TWI460052B - 研磨墊及研磨墊的製造方法 - Google Patents

研磨墊及研磨墊的製造方法 Download PDF

Info

Publication number
TWI460052B
TWI460052B TW098126513A TW98126513A TWI460052B TW I460052 B TWI460052 B TW I460052B TW 098126513 A TW098126513 A TW 098126513A TW 98126513 A TW98126513 A TW 98126513A TW I460052 B TWI460052 B TW I460052B
Authority
TW
Taiwan
Prior art keywords
polishing pad
polishing
fiber
mass
elastomer
Prior art date
Application number
TW098126513A
Other languages
English (en)
Other versions
TW201016393A (en
Inventor
Kimio Nakayama
Nobuo Takaoka
Mitsuru Kato
Hirofumi Kikuchi
Original Assignee
Kuraray Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co filed Critical Kuraray Co
Publication of TW201016393A publication Critical patent/TW201016393A/zh
Application granted granted Critical
Publication of TWI460052B publication Critical patent/TWI460052B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

研磨墊及研磨墊的製造方法
本發明係關於研磨墊,詳細而言,係關於用於研磨進行平坦化或鏡面化之各種裝置、各種基板等之各種製品,例如半導體基板,半導體裝置、化合物半導體裝置、化合物半導體基板、化合物半導體製品、LED基板、LED製品、裸矽晶圓、矽晶圓、硬碟基板、玻璃基板、玻璃製品、金屬基板、金屬製品、塑膠基板、塑膠製品、陶瓷基板、陶瓷製品等之研磨墊及其製造方法。
近年來,隨著積體電路之高積體化及多層配線化,在形成積體電路之半導體晶圓上,被要求高精度之平坦性。
作為用於研磨半導體晶圓之研磨法,已知有化學機械研磨(CMP)。CMP係於被研磨基材表面一邊滴入磨石之漿液(slurry)一邊藉由研磨墊研磨的方法。
下述專利文獻1至4揭示藉由使2液硬化型聚胺酯發泡成形所製造、由具有獨立氣泡構造之高分子發泡體所構成之用於CMP的研磨墊。該等研磨墊係因相較於後述之不織布型的研磨墊剛性較高,故較佳地用於要求高精度之平坦性的半導體晶圓的研磨等。
由具有獨立氣泡構造之高分子發泡體所構成的研磨墊,係藉由例如使2液硬化型聚胺酯注型發泡成形所製造。由於像這樣的研磨墊具有較高剛性,研磨時對於被研磨基材之凸起部分容易變成選擇性地耗費荷重,該結果為研磨速率(研磨速率)變得較高。然而,在已凝聚之磨石存在於研磨面的情況下,由於對於已凝聚之磨石亦選擇性地耗費荷重,在研磨面上變得容易產生傷痕(刮傷)。特別地,如非專利文獻1中所記載,在研磨具有容易產生刮傷之銅配線的基材、或界面之接著性弱的低介電率材料的情況下,變得特別容易產生刮傷或界面剝離。又,在注型發泡成形中,由於不易使高分子彈性體均質地發泡,被研磨基材之平坦性或研磨時之研磨速率容易不均勻。再者,在具有獨立孔洞之研磨墊中,在由獨立孔洞而來之空隙中,堵塞著磨石或研磨屑。該結果為在長時間使用的情況下,隨著研磨進行,研磨速率降低(像這樣的特性亦稱為研磨安定性)。
另外,其他型式之研磨墊方面,專利文獻5至14揭示將聚胺酯樹脂含浸於不織布中,藉由濕式凝固所得之不織布型的研磨墊。不織布型之研磨墊於柔軟性優異。因此,在已凝聚之磨石存在於被研磨基材之研磨面上的情況下,藉由研磨墊變形,抑制對已凝聚之磨石選擇性地耗費荷重。然而,不織布型之研磨墊有長時間研磨特性容易變化的傾向,在精密之平坦化加工中有使用困難的問題點。又,由於過於柔軟,研磨墊隨著被研磨基材之表面形狀變形,故有難以得到高平坦化性能(使被研磨基材平坦的特性)的問題,或由於纖度大如2至10dtex,故有不能避免局部應力集中的問題。
在像這樣的不織布型之研磨墊中,近年來已知有以得到較高平坦化性能等為目的、使用由極細纖維束所形成的不織布而得之不織布型的研磨墊(例如,下述專利文獻15至18)。具體而言,例如在專利文獻15中,已記載由絡合平均纖度為0.0001至0.01dtex之聚酯極細纖維束所構成的不織布、與存在於該不織布內部空間之以聚胺酯為主成分的高分子彈性體所構成之片狀物所形成的研磨墊。已記載若根據像這樣的研磨墊,可實現較以往高精度的研磨加工。
然而,在如專利文獻15至18所記載之研磨墊中,由於使用藉由針扎處理纖度小之短纖維的極細纖維所得之不織布,故粒子密度低、空隙率亦高。因此,得不到柔軟且剛性低的研磨墊,因此,由於隨著表面形狀而變形,故得不到足夠高的平坦化性能。
又,在該等不織布型之研磨墊中,對於高分子彈性體之詳細說明則無任何文獻記載,對於長時間之安定性的記載亦不足。
[專利文獻]
專利文獻1:特開2000-178374號公報
專利文獻2:特開2000-248034號公報
專利文獻3:特開2001-89548號公報
專利文獻4:特開平11-322878號公報
專利文獻5:特開2002-9026號公報
專利文獻6:特開平11-99479號公報
專利文獻7:特開2005-212055號公報
專利文獻8:特開平3-234475號公報
專利文獻9:特開平10-128674號公報
專利文獻10:特開2004-311731號公報
專利文獻11:特開平10-225864號公報
專利文獻12:特表2005-518286號公報
專利文獻13:特開2003-201676號公報
專利文獻14:特開2005-334997號公報
專利文獻15:特開2007-54910號公報
專利文獻16:特開2003-170347號公報
專利文獻17:特開2004-130395號公報
專利文獻18:特開2002-172555號公報
[非專利文獻]
[非專利文獻1]柏本正弘等,「CMP之科學」、科學論壇股份有限公司、1997年8月20日、第113至119頁
本發明係以提供不易產生刮傷、平坦化性能與研磨效率優異之研磨墊為目的。
本發明之一方面為一種研磨墊,其特徵為具備由平均纖度0.01至0.8dtex之極細纖維所形成的極細纖維絡合體與高分子彈性體,其中前述高分子彈性體之玻璃轉移溫度為-10℃以下、在23℃至50℃之貯藏彈性率為90至900MPa、且於50℃吸水飽和時之吸水率為0.2至5質量%。
本發明之目的、特徵、部份、及優點,係藉由以下之詳細說明而變得更為明白。
由極細纖維所構成之基材,一般具有表面積大且彎曲彈性低之特性。因此,迄今所知之藉由在由極細纖維所構成的不織布中,含浸高分子彈性體而得的研磨墊,雖增大與被研磨基材之接觸面積而可進行柔性的研磨,但僅得到剛性低者而在平坦化特性或長經時間之研磨安定性上有問題。又,不織布係因其空隙留滯漿液而磨石漿液之保液性高,故容易提高研磨速率,同時由於空隙佔視體積的一半以上,藉由在迄今所知之不織布中含浸高分子彈性體所得的研磨墊,雖可進行效率佳的研磨,但剛性低且平坦化性或長時間之研磨安定性有問題。
本發明者們發現:1)藉由使用由極細纖維所構成之極細纖維絡合體與具有特定之玻璃轉移溫度、貯藏彈性率及吸水率的高分子彈性體,可得到具有高剛性之研磨墊,即使在研磨中亦維持其構造而提升長時間的研磨安定性;2)在研磨墊的表面,於研磨時使纖維變得容易原纖化而使與被研磨基材之接觸面積變大,同時由於潤濕性變高,故使磨石漿液之保持性變高,其結果為研磨速率變高;3)由於以極細纖維柔軟地接觸研磨墊的表面,可難以引起研磨處理時之應力集中,因而,在被研磨基材上變得不易產生刮傷而達成本發明。再者,發現藉由使研磨墊之空隙率為50%以上,可提高磨石漿液的保持性,且兼具高的剛性,特別適用於裸矽晶圓研磨。
即關於本實施樣態的研磨墊,具備由平均纖度0.01至0.8dtex之極細纖維所形成的極細纖維絡合體,與高分子彈性體,其特徵為前述高分子彈性體係玻璃轉移溫度為-10℃以下、在23℃及50℃之貯藏彈性率為90至900MPa、而且於50℃吸水飽和時的吸水率為0.2至5質量%。
以下,說明本實施樣態之研磨墊的構成、製造方法、及其使用方法。
[研磨墊之構成]
極細纖維絡合體係由平均纖度為0.01至0.8dtex之極細纖維所形成,而較佳為0.05至0.5dtex的範圍。在前述極細纖維之平均纖度未滿0.01dtex的情況下,研磨墊之表面附近的極細纖維束未充分分纖,該結果為磨石漿液的保持力降低,研磨效率或研磨均勻性容易變低。另外,在前述極細纖維之平均纖度超過0.8dtex的情況下,研磨墊之表面變得太粗糙而降低研磨速率,又因纖維所致之在研磨中的應力變大,變得容易產生刮傷。
又,極細纖維絡合體較佳為由集束5至70根極細纖維之極細纖維束所構成,更佳為10至50根。在極細纖維之集束根數超過70根的情況下,研磨墊之表面附近的極細纖維未充分分纖,該結果為降低磨石漿液的保持力。另外,在前述極細纖維束之根數未滿5根的情況下,實質上纖度變粗大或表面之纖維密度容易降低,研磨墊之表面變得太粗糙而降低研磨速率,又,因纖維所致之在研磨中的應力變大,變得容易產生刮傷。
極細纖維之具體範例方面,舉例有由聚對苯二甲酸乙二酯(PET)、異酞酸改質聚對苯二甲酸乙二酯、磺異酞酸改質聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯、聚對苯二甲酸己酯等所形成的芳香族聚酯纖維;由聚乳酸、聚丁二酸乙二醇酯、聚丁二酸丁二醇酯、聚丁二酸己二酸丁二醇酯、聚羥丁酸酯-聚羥戊酸酯共聚物等所形成的脂肪族聚酯纖維;由聚醯胺6、聚醯胺66、聚醯胺10、聚醯胺11、聚醯胺12、聚醯胺6-12等所形成的聚醯胺纖維;聚丙烯、聚乙烯、聚丁烯、聚甲基戊烯、氯系聚烯烴等之聚烯烴纖維;由含有25至70莫耳%乙烯單位之改質聚乙烯醇等所形成的改質聚乙烯醇纖維;及由聚胺酯系彈性體、聚醯胺系彈性體、聚酯系彈性體等之彈性體等所形成的彈性體纖維等。彼等係分別單獨地使用,或組合2種以上來使用均可。特別地,在由聚酯纖維形成本實施樣態之極細纖維的情況下,因可形成纖密且高密度的纖維絡合體之觀點而佳。
在前述極細纖維之中,玻璃轉移溫度(Tg)為50℃以上、更佳為60℃以上,較佳為由在50℃吸水飽和時之吸水率為0.2至2質量%的熱塑性樹脂所形成之纖維。在前述熱塑性樹脂之玻璃轉移溫度為該等範圍的情況下,由於可維持較高剛性而使平坦化性能變得更高,又,即使在研磨時,剛性在長時間下不會降低,得到研磨安定性及研磨均勻性等優異的研磨墊。玻璃轉移溫度之上限雖無特別限制,但在工業製造上,較佳為300℃以下,更佳為150℃以下。
又,本實施樣態之極細纖維較佳為由在50℃吸水飽和時之吸水率為0.2至2質量%的熱塑性樹脂所形成,換言之較佳為形成極細纖維之熱塑性樹脂在50℃飽和吸水時的吸水率為0.2至2質量%。由於吸水率在0.2質量%以上,漿液變得容易保液,且容易提升研磨效率及研磨均勻性等。在2質量%以下的情況下,藉由研磨墊未吸收過多磨石漿液,更抑制剛性之長時間的降低。在該等情況下,抑制平坦化性能之長時間的降低,又可得到研磨速率及研磨均勻性等不易變動的研磨墊。除了吸水性之外,由於取得性及製造性等良好,故形成本發明之極細纖維的熱塑性樹脂較佳為聚酯系聚合物,特佳為使用芳香族成分作為原料之一成分的半芳香族聚酯系聚合物。
熱塑性樹脂之具體範例方面,舉例有由聚對苯二甲酸乙二酯(PET、Tg 77℃、在50℃吸水飽和時之吸水率(以下,簡稱為吸水率。)1質量%)、異酞酸改質聚對苯二甲酸乙二酯(Tg 67至77℃、吸水率1質量%)、磺異酞酸改質聚對苯二甲酸乙二酯(Tg 67至77℃、吸水率1至3質量%)、聚萘丁二酯(Tg 85℃、吸水率1質量%)、聚萘乙二酯(Tg 124℃、吸水率1質量%)等所形成之芳香族聚酯系纖維;由對苯二甲酸與壬二醇及甲基辛二醇共聚合聚醯胺(Tg 125至140℃、吸水率1至3質量%)等所形成的半芳香族聚醯胺系纖維等。特別地,亦由於PET及異酞酸改質PET等之改質PET,因在由以後述之海島型複合纖維所構成之織物絡合片形成極細纖維的濕熱處理步驟中大幅地捲縮,可形成緻密且高密度的纖維絡合體,容易提高研磨片的剛性,以及研磨時不易產生因水分所致之長時間變化等觀點而佳。
關於本實施樣態之研磨墊,較佳為具備由集束上述極細纖維之極細纖維束所形成的極細纖維絡合體與高分子彈性體。
