下,則會發揮本發明之效果。
實施例14
除了將在700℃的N2環境中60分鐘之處理代替為於850℃的N2環境中60分鐘之處理以外,藉由與實施例1同樣之方法,形成矽石質膜。所得之矽石質膜的相對蝕刻速率為1.6。
比較例13
除了將在700℃的N2環境中60分鐘之處理代替為於850℃的N2環境中60分鐘之處理以外,藉由與比較例1同樣之方法,形成矽石質膜。所得之矽石質膜的相對蝕刻速率為2.6。
再者,對於實施例14所形成之矽石質膜與比較例13所形成之矽石質膜,測定膜之物性。表2中顯示結果。
由表2可知,由於崩潰電壓之值係實施例14高於比較例13,故藉由在含三甲胺的環境下進行退火,可形成更緻密的矽石膜。

Claims (5)

  1. 一種矽石質膜之形成方法,其包含:(a)藉由將聚矽氮烷溶液塗佈於基板上後在氧化環境下硬化(固化),或藉由將由溶膠凝膠法所形成的矽石溶液塗佈於基板上,而在基板上形成矽石質膜之步驟,及(b)將該矽石質膜,在含有鹼解離常數(pKb)為4.5以下之含氮化合物的乾燥非活性氣體環境下於400~1,200℃加熱、退火1分鐘~10小時或在含有鹵素原子的鍵能為60kcal/mol以下之含鹵素化合物的乾燥非活性氣體環境下於200~500℃加熱、退火1分鐘~10小時之步驟。
  2. 如請求項1之矽石質膜之形成方法,其中該鹼解離常數(pKb)為4.5以下之含氮化合物係通式(II)所示的胺、DBU(1,8-二氮雜雙環[5,4,0]十一烯)、或DBN(1,5-二氮雜雙環[4,3,0]5-壬烯);R4R5R6N (II)(式中、R4表示可分支的烷基、烯基、環烷基或芳基,R5及R6各自獨立地表示氫原子、可分支的烷基、烯基、環烷基或芳基)。
  3. 如請求項1之矽石質膜之形成方法,其中該鹵素原子的鍵能為60kcal/mol以下之含鹵素化合物係Br2、F2或NF3
  4. 如請求項1至3項中任一項之矽石質膜之形成方法,其中該聚矽氮烷係全氫聚矽氮烷,硬化係在水蒸氣環 境下於200~500℃進行。
  5. 一種溝渠隔離結構之形成法,其基板為溝渠隔離結構形成用之附溝基板,藉由如請求項1至4中任一項之矽石質膜之形成方法埋封該溝。
TW102142618A 2012-11-22 2013-11-22 矽石質膜之形成方法及以相同方法形成之矽石質膜 TWI600614B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012256062A JP6060460B2 (ja) 2012-11-22 2012-11-22 シリカ質膜の形成方法及び同方法で形成されたシリカ質膜

Publications (2)

Publication Number Publication Date
TW201427899A TW201427899A (zh) 2014-07-16
TWI600614B true TWI600614B (zh) 2017-10-01

Family

ID=50776024

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102142618A TWI600614B (zh) 2012-11-22 2013-11-22 矽石質膜之形成方法及以相同方法形成之矽石質膜

Country Status (9)