在本實施樣態中所用之高分子彈性體的具體範例方面,若滿足後述之玻璃轉移溫度、貯藏彈性率、吸水率,則無特別之限制,舉例有由聚胺酯系樹脂、聚醯胺系樹脂、(甲基)丙烯酸酯系樹脂、(甲基)丙烯酸酯-苯乙烯系樹脂、(甲基)丙烯酸酯-丙烯腈系樹脂、(甲基)丙烯酸酯-烯烴系樹脂、(甲基)丙烯酸酯-(氫化)異戊二烯系樹脂、(甲基)丙烯酸酯-丁二烯系樹脂、苯乙烯-丁二烯系樹脂、苯乙烯-氫化異戊二烯系樹脂、丙烯腈-丁二烯系樹脂、丙烯腈-丁二烯-苯乙烯系樹脂、乙酸乙烯酯系樹脂、(甲基)丙烯酸酯-乙酸乙烯酯系樹脂、乙烯-乙酸乙烯酯系樹脂、乙烯-烯烴系樹脂、矽氧烷系樹脂、氟系樹脂、及聚酯系樹脂等所構成之彈性體。
本實施樣態之高分子彈性體方面,從對於極細纖維之集束性、拘束極細纖維束之黏結性的觀點來看,較佳為氫鍵性高分子彈性體。所謂形成氫鍵性高分子彈性體之樹脂,係指例如聚胺酯系樹脂、聚醯胺系樹脂、聚乙烯醇系樹脂等,藉由氫鍵結晶化或凝聚的高分子彈性體。氫鍵性高分子彈性體為接著性高、提高纖維束之拘束性、又抑制纖維的脫落。
於本實施樣態中所用之高分子彈性體係玻璃轉移溫度為-10℃以下。在玻璃轉移溫度較-10℃高的情況下,高分子彈性體變脆且高分子彈性體在研磨中變得容易脫落,而變得容易產生刮傷。又,因高分子彈性體所致之極細纖維的集束力變弱,研磨中之長時間的安定性容易惡化。玻璃轉移溫度較佳為-15℃以下。對於下限雖無特別之限制,但從取得性等來看,較佳為-100℃左右以上。還有,玻璃轉移溫度係由動黏彈性測定中之以拉伸模式的損失彈性率之尖峰溫度所算出。由於玻璃轉移溫度係因依存於高分子彈性體之α分散的尖峰溫度,而為了使高分子彈性體的玻璃轉移溫度為-10℃以下,故較佳為適宜選擇構成高分子彈性體的成分。例如,在使用聚胺酯系樹脂作為高分子彈性體的情況下,為了使玻璃轉移溫度為-10℃以下,而選擇成為軟質成分之聚醇的組成、及硬質成分(異氰酸酯成分或鏈延伸劑成分)與軟質成分的比例等。具體而言,較佳為選擇玻璃轉移溫度為-10℃以下、較佳為-20℃以下之聚醇,聚胺酯中之聚醇成分的質量比例為30質量%以上、較佳為40質量%以上的構成。
又,於本實施樣態中所用之高分子彈性體係在23℃及50℃之貯藏彈性率在90至900MPa的範圍中。雖然一般聚胺酯的23℃及50℃之貯藏彈性率未滿90MPa,但在23℃及50℃之範圍中的貯藏彈性率未滿90MPa的情況下,拘束著纖維束之高分子彈性體變得容易變形且研磨中之墊剛性不足而降低平坦化性。又,在高分子彈性體在研磨中,因漿液等而變得容易膨潤而有長時間之安定性降低的傾向。在23℃及50℃之範圍中的貯藏彈性率超過900MPa的情況下,高分子彈性體變脆且高分子彈性體在研磨中變得容易脫落,而變得容易產生刮傷。又,極細纖維之集束力降低,研磨中之長時間的安定性容易惡化。較佳為在23℃及50℃之範圍的貯藏彈性率為200至800MPa。由於高分子彈性體之貯藏彈性率依存於高分子彈性體之組成、換言之依存於構成高分子彈性體之硬質成分與軟質成分各別的彈性率及其質量比例,為了成為上述範圍之貯藏彈性率,較佳為選擇硬質成分與軟質成分之組成及其質量比例。
例如,在使用聚胺酯系樹脂作為高分子彈性體的情況下,軟質成分(聚醇成分)方面,舉例有聚乙二醇、聚丙二醇、聚丁二醇、聚(甲基丁二醇)等之聚醚系聚醇及其共聚物;聚己二酸丁二醇酯、聚癸二酸丁二醇酯、聚己二酸己二醇酯、聚(己二酸3-甲基-1,5-戊二醇酯)、聚(癸二酸3-甲基-1,5-戊二醇酯)、異酞酸共聚合聚醇、對酞酸共聚合聚醇、環己醇共聚合聚醇、聚己內酯二醇等之聚酯系聚醇及其共聚物;聚碳酸己二醇酯、聚(碳酸3-甲基-1,5-戊二醇酯)、聚碳酸戊二醇酯、聚碳酸丁二醇酯、聚(碳酸甲基-1,8-辛二醇酯)、聚碳酸癸二醇酯、聚碳酸環己酯等之聚碳酸酯系聚醇及其共聚物;聚酯碳酸酯聚醇等。又,必要時亦可倂用三羥甲基丙烷等之3官能醇或新戊四醇等之4官能醇等的多官能醇,或乙二醇、丙二醇、1,4-丁二醇、1,6-己二醇等之短鏈醇。彼等係單獨使用或組合2種以上來使用均可。特別地,含有聚醇成分全量之60至100質量%之具有脂環式聚碳酸酯系聚醇、直鏈狀聚碳酸酯系聚醇或具有分枝之聚碳酸酯系聚醇等的聚碳酸酯系聚醇;特別地,含有聚醇成分全量之60至100質量%之熔點為0℃以下的非晶性聚碳酸酯系聚醇,由於對於在研磨中所用之漿液的耐性高而研磨中之長時間的安定性良好,以及由於容易使吸水性或貯藏彈性率為上述本實施樣態的範圍等而佳。
然後,為了使在23℃及50℃之範圍中的貯藏彈性率為90至900MPa的範圍中,較佳為選擇玻璃轉移溫度為-10℃以下、較佳為-20℃以下的聚醇。例如,具體地舉出有前述具有分枝之聚碳酸酯系聚醇;聚丙二醇、聚丁二醇、聚(甲基丁二醇)等之聚醚系聚醇及其共聚物;聚癸二酸丁二醇酯、聚(己二酸3-甲基-1,5-戊二醇酯)、聚(癸二酸3-甲基-1,5-戊二醇酯)、聚己內酯二醇等之聚酯系聚醇及其共聚物;聚(碳酸3-甲基-1,5-戊二醇酯)、聚(碳酸-甲基-1,8-辛二醇酯)等之聚碳酸酯系聚醇及其共聚物;聚酯碳酸酯聚醇等。又,除了上述之聚醇外,亦可舉例說明藉由共聚合,使玻璃轉移溫度為-10℃以下的聚醇。
又,含有碳數5以下、特別是碳數3以下之聚伸烷基二醇基的聚胺酯樹脂,亦從對於水之潤濕性變得特佳的觀點來看,較佳為使用含有0.1至10質量%左右該等聚伸烷基二醇基的聚胺酯樹脂。
可使用具有-10℃以下之玻璃轉移溫度的軟質成分(聚醇成分)而使聚胺酯的玻璃轉移溫度為-10℃以下,又,藉由選擇像這樣的聚醇成分來調整聚胺酯中之聚醇成分的質量比例,可使聚胺酯之在23℃及50℃的貯藏彈性率為90至900MPa的範圍。
在使用聚胺酯系樹脂作為高分子彈性體的情況下,硬質成分(異氰酸酯成分或鏈延伸劑成分)中,異氰酸酯成分方面,可使用以六亞甲基二異氰酸酯、二異氰酸異佛酮酯、二異氰酸降莰烯酯、二環己基甲烷-4,4’-二異氰酸酯為代表的脂肪族或脂環式二異氰酸酯的無黃變型二異氰酸酯,或以甲苯-2,4-二異氰酸酯、甲苯-2,6-二異氰酸酯、二苯基甲烷-4,4’-二異氰酸酯、二甲苯二異氰酸酯聚胺酯為代表之芳香族二異氰酸酯。又,必要時亦可倂用3官能基異氰酸酯或4官能異氰酸酯等之多官能異氰酸酯。彼等係單獨使用或組合2種以上來使用均可。彼等之中,因二環己基甲烷-4,4’-二異氰酸酯、甲苯-2,4-二異氰酸酯、甲苯-2,6-二異氰酸酯、二苯基甲烷-4,4’-二異氰酸酯、二甲苯二異氰酸酯對於極細纖維的接著性高,且提升極細纖維的集束力,又從可得到硬度高的研磨墊之觀點而佳。
又,鏈延長劑成分方面,可選擇由以乙二醇、丙二醇、1,4-丁二醇、1,4-雙(β-羥乙氧基)苯、1,4-環己二醇等之二醇類;三羥甲基丙烷等之三醇類;新戊四醇等之戊醇類;胺乙醇、胺丙醇等之胺醇類為代表的短鏈聚醇;肼聯胺、乙二胺、丙二胺、六亞甲基二胺、二甲苯二胺、異佛酮二胺、二次乙亞胺及其衍生物、己二酸二肼聯胺、異氟酸二肼聯胺等之二胺類;二乙三胺等之三胺類;三乙四胺等之四胺類為代表的短鏈聚胺等的組合所構成之凝聚性高且彈性率高的硬質成分。又,在鏈延長反應時,亦可與鏈伸長劑同時倂用乙胺、丙胺、丁胺等之單胺類;胺基丁-4-酸、胺基己-6-酸等之含羧基單胺化合物;甲醇、乙醇、丙醇、丁醇等之單醇類,倂用2,2-雙(羥甲基)丙酸、2,2-雙(羥甲基)丁酸、2,2-雙(羥甲基)戊酸等之含羧基二醇等,藉由將羧基等之離子性基導入聚胺酯系彈性體的骨架中,可進一步提升對水的潤濕性。
然後,由使聚胺酯之在23℃及50℃的貯藏彈性率為90至900MPa之範圍的觀點來看,較佳為使軟質成分(聚醇成分)的比例為40至65質量%,更佳為45至60質量%。軟質成分之量未滿40質量%,在23℃及50℃之範圍的貯藏彈性率之溫度依存性變高,難以成為90至90OMPa的範圍。相反地,軟質成分之量超過65質量%時,貯藏彈性率容易變成未滿90MPa。
軟質成分方面,因容易提高聚酯之貯藏彈性率來看,特佳為以具有分枝之聚碳酸酯聚醇;聚(碳酸3-甲基-1,5-戊二醇酯)、聚(碳酸甲基-1,8-辛二醇酯);或共聚合聚(碳酸3-甲基-1,5-戊二醇酯)、聚(碳酸甲基-1,8-辛二醇酯)、聚碳酸己二醇酯、聚碳酸戊二醇酯、聚碳酸丁二醇酯、聚碳酸壬二醇酯、聚碳酸環己酯等之聚碳酸酯系聚醇的聚碳酸酯聚醇等為代表的聚碳酸酯系聚醇。
再者本實施樣態之高分子彈性體,較佳為在23℃之貯藏彈性率與在50℃之貯藏彈性率之比(在23℃之貯藏彈性率/在50℃之貯藏彈性率)為4以下。藉由使在23℃之貯藏彈性率與在50℃之貯藏彈性率之比(在23℃之貯藏彈性率/在50℃之貯藏彈性率)為4以下,則在引起研磨中之溫度變化的情況下,由於不易引起貯藏彈性率的變化,亦提升研磨中之長時間的安定性。特佳為在23℃之貯藏彈性率與在50℃之貯藏彈性率之比(在23℃之貯藏彈性率/在50℃之貯藏彈性率)為3以下。又,針對下限值雖無特別之限制,但以不易引起因研磨中之溫度所致的貯藏彈性率變化的觀點來看,較佳為1/3以上。
在上述範圍中,係藉由適宜調整用於成為前述之貯藏彈性率之範圍的軟質成分或硬質成分而可達成。
例如,在使用聚胺酯系樹脂作為高分子彈性體的情況下,使用具有-10℃以下之玻璃轉移溫度的軟質成分(聚醇成分)而使聚胺酯之玻璃轉移溫度成為-10℃,而硬質成分(異氰酸酯成分或鏈延長劑成分)方面,則選擇由脂環式二異氰酸酯或芳香族二異氰酸酯,與以二醇類、三醇類、五醇類為代表之短鏈聚醇;以二胺類、三胺類、四胺類為代表之短鏈聚胺等的組合所構成之凝聚性高且彈性率高的鏈延長劑成分,軟質成分之比例較佳為40至65質量%、更佳為45至60質量%。又,軟質成分方面,由於容易提高聚酯之彈性率,故軟質成分方面較佳為聚碳酸酯系聚醇。
高分子彈性體方面,為了研磨墊之性能及製造性等的調節,亦可含有2種以上之高分子彈性體,該情況下之高分子彈性體之在23℃至50℃的貯藏彈性率,可為各高分子彈性體之貯藏彈性率乘上質量分率之值的和而理論上計算出來。
又,本實施樣態之高分子彈性體之於50℃吸水飽和時的吸水率為0.2至5質量%。在吸水率未滿0.2質量%的情況下,保持漿液變困難,研磨效率及研磨均勻性等容易降低。在超過5質量%的情況下,起因於拘束著纖維束之高分子彈性體吸水軟化,而容易使研磨中之長時間的變化變大。然後,於50℃吸水飽和時的吸水率較佳為0.5至3質量%的範圍。在高分子彈性體之吸水率在該等範圍的情況下,維持研磨時對於研磨墊之磨石漿液的高潤濕性,同時更可抑制長時間剛性降低。因而,可維持高的研磨速率及研磨均勻性與研磨安定性等。
還有,所謂高分子彈性體之吸水率,詳細內容後述,為將已乾燥處理之高分子彈性體膜浸漬於室溫的水中,飽和膨潤時的吸水率。又,在含有2種以上之高分子彈性體的情況下,為各高分子彈性體之吸水率乘上質量分率之值的和而可理論上算出。
具有該等吸水率之高分子彈性體係可藉由調整構成高分子彈性體之聚合物的組成、交聯密度;導入親水性的官能基;及選擇該量等而達成。
例如,可藉由在高分子彈性體中,導入選自由羧基、磺酸基及碳數3以下之聚伸烷基二醇基所構成之群組中至少1種的親水性基,調整吸水率及親水性等。因而,可提升研磨時之對於研磨墊之磨石漿液的潤濕性。該等親水性基係可藉由共聚合具有親水性基之單體成分作為製造高分子彈性體時的單體成分,導入高分子彈性體中。該等具有親水性基之單體成分的共聚合比例方面,為0.1至10質量%、再者為0.5至5質量%,因可抑制由吸水所致之膨潤軟化於最小限度,而且可提高吸水率及潤濕性等的觀點而佳。
高分子彈性體係個別單獨地使用或組合2種以上來使用均可。在該等之中,聚胺酯系樹脂因用於一方面集束極細纖維,一方面拘束、黏結纖維束之間的接著性優異,又提高研磨墊之硬度,研磨中之長時間的安定性優的觀點而佳。又,具有選自由羧基、磺酸基、及碳數3以下之聚伸烷基二醇基所構成之群組中至少1種的親水性基的聚胺酯,因研磨墊之剛性、潤濕性及研磨時之長時間的安定性高的觀點而佳。
在高分子彈性體為聚胺酯系樹脂的情況下,羧基之具體範例方面,可舉出有2,2-雙(羥甲基)丙酸、2,2-雙(羥甲基)丁酸、2,2-雙(羥甲基)戊酸等之羧基,倂用彼等含羧基之二醇等,而可將羧基導入於聚胺酯系彈性體的骨架中。碳數3以下之聚伸烷基二醇基之具體範例方面,可舉例說明有聚乙二醇、聚丙二醇及其共聚物。具有選自由羧基、磺酸基、及碳數3以下之聚伸烷基二醇基所構成之群組中至少1種之親水性基的聚胺酯系樹脂,具有潤濕性提升之優點同時有吸水率變高的傾向,一般而言,吸水率為5至15質量%。因此,為了成為本實施樣態之0.2至5質量%的吸水率,具有選自由羧基、磺酸基、及碳數3以下之聚伸烷基二醇基所構成之群組中至少1種之親水性基的量較佳為0.1至10質量%,更佳為0.5至5質量%,再者,較佳為使用吸水性低的成分、例如上述之聚酯系聚醇或聚碳酸酯聚醇等作為聚醇。
例如,在高分子彈性體為使用在非晶性聚碳酸酯系聚醇中倂用含羧基二醇作為聚醇、脂環式二異氰酸酯作為二異氰酸酯成分所得之聚胺酯系樹脂的情況下,從該高分子彈性體之玻璃轉移溫度容易為-10℃以下、在23℃及50℃之貯藏彈性率容易為90至900MPa、而且在50℃下吸水飽和時的吸水率容易為0.2至5質量%的觀點來看,較佳為使用該等高分子彈性體。
用於本發明之聚胺酯系樹脂的硬質成分(異氰酸酯成分或鏈延長劑成分)方面,例如可選擇上述之異氰酸酯成分、與凝聚性高之上述的鏈延長劑成分。然後,軟質成分(聚醇成分)之比例較佳為65質量%以下,更佳為60質量%以下。軟質成分之量超過65質量%時,吸水率容易變高。然後在高分子彈性體為水性聚胺酯的情況下,在成為0.2至5質量%之吸水率中,較佳為該水性聚胺酯具有0.01至0.2μm的平均粒徑。在0.01μm以下或0.2μm以上的情況下,吸水率容易超過5質量%。
又,在高分子彈性體為聚胺酯樹脂的情況下,為了控制其吸水率及貯藏彈性率,亦較佳為藉由添加在分子內含有2個以上與具有形成聚胺酯之單體單位的官能基反應而得的官能基之交聯劑,及聚異氰酸酯系化合物、多官能區塊異氰酸酯系化合物等之自身交聯性的化合物,形成交聯構造。
前述單體單位所具有之官能基與交聯劑之官能基的組合方面,舉出有羧基與唑啉基、羧基與碳二亞胺基、羧基與環氧基、羧基與環碳酸酯基、羧基與氮基、羧基與肼衍生物或醯肼衍生物等。彼等之中,具有羧基之單體單位與具有唑啉基、碳二醯亞胺基或環氧基之交聯劑的組合;具有羥基或胺基之單體單位與具有崁段異氰酸酯基之交聯劑的組合;及具有羧基之單體單位與肼衍生物或醯肼衍生物的組合,因交聯形成容易、所得之研磨墊的剛性或耐磨耗性優異的觀點而特佳。還有,交聯構造係在將聚胺酯樹脂之水性液含浸於纖維絡合體之後的熱處理步驟中形成,因維持高分子彈性體之水性液的安定性的觀點而佳。於彼等之中,特佳為交聯性能及水性液等之適用期性優異、又在安全方面亦無問題的碳二醯亞胺基及/或唑啉基。具有碳二醯亞胺基之交聯劑方面,可舉例有日清紡織股份有限公司製「CARBODILITE E-01」、「CARBODILITE E-02」、「CARBODILITE V-02」等之水分散碳二醯亞胺系化合物。又,具有唑啉基之交聯劑方面,可舉例有日本觸媒股份有限公司製「EPOCROS K-2010E」、「EPOCROS K-2020E」、「EPOCROS WS-500」等之水分散唑啉系化合物。交聯劑之配合量方面,相對於聚胺酯樹脂,較佳為交聯劑之有效成分為1至20質量%,更佳為1.5至10質量%。
又,由於提高與極細纖維之接著性且提高纖維束之剛性、及使玻璃轉移溫度為-10℃以下、使在23℃及50℃之貯藏彈性率為90至900MPa之範圍、使於50℃吸水飽和時之吸水率為0.2至5質量%等的調整容易,聚胺酯樹脂中之聚醇成分的含有率方面,較佳為65質量%以下,更佳為60質量%以下。又,在40質量%以上、特別在45質量%以上因可藉由賦予適度之彈性以抑制刮傷之產生的觀點而佳。
又,聚胺酯系樹脂係在無損及本發明之效果的範圍內,亦可進一步含有浸透劑、消泡劑、滑劑、撥水劑、撥油劑、增黏劑、增量劑、硬化促進劑、抗氧化劑、紫外線吸收劑、防黴劑、發泡劑、聚乙烯醇、羧甲基纖維素等之水溶性高分子化合物、染料、顏料、無機微粒子等。
高分子彈性體較佳為形成極細纖維絡合體之平均纖度0.01至0.8dtex以下的極細纖維,存在於集束5至70根之極細纖維束的內部。然後,極細纖維係藉由存在於極細纖維束之內部的高分子彈性體所集束,藉由集束極細纖維,而集束纖維束之內部的一部份或全體,同時拘束極細纖維束。集束極細纖維同時拘束極細纖維束,因提高研磨墊之剛性、提升平坦化性能或研磨均勻性或長時間的安定性的觀點而佳。
又,在研磨墊中,除去空隙之部分的體積比例(以下,亦稱為研磨墊填充率)為40至95%的範圍,即空隙率以在5至60%之範圍中存在著空隙,因兼具研磨墊之適度剛性與保液性的觀點而佳。
在該情況下,前述含浸高分子彈性體之研磨墊的空隙率為50%以上時,由於兼具漿液保液性與適度之剛性及進一步的緩衝性,因裸矽晶圓研磨優異的觀點而佳,該情況之上限為70%以下,因在以裸矽晶圓研磨等為代表之粗研磨中之研磨速率性與平坦性優異的觀點而佳。
然後,空隙之一部份係以連通研磨墊之內部之方式形成連通孔,因提升漿液之保液性的觀點而更佳。
又,高分子彈性體係因研磨漿液之潤濕性良好,較佳為水性聚胺酯,較佳為該水性聚胺酯具有0.01至0.2μm的平均粒徑。在平均粒徑為0.01μm以上的情況下,耐水性良好,研磨中之長時間的安定性優異。在平均粒徑為0.2μm以下的情況下,提升纖維束之拘束力,且平坦化性優異,研磨中之墊壽命變長且長時間的安定性優異。又,在調整上述之粒徑中,例如高分子彈性體較佳為含有選自由羧基、磺酸基、及碳數3以下之聚伸烷基二醇基所構成之群組中至少1種的親水性基。
然後,前述極細纖維絡合體與前述高分子彈性體之比例(極細纖維絡合體/高分子彈性體),以質量比計,較佳為55/45至95/5。在前述極細纖維絡合體之前述質量比例為55%以上的情況下,研磨中之長時間的安定性優異,且有提升研磨效率的傾向。在前述極細纖維絡合體之質量比例為95%以下的情況下,維持在纖維束之內部之高分子彈性體的拘束力,平坦化性優異且研磨中之墊磨耗變小。特別地,前述極細纖維絡合體與前述高分子彈性體之比例,以質量比計,較佳為60/40至90/10的範圍。
本實施樣態之研磨墊的粒子密度係因保持良好的漿液保持性及保持剛性於高的狀態,較佳為0.4至1.2g/cm3 、更佳為0.5至1.0g/cm3 的範圍。又,在裸矽晶圓研磨用途的情況下,以兼具研磨速率之提升與平坦性的觀點來看,較佳為0.3至0.75g/cm3 ,更佳為0.4至0.65g/cm3
在本實施樣態中,極細纖維束之平均長度雖無特別限制,但為100mm以上、特別係200mm以上則因可容易地提高極細纖維之纖維密度的觀點、可容易地提高研磨墊之剛性的觀點、及可抑制纖維之脫離的觀點而佳。在前述纖維束之長度過短的情況下,極細纖維之高密度化困難,又得不到足夠高的剛性,再者具有在研磨中極細纖維變得容易脫離的傾向。上限並無特別之限制,例如在含有後述之由藉由紡絲黏合法所製造之不織布而來的纖維絡合體的情況下,若未被物理性地切斷,則亦可包含數m、數百m、數km或其以上的纖維長度。
本實施樣態之研磨墊較佳為具有在前述纖維絡合體中,填充高分子彈性體而複合化的構造。
在本實施樣態之研磨墊中,高分子彈性體存在於極細纖維束的內部,因提高研磨墊之剛性的觀點而佳,形成極細纖維束之極細纖維,較佳為藉由高分子彈性體所集束。因而,藉由集束極細纖維,使研磨墊之剛性變得更高。藉由集束極細纖維,由於極細纖維難以分別移動,因提高研磨墊之剛性,容易得到高的平坦化性能。又,纖維之脫離減少,則可防止磨石凝聚於已脫離之纖維中,因而變得不易產生刮傷。其中,所謂集束極細纖維,係指存在於極細纖維束內部之極細纖維的大部份(以根數計,以10%以上為佳,較佳為20%以上,更佳為50%以上,最佳為60%以上),藉由存在於極細纖維束內部的高分子彈性體所接著而拘束著的狀態的意思。
又,複數根的極細纖維束彼此間,亦以藉由存在於極細纖維束外側之高分子彈性體而被黏著、以塊(崁段)狀存在者為佳。像這樣,藉由黏著極細纖維束彼等之間,提升研磨墊之形態安定性,並提升研磨安定性。
極細纖維之集束‧拘束狀態及極細纖維束之間的黏著狀態,可藉由研磨墊之截面的電子顯微鏡攝影來確認。
集束著極細纖維的高分子彈性體及黏著著極細纖維束彼此的高分子彈性體,較佳為非多孔質狀。還有,所謂非多孔質狀係指實質上不具有如具有多孔質狀、或海綿狀(以下,亦簡稱為多孔質狀)之高分子彈性體之空隙(獨立氣泡)狀態的意思。具體而言,例如表示無具有多數個如凝固溶劑系聚胺酯而得之微細氣泡的高分子彈性體的意思。在所集束或黏著著的高分子彈性體為非多孔質狀的情況下,研磨安定性變高,又由於變得不易堆積研磨時之漿液屑或墊屑於空隙中,不易磨耗且可長時間維持高的研磨速率。再者,由於對於極細纖維之接著強度變高,可抑制起因於纖維之脫離的刮傷產生。再者,由於得到較高剛性,故得到平坦化性能優異的研磨墊。
又,本實施樣態之研磨墊較佳為於50℃之溫水中飽和膨潤時的吸水率為10至80質量%,更佳為15至70質量%。若前述吸水率為10質量%以上,則有容易保持磨石漿液、提升研磨速率、又提升研磨均勻性的傾向。若前述吸水率為80質量%以下,由於得到高的研磨速率、又在研磨中硬度等之特性不易變化,而有平坦化性能之長時間的安定性優異的傾向。
本實施樣態之研磨墊係藉由以鬆化等之墊平坦化處理、使用鑽石等之墊修整之研磨前的陳化處理(調節處理),及藉由研磨時實施修整處理等、藉由使存在於表面附近之極細纖維束分纖或原纖化,可在研磨墊的表面形成極細纖維。研磨墊表面之極細纖維的纖維密度方面,較佳為600根/mm2 以上,更佳為1000根/mm2 以上,特佳為2000根/mm2 以上。在前述纖維密度過低的情況下,有磨石之保持性變得不足的傾向。前述纖維密度之上限雖無特別限制,但從生產性的觀點來看,為1000000根/mm2 左右。又,在研磨墊表面之極細纖維有豎毛或無豎毛均可。在極細纖維有豎毛的情況下,由於研磨墊的表面變得較柔軟,刮傷的降低效果變得更高。另外,在極細纖維之豎毛的程度低的情況下,變得有利於重視微平坦性的用途。較佳為對應像這樣的用途來適宜選擇表面狀態。
[研磨墊的製造方法]
其次,詳細說明本實施樣態之研磨墊的製造方法之一範例。
本實施樣態之研磨墊係如可藉由具備例如製造由熔融紡織水溶性熱塑性樹脂與非水溶性熱塑性樹脂而得之海島型複合纖維所構成的長纖維織物的織物製造步驟;藉由重疊複數片前述長纖維織物以絡合而形成織物絡合片的織物絡合步驟;藉由濕熱收縮前述織物絡合片,收縮成為面積收縮率為30%以上的濕熱收縮處理步驟;藉由在熱水中溶解前述織物絡合片中的前述水溶性熱塑性樹脂,形成由極細纖維所構成之纖維絡合體的纖維絡合體形成步驟;與在前述纖維絡合體中含浸高分子彈性體之水性液並乾燥凝固的高分子彈性體填充步驟之研磨墊的製造方法而得。
在前述製造方法中,藉由經由濕熱收縮含有長纖維之織物絡合片的步驟,比較於濕熱收縮含有短纖維之織物絡合片的情況,可較大幅度地收縮織物絡合片,因此,極細纖維之纖維密度變得緻密。然後,藉由溶解萃取織物絡合片之水溶性熱塑性樹脂,則形成由極細纖維束所構成的纖維絡合體。此時,在已溶解萃取水溶性熱塑性樹脂之部分則形成空隙。然後,藉由在該空隙中充分含浸高濃度高分子彈性體的水性液並乾燥凝固,集束構成極細纖維束之極細纖維,同時亦將極細纖維束彼此集束。如此一來,得到纖維密度高、空隙率低、已集束極細纖維之剛性高的研磨墊。
又,藉由前述收縮處理及調整含浸於空隙之高分子彈性體的量等,使研磨墊的空隙率為50%以上,藉此得到兼具適度剛性、磨石漿液保持性與緩衝性提升之適於裸矽晶圓的研磨墊。
以下詳細說明各步驟。
(1)織物製造步驟
在本步驟中,首先製造由熔融紡織水溶性熱塑性樹脂與非水溶性熱塑性樹脂而得之海島型複合纖維所構成的長纖維織物。
前述海島型複合纖維係藉由在個別熔融紡織水溶性熱塑性樹脂、與和前述水溶性熱塑性樹脂相溶性低之非水溶性熱塑性樹脂後,複合化而得。然後,藉由從該等海島型複合纖維溶解除去或分解除去水溶性熱塑性樹脂,形成極細纖維。海島型複合纖維之粗細,從工業性的觀點來看,較佳為0.5至3dtex。
還有,在本實施樣態中,雖詳細說明海島型複合纖維作為用於形成極細纖維的複合纖維,但亦可使用多層積層型截面纖維等之已知的極細纖維產生型纖維,取代海島型纖維。
前述水溶性熱塑性樹脂方面,其為可藉由水、鹼性水溶液、酸性水溶液等溶解除去或分解除去的熱塑性樹脂,較佳為使用可熔融紡織之樹脂。該等水溶性熱塑性樹脂的具體範例方面,舉例有聚乙烯醇、聚乙烯醇共聚物等之聚乙烯醇系樹脂(PVA系樹脂);含有聚乙二醇及/或磺酸鹼金屬鹽作為共聚合成分的改質聚酯;聚環氧乙烷等。該等之中,特別因為以下的理由,較佳為使用PVA系樹脂。
在使用PVA系樹脂為水溶性熱塑性樹脂成分的海島型複合纖維的情況下,藉由溶解PVA系樹脂所形成之極細纖維則大幅度地捲縮。因而得到纖維密度高的纖維絡合體。又,在使用以PVA系樹脂為水溶性熱塑性樹脂成分的海島型複合纖維的情況下,溶解PVA系樹脂時,由於所形成之極細纖維或高分子彈性體實質上未分解或溶解,難以引起極細纖維或高分子彈性體的物性降低。再者環境負荷亦小。
PVA系樹脂係可藉由矽化以乙烯酯單位為主體的共聚物而得。用於形成乙烯酯單位之乙烯單體的具體範例方面,舉例有乙酸乙烯酯、甲酸乙烯酯、丙酸乙烯酯、戊酸乙烯酯、癸酸乙烯酯、月桂酸乙烯酯、硬脂酸乙烯酯、安息香酸乙烯酯、三甲基乙酸乙烯酯、及特十碳酸乙烯酯(vinyl versatate)等。彼等係單獨地使用或組合2種以上來使用均可。彼等之中,乙酸乙烯酯因工業性之觀點而佳。
PVA系樹脂為僅由乙烯酯單位所構成之單PVA,或含有乙烯酯單位以外之共聚合單體單位作為構成單位的改質PVA均可。從可控制熔融紡織性、水溶性、纖維物性的觀點來看,較佳為改質PVA。乙烯酯單位以外之共聚合單體單位的具體範例方面,舉例有乙烯、丙烯、1-丁烯、異丁烯等之碳數4以下的α-烯烴類;甲基乙烯基醚、乙基乙烯基醚、正丙基乙烯基醚、異丙基乙烯基醚、正丁基乙烯基醚等之乙烯基醚類等。乙烯基醚單位以外之共聚合單體單位的含有比例方面,較佳為1至20莫耳%更佳為4至15莫耳%,特佳為6至13莫耳%的範圍。該等之中含有4至15莫耳%、特別是6至13莫耳%之乙烯單位的乙烯改質PVA則因海島型複合纖維之物性變高的觀點而佳。
PVA系樹脂之黏度平均聚合度為200至500、再者為230至470、特別為250至450的範圍,因形成安定之海島構造的觀點、顯示熔融紡織性優異之熔融黏度的觀點、及溶解時之溶解速度快的觀點而佳。還有,前述聚合度係依照JIS-K6726所測定。即,使PVA樹脂再矽化,於精製後,由在30℃之水中所測定之極限黏度[η]藉由下式而求得。
黏度平均聚合度P=([η]×103/8.29)(1/0.62)