Country Link
US (1) US10000386B2 (zh)
EP (1) EP2924717A4 (zh)
JP (1) JP6060460B2 (zh)
KR (2) KR101970860B1 (zh)
CN (1) CN104885204B (zh)
IL (1) IL238832B (zh)
SG (1) SG11201503113VA (zh)
TW (1) TWI600614B (zh)
WO (1) WO2014080841A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7110105B2 (ja) 2016-02-10 2022-08-01 コーニンクレッカ フィリップス エヌ ヴェ Led用途におけるシロキサン樹脂の気相硬化触媒及び不動態化
US10647578B2 (en) 2016-12-11 2020-05-12 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude N—H free and SI-rich per-hydridopolysilzane compositions, their synthesis, and applications
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
JP6796559B2 (ja) * 2017-07-06 2020-12-09 東京エレクトロン株式会社 エッチング方法および残渣除去方法
JP6947914B2 (ja) 2017-08-18 2021-10-13 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高圧高温下のアニールチャンバ
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
CN107660064B (zh) * 2017-09-29 2020-06-05 中国科学院化学研究所 导热绝缘板及其制备方法和电子元器件
KR102585074B1 (ko) 2017-11-11 2023-10-04 마이크로머티어리얼즈 엘엘씨 고압 프로세싱 챔버를 위한 가스 전달 시스템
JP2021503714A (ja) 2017-11-17 2021-02-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高圧処理システムのためのコンデンサシステム
KR102192462B1 (ko) * 2017-12-14 2020-12-17 삼성에스디아이 주식회사 실리카 막 형성용 조성물, 실리카 막, 및 전자소자
US11739220B2 (en) 2018-02-21 2023-08-29 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Perhydropolysilazane compositions and methods for forming oxide films using same
WO2019164636A1 (en) * 2018-02-22 2019-08-29 Applied Materials, Inc. Method for processing a mask substrate to enable better film quality
SG11202008256WA (en) 2018-03-09 2020-09-29 Applied Materials Inc High pressure annealing process for metal containing materials
JP6752249B2 (ja) * 2018-03-27 2020-09-09 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
US10950429B2 (en) 2018-05-08 2021-03-16 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
JP6475388B1 (ja) * 2018-07-18 2019-02-27 信越化学工業株式会社 ポリシラザン含有組成物
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
WO2020117462A1 (en) 2018-12-07 2020-06-11 Applied Materials, Inc. Semiconductor processing system
JP7390195B2 (ja) * 2020-01-17 2023-12-01 東京エレクトロン株式会社 シリコン成膜方法
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132128A (ja) * 1987-11-18 1989-05-24 Hitachi Ltd シリカ膜の製造法
US5922411A (en) * 1995-07-13 1999-07-13 Tonen Corporation Composition for forming ceramic material and process for producing ceramic material
TW200947613A (en) * 2008-02-29 2009-11-16 Az Electronic Materials Japan The method for forming siliceous film and siliceous film formed thereof
TW201003839A (en) * 2008-06-23 2010-01-16 Az Electronic Materials Japan Shallow trench isolation structure and method for formation thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2243527A1 (de) 1972-09-05 1974-04-18 Bayer Ag Formkoerper aus homogenen mischungen von siliciumcarbid und siliciumnitrid und verfahren zu ihrer herstellung
JPS60145903A (ja) 1983-12-29 1985-08-01 Toa Nenryo Kogyo Kk 無機ポリシラザン及びその合成方法
JPS6189230A (ja) 1984-10-09 1986-05-07 Toa Nenryo Kogyo Kk ポリオルガノヒドロシラザンの製造方法
JPH09183663A (ja) * 1995-10-30 1997-07-15 Tonen Corp プラスチックフィルムにSiO2系セラミックスを被覆する方法
JP4637303B2 (ja) 1995-12-28 2011-02-23 Azエレクトロニックマテリアルズ株式会社 ポリシラザンの製造方法
JP2904110B2 (ja) * 1996-04-02 1999-06-14 日本電気株式会社 半導体装置の製造方法
JP3919862B2 (ja) * 1996-12-28 2007-05-30 Azエレクトロニックマテリアルズ株式会社 低誘電率シリカ質膜の形成方法及び同シリカ質膜
JP3178412B2 (ja) 1998-04-27 2001-06-18 日本電気株式会社 トレンチ・アイソレーション構造の形成方法
US6191022B1 (en) 1999-04-18 2001-02-20 Cts Corporation Fine pitch solder sphere placement
JP5020425B2 (ja) 2000-04-25 2012-09-05 Azエレクトロニックマテリアルズ株式会社 微細溝をシリカ質材料で埋封する方法
US6541401B1 (en) * 2000-07-31 2003-04-01 Applied Materials, Inc. Wafer pretreatment to decrease rate of silicon dioxide deposition on silicon nitride compared to silicon substrate
JP3934323B2 (ja) * 2000-10-11 2007-06-20 株式会社Sokudo 基板製造方法および基板処理装置
US20040194511A1 (en) * 2002-02-01 2004-10-07 Chih-Hsing Cheng Sol-gel-derived halogen-doped glass
JP4217103B2 (ja) * 2003-04-25 2009-01-28 東京エレクトロン株式会社 熱処理方法及び熱処理装置
KR100667063B1 (ko) * 2003-05-08 2007-01-10 삼성에스디아이 주식회사 유기 전계 발광 소자용 기판의 제조방법
JP4621613B2 (ja) * 2006-03-09 2011-01-26 株式会社東芝 半導体装置の製造方法
JP2010267716A (ja) * 2009-05-13 2010-11-25 Elpida Memory Inc 低誘電率絶縁膜の作製方法、半導体装置およびその製造方法
US20120083133A1 (en) * 2010-10-05 2012-04-05 Applied Materials, Inc. Amine curing silicon-nitride-hydride films
TW201318782A (zh) 2011-11-02 2013-05-16 New Way Tools Co Ltd 具棘動功能之活動扳手