PVA系樹脂之矽化度方面,較佳為90至99.99莫耳%、更佳為93至99.98莫耳%、特佳為94至99.97莫耳%、特別是96至99.96莫耳的範圍。在前述矽化度為該等範圍的情況下,得到水溶性優異、熱安定性良好、熔融紡織性優異、又生物分解性亦優異的PVA系樹脂。
前述PVA系樹脂之熔點方面,為160至250℃、再者為170至227℃、特別是175至224℃、特殊是180至220℃之範圍,因機械特性及熱安定性優異之觀點、及熔融紡織性優異之觀點而佳。還有,在前述PVA系樹脂之熔點過高的情況下,由於熔點與分解溫度接近,因而在熔融紡織時發生分解,故有熔融紡織性降低的傾向。
又,在前述PVA系樹脂之熔點比較前述非水溶性熱塑性樹脂之熔點過低的情況下,因熔融紡織性降低之觀點而不佳。由該等觀點來看,PVA系樹脂之熔點較佳為相較前述非水溶性熱塑性樹脂之熔點不低於60℃以上、更佳為30℃以上。
前述非水溶性熱塑性樹脂方面,為不能藉由水、鹼性水溶液、酸性水溶液等溶解除去或分解除去的熱塑性樹脂,較佳為使用可熔融紡織的樹脂。
前述非水溶性熱塑性樹脂之具體範例方面,則使用上述之為了形成構成研磨墊之極細纖維所用的各種熱塑性樹脂。
前述非水溶性熱塑性樹脂亦可含有各種添加劑。前述添加材料之具體範例方面,舉例有觸媒、抗著色劑、耐熱劑、難燃劑、滑劑、防污劑、螢光增白劑、消艷劑、著色劑、光澤改良劑、制電劑、芳香劑、消臭劑、抗菌劑,防黴劑、無機微粒子等。
其次,詳細說明熔融紡織前述水溶性熱塑性樹脂與前述非水溶性熱塑性樹脂以形成海島型複合纖維,由所得之海島型複合纖維形成長纖維織物的方法。
前述長纖維織物係例如熔融紡織前述水溶性熱塑性樹脂與前述非水溶性熱塑性樹脂而複合化後,藉由紡絲黏合法,延伸後,以堆積而得。因而,藉由以紡絲黏合法形成織物,得到由纖維之脫離少、纖維密度高、形態安定性良好之海島型複合纖維所構成的長纖維織物。還有,所謂長纖維係指未經過如製造短纖維時之切斷步驟所製造的纖維。
在海島型複合纖維的製造中,分別熔融紡織水溶性熱塑性樹脂與非水溶性熱塑性樹脂並複合化。水溶性熱塑性樹脂與非水溶性熱塑性樹脂之質量比方面,較佳為5/95至50/50、更佳為10/90至40/60的範圍。在水溶性熱塑性樹脂與非水溶性熱塑性樹脂之質量比為該等範圍的情況下,可得到高密度之纖維絡合體,又,極細纖維之形成性亦優異。
以下,詳細說明在藉由熔融紡織,複合化水溶性熱塑性樹脂與非水溶性熱塑性樹脂後,藉由紡絲黏合法,形成長纖維織物的方法。
首先,分別藉由個別之押出機熔融混練水溶性熱塑性樹脂及非水溶性熱塑性樹脂,分別從不同的紡絲噴嘴同時吐出熔融樹脂的線股。然後,在以複合噴嘴複合所吐出之線股後,藉由從紡絲頭之噴嘴孔吐出而形成海島型複合纖維。在熔融複合紡絲中,在海島型複合纖維中之島數為4至4000島/纖維,再者為10/1000島/纖維,由得到單纖維纖度小、纖維密度高之纖維束的觀點而佳。
以冷卻裝置冷卻前述海島型複合纖維後,使用空氣噴射 噴嘴等之吸引裝置,藉由相當於1000至6000m/分之拉伸速度的高速氣流速度,拉伸達成目標纖度。之後,藉由堆積所延伸之複合纖維於移動式的捕集面上,而形成長纖維織物。還有,此時若有必要亦可部份地壓黏所堆積之長纖維織物。纖維織物的單位面積質量為20至500g/m2 的範圍可得到均勻的纖維絡合體,又因工業性的觀點而佳。
(2)織物絡合步驟
其次,說明藉由重疊複數片並絡合所得的前述長纖維織物,形成織物絡合片的織物絡合步驟。
織物絡合片係藉由使用針扎及高壓水流處理等己知的不織布製造方法,對於長纖維織物進行絡合處理所形成。以下,詳細說明藉由針扎之絡合處理作為代表範例。
首先,在長纖維織物中賦予斷針防止油劑、帶電防止油劑、絡合提升油劑等之聚矽氧系油劑或礦物油系油劑。還有,為了降低單位面積質量不均,亦可藉由交錯折疊重疊2片以上之纖維織物並賦予油劑。
之後,進行例如藉由針扎,三維地絡合纖維的絡合處理。藉由進行針扎處理,得到纖維密度高、不易引起纖維之脫離的織物絡合片。還有,織物絡合片的單位面積質量係隨其為目的之研磨墊的厚度等來適宜選擇,具體而言,例如100至1500g/m2 的範圍則因處理性優異之觀點而佳。
油劑之種類及量等、及在針扎中之針形狀、針深度、針扎數等的針條件,則適宜選擇使織物絡合片之層間剝離力變高的條件。倒鈎數為在不發生斷針的範圍中則愈多愈好,具體而言,例如,在1至9倒鈎中選擇。針深度較佳為以如倒鈎貫穿至已重疊之織物表面的條件、且在織物表面上針札後之圖案不強的範圍來設定。又,針札數雖隨針形狀、油劑之種類與使用量等調整,但具體而言,較佳為500至5000針札/cm2 。又,絡合處理後之單位面積質量,以絡合處理面之單位面積質量的質量比計,為1.2倍以上、再者為1.5倍以上的方式進行絡合處理,因得到纖維密度高的纖維絡合體,又可降低纖維之脫離的觀點而佳。上限雖無特別限定,但由避免因處理速度之降低所致之製造成本增大的觀點來看,較佳為4倍以下。
又,在作為裸矽晶圓研磨用之研磨墊的情況下,較佳為使研磨墊的空隙率為50%以上,因此對應於提高前述纖維密度之情況或降低的情況,亦可由高分子彈性體的填充量來調整。
織物絡合片之層間剝離力為2kg/2.5cm以上、再者為4kg/2.5cm以上,因得到形態保持性良好、且纖維之脫離少、纖維密度高之纖維絡合體的觀點而佳。還有,層間剝離力成為三維絡合程度的目標。在層間剝離力過小的情況下,纖維絡合體的纖維密度不夠高。又,絡合不織布之層間剝離力的上限雖無特別限制,但由絡合處理效率的觀點來看,較佳為30kg/2.5cm以下。
又,為了調節研磨墊之硬度的目的,在無損及本發明之效果的範圍內,必要時在其為如上述所得之不織布的織物絡合片上,進一步重疊由極細纖維所構成的編物或織物(編織物),亦可使用藉由針扎處理及/或高壓水流處理進行絡合處理,將編織物絡合一體化之絡合不織布、例如編織物/絡合不織布、絡合不織布/編織物/絡合不織布等之積層構造體作為織物絡合片。
構成前述編織物的極細纖維並無特別限制。具體而言,較佳為使用例如由聚對苯二甲酸乙二酯(PET)、聚對苯二甲酸丙二酯、聚對苯二甲酸丁二酯(PBT)、聚酯彈性體等所形成的聚酯系纖維;由聚醯胺6、聚醯胺66、芳香族聚醯胺、聚醯胺彈性體等所形成的聚醯胺系纖維;由胺酯系聚合物、烯烴系聚合物、丙烯腈系聚合物等所構成的纖維。彼等之中,由工業性的觀點來看,較佳為由PET、PBT、聚醯胺6、聚醯胺66等所形成的纖維。
又,作為形成前述編織物之海島型複合纖維之除去成分的具體範例,可舉例有聚苯乙烯及其共聚物、聚乙烯、PVA系樹脂、共聚合聚酯、共聚合聚醯胺等。彼等之中,由溶解除去時產生大幅收縮的觀點來看,較佳為使用PVA系樹脂。
(3)濕熱收縮處理步驟
其次,說明用於藉由濕熱收縮織物絡合片,提高織物絡合片之纖維密度及絡合程度的濕熱收縮處理步驟。還有,在本步驟中,藉由濕熱收縮含有長纖維之織物絡合片,比較於濕熱收縮含有短纖維之織物絡合片的情況,可大幅收縮織物絡合片,因此使極細纖維之纖維密度變得特別高。
濕熱收縮處理較佳為藉由水蒸氣加熱來進行。水蒸氣加熱條件方面,較佳為在氛圍氣體溫度為60至130℃的範圍中,在相對濕度75%以上、特別在相對濕度90%以上,進行60至600秒加熱處理。在該等加熱條件的情況下,因可以高收縮率收縮織物絡合片而佳。還有,在相對濕度過低的情況下,因為快速乾燥接觸纖維的水分,而有收縮不足的傾向。
濕熱收縮處理較佳為將前述織物絡合片收縮成為面積收縮率為30%以上、較佳為35%以上、更佳為40%以上。藉由以像這樣的高收縮率收縮,可得到高的纖維密度。前述面積收縮率之上限雖無特別限制,但由收縮之限度或處理效率的觀點來看,較佳為80%以下左右。
還有,面積收縮率(%)係藉由下述式(1):(收縮處理前之片材面的面積-收縮處理後之片材面的面積)/收縮處理面之片材面的面積×100‧‧‧ (1)計算。前述面積係意指片材表面之面積與內面之面積的平均面積。
該等已濕熱收縮處理之織物絡合片可在海島型複合纖維之熱變形溫度以上的溫度,藉由加熱輥或加熱板進行,以調整空隙率,並可藉由加強加熱板條件,提高纖維密度並緻密化。
又,濕熱收縮處理前後中之織物絡合片之單位面積質量的變化方面,收縮處理後之單位面積質量相較於收縮處理前之單位面積質量,為1.2倍(質量比)以上、特別為1.5倍以上,較佳為4倍以下、更佳為3倍以下。
(4)纖維束黏著步驟
在進行織物絡合片之極細纖維化處理前,以提高織物絡合片之形態安定性的目的、或者以調整或降低所得之研磨墊的空隙率為目的,必要時藉由在已收縮處理之織物絡合片中含浸高分子彈性體的水性液並乾燥凝固,亦可預先黏著纖維束。
在本步驟中,藉由在已收縮處理之織物絡合片中含浸前述高分子彈性體的水性液並乾燥凝固,在織物絡合片填充高分子彈性體。高分子彈性體之水性液係因即使高濃度黏度亦低、含浸滲透性亦優異,容易高填充於織物絡合片的內部。又,對於纖維之接著性亦優異。因此,藉由進行本步驟而可堅固地拘束海島型複合纖維。
所謂高分子彈性體之水性液係指溶解形成高分子彈性體之成分於水性媒介的水性溶液,或分散形成高分子彈性體之成分於水性媒介的水性分散液。還有,在水性分散液中,包含懸浮分散液及乳化分散液。特別地,由耐水性優異的觀點來看,較佳為使用水性分散液。
使聚胺酯系樹脂成為水性溶液或水性分散液的方法並無特別限制,可使用已知之方法。具體而言,舉例有藉由含有具羧基、磺酸基、羥基等之親水性基的單體單位,賦予聚胺酯樹脂對於水性媒介之分散性的方法,或在聚胺酯樹脂中添加界面活性劑來乳化或懸浮的方法。又,該等水性的高分子彈性體因對於水之潤濕性優異,故使磨石保持均勻且多量的特性優異。
前述用於乳化或懸浮之界面活性劑的具體範例方面,舉例有月桂基硫酸鈉、月桂基硫酸銨、聚氧乙烯十三基醚乙酸鈉、十三基苯磺酸鈉、烷基二苯基醚二磺酸鈉、磺基丁二酸鈉二辛酯等之陰離子性界面活性劑;聚氧乙烯壬基苯基醚、聚氧乙烯辛基苯基醚、聚氧乙烯月桂基醚、聚氧乙烯硬脂基醚、聚氧乙烯-聚氧丙烯嵌段共聚物等之非離子性界面活性劑等。又,亦可使用具有反應性、所謂反應性界面活性劑。又,藉由適宜選擇界面活性劑的濁點,亦可賦予聚胺酯樹脂感熱膠化性。但是,在使用多量界面活性劑的情況下,由於亦有對於研磨性能或其長時間安定性造成不良影響的情況,故較佳為有必要之最小限度。
高分子彈性體之水性液的固體成份濃度方面,在10質量%以上、再者15質量%以上,可降低空隙率。
在前述織物絡合片含浸高分子彈性體之水性液的方法方面,舉例有使用刀塗機、刮條塗布機或輥塗機的方法、或浸漬的方法等。
然後,藉由乾燥已含浸高分子彈性體之水性液的織物絡合片,可凝固高分子彈性體。乾燥方法方面,舉出有在50至200℃之乾燥裝置中進行熱處理的方法,或在紅外線加熱後於乾燥機中進行熱處理的方法等。
還有,在前述織物絡合片中含浸高分子彈性體之水性液之後並乾燥的情況下,由於該水性液轉移(遷移)至織物絡合片的表層,而有得不到均勻的填充狀態的情形。在像這樣的情況下,藉由調整水性液之高分子彈性體的粒徑;調整高分子彈性體之離子性基的種類或量;或藉由pH等來調整其安定性;藉由倂用1價或2價之鹼金屬鹽或鹼土類金屬鹽、非離子系乳化劑、締合型水溶性增黏劑、水溶性聚矽氧系化合物等之締合型感熱膠化劑、水溶性聚胺酯系化合物、或可藉由熱變化pH的有機物或無機物等等,降低在40至100℃左右之水分散安定性等,可抑制遷移。還有,必要時高分子彈性體亦可遷移而偏存於表面。
(5)極細纖維形成步驟
其次,說明藉由溶解水溶性熱塑性樹脂於熱水中以形成極細纖維之步驟的極細纖維形成步驟。
本步驟係藉由除去水溶性熱塑性樹脂以形成極細纖維之步驟。此時,在已溶解萃取前述織物絡合片之水溶性熱塑性樹脂的部分形成空隙。然後,在該空隙中,在之後的高分子彈性體填充步驟中,藉由填充高分子彈性體,集束極細纖維。又,拘束極細纖維束。
極細纖維化處理係藉由在水、鹼性水溶液、酸性水溶液等之中進行熱水加熱處理織物絡合片或織物絡合片與高分子彈性體的複合體,溶解除去或分解除去水溶性熱塑性樹脂的處理。
熱水加熱處理條件之具體範例方面,較佳為例如浸漬於65至90℃之熱水中5至300秒作為第1段階後,再者在85至100℃之熱水中處理100至600秒作為第2段階。又,為了提高溶解效率,必要時亦可進行以輥之捏夾處理、高壓水流處理、超音波處理、噴灑處理、攪拌處理、搓揉處理等。
於本步驟中,在從海島型複合纖維溶解水溶性熱塑性樹脂以形成極細纖維時,大幅收縮極細纖維。由於藉由該收縮而使纖維密度變緻密,故可得到高密度的纖維絡合體。
(6)高分子彈性體填充步驟
其次,說明藉由在由極細纖維所形成之極細纖維束內部填充高分子彈性體,集束前述極細纖維,同時拘束極細纖維束,且進一步將極細纖維束彼此黏著的步驟。
在極細纖維形成步驟(5)中,藉由對於海島型複合纖維實施極細纖維化處理,除去水溶性熱塑性樹脂而在極細纖維束之內部形成空隙。在本步驟中,以藉由在該等空隙中適宜填充高分子彈性體,集束極細纖維,同時拘束極細纖維束,且黏著極細纖維束彼此之間,可使研磨墊之空隙率為例如50%以下。又,以充分填充高分子彈性體,可降低空隙率,並使研磨墊成為緻密構造。還有,在極細纖維形成極細纖維束的情況下,因藉由毛細管現象而容易含浸高分子彈性體的水性液,故極細纖維更容易集束,極細纖維束更容易拘束。
用於本步驟之高分子彈性體的水性液,可使用與纖維束黏著步驟(4)中所說明之高分子彈性體的水性液同樣者。
本步驟中在由極細纖維所形成之極細纖維束內部填充高分子彈性體的方法,可適用與纖維束黏著步驟(4)中所用的方法同樣的方法。然後,可由適宜地組合纖維黏著步驟(4)與高分子彈性體填充步驟(6),調整成為所希望的空隙率。像這樣進行以形成研磨墊。
[研磨墊的後加工]
所得之研磨墊,必要時,亦可實施成形處理、平坦化處理、起毛處理、積層處理、表面處理、洗淨處理等的後加工處理。
前述成形處理、及平坦化處理係藉由研磨切削所得之研磨墊以既定之厚度熱壓鑄成形、裁切成既定之外形等的加工。研磨墊方面,較佳為研磨加工成為厚度0.5至3mm左右。
前述所謂起毛處理係藉由砂紙、針布、鑽石等在研磨墊表面上賦予機械摩擦力或研磨力,分纖所集束之極細纖維的處理。藉由像這樣的起毛處理,將存在於研磨墊表層部之纖維束原纖化,並在表面形成多數的極細纖維。
前述所謂積層處理係藉由將所得之研磨墊張開面對基材並積層化來調整剛性的處理。例如,可藉由積層研磨墊與硬度低的彈性體片,進一步提升被研磨面之整體平坦性(非研磨基材全體的平坦性)。還有,積層時之接著係熔融接著或經由接著劑或黏著劑之接著均可。前述基材之具體範例方面,舉例有由聚胺酯等所構成之彈性海綿體;含浸聚胺酯之不織布(例如,NITTA HAAS(股份有限公司)製之商品名Suba400);天然橡膠、腈橡膠、聚丁二烯橡膠、聚矽氧橡膠等之橡膠;或由聚酯系熱塑性彈性體、聚醯胺系熱塑性彈性體、氟系熱塑性彈性體等之熱塑性彈性體所構成之彈性樹脂膜;發泡塑膠;編物、織物等之片狀基材。
又,前述表面處理係為了調整磨石漿液之保持性及排出性等而在研磨墊表面上形成格子狀、同心圓狀、漩渦狀等之溝槽或孔洞的處理。
前述洗淨處理係一方面以冷水或溫水洗淨附著於所得之研磨墊的粒子或金屬離子等的不純物,或一方面以包含界面活性劑等之具有洗淨作用之添加劑的水溶液或溶劑以進行洗淨處理的加工。
本實施樣態之研磨墊較佳為用於矽晶圓、化合物半導體晶圓、半導體晶圓、半導體裝置、液晶元件、光學元件、水晶、光學基板、電子回路基板、電子回路遮罩基板、多層配線基板、硬碟、MEMS(微電子機械系統)基材等的研磨。又,本實施樣態之研磨墊係以研磨墊之空隙率為50%以上者,對於裸矽晶圓之研磨特別優異。
半導體晶圓或半導體裝置之具體範例方面,舉例有矽、氧化矽、氧氟化矽、有機聚合物等之絕緣膜;銅、鋁、鎢等之配線材料金屬膜;在表面上具有鉭、鈦、氮化鉭、氮化鈦等之障壁金屬膜的基材。
在研磨中,亦可使用一次研磨、二次研磨(調整研磨)、修飾研磨、鏡面研磨等中任一種研磨。又,研磨部分方面,基材之表面、內面、終端面之任一者均可。
(實施例)
以下,藉由實施例具體說明本發明。又,本發明係不受實施例任何限制者。
(實例1)
藉由將水溶性熱塑性聚乙烯醇系樹脂(以下,稱為PVA系樹脂)、與改質度6莫耳%之異酞酸改質聚對苯二甲酸乙二酯(於50℃吸水飽和時之吸水率1質量%、玻璃轉移溫度77℃)(以下,稱為改質PET)以20:80(質量比)之比例,從熔融複合紡絲用抽絲頭吐出,形成海島型複合纖維。還有,熔融複合紡絲用抽絲頭係島數為50島/纖維、抽絲頭溫度為260℃。然後,將噴射器壓力調整成為紡絲速度4000m/min,藉由將平均纖度2.0dtex之長纖維補集於網上,得到單位面積質量40g/m2 之紡絲黏合片(長纖維織物)。
藉由交錯折疊重疊12片所得之紡絲黏合片,製成總單位面積質量為480g/m2 的疊合織物。然後,在所得之疊合織物上,噴灑斷針防止油劑。其次,使用以倒鈎數1個針編號第42號針、及以倒鈎數6個針編號第42號針,藉由以1800針扎/cm2 針扎處理並絡合所疊合之織物,得到織物絡合片。所得之織物絡合片的單位面積質量為750g/m2 。又,因針扎處理所致之面積收縮率為35%。
其次,以70℃、90RH%之條件蒸氣處理所得之織物絡合片90秒。此時之面積收縮率為40%。然後,於140℃之烘箱中乾燥後,藉由於140℃進行熱壓鑄,得到單位面積質量1250g/m2 、粒子密度0.65g/cm3 、厚度1.9mm之織物絡合片。此時,熱壓鑄後之織物絡合片的厚度為熱壓鑄前之厚度的0.80倍。
其次,使己熱壓鑄之織物絡合片,含浸在作為第1聚胺酯彈性體之聚胺酯彈性體A之水性分散液(固體部分濃度20質量%)。其中,聚胺酯彈性體A係以99.7:0.3(莫耳比)混合非晶性聚碳酸酯系聚醇(由碳酸3-甲基-1,5-戊二醇酯與碳酸己二醇酯所構成之共聚醇)、與碳數2至3之聚伸烷基二醇,再使用55質量%以重量比計含有1.5重量%含羧基單體(2,2-雙(羥甲基)丙酸)的聚醇成分作為軟質成分,其中,聚合二環己基甲烷-4,4’-二異氰酸酯以及短鏈聚胺和短鏈聚醇作為硬質成分之非晶性聚碳酸酯系無黃變型聚胺酯樹脂。聚胺酯彈性體A之吸水率為3質量%,於23℃之貯藏彈性率為300MPa,於50℃之貯藏彈性率為150MPa,玻璃轉移溫度為-20℃,水分散液之平均粒徑為0.03μm。此時水性分散液之固體成分附著量相對於織物絡合片的質量為10%。然後,在90℃、50%RH氛圍氣體下,乾燥凝固處理含浸水性分散液之織物絡合片,再於140℃進行乾燥處理。然後,藉由在140℃將其進行熱壓鑄,得到單位面積質量1370g/m2 、粒子密度0.76g/cm3 、厚度1.8mm之片材。
其次,藉由將填充聚胺酯彈性體A之織物絡合片進行捏夾處理及高壓水流處理,同時在95℃之熱水中浸漬10分鐘,溶解除去PVA系樹脂,進一步進行乾燥,得到極細纖維之平均纖度為0.05dtex、單位面積質量1220g/m2 、粒子密度0.66g/cm3 、厚度1.85mm之聚胺酯彈性體A與纖維絡合體的複合體。
然後,使前述複合體,含浸在作為第2聚胺酯彈性體之聚胺酯彈性體B(固體成分濃度30質量%)之水性分散液。其中,聚胺酯彈性體B係使用在以99.9:0.1(莫耳比)混合非晶性聚碳酸酯系聚醇(由碳酸己二酯與碳酸戊二酯所構成之共聚合聚醇)與碳數2至3之聚伸烷基二醇的混合物中,使用含有1.5質量%含羧基單體(2,2-雙(羥甲基)丙酸)的軟質成分,其中,在聚合二環己基甲烷4,4’-二異氰酸酯以及短鏈胺和短鏈二醇作為硬質成分而得的聚碳酸酯系無黃變型聚胺酯樹脂100質量份中,添加碳二醯亞胺系交聯劑5質量份,藉由熱處理形成交聯構造的聚胺酯樹脂。聚胺酯彈性體B之吸水率為2質量%,於23℃之貯藏彈性率為450MPa,於50℃之貯藏彈性率為300MPa,玻璃轉移溫度為-25℃,水分散液之平均粒徑為0.05μm。此時水性分散液之固體成分附著量相對於前述複合體之質量為15質量%。其次,在90℃、50% RH氛圍氣體下凝固處理含浸水性分散液之前述複合體,再者於140℃進行乾燥處理。然後,藉由在140℃將其熱壓鑄,得到研磨墊前驅物。所得之研磨墊前驅物為單位面積質量1390g/m2 、粒子密度0.80g/cm3 、厚度1.75mm。
又,所得之研磨墊前驅物係將構成極細纖維束之極細纖維50根全部集束,更使高分子彈性體存在於極細纖維束的內部,拘束極細纖維束者。
對所得之研磨墊前驅物進行為了表面平坦化之研磨切削加工,得到單位面積質量1120g/m2 、粒子密度0.80g/cm3 、厚度1.4mm之平坦化墊。接著,裁切成直徑51cm的圓形,藉由在表面以格子狀15.0mm間隔形成寬2.0mm、深1.0mm之溝槽,得到圓形之研磨墊。纖維絡合體與聚胺酯彈性體的質量比例為76/24,高分子彈性體A與高分子彈性體B的比例為40/60。藉由後述之評估方法評估所得之研磨墊。結果示於表1。
(實例2)
到織物絡合片之製成為止,與實例1同樣地進行。其次,藉由將未含浸聚胺酯彈性體A之熱壓鑄而得之織物絡合片,浸漬於95℃的熱水中10分鐘以溶解除去PVA系樹脂,得到由極細纖維之纖維束所構成的纖維絡合體。然後,使所得之纖維絡合體含浸在聚胺酯彈性體B的水性分散液(固體成分濃度40質量%)。此時水分散液之固體成分附著量相對於纖維絡合體之質量為20質量%。其次,在90℃、50% RH氛圍氣體下凝固處理含浸水分散液的纖維絡合體。然後,於140℃進行乾燥處理後,進一步藉由於140℃進行熱壓鑄而得到研磨墊前驅物。然後,所得之研磨墊前驅物係與實例1同樣地進行後加工,得到單位面積質量1080g/m2 、粒子密度0.77g/cm3 、厚度1.4mm之平坦化墊,實施溝槽加工而得到圓形的研磨墊。所得之研磨墊係將構成極細纖維束之極細纖維50根全部集束,更使高分子彈性體存在於極細纖維束的內部,拘束極細纖維束者。藉由後述之評估方法評估所得的研磨墊。結果示於表1。
(實例3)
除了未進行含浸聚胺酯彈性體A之前、及含浸‧乾燥後之熱壓鑄處理以外,與實例1同樣地得到研磨墊。
所得之研磨墊前驅物係單位面積質量1360g/m2 、粒子密度0.629g/cm3 、厚度2.2mm,纖維絡合體與聚胺酯彈性體的質量比例為70/30。又,所得之研磨墊係將構成極細纖維束之極細纖維50根全部集束,更使高分子彈性體存在於極細纖維束的內部,拘束極細纖維束者。將其與實例1同樣地進行平坦化、溝槽加工而得之研磨墊藉由後述之評估方法評估。結果示於表1。
(實例4)
作為第1聚胺酯彈性體取代聚胺酯彈性體A,以88:12(莫耳比)混合聚醚系之聚伸烷基二醇與聚碳酸酯系聚醇,使用58質量%含有以重量比計1.2重量%含羧基單體(2,2-雙(羥甲基)丙酸)之聚醇成分作為軟質成分,其中,使用聚合二異氰酸異佛酮酯與短鏈聚胺及短鏈聚醇之聚碳酸酯系作為硬質成分的無黃變型聚胺酯彈性體C(吸水率4%、23℃之貯藏彈性率為250MPa、50℃之貯藏彈性率為100MPa、玻璃轉移溫度為-30℃、水分散液之平均粒徑為0.03μm),作為第2聚胺酯彈性體取代聚胺酯彈性體B;使用增大10質量%聚胺酯彈性體B之聚醇成分,相對於聚胺酯彈性體,聚醇成分為60質量%所得之聚胺酯彈性體D(吸水率4%、23℃之貯藏彈性率為300MPa、50℃之貯藏彈性率為125MPa、玻璃轉移溫度為-30℃、水分散液之平均粒徑為0.05μm),除此以外,與實例1同樣地製成研磨墊。所得之研磨墊係將構成極細纖維束之極細纖維50根全部集束,再者高分子彈性體存在於極細纖維束的內部,拘束極細纖維束者。然後,藉由後述之評估方法評估所得之研磨墊。結果示於表1。
(實例5)
除了以20:80(質量比)之比例由島數為9島/纖維之抽絲頭吐出PVA系樹脂與改質PET以進行熔融紡絲以外,與實例1同樣地得到研磨墊。極細纖維之平均纖度為0.28dtex。又,所得之研磨墊係將構成極細纖維束之極細纖維9根全部集束,再者高分子彈性體存在於極細纖維束的內部,拘束極細纖維束者。藉由後述之評估方法評估所得之研磨墊。結果示於表1。
(實例6)
除了使用於實例1所得之研磨墊,並如以下變更後述研磨墊之研磨性能評估中的研磨條件以外,同樣地進行研磨墊的研磨性能評估。還有,研磨條件係如以下。
(1)除了將具有氧化膜之矽晶圓變更成裸矽晶圓,將用於研磨之漿液變更成Fujimi製Glanzox1103以外,同樣地進行評估。
(2)除了將用於研磨之漿液變更成昭和電工製研磨漿液GPL-C1010,並將漿液流量變更成200ml變更以外,同樣地進行評估。
(3)除了變更成鎢晶圓,並將用於研磨之漿液變更成Cabot製W-2000(相對於漿液1030g添加過氧化氫34g)以外,同樣地進行評估。
(4)除了變更成GaAs晶圓,並將用於研磨之漿液變更成Fujimi製INSEC-FP,且將研磨壓力變更成20kPa以外,同樣地進行評估。
結果示於表3。
(實例7)
到熱壓鑄之織物絡合片(單位面積質量1280g/m2 、粒子密度0.56g/cm3 、厚度2.3mm)的內部含浸聚胺酯彈性體A並乾燥凝固為止,與實例1同樣地進行,但未進行加熱壓鑄,得到單位面積質量1340g/m2 、粒子密度0.69g/cm3 、厚度1.95mm的片材。
其次,藉由捏夾處理及高壓水流處理已填充聚胺酯彈性體A之織物絡合片,同時在95℃之熱水中浸漬10分鐘以溶解除去PVA系樹脂,進一步進行乾燥,得到極細纖維之平均纖度為0.05dtex、單位面積質量1050g/m2 、粒子密度0.57g/cm3 、厚度1.85mm之聚胺酯彈性體A與纖維絡合體的複合體。
然後,在前述複合體中,含浸聚胺酯彈性體B作為第2聚胺酯彈性體並凝固乾燥,在未進行加熱壓鑄下,得到研磨墊前驅物。所得之研磨墊前驅物為單位面積質量1170g/m2 、粒子密度0.60g/cm3 、厚度1.95mm。
將所得之研磨墊前驅物進行用於表面平坦化的研磨加工,得到單位面積質量1000g/m2 、粒子密度0.57g/cm3 、厚度1.75mm之平坦化墊。接著,藉由裁切成直徑51cm的圓形,在表面上以格子狀15.0mm間隔形成寬2.0mm、深1.0mm之溝槽,得到圓形的研磨墊。纖維絡合體與聚胺酯彈性體之質量比例為76/24,高分子彈性體A與高分子彈性體B之比例為40/60。藉由後述之評估方法評估所得之研磨墊。結果示於表1。
(實例8)
除了使用於實例7所得之研磨墊,將後述研磨墊之研磨性能評估中的研磨條件,變更成與實例6之(1)至(3)相同以外,同樣地進行研磨墊的研磨性能評估。
結果示於表4。
(比較例1)
藉由熔融紡絲Ny6,並藉由熔融紡絲平均纖度2dtex之Ny長纖維,將所得之長纖維捕集於網上,得到單位面積質量30g/m2 的紡絲黏合片(長纖維織物)。