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132128A (ja) * 1987-11-18 1989-05-24 Hitachi Ltd シリカ膜の製造法
US5922411A (en) * 1995-07-13 1999-07-13 Tonen Corporation Composition for forming ceramic material and process for producing ceramic material
TW200947613A (en) * 2008-02-29 2009-11-16 Az Electronic Materials Japan The method for forming siliceous film and siliceous film formed thereof
TW201003839A (en) * 2008-06-23 2010-01-16 Az Electronic Materials Japan Shallow trench isolation structure and method for formation thereof

Also Published As

Publication number Publication date
US10000386B2 (en) 2018-06-19
JP6060460B2 (ja) 2017-01-18
KR102119371B1 (ko) 2020-06-08
EP2924717A4 (en) 2016-02-17
CN104885204A (zh) 2015-09-02
IL238832A0 (en) 2015-06-30
IL238832B (en) 2018-05-31
KR20150088815A (ko) 2015-08-03
EP2924717A1 (en) 2015-09-30
CN104885204B (zh) 2017-04-12
KR101970860B1 (ko) 2019-04-19
US20150298980A1 (en) 2015-10-22
KR20190002763A (ko) 2019-01-08
SG11201503113VA (en) 2015-06-29
JP2014103351A (ja) 2014-06-05
WO2014080841A1 (ja) 2014-05-30
TW201427899A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
TWI600614B (zh) 矽石質膜之形成方法及以相同方法形成之矽石質膜
TWI568806B (zh) 含聚矽氮烷被覆組成物
TWI558658B (zh) 無機聚矽氮烷樹脂、其製造方法及其應用
EP1978548B1 (en) Process for producing siliceous film
TWI400754B (zh) A precursor film composition of a porous film and a method for producing the same, a porous film and a method for producing the same, and a semiconductor device
TWI582850B (zh) 氮氧化矽膜之形成方法及附有由其所製造之氮氧化矽膜之基板
JP2017535077A (ja) ケイ素含有膜の堆積のための組成物及びそれを使用した方法
US20090305063A1 (en) Composition for forming siliceous film and process for producing siliceous film from the same
WO2007142000A1 (ja) 多孔質膜の前駆体組成物及びその調製方法、多孔質膜及びその作製方法、並びに半導体装置
WO2006017450A1 (en) Low temperature curable materials for optical applications
JPH1161043A (ja) 多孔質シリカ系被膜形成用塗布液、被膜付基材および短繊維状シリカ
WO2007053407A2 (en) Thick crack-free silica film by colloidal silica incorporation
US20090206453A1 (en) Method for Preparing Modified Porous Silica Films, Modified Porous Silica Films Prepared According to This Method and Semiconductor Devices Fabricated Using the Modified Porous Silica Films
WO2012176291A1 (ja) シリコンオキシナイトライド膜の形成方法およびそれにより製造されたシリコンオキシナイトライド膜付き基板
JP4180417B2 (ja) 多孔質膜形成用組成物、多孔質膜の製造方法、多孔質膜、層間絶縁膜、及び半導体装置
JP3015104B2 (ja) 半導体装置およびその製造方法
JP3939408B2 (ja) 低誘電率シリカ質膜
JP2008034840A (ja) 有機金属堆積用の前駆溶液の合成およびテルビウムを添加したSiO2薄膜の堆積
US20150295196A1 (en) Method of producing a photovoltaic device
JP3635443B2 (ja) SiO2被膜の形成方法
CN1265110A (zh) 有机硅纳米簇及其制造方法
US20170313592A1 (en) Method of Producing Silicon Hydride Oxide-Containing Organic Solvent
WO2019082803A1 (ja) 樹脂組成物、その硬化膜、それを具備する半導体素子および半導体素子の製造方法
JP2012009664A (ja) 素子分離材料用塗布液、素子分離材料用塗布液の作製方法、素子分離層用薄膜、及び、素子分離層用薄膜の形成方法