由所得之紡絲黏合片,與實例2同樣地製成疊合的織物。然後,藉由與實例1同樣地針扎處理並絡合所得之疊合的織物,得到織物絡合片。所得之織物絡合片的單位面積質量為800g/m2 。其次,藉由在140℃進行熱壓鑄,得到粒子密度0.42g/cm3 、厚度1.9mm的織物絡合片。
其次,在已熱壓鑄之織物絡合片中,含浸聚胺酯彈性體B的水性分散液(固體成分濃度30質量%)。此時水分散液之固體成分附著量相對於織物絡合片之質量為20質量%。然後,以90℃、90% RH氛圍氣體條件下凝固處理已含浸水分散液的織物絡合片,接著在140℃進行乾燥處理後,在140℃下進行熱壓鑄處理,得到單位面積質量920g/m2 、粒子密度0.54g/m3 、厚度1.7mm的研磨墊前驅物。然後,進行鬆化處理以使表面與內面平坦化,而得到研磨墊。藉由後述之評估方法評估所得之研磨墊。結果示於表2。
(比較例2)
作為高分子彈性體,取代使用聚胺酯彈性體A之水性分散液形成的聚胺酯彈性體,係含浸於聚胺酯彈性體E(固體成分濃度20質量%)之水性分散液。又,聚胺酯彈性體E係在以15/85混合聚乙二醇/聚四亞甲基二醇之聚醇(相對於聚胺酯彈性體為60質量%)中,聚合二異氰酸異佛酮以及短鏈聚胺及短鏈聚醇作為硬質成分的無黃變型聚胺酯樹脂。聚胺酯彈性體E之吸水率為12質量%、於23℃之貯藏彈性率為200MPa、於50℃之貯藏彈性率為80MPa、玻璃轉移溫度為-48℃、水分散液之平均粒徑為0.4μm。除此以外,與實例2同樣地製成研磨墊。藉由後述之評估方法評估所得之研磨墊。結果示於表2。
(比較例3)
將聚胺酯彈性體B之聚醇成分增大至65質量%所得之聚胺酯彈性體F(吸水率8%、23℃之貯藏彈性率為80MPa、50℃之貯藏彈性率為30MPa、玻璃轉移溫度為-32℃、水分散液之平均粒徑為0.02μm),除此以外,與實例2同樣地製成研磨墊。藉由後述之評估方法評估所得的研磨墊。結果示於表2。
(比較例4)
聚胺酯彈性體B之聚醇成分使用碳酸己二醇酯,使用30質量%軟質(聚醇)成分,其中使用聚合二環己基甲烷-4,4’-二異氰酸酯以及短鏈胺及短鏈二醇的彈性體G(吸水率1%、23℃之貯藏彈性率為1000MPa、50℃之貯藏彈性率為200MPa、玻璃轉移溫度為0℃、水分散液之平均粒徑為0.08μm)作為硬質成分,除此以外,與實例2同樣地製成研磨墊。藉由後述之評估方法評估所得之研磨墊。結果示於表2。
所得之研磨墊係藉由以下之評估方法進行評估。
[評估方法] (1)極細纖維之平均纖度、及纖維束內部之極細纖維的集束狀態之確認
藉由使用裁切刀在厚度方向裁切所得之研磨墊,形成厚度方向的切斷面。然後,以氧化鋨染色所得之切斷面。然後,以掃描型電子顯微鏡(SEM)以500至1000倍觀察前述切斷面,並攝影該畫面。然後,由所得之畫面求得存在於切斷面之極細纖維的截面積。以平均所隨機選擇之100個的截面積的值作為平均截面積,從而計算出形成纖維之樹脂的密度。又,觀察所得之畫面,判斷藉由高分子彈性接著一體化的狀態,不僅將構成體纖維束之外圍的極細纖維、並且將內部之極細纖維彼此之間集束的情況為「集束」;判斷在纖維束之內部不存在或稍微存在高分子彈性體,以幾乎未接著一體化的狀態而未集束極細纖維彼此之間的情況為「無」。
(2)高分子彈性體之在23℃及在50℃之貯藏彈性率
將構成研磨墊之高分子彈性體製成長4cm×寬0.5cm×厚400μm±100μm的薄膜試樣。然後,以測微計測定試樣厚度後,使用動態黏彈性測定裝置(DVE Rheospector(股份有限公司)Rheology公司製),以頻率11Hz、升溫速度3℃/分鐘的條件測定於23℃及50℃的動態黏彈性率,計算出貯藏彈性率。還有,在使用2種高分子彈性體的情況下,分別地製成試樣並進行測定,個別以乘上質量比例的和為高分子彈性體的貯藏彈性率。
(3)高分子彈性體之玻璃轉移溫度
將構成研磨墊之高分子彈性體製成長4cm×寬0.5cm×厚400μmμm±100μm的薄膜。然後,在以測微計測定試樣厚度後,使用動態黏彈性測定裝置(DVE Rheospector(股份有限公司)Rheology公司製),以頻率11Hz、升溫速度3℃/分鐘的條件進行動態黏彈性的測定,以損失彈性率之主分散尖峰溫度為玻璃轉移溫度。還有,在使用2種高分子彈性體的情況下,分別地製成試樣並進行測定,個別以乘上質量比例的和為高分子彈性體的玻璃轉移溫度。
(4)於50℃高分子彈性體吸水飽和時的吸水率
將高分子彈性體以50℃乾燥而得之厚度200μm的薄膜以130℃熱處理30分鐘後,以在20℃、65% RH之條件下放置3日者作為乾燥試樣,將乾燥試樣浸漬於50℃的水中2日。然後在從50℃之水取出後,以JK刮水器-150-S(Crecia股份有限公司製)拭去薄膜最表面之剩餘水滴等之後者作為水膨潤試樣。測定乾燥試樣與水膨潤試樣之質量,依照下述算式而求得吸水率。
吸水率(質量%)=[(水膨潤試樣之質量-乾燥試樣之質量)/乾燥試樣之質量]×100
還有,在使用2種高分子彈性體的情況下,分別製成試樣並個別測定,將乘上重量比例之和作為高分子彈性體之吸水率。
(5)於50℃極細纖維吸水飽和時之吸水率(於50℃構成極細纖維之熱塑性樹脂吸水飽和時之吸水率)
將構成極細纖維的熱塑性樹脂以熔點+20至100℃之溫度熱壓鑄而得之厚度200μm的薄膜以130℃熱處理30分鐘。之後,以在20℃、65% RH之條件下放置3日者作為乾燥試樣。將乾燥試樣浸漬於50℃之水中2日後,以JK刮水器-150-S(Crecia股份有限公司製)拭去從水取出後之薄膜最表面的剩餘水滴等之後者作為水膨潤試樣。測定乾燥試樣與水膨潤試樣之質量,依照下述算式而求得吸水率。
吸水率(質量%)=[(水膨潤試樣之質量-乾燥試樣之質量)/乾燥試樣之質量]×100
(6)水性聚胺酯之平均粒徑
使用大塚化學股份有限公司製「ELS-800」並藉由動態光散射法來測定,藉由累積量法(東京化學同人社發行「記載於膠體化學第IV卷膠體化學實驗法」解析,測定水分散高分子彈性體之平均粒徑。還有,在使用2種高分子彈性體的情況下,各個分別測定試樣,以乘上質量比例之和為高分子彈性體平均粒徑的值。
(7)研磨墊之粒子密度、及研磨墊之空隙率(研磨墊之空隙部分的體積比例)
依照JIS L1096測定所得之研磨墊的粒子密度。另外,由構成研磨墊之各構成成分的構成比例與各構成成分的密度,計算出不存在空隙之情況的纖維絡合體與高分子彈性體之複合體的理論密度。然後,將針對前述理論密度之前述粒子密度之比例視為研磨墊之填充部分的體積比例,以[1-(與前述理論密度相對之前述粒子密度的比例)]×100(%)作為研磨墊之空隙率(研磨墊之空隙部分的體積比例)。還有,於實例1所用之各成分的密度為改質PET(1.38g/cm3 )、聚胺酯彈性體(1.05g/cm3 )、PVA系樹(1.25g/cm3 )。
(8)研磨墊之研磨性能評估
將黏著膠帶貼附於圓形研磨墊之內面後,裝設於CMP研磨裝置(野村製作所股份有限公司製「PP0-60S」)。然後,使用編號#200之鑽石修整器(三菱材料股份有限公司製之MEC200L),以壓力177kPa、整修器回轉數110回轉/分之條件,以120ml/分之速度流入蒸餾水,並且藉由研磨研磨墊表面18分鐘以進行調整(陳化處理)。
其次,在平台回轉數50回轉/分、磨頭回轉數49回轉/分、研磨壓力35kPa的條件下,以120ml/分之速度供給Cabot公司製磨石漿液SS12,並且研磨具有氧化膜表面之直徑6吋的矽晶圓100秒。然後,測定具有研磨後之氧化膜表面的矽晶圓面內的任意49點之厚度,藉由在各點之所研磨之厚度除以研磨時間,求得研磨速率(nm/分)。然後,以49點之研磨速率的平均值為研磨速率(R),又求出其標準差(σ)。
然後,藉由下式評估平坦性。還有,平坦性之值愈小,顯示平坦化性能愈優異。
平坦性(%)=(σ/R)×100
其次,將前述所研磨之研磨墊以濕潤狀態在25℃下放置24小時。然後,之後在進行陳化處理後,再度求得在同樣地進行研磨後之研磨速率(R)及平坦性。
再者,交互重複陳化處理與研磨300次,求得第300次之研磨時的研磨速率(R)及平坦性。
又,藉由使用晶圓表面檢查裝置Surfscan SPI(KLA-Tencor公司製),測定存在於各研磨後之具有氧化膜的矽晶圓表面之0.16μm以上大小的刮傷數目,來評估括傷性。
(9)在裸矽晶圓研磨之研磨墊的研磨性能評估
在圓形研磨墊之內面貼附黏著膠帶後,裝設於CMP研磨裝置(野村製作所股份有限公司製「PP0-60S」)。然後,使用編號#200之鑽石修整器(三菱材料股份有限公司製之MEC200L),以壓力177kPa、整修器回轉數110回轉/分之條件,以120ml/分之速度流入蒸餾水並且藉由研磨研磨墊表面18分鐘以進行調整(陳化處理)。
其次,在平台回轉數50回轉/分、磨頭回轉數49回轉/分、研磨壓力35kPa的條件下,以120ml/分之速度供給Fujimi Inc.製磨石漿液Glanzox1103,並且研磨直徑6吋的矽晶圓100秒。然後,測定研磨後之矽晶圓面內之任意49點的厚度,藉由在各點之所研磨的厚度除以研磨時間,求得研磨速率(nm/分)。然後,以49點之研磨速率的平均值為研磨速率(R),又求得其標準偏差(σ)。
然後,藉由下式評估平坦性。還有,平坦性之值愈小,顯示平坦化性能愈優異。
平坦性(%)=(σ/R)×100
其次,將前述所研磨之研磨墊在濕潤狀態於25℃下放置24小時。然後,之後在進行陳化處理後,再度求得在同樣地進行研磨後之研磨速率(R)及平坦性。
再者,交互重複陳化處理與研磨300次,求得第300次之研磨時的研磨速率(R)及平坦性。
個別地針對實例1至5及7的結果示於表1、針對實例6之結果示於表3、針對實例8之結果示於表4、及針對比較例1至4之結果示於表2。
如以上所說明,本發明之一部份為一種研磨墊,其為具備由平均纖度0.01至0.8dtex之極細纖維所形成之極細纖維絡合體、與高分子彈性體的研磨墊,其特徵為前述高分子彈性體係玻璃轉移溫度為-10℃以下、於23℃及50℃之貯藏彈性率為90至900MPa、且於50℃吸水飽和時之吸水率為0.2至5質量%。
根據前述構成,可得到抑制刮傷之產生,並且可長時間安定地進行得到高平坦性之研磨的研磨墊。
又,前述極細纖維絡合體係由集束5至70根前述極細纖維之極細纖維束所構成,較佳為前述高分子彈性體存在於前述極細纖維束的內部。
根據前述構成,由於極細纖維係藉由高分子彈性體所集束,同時拘束極細纖維束,故可提高研磨墊之剛性、提升平坦化性能、研磨均勻性或長時間安定性。
前述極細纖維係由聚酯纖維所形成,因可形成緻密且高密度之纖維絡合體的觀點而佳。
又,前述極細纖維較佳為由於50℃吸水飽和時之吸水率為0.2至2質量%的熱塑性樹脂所形成。
根據前述構成,得到抑制平坦化性能之長時間的降低,又不易變動研磨速率或研磨均勻性的研磨墊。
前述高分子彈性體為使用聚醇與聚胺和聚異氰酸酯而得的聚胺酯系樹脂,前述聚醇之60至100質量%較佳為非晶性聚碳酸酯系聚醇。
根據前述構成,由於對於研磨中所用之漿液的耐性高,可良好地維持研磨中之長時間的安定性。
又,前述高分子彈性體較佳為在非晶性聚碳酸酯二醇中倂用含羧基二醇作為前述聚醇,並使用肪環式二異氰酸酯作為前述聚異氰酸酯而得的聚胺酯系樹脂。
根據前述構成,可容易地調整高分子彈性體之玻璃轉移溫度於-10℃以下、在23℃及50℃之貯藏彈性率於90至900Mpa、於50℃吸水飽和時之吸水率於0.2至5質量%。
前述高分子彈性體較佳為在23℃之貯藏彈性率與在50℃之貯藏彈性率的比(在23℃之貯藏彈性率/在50℃之貯藏彈性率)為4以下。
根據前述構成,由於研磨中之溫度變化時亦不易引起貯藏彈性率的變化,可提升研磨中之長時間的安定性。
又,前述高分子彈性體為具有0.01至0.2μm之平均粒徑的水性聚胺酯,因可得到良好之耐水性、且提升纖維束之拘束力的觀點而佳。
前述極細纖維絡合體與前述高分子彈性體的比例(極細纖維絡合體/高分子彈性體),在以質量比計為55/45至95/5的情況下,因提升研磨效率、且研磨中之墊磨耗變小的觀點而佳。
再者,在研磨墊之空隙部分的體積比例較佳為50%以上。
根據前述構成,由於研磨墊兼具漿液保液性與適度之剛性和緩衝性,可較佳地用於裸矽晶圓。
又,本發明之另一部分為一種研磨墊之製造方法,其特徵為在集束平均纖度0.01至0.8dtex之極細纖維的極細纖維束內部中,填充玻璃轉移溫度為-10℃以下、在23℃及50℃之貯藏彈性率為90至900MPa、且於50℃吸水飽和時之吸水率為0.2至5質量%的高分子彈性體。
根據像這樣的製造方法,可得到具有高剛性、磨石漿液之保持性高、且在被研磨基材上不易產生傷痕的研磨墊。
又,在前述研磨墊之製造方法中,較佳為以研磨墊中之空隙部分的體積比例成為50%以上的方式,在由集束前述極細纖維之極細纖維束所構成的極細纖維絡合體內部,填充前述高分子彈性體。
根據前述構成,以調整填充於極細纖維絡合體內部之高分子彈性體的量,藉由使研磨墊之空隙率為50%以上,得到提升適度之剛性與磨石漿液保持性和緩衝性、適於裸矽晶圓研磨的研磨墊。
關於本發明之研磨墊,可使用作為用於研磨進行平坦化或鏡面化的各種裝置、各種基板等之各種製品、例如半導體基板、半導體裝置、化合物半導體裝置、化合物半導體基板、化合物半導體製品、LED基板、LED製品、矽晶圓、硬碟基板、玻璃基板、玻璃製品、金屬基板、金屬製品、塑膠基板、塑膠製品、陶瓷基板、陶瓷製品等的研磨墊。

Claims (12)

  1. 一種研磨墊,其特徵為具備由平均纖度0.01至0.8dtex之極細纖維所形成的極細纖維絡合體與高分子彈性體,其中該高分子彈性體係玻璃轉移溫度為-23至-30℃、在23℃及50℃之貯藏彈性率為90至900MPa、且於50℃吸水飽和時的吸水率為2至4質量%之聚胺酯系樹脂。
  2. 如申請專利範圍第1項之研磨墊,其中該極細纖維絡合體係由集束5至70根該極細纖維之極細纖維束所構成,該高分子彈性體存在於該極細纖維束之內部。
  3. 如申請專利範圍第1或2項之研磨墊,其中該極細纖維係由聚酯纖維所形成。
  4. 如申請專利範圍第1或2項之研磨墊,其中該極細纖維係由在50℃吸水飽和時之吸水率為0.2至2質量%的熱塑性樹脂所形成。
  5. 如申請專利範圍第1或2項之研磨墊,其中該高分子彈性體為使用聚醇、聚胺與聚異氰酸酯而得之聚胺酯系樹脂,該聚醇之60至100質量%為非晶性聚碳酸酯系二醇。
  6. 如申請專利範圍第5項之研磨墊,其中該高分子彈性體係在非晶性聚碳酸酯系二醇中併用含羧基二醇作為該聚醇,使用脂環式二異氰酸酯作為該聚異氰酸酯而得的聚胺酯系樹脂。
  7. 如申請專利範圍第1或2項之研磨墊,其中該高分子彈性體係在23℃之貯藏彈性率與在50℃之貯藏彈性率之比 (在23℃之貯藏彈性率/在50℃之貯藏彈性率)為4以下。
  8. 如申請專利範圍第1或2項之研磨墊,其中該高分子彈性體為具有0.01至0.2μm之平均粒徑的水性聚胺酯。
  9. 如申請專利範圍第1或2項之研磨墊,其中該極細纖維絡合體與該高分子彈性體之比例(極細纖維絡合體/高分子彈性體),以質量比計為55/45至95/5。
  10. 如申請專利範圍第1或2項之研磨墊,其中在研磨墊之空隙部分的體積比例為50%以上。
  11. 一種研磨墊之製造方法,其特徵為在集束平均纖維度0.01至0.8dtex之極細纖維的極細纖維束內部中,填充玻璃轉移溫度為-23至-30℃、在23℃及50℃之貯藏彈性率為90至900MPa、且於50℃吸水飽和時之吸水率為2至4質量%的高分子彈性體。
  12. 如申請專利範圍第11項之研磨墊之製造方法,其中在由集束該極細纖維之極細纖維束所構成的極細纖維絡合體內部中,以成為研磨墊中之空隙部分的體積比例為50%以上之方式,填充該高分子彈性體。
TW098126513A 2008-08-08 2009-08-06 研磨墊及研磨墊的製造方法 TWI460052B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205981 2008-08-08

Publications (2)

Publication Number Publication Date
TW201016393A TW201016393A (en) 2010-05-01
TWI460052B true TWI460052B (zh) 2014-11-11

Family

ID=41663704

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098126513A TWI460052B (zh) 2008-08-08 2009-08-06 研磨墊及研磨墊的製造方法

Country Status (9)

Country Link
US (2) US20110171890A1 (zh)
EP (1) EP2316614B1 (zh)
JP (1) JP5411862B2 (zh)
KR (1) KR101410116B1 (zh)
CN (1) CN102119069B (zh)
HK (1) HK1154828A1 (zh)
IL (1) IL211092A (zh)
TW (1) TWI460052B (zh)
WO (1) WO2010016486A1 (zh)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
CN101624511B (zh) * 2009-08-14 2012-08-29 上海震旦办公设备有限公司 碎纸机刀片锋利研磨组合物、由其制造的研磨片、研磨包和相关制造工艺
US8068011B1 (en) 2010-08-27 2011-11-29 Q Street, LLC System and method for interactive user-directed interfacing between handheld devices and RFID media
US20120302142A1 (en) * 2010-09-16 2012-11-29 San Fang Chemical Industry Co., Ltd. Polishing pad and method of producing the same
US20120183861A1 (en) 2010-10-21 2012-07-19 Eastman Chemical Company Sulfopolyester binders
JP5729720B2 (ja) * 2011-06-08 2015-06-03 株式会社クラレ 研磨布及び該研磨布を用いた研磨方法
JP5945874B2 (ja) * 2011-10-18 2016-07-05 富士紡ホールディングス株式会社 研磨パッド及びその製造方法
WO2013115094A1 (ja) * 2012-01-31 2013-08-08 株式会社クラレ 複合繊維、ポリウレタンエラストマー布帛の製造方法、およびポリウレタンエラストマー布帛
US8906200B2 (en) 2012-01-31 2014-12-09 Eastman Chemical Company Processes to produce short cut microfibers
JP5844189B2 (ja) * 2012-03-26 2016-01-13 富士紡ホールディングス株式会社 研磨パッド及び研磨パッドの製造方法
EP2830829B1 (en) * 2012-03-30 2018-01-10 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
JP6033652B2 (ja) 2012-11-23 2016-11-30 光洋機械工業株式会社 両面研削装置における静圧パッドの熱変形防止装置および両面研削装置
US9617685B2 (en) 2013-04-19 2017-04-11 Eastman Chemical Company Process for making paper and nonwoven articles comprising synthetic microfiber binders
CN105452559B (zh) * 2013-09-13 2017-11-21 东丽株式会社 片状物及其制造方法
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US9873180B2 (en) * 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US9776361B2 (en) 2014-10-17 2017-10-03 Applied Materials, Inc. Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
KR102436416B1 (ko) 2014-10-17 2022-08-26 어플라이드 머티어리얼스, 인코포레이티드 애디티브 제조 프로세스들을 이용한 복합 재료 특성들을 갖는 cmp 패드 구성
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
JP2016087770A (ja) 2014-11-11 2016-05-23 株式会社東芝 研磨布および研磨方法
CN107000157B (zh) * 2014-11-28 2019-12-13 株式会社可乐丽 抛光层用成型体及抛光垫
CN105297161B (zh) * 2015-09-22 2018-06-29 四川大学 一种以水可溶聚氨酯弹性体为海的海岛纤维在温和条件下的减量方法
EP3352944B1 (en) * 2015-09-25 2022-10-26 CMC Materials, Inc. Polyurethane cmp pads having a high modulus ratio
US10618141B2 (en) 2015-10-30 2020-04-14 Applied Materials, Inc. Apparatus for forming a polishing article that has a desired zeta potential
US10593574B2 (en) 2015-11-06 2020-03-17 Applied Materials, Inc. Techniques for combining CMP process tracking data with 3D printed CMP consumables
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
TWI656199B (zh) * 2016-06-29 2019-04-11 臺灣永光化學工業股份有限公司 聚氨酯型高分子紫外線吸收劑
ES2857706T3 (es) * 2016-08-17 2021-09-29 The Lycra Company Uk Ltd Dispersiones de poliuretano acuosas, prepolímeros, y artículos conformados elaborados a partir de los mismos
CN106223058A (zh) * 2016-08-29 2016-12-14 福建华阳超纤有限公司 一种耐光老化及耐磨的水性绒面超纤革的制作方法
CN110023034B (zh) * 2016-11-16 2021-04-30 帝人富瑞特株式会社 研磨垫及其制造方法
JP2018108612A (ja) * 2016-12-28 2018-07-12 花王株式会社 研磨パッド
US11053339B2 (en) * 2017-05-12 2021-07-06 Kuraray Co., Ltd. Polyurethane for polishing layer, polishing layer including polyurethane and modification method of the polishing layer, polishing pad, and polishing method
JP6951895B2 (ja) * 2017-07-25 2021-10-20 ニッタ・デュポン株式会社 研磨布
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
WO2019032286A1 (en) 2017-08-07 2019-02-14 Applied Materials, Inc. ABRASIVE DISTRIBUTION POLISHING PADS AND METHODS OF MAKING SAME
CN107604533B (zh) * 2017-09-19 2019-10-18 四川大学 一种弹力超细纤维合成革及其环境友好的制备方法
JP7081351B2 (ja) * 2018-07-10 2022-06-07 日本電気硝子株式会社 ガラス板の製造方法およびガラス板の洗浄装置
CN112654655A (zh) 2018-09-04 2021-04-13 应用材料公司 先进抛光垫配方
WO2020085502A1 (ja) * 2018-10-25 2020-04-30 三井化学株式会社 不織布積層体、並びに、伸縮性不織布積層体、繊維製品、吸収性物品及び衛生マスク
EP3878897A4 (en) * 2018-11-09 2022-07-20 Kuraray Co., Ltd. POLYURETHANE FOR POLISHING LAYERS, POLISHING LAYER, POLISHING PAD AND POLISHING LAYER MODIFICATION METHOD
SG11202104629QA (en) * 2018-12-03 2021-06-29 Kuraray Co Polyurethane for polishing layers, polishing layer and polishing pad
CN109648451B (zh) * 2018-12-29 2020-12-01 徐州鑫晶半导体科技有限公司 硅晶圆的最终抛光方法和最终抛光装置
KR102174958B1 (ko) * 2019-03-27 2020-11-05 에스케이씨 주식회사 결함 발생을 최소화시키는 연마패드 및 이의 제조방법
JP2020200543A (ja) * 2019-06-07 2020-12-17 セイコーエプソン株式会社 繊維体成形方法および繊維結着処理液
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
CN111098218A (zh) * 2019-12-31 2020-05-05 杭州中欣晶圆半导体股份有限公司 用于硅片的中、精抛布的活化方法
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
US11878389B2 (en) 2021-02-10 2024-01-23 Applied Materials, Inc. Structures formed using an additive manufacturing process for regenerating surface texture in situ
CN113510613B (zh) * 2021-03-12 2022-05-13 安徽禾臣新材料有限公司 一种显示屏抛光用白垫及其生产方法
CN115229606B (zh) * 2021-04-25 2024-08-09 苏州三鼎纺织科技有限公司 含有助剂的组合物及使用其制备的光学玻璃抛光用磨皮

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200639019A (en) * 2005-02-18 2006-11-16 Neopad Technologies Corp Customized polishing pads for CMP and methods of fabrication and use thereof
WO2008093850A1 (ja) * 2007-02-01 2008-08-07 Kuraray Co., Ltd. 研磨パッド及び研磨パッドの製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773546A (en) * 1971-11-26 1973-11-20 Owens Corning Fiberglass Corp Coated glass fibers and glass fiber reinforced elastomers
JPH03234475A (ja) 1990-02-08 1991-10-18 Kanebo Ltd 研磨布
US6129620A (en) * 1993-04-23 2000-10-10 Jason Incorporated Honing tool and method of making
JPH08294872A (ja) * 1995-04-27 1996-11-12 Fuji Photo Film Co Ltd 研磨体
JPH10128674A (ja) 1996-10-28 1998-05-19 Rooder Nitta Kk 研磨用パッド
JPH10225864A (ja) 1997-02-17 1998-08-25 Sony Corp 研磨パッドとその製造方法並びにその研磨パッドを用いたウエハの研磨方法
JP3631879B2 (ja) * 1997-04-25 2005-03-23 Tdk株式会社 研磨テープ
JPH1199479A (ja) 1997-09-30 1999-04-13 Teijin Ltd 研磨パッド
JPH11322878A (ja) 1998-05-13 1999-11-26 Dainippon Ink & Chem Inc 泡含有ポリウレタン成形物の製造方法、泡含有成形物用ウレタン樹脂組成物及びそれを用いた研磨パッド
JP3516874B2 (ja) 1998-12-15 2004-04-05 東洋ゴム工業株式会社 ポリウレタン発泡体の製造方法及び研磨シート
JP2000248034A (ja) 1999-03-02 2000-09-12 Mitsubishi Chemicals Corp 研磨材用ポリウレタン系樹脂組成物及びその発泡体
JP3558273B2 (ja) 1999-09-22 2004-08-25 東洋ゴム工業株式会社 ポリウレタン発泡体の製造方法及び研磨シート
JP2002009026A (ja) 2000-06-21 2002-01-11 Toray Ind Inc 研磨用パッドおよびそれを用いた研磨装置及び研磨方法
JP2002079472A (ja) * 2000-06-19 2002-03-19 Kuraray Co Ltd テクスチャー加工用研磨シート及びその製造方法
TW491757B (en) * 2000-06-19 2002-06-21 Kuraray Co Abrasive sheet for texturing and method of producing same
JP3901939B2 (ja) 2000-12-05 2007-04-04 帝人コードレ株式会社 研磨用基布および研磨方法
KR100467113B1 (ko) * 2001-01-31 2005-01-24 가부시키가이샤 구라레 수성 수지 조성물 및 이 조성물을 사용한 면상 파스너의제조방법
US20030100250A1 (en) 2001-10-29 2003-05-29 West Thomas E. Pads for CMP and polishing substrates
JP3992483B2 (ja) 2001-12-06 2007-10-17 帝人コードレ株式会社 研磨基布の製造方法
JP3921085B2 (ja) 2001-12-28 2007-05-30 大日精化工業株式会社 研磨用基材の製造方法
JP2004130395A (ja) 2002-10-08 2004-04-30 Toray Ind Inc ガラステクスチャー加工用研磨布及びそれを用いた磁気記録媒体の製造方法
US20060189269A1 (en) * 2005-02-18 2006-08-24 Roy Pradip K Customized polishing pads for CMP and methods of fabrication and use thereof
US7704125B2 (en) * 2003-03-24 2010-04-27 Nexplanar Corporation Customized polishing pads for CMP and methods of fabrication and use thereof
JP2004311731A (ja) 2003-04-08 2004-11-04 Hitachi Chem Co Ltd 研磨用パッド及びそれを用いた被研磨物の研磨方法
KR101108024B1 (ko) * 2003-06-03 2012-01-25 넥스플래너 코퍼레이션 화학 기계적 평탄화를 위한 기능적으로 그레이딩된 패드의합성
US7871946B2 (en) * 2003-10-09 2011-01-18 Kuraray Co., Ltd. Nonwoven fabric composed of ultra-fine continuous fibers, and production process and application thereof
US20050159063A1 (en) * 2004-01-16 2005-07-21 Bernard Hill Disposable cleaning substrate
JP2005212055A (ja) 2004-01-30 2005-08-11 Kanebo Ltd 不織布ベースの研磨布及びその製造方法
JP4455161B2 (ja) 2004-05-25 2010-04-21 旭化成せんい株式会社 研磨パッド用不織布および研磨パッド
JP2006028659A (ja) * 2004-07-13 2006-02-02 Kuraray Co Ltd スエード調人工皮革およびその製造方法
TW200641193A (en) * 2005-05-27 2006-12-01 San Fang Chemical Industry Co A polishing panel of micro fibers and its manufacturing method
JP4645361B2 (ja) 2005-08-24 2011-03-09 東レ株式会社 研磨布

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200639019A (en) * 2005-02-18 2006-11-16 Neopad Technologies Corp Customized polishing pads for CMP and methods of fabrication and use thereof
WO2008093850A1 (ja) * 2007-02-01 2008-08-07 Kuraray Co., Ltd. 研磨パッド及び研磨パッドの製造方法

Also Published As

Publication number Publication date
CN102119069A (zh) 2011-07-06
WO2010016486A1 (ja) 2010-02-11
TW201016393A (en) 2010-05-01
KR20110042213A (ko) 2011-04-25
KR101410116B1 (ko) 2014-06-25
US20110171890A1 (en) 2011-07-14
HK1154828A1 (zh) 2012-05-04
US20190218697A1 (en) 2019-07-18
EP2316614B1 (en) 2019-07-17
CN102119069B (zh) 2015-04-15
JPWO2010016486A1 (ja) 2012-01-26
IL211092A (en) 2014-03-31
EP2316614A1 (en) 2011-05-04
IL211092A0 (en) 2011-04-28
EP2316614A4 (en) 2014-08-20
JP5411862B2 (ja) 2014-02-12

Similar Documents

Publication Publication Date Title
TWI460052B (zh) 研磨墊及研磨墊的製造方法
TWI432285B (zh) 研磨墊及研磨墊之製法
JP5204502B2 (ja) 研磨パッド及び研磨パッドの製造方法
JP5289787B2 (ja) 研磨パッド及び研磨パッドの製造方法
TWI513871B (zh) 研磨墊及化學機械研磨方法
TWI607832B (zh) 硬質薄片及硬質薄片之製造方法
JP2010064153A (ja) 研磨パッド
JP5356149B2 (ja) 研磨パッドの表面加工方法およびそれによって得られる研磨パッド
JP5522929B2 (ja) 研磨パッド及び研磨方法
JP5551022B2 (ja) 被研磨物のラッピング方法
JP2010058170A (ja) 研磨パッド
JP5789557B2 (ja) ガラス系基材の研磨方法
JP5415700B2 (ja) 研磨パッド及び研磨パッドの製造方法
JP5502661B2 (ja) 化合物半導体ウエハの研磨方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees