TWI355049B - - Google Patents

Download PDF

Info

Publication number
TWI355049B
TWI355049B TW099140146A TW99140146A TWI355049B TW I355049 B TWI355049 B TW I355049B TW 099140146 A TW099140146 A TW 099140146A TW 99140146 A TW99140146 A TW 99140146A TW I355049 B TWI355049 B TW I355049B
Authority
TW
Taiwan
Prior art keywords
flow path
liquid
heat
cooling jacket
jacket
Prior art date
Application number
TW099140146A
Other languages
Chinese (zh)
Other versions
TW201113988A (en
Inventor
Kasezawa Yoshimasa
Hisashi Hori
Hino Harumichi
Tanaka Tsunehiko
Takeshi Yoshida
Original Assignee
Nippon Light Metal Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co filed Critical Nippon Light Metal Co
Publication of TW201113988A publication Critical patent/TW201113988A/en
Application granted granted Critical
Publication of TWI355049B publication Critical patent/TWI355049B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/068Shaving, skiving or scarifying for forming lifted portions, e.g. slices or barbs, on the surface of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

1355049 六、發明說明: • 【發明所屬之技術領域】 • 本發明係有關於使CPU等的熱發生體冷卻的液冷套 匣。 【先前技術】 近年來,以個人電腦作為代表的電子機器係隨著其性 能提升,被搭載的CPU (熱發生體)的發熱量增大,CPU的冷 籲 卻變的日益重要。習知為了冷卻CPU,使用空氣冷卻風扇 (fan)方式的熱沉(heat sink),然而風扇嗓音、或以空氣 冷卻方式的冷卻極限的問題係被大書特書(cl〇se_up),作 為次世代冷卻方式,液冷套匣(也被稱為水冷套匣、液冷模 組[module])係被注目。 有關此類的技術,例如,在專利文獻1中,以蛇行狀 被形成’内藏在其兩端設置進入口、排出口的金屬管的液 冷套匣被提案。 ® [專利文獻1]日本特開昭63-293865號公報(第2頁右 上欄第2行〜左下欄第15行、第1圖、第2圖) 【發明内容】 然而,如專利文獻1記載的液冷套匣般,冷卻水流通 的流路為一支的話,冷卻水受到的壓力損失變大。藉此, 不僅無法有效率地冷卻CPU’且存在必須將供給冷卻水的 幫浦的輸出變大的問題。 3 1355049 在此,本發明係為了解決上述問題,提供可有效率地 冷卻CPU等的熱發生體的液冷套g作為課題。 作為用以解決上述課題的手段,本發明係為熱發生體 被安裝在既定位置、使該熱發生體發生的熱自外部的献輪 送流體供給裝置被供給、傳達至流通内部的熱輸送流體的 液冷套匠,包括:上述熱輸送流體供給裝置側㈣—流路; 由自上述第-流路分歧的複數的第二流路構成的第二流路 群;以及在上述複數的第二流路的下流侧,使該複數的第 二流路集合的第三流路;其中上述熱發生體主要係在上述 第—流路群作熱交換。 根據此類的液冷套H,自外部的熱輸送流體供給裝置 的熱輸送流體係被供給至第一流路。其次,以第二流路群' 第三流路的順序流通。X,熱發生體發生的熱主要係藉由 第二流路群作熱交換,傳達至熱輸送流體。其結果,熱發 生體係適當地被冷卻。 在此,第i流路群係自第_流路分歧的複_第二流 路所構成’由於此複數的第二流路係在第三流路集合,與 第二流路被形成為一支的蛇行狀的情形比較,4第二流路 的長度係大幅度地變短。藉此’流通複數的第二流路的執 輸送流體的1力損失係,較流通上述—支的長流路長度的 第二流路的熱輸送流體的壓力損失也大幅度地變小。又, 本發明中的相鄰的第二流路係如有關後述的第六實施例的 液冷套S J6的第二流路防3、653般(參考第26圖),作為 不被完全隔離也可。1355049 VI. Description of the Invention: • Technical Field to Which the Invention Is Enclosed The present invention relates to a liquid cooling jacket for cooling a heat generating body such as a CPU. [Prior Art] In recent years, with the increase in performance of electronic devices represented by personal computers, the heat generated by the CPU (heat generating body) that is being mounted has increased, and the CPU's cold appeal has become increasingly important. In order to cool the CPU, it is known to use an air-cooling fan-type heat sink. However, the problem of the fan noise or the cooling limit of the air cooling method is the case of the book (cl〇se_up). Generation cooling methods, liquid-cooled ferrules (also known as water-cooled ferrules, liquid-cooled modules) are noticed. In the above-mentioned technique, for example, in Patent Document 1, a liquid-cooling jacket in which a metal pipe having an inlet port and a discharge port is provided in both ends is formed in a serpentine shape. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 In the case of a liquid-cooled jacket, if the flow path through which the cooling water flows is one, the pressure loss of the cooling water becomes large. As a result, not only is it impossible to efficiently cool the CPU', but there is a problem that the output of the pump that supplies the cooling water must be increased. In order to solve the above problems, the present invention provides a liquid cooling jacket g capable of efficiently cooling a heat generating body such as a CPU. As a means for solving the above-mentioned problems, the present invention is a heat transfer fluid in which a heat generating body is attached to a predetermined position, heat generated by the heat generating body is supplied from an external supply fluid supply device, and is transmitted to the inside of the flow. a liquid cooling jacket comprising: the heat transfer fluid supply device side (four) - a flow path; a second flow path group consisting of a plurality of second flow paths diverging from the first flow path; and a second plurality in the plural The downstream side of the flow path is a third flow path in which the plurality of second flow paths are combined; wherein the heat generating body is mainly used for heat exchange in the first flow path group. According to the liquid cooling jacket H of this type, the heat transport flow system from the external heat transfer fluid supply device is supplied to the first flow path. Next, it flows in the order of the second flow path group 'the third flow path. X. The heat generated by the heat generating body is mainly transmitted to the heat transfer fluid by heat exchange by the second flow path group. As a result, the heat generating system is appropriately cooled. Here, the i-th flow path group is formed from the complex_second flow path in which the first flow path is branched. 'Because the plural second flow path is in the third flow path set, the second flow path is formed as one In the case of the serpentine shape of the branch, the length of the second flow path is greatly shortened. By this, the "one force loss" of the second flow path of the plurality of flow paths is substantially smaller than the pressure loss of the heat transfer fluid of the second flow path of the long flow path length of the above-mentioned branch. Further, the adjacent second flow path in the present invention is not completely isolated as in the second flow path prevention 3, 653 of the liquid cooling jacket S J6 of the sixth embodiment to be described later (refer to Fig. 26). also may.

因此根據此類的液冷套油田私I 輸送流體供給裝置(例如暂,使用輪出小的外部的熱 衣置C例如,幫浦),供 冷套g内被流通,可右分“ ·、、、輸迗桃體’使液 /有效率地冷卻CPU等的熱發生體。 發明係為熱發生體被取班户邮+ 發生體發生的埶自外、 疋位置、使該熱 達η 輪送流體供給裝置被供給、傳 這至丨L通内部的敎於 括.第— 體的液冷套Ε,朝向下流側包 =第:-路、由複數的第二流路構成的第二流路群、以 第一;纟中上述熱發生 作熱交換,相鄰的上述室一力* —极路群 被連接。 U —流路群係、經由連結流路以直列 亦即,為上述第二流路群係包括 部 '該複數的第二流路群部 路群 ,Β „ L A且列破配置的液冷套匣。 根據此類的液冷套£ ’藉 被連接的複數的第二流路二::级由連結流路以直列 第- $路# . . Λ丨•·路群部),可在複數的 第一路群、和熱發生體之間作熱交換。 :,㈣的上述第二流路群係 的下流端和另-方的上流端係在同—側。方 亦即,為相鄰的上述第二 一 山 机路群係被並設的同時、苴 方的下 鸲和另一方的上流 士械 ^係在同一側的液冷套匣0 根據此類的液冷套匣,熱 法、s 士人供々丨L體係在熱交換流體的 机通方向中經由相鄰的第二流路 髖的 鄰的第二流路群的另一方,以 相 ,ρ ^ . 匕仃的方式流通。因此,脾 千面看來的液冷套g的大小 將 二流路群的第二料的支數,變構成各第 的叉數增加第二流路群的數目時, U^!)U49 構成各第二流路群的各第二流路的流路 此,將流過液冷套匣的勒私 積铩變小。因 #匣的熱輸送流體的流量作—— 二流路群的數目變多的 疋時,第 的話,各第二流路中 流速係變大。因此,自 、…輪迗流體的 囚此自液冷套匣朝熱輪送流體沾也以抽* 率變大,其結果,液冷套S的熱抵抗會下降。’ ’ 相鄰的第二流路群不被並設,例如,在其流路 方向中,以一列狀被配置的情 變多,4 流路群的數目 雙夕構成各第一流路群的各第-内败 听叩谷弟一流路的流路長度只變 短,…J面積不變小’熱交換流體的流速 液冷套S的熱抵抗不下降。 錯此 又,將第二流路群的數目作為偶數時’可將朝向液冷 套匣的熱輸送流體的入口和出口配置在同一側,其結果為 在液冷套匣連接的配管的處理變得容易。 又,具備複數的金屬製的管被束缚的管束,各管的中 空部為上述第二流路。 此類的液冷套E係藉由具備複數的金屬製的管被束缚 的管束’各管的,空部成為上述第二流路,可容易地構成 液冷套匣。又,藉由將被束縛的金屬製的管的支數、粗度 等適宜地變更,可容易地變更第二流路的數目、粗度(流路 剖面積)。 又’具備具有複數的中空部的金屬製的管,上述各中 空部係為上述第二流路。 根據此類的液冷套匣’利用具有複數的中空部的金屬 製的管,可容易地構成液冷套匣。 1355049 又,具備以既定間隔配列的複數的金屬製的鰭片 (fin) ’相鄰的鰭片間為第二流路。 根據此類的液冷套匣,藉由將相鄰的鰭片之間作為第 二流路,可將來自熱發生體的熱經由複數的鰭片,傳達至 流通第二流路的熱輸送流體。 又’上述第二流路的寬度W為〇.卜丨.〇mm。 根據此類的液冷套匣,可將其熱抵抗、和通過内部的 熱輸送流體承受的壓力損失作為良好的範圍。 又,上述第二流路的寬度w和相鄰的上述第二流路之 間的鰭片的厚度τ係滿足下式(1): —〇· 375 X w + 〇.875 S τ/w g -1.875 X W + 3.275 …(1)。 根據此類的液冷套匣,其熱抵抗變小’在熱發生體和 熱輸送流體之間,可良好地作熱交換。 又,上述第二流路的深度D和寬度w係滿足下式(2): 5 X W + 1 $ d S 16· 25 X W + 2. 75 …(2)。 根據此類的液冷套匣,其熱抵抗變小,在熱發生體和 熱輸送流體之間,可良好地作熱交換。 又’具備:包含上述複數的金屬製的鰭片以及該複數 的金屬製的鰭片被立設的基板所構成的鰭片元件;以及收 谷該—片元件的套匣本體;上述基板係在上述套匣本體可 作熱父換的方式被固定。 此類的液冷套匣,例如,將具有構成基板的底板、和 在此底板被立設的複數的鰭片所構成的複數的條的金屬製 的擠製件切斷,製作具備上述複數的金屬製的鰭片的鰭片 7 1355049 元件之後,藉由將此鰭片元件,例如,固定在箱狀的套匣 本體而可構成液冷套匣。 又,例如,藉由在金屬製的塊(block)形成複數的溝, 亦可製作具備複數的金屬製的鰭片的鰭片元件。 又,包括:第一鰭片元件,其係具備第一基板、以及 在該第—基板被立設的複數的第一鰭片;以及第二鰭片元 件,具備第二基板、以及在該第二基板被立設的複數的第 鰭片,其中上述第一鰭片元件和上述第二鰭片元件係, $上述複數的第一鰭片和上述複數的第二鰭片作為互相嚙 合般被組合,上述金屬製的複數的鰭片係藉由上述第一鰭 片和上述第二鰭片被構成,在相鄰的上述第一鰭片和上述 第二鰭片之間’上述第二流路被形成。 因為此類的液冷套匣係使複數的第一鰭片和複數的第 二鰭片相互嚙合,即使第一鰭片彼此的間隔和第二鰭片彼 此的間隔變廣,可將相鄰的金屬製的鰭片的間%,亦即, 第一鳍片和第二鰭片間的間隔變窄。 又,上述熱發生體係在上述第一基板側被安裝,上述 第鰭片的犬出長度係被設定為和上述第二鰭片的突出長 度相同或短’上述複數的第二“和上述第—基板係熱連 接。 此類的液冷套E係藉由第一鰭片的突出長度和Therefore, according to such a liquid-cooled jacket oil supply I supply fluid supply device (for example, temporarily use a small external hot clothes to set C, for example, a pump), the cold jacket g is circulated, and can be divided into right, ", ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The fluid supply device is supplied and transmitted to the liquid cooling jacket of the first body, and is directed toward the downstream side package = the first path, and the second flow composed of the plurality of second flow paths. The road group is first; the heat in the sputum is heat exchanged, and the adjacent chambers are connected to each other. The U-flow group is connected in an in-line via the connecting channel. The second-flow road group includes a portion of the plural second-flow group group road group, and the LA-collapsed liquid cooling jacket is arranged. According to this type of liquid cooling set, the second flow path of the plural is connected: the level is connected by the flow path to the inline number - $路# . . Λ丨•·路群部), which can be in the plural Heat exchange between the group and the heat generator. (4) The downstream end of the second flow path group and the other upstream end are on the same side. That is, the liquid cooling jacket of the adjacent side of the second one mountain road group is simultaneously, the lower jaw of the square, and the upper stream of the other side are on the same side. The liquid-cooled jacket, the thermal method, the s-person supply 々丨L system in the machine-through direction of the heat exchange fluid via the adjacent second flow path hip adjacent to the other of the second flow path group, phase, ρ ^ . The way to circulate. Therefore, when the size of the liquid cooling jacket g appears to the spleen, the number of the second material of the second flow group is changed to the number of the first forks to increase the number of the second flow path group, U^!) U49 constitutes each The flow path of each of the second flow paths of the second flow path group reduces the Leille product flowing through the liquid cooling jacket. When the flow rate of the heat transfer fluid of #匣 is increased, the number of the second flow path group becomes large, and in the first case, the flow velocity in each of the second flow paths becomes large. Therefore, since the fluid of the rim fluid is sucked from the liquid cooling jacket to the hot wheel, the pumping rate is increased, and as a result, the heat resistance of the liquid cooling jacket S is lowered. ' 'The adjacent second flow path groups are not arranged in parallel. For example, in the flow path direction, the number of the four flow path groups is large, and the number of the four flow path groups forms the first of each of the first flow path groups. - The length of the flow path of the smashing of the valley is only shortened, ... the area of the J is constant. The flow rate of the heat exchange fluid does not decrease. In other words, when the number of the second flow path groups is an even number, the inlet and the outlet of the heat transfer fluid toward the liquid cooling jacket can be disposed on the same side, and as a result, the treatment of the pipes connected to the liquid cooling jacket becomes changed. It's easy. Further, a bundle of tubes made of a plurality of metal tubes is provided, and the hollow portion of each tube is the second flow path. The liquid cooling jacket E of this type is a tube bundle 'contained by a plurality of metal tubes, and the hollow portion is the second flow path, so that the liquid cooling jacket can be easily formed. In addition, the number and thickness (flow path sectional area) of the second flow path can be easily changed by appropriately changing the number, thickness, and the like of the metal pipe to be bound. Further, a metal pipe having a plurality of hollow portions is provided, and each of the hollow portions is the second flow path. According to such a liquid-cooled jacket, a liquid-cooled jacket can be easily constructed by using a metal pipe having a plurality of hollow portions. 1355049 Further, a plurality of metal fins (fin) arranged at predetermined intervals are provided as a second flow path between adjacent fins. According to such a liquid-cooled jacket, heat from the heat generating body can be transmitted to the heat transfer fluid flowing through the second flow path via the plurality of fins by using the adjacent fins as the second flow path. . Further, the width W of the second flow path is 〇.丨.〇mm. According to such a liquid-cooled jacket, the heat resistance and the pressure loss by the internal heat transfer fluid can be regarded as a good range. Further, the width w of the second flow path and the thickness τ of the fin between the adjacent second flow paths satisfy the following formula (1): - 〇 · 375 X w + 〇.875 S τ / wg - 1.875 XW + 3.275 ... (1). According to such a liquid-cooled jacket, the heat resistance becomes small. Between the heat generating body and the heat transfer fluid, heat exchange is favorably performed. Further, the depth D and the width w of the second flow path satisfy the following formula (2): 5 X W + 1 $ d S 16 · 25 X W + 2. 75 (2). According to such a liquid-cooled jacket, the heat resistance is small, and heat exchange is favorably performed between the heat generating body and the heat transfer fluid. Further, the present invention includes: a fin element including a plurality of metal fins and a substrate in which the plurality of metal fins are erected; and a ferrule body that receives the chip element; the substrate is attached The above-mentioned sleeve body can be fixed in a hot parent exchange manner. In the liquid-cooling jacket of this type, for example, a metal extruded member including a bottom plate constituting the substrate and a plurality of fins on which the bottom plate is erected is cut, and the above-mentioned plural is produced. After the fin 7 1355049 element of the metal fin, the liquid element can be formed by fixing the fin element, for example, to the box-shaped ferrule body. Further, for example, by forming a plurality of grooves in a metal block, a fin element having a plurality of metal fins can be produced. Furthermore, the present invention includes a first fin element including a first substrate and a plurality of first fins erected on the first substrate, and a second fin element including a second substrate and the a plurality of second fins on which the second substrate is erected, wherein the first fin element and the second fin element system, the plurality of first fins and the plurality of second fins are combined as intermeshing The plurality of fins made of the metal are formed by the first fin and the second fin, and the second flow path is between the adjacent first fin and the second fin form. Because such a liquid-cooled jacket is such that the plurality of first fins and the plurality of second fins are in mesh with each other, even if the first fins are spaced apart from each other and the second fins are spaced apart from each other, adjacent ones may be adjacent. The % of the metal fins, that is, the interval between the first fins and the second fins is narrowed. Further, the heat generating system is mounted on the first substrate side, and the dog length of the first fin is set to be the same as or shorter than the protruding length of the second fin. The plural second and the first The substrate is thermally connected. The liquid cooling jacket E of this type is formed by the protruding length of the first fin and

可將複數的第二鰭片和 片的突出長 定,在將第 第二鰭片在 1355049 第一基板熱交換地接合而構成。 又,在第一基板側被安裝的熱發生體的熱係經由第一 基板,分別傳達至複數的第一鰭片和複數的第二鰭片。其 人此熱係可傳達至流通第一韓片#第二趙片之間的第二 流路的熱輸送流體。 又,具備:收容上述複數的金屬製的鰭片的鰭片收容 室的套匣本體;以及密封上述鰭片收容室的密封體;其中 包圍上述鰭片收容室的上述套匣本體的周壁和上述密封體 間的配合部被摩擦攪拌接合的同時,該摩擦攪拌接合中的 始端和終端會重疊(overlap)。 根據此類的液冷套匣,藉由摩擦攪拌接合中的始端和 終端會重疊,可將套匣本體的周壁和密封體良好地接合。 藉此’熱輸送流體不易漏至外部。 又,因為不使用焊材,藉由摩擦攪拌接合,將密封體 和套匿本體接合,完全不用擔心藉由焊材等使熱輸送流體 (冷媒)被污染,且完全不用擔心構成液冷系統的微幫浦或 放熱器等的機器類係藉由焊材等而被腐蝕。 又,上述複數的金屬製的鰭片係在上述密封體立設, 和該密封體為一體。 根據此類的液冷套匣,藉由複數的金屬製的縛片和密 封體為一體,以密封體密封鰭片收容室,且可將複數的金 屬製的鰭片配置在鰭片收容室的既定位置。亦即,不但可 減少液冷套匣的生產工程,可容易生產,且可將其生產成 本降低。又,如此般,複數的金屬製的鰭片和密封體為一 1355049 體的物件’例如’如後述的第五實施例記載般’可藉由使 紹合金製的板(板材)刮削(skive)加工而得到。 又’如此方式,藉由刮削加工等,鰭片和密封體以一 體被成形的話,當然就不必以焊材等接合鰭片和密封體, 藉此’可防止熱輸送流體的污染等。 又,由於鰭片和密封體為一體,兩者間的熱傳達性高。 因此在毯封體文裝CPU等的熱發生體的話,熱發生體的 熱係經由密封體’良好地傳達至複數的鰭片。其結果為液 冷套匿中的熱發生體的放熱性能變高。 △又’上述周壁在外側T變形般,一面在上述周壁抵接 治具一面被上述摩擦攪拌接合。 根據此類的液冷套s,藉由一面在周壁抵接治具一面 作摩擦授拌接合,#由摩擦攪拌接合,周壁在外側不易變 :。又,如上述’藉由抵接治具,周壁薄,即使在摩擦攪 拌接合使用的卫具中的肩(shQulder)的外周面、和周壁的 外周面間的距離(間隙),例如’在20mm以下,周 變形’可作摩擦攪拌接合。 的銷的長度係 又,在上述摩擦攪拌接合中使用的工具 在上述密封體的厚度的60%以下。 根據此類的液冷套g 封體的厚度的60%以不, 鰭片收容室側不易變形。 變小。 藉由工具的销的長度在上述密 藉由作摩擦搜拌接合,密封體在 藉此可防止鰭片收容室的容積 又,在上述摩擦攪拌接合中 上述工具的拔出位置係 1355049 自上述配合部被拆下。 根據此類的液冷套匣,藉由工具的拔出位置自上述配 合部被插下’銷的拔出痕跡不會在配合部被形成。藉此, 可將套匣本體和密封體適合地接合。 又,具備具有複數的細孔的金屬製的蜂巢(h〇neyCOmb) 體,上述細孔係為上述第二流路。 根據此類的液冷套匣,藉由將上述蜂巢體的細孔作為 上述第二流路,使自熱發生體的熱經由蜂巢體,可傳達至 流通第二流路的熱輸送流體。 又’具備:剖面為波狀的金屬製的熱交換片;以及該 熱交換片以可熱交換地被固定的金屬製的套匣本體;其中 在上述熱交換片和上述套g本體之間,上述第二流路被形 成。 根據此類的液冷套匣,藉由使剖面為波狀的熱交換片 在套匣本體以可熱交換的方式固定,可容易地構成。 又’上述金屬係為铭或紹合金。 根據此類的液冷套匣,藉由將金屬作為鋁或鋁合金而 被輕量化。 又’連通在上述第一流路的熱輸送流體的進入口、和 連通上述第二流路的熱輸送流體的排出口係,以上述熱發 生體作為中心,對稱地被配置。 根據此類的液冷套匣,自進入口被供給到第一流路的 熱輸送流體係使熱發生體的附近的第二流路流通變容易。 藉此’可將熱輸送流體在和熱發生體之間,適合地作熱交 '1355049 換。 又’上述進入口和上述排出口係相對地遠離般被配置。 根據此類的液冷套匣,自進入口被供給到第一流路的 熱輸送流體係可將複數的第二流路的全體流通變容易。藉 此,在流通複數的第二流路全體的熱輸送流體和熱發生體 之間,可適合地作熱交換。 又’上述進入口和上述排出口係相對地靠近上述熱發 生體般被配置。 根據此類的液冷套匣,自進入口被供給到第一流路的 熱輸送流體係使熱發生體附近的第二流路以快速的流速流 通變容易。藉此,在以此快速流速流通的熱輸送流體和熱 發生體之間,可適合地作熱交換。亦即,例如,CPU等的 熱發生體係不會經由稱為熱擴散器(heat spreader)的熱 擴散片102(參考第3圖),在液冷套匣被安裝,熱發生體 的熱難以傳達至液冷套匣的全體時,如此,藉由使熱輸送 流體以快速的流速流通熱發生體的附近的第二流路,可有 效率地放熱。 又’上述熱發生體係為CPU。 根據此類的液冷套匣,在CPU和熱輸送流體之間有效 率地作熱交換,可使CPU冷卻。 根據本發明,可提供有效率地冷卻CPU等的熱發生體 的液冷套匣。 【實施方式】 12 丄05〇49 . 以下有關本發明的實施例,適當地參考圖示詳細說明。 《第一實施例》 首先’有關第一實施例的液冷系統和液冷套匣,參考 第1〜8圖說明。第i圖係為有關第一實施例的液冷系統的 構成圖。第2圖係為有關第一實施例的液冷套匣的全體立 體圖。第3圖係為自有關第一實施例的液冷套匣的下方的 全體立體圖。第4圖係為有關第一實施例的液冷套匣的立 • 體圖,表示省略蓋單元的狀態。第5圖係為有關第一實施 例的液冷套匣的平面圖,省略進入管和排出管。第6圖係 為有關在第2圖表示的第一實施例的液冷套匣的χ_χ剖面 圖。第7圖係為有關第一實施例的液冷套匣的分解立體 圖。第8圖係以模式地表示有關第一實施例的液冷套匣的 效果的圖表。 《液冷系統的構成》 如第1圖所示般,有關第一實施例的液冷系統S1係為 φ 搭載在直立(tower)型個人電腦的個人電腦本體120(電子 機器)的系統,為冷卻構成個人電腦本體1 2〇的Cpu丨〇丨(熱 發生體)的系統。液冷系統S1係主要包括:CPU 1 〇 1在既 定位置被安裝的液冷套匣J1(參考第3圖);使冷卻水(熱 輸送流體)輸送的熱放出至外部的放熱器121 (放熱裝置); 使冷卻水循環的微幫浦丨22 (熱輸送流體供給裝置);吸收 根據溫度變化的冷卻水的膨脹/收縮的儲備槽(reserve tank)123,連接這些的彎軟管124…;以及輸送熱的冷卻 水。作為冷卻水,例如,使用乙二醇(ethylene gluc〇i) 13 丨1355049 系的不;東液。 成為冷卻水循環這些機器 又’微幫浦122作動的話, 的方式。 《液冷卡匣的構成》 其次,詳細說明有闕構成液冷系統S1的液冷套歴;1。 如第2、3圖所示般’液冷套gJl係在其下方側(裏面 側)的中央(既定位置),經由熱擴散,1〇2(熱擴散器)cpu 101破安裝。如此,在CPU 1〇1被安裝的狀態下藉由a 卻水流通液冷套匿J1 β,液冷套系使CPU 101發: 的熱受熱的同時’藉由和流通内部的冷卻水作熱交換,將 接受自CPU101的熱傳達至冷卻水,其結果為⑽⑻有 效率地被冷卻。又’熱擴散片1〇2係為用以使⑽ι〇ι的 熱有效率地傳達至後述的套匣本體1〇的底壁U的片,例 如,由具有銅等的高熱傳導性的金屬形成。 此類的液冷套昆J1係如第4〜7圖所示般’主要包括套 E本體1〇、扁平管束20(管束)、蓋單元30。套E本體1〇、 扁平管束20、蓋單元3〇只要未特別記載,係由銘或銘合 金被形成。藉此,液冷套匣J1輕量化被達到,安裝容易。 〈套ϋ本體〉 套ϋ本體1 〇為上方側卜方側)開口的淺底的箱體(參 圖)具有底壁11和周壁12,在其内側具備收容扁 平管束20的收容室(參考第7圖)。此類的套匣本體10係, ^如,藉由壓鱗(模鑄[die_casting])、鑄造、鍛造等被製 又套匣本體1 〇係在其開口緣的一部份,具有對應於 1355049 後述的蓋本體31的缺口部31c的形 &lt;扁平管束〉 Μ狀的位置配合部14。 扁平官束20係在套匣本體1〇内,一 保空間10a和空間1(^ 透在其兩端側破 不1工間10c(參考第4、5圖),藉The plurality of second fins and the protrusions of the sheets may be elongated, and the second fins may be joined by heat exchange on the first substrate of 1355049. Further, the heat of the heat generating body mounted on the first substrate side is transmitted to the plurality of first fins and the plurality of second fins via the first substrate. The heat system of the person can be transmitted to the heat transfer fluid of the second flow path between the first Korean film #二赵片. Moreover, the present invention includes: a ferrule body that accommodates the fin-receiving chamber of the plurality of metal fins; and a sealing body that seals the fin accommodating chamber; a peripheral wall of the ferrule body that surrounds the fin accommodating chamber, and the While the fitting portion between the sealing bodies is friction stir welded, the beginning and the end of the friction stir welding overlap. According to such a liquid-cooled jacket, the peripheral wall of the casing body and the sealing body can be well joined by overlapping of the starting end and the terminal end in the friction stir welding. Thereby, the heat transfer fluid is less likely to leak to the outside. Further, since the sealing body and the nest body are joined by friction stir welding without using a welding material, there is no fear that the heat transfer fluid (refrigerant) is contaminated by the welding material or the like, and there is no fear of constituting the liquid cooling system. A machine such as a micro pump or a radiator is corroded by a welding material or the like. Further, the plurality of metal fins are erected on the sealing body and integrated with the sealing body. According to such a liquid-cooled jacket, a plurality of metal tabs and a sealing body are integrated, the fin housing chamber is sealed with a sealing body, and a plurality of metal fins can be disposed in the fin housing chamber. The established location. That is, not only can the production of the liquid-cooled ferrule be reduced, the production can be easily performed, and the production cost can be reduced. Further, in this manner, a plurality of metal fins and a sealing body are a 1355049-body object 'for example, as described in the fifth embodiment to be described later', by scraping a plate (plate material) made of a smelting alloy. Processed and obtained. Further, in the case where the fins and the sealing body are integrally formed by the scraping process or the like, it is of course unnecessary to join the fins and the sealing body with a welding material or the like, thereby preventing contamination of the heat transfer fluid or the like. Moreover, since the fin and the sealing body are integrated, the heat transfer between the two is high. Therefore, when the heat generating body such as the CPU is mounted on the carpet body, the heat of the heat generating body is satisfactorily transmitted to the plurality of fins via the sealing body. As a result, the heat generating property of the heat generating body in the liquid cooling nesting becomes high. Δ Further, the peripheral wall is deformed in the outer side T, and is joined to the jig by the friction stir welding while the peripheral wall abuts against the jig. According to the liquid cooling jacket s of this type, the frictional mixing is performed on one side of the peripheral wall against the jig, and the circumferential wall is not easily changed on the outer side by friction stir welding. Further, as described above, the distance between the outer peripheral surface of the shoulder (shQulder) and the outer peripheral surface of the peripheral wall (for example, in the 20 mm of the outer peripheral surface of the shingle used in the friction stir joining joint, such as 'at 20 mm', is thin. Hereinafter, the circumferential deformation 'can be used for friction stir welding. The length of the pin is also 60% or less of the thickness of the sealing body used in the friction stir welding. According to the 60% of the thickness of the liquid-cooling jacket g seal of this type, the fin accommodation chamber side is not easily deformed. Become smaller. By the length of the pin of the tool being friction-mixed in the above-mentioned close, the sealing body can prevent the volume of the fin accommodating chamber, and the pulling-out position of the tool in the friction stir welding is 1355049 from the above-mentioned cooperation. The department was removed. According to such a liquid-cooled ferrule, the drawing of the pin which is inserted from the above-mentioned fitting portion by the pulling-out position of the tool is not formed at the fitting portion. Thereby, the sleeve body and the sealing body can be suitably joined. Further, a honeycomb honeycomb body having a plurality of fine pores is provided, and the pores are the second flow passages. According to such a liquid-cooling jacket, by using the pores of the honeycomb body as the second flow path, the heat of the self-heat generating body can be transmitted to the heat transfer fluid flowing through the second flow path via the honeycomb body. Further, "having: a heat exchange sheet made of a metal having a corrugated cross section; and a metal ferrule body fixed to the heat exchange sheet by heat exchange; wherein between the heat exchange sheet and the sleeve body, The second flow path described above is formed. According to such a liquid-cooled jacket, the heat exchange sheet having a corrugated cross section can be easily fixed by heat-exchangeable fixing of the sleeve body. Further, the above metal system is Ming or Shao alloy. According to such a liquid-cooled jacket, it is lightweight by using a metal as aluminum or an aluminum alloy. Further, the inlet port of the heat transfer fluid that communicates with the first flow path and the discharge port of the heat transfer fluid that communicates with the second flow path are symmetrically arranged around the heat generating body. According to such a liquid cooling jacket, the heat transport flow system supplied from the inlet port to the first flow path facilitates the circulation of the second flow path in the vicinity of the heat generating body. Thereby, the heat transfer fluid can be exchanged between the heat generating body and the heat generating body, which is suitable for heat exchange '1355049. Further, the inlet port and the discharge port are disposed relatively far apart. According to such a liquid-cooled jacket, the heat transport flow system supplied from the inlet port to the first flow path can facilitate the entire flow of the plurality of second flow paths. Thereby, heat exchange can be suitably performed between the heat transfer fluid and the heat generating body of the entire second flow path. Further, the inlet port and the discharge port are disposed to be relatively close to the heat generating body. According to such a liquid-cooled jacket, the heat transport flow system supplied from the inlet port to the first flow path makes it easy to flow the second flow path in the vicinity of the heat generating body at a rapid flow rate. Thereby, heat exchange between the heat transfer fluid and the heat generating body flowing at the rapid flow rate can be suitably performed. That is, for example, a heat generating system such as a CPU does not pass through a heat diffusion sheet 102 (refer to FIG. 3) called a heat spreader, and is installed in a liquid cooling jacket, and heat of the heat generating body is hard to be transmitted. When the entire liquid cooling jacket is reached, the heat transfer fluid can be efficiently radiated by flowing the second flow path in the vicinity of the heat generating body at a rapid flow rate. Further, the above heat generation system is a CPU. According to this type of liquid-cooled ferrule, heat is efficiently exchanged between the CPU and the heat transfer fluid to cool the CPU. According to the present invention, it is possible to provide a liquid cooling jacket that efficiently cools a heat generating body such as a CPU. [Embodiment] 12 丄05〇49. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. <<First Embodiment>> First, the liquid cooling system and the liquid cooling jacket relating to the first embodiment will be described with reference to Figs. Fig. i is a configuration diagram of the liquid cooling system relating to the first embodiment. Fig. 2 is a perspective view showing the entire liquid cooling jacket of the first embodiment. Fig. 3 is an overall perspective view from the lower side of the liquid cooling jacket of the first embodiment. Fig. 4 is a perspective view showing the liquid cooling jacket of the first embodiment, showing a state in which the cover unit is omitted. Fig. 5 is a plan view showing the liquid-cooling jacket of the first embodiment, omitting the inlet pipe and the discharge pipe. Fig. 6 is a cross-sectional view of the liquid cooling jacket of the first embodiment shown in Fig. 2; Fig. 7 is an exploded perspective view showing the liquid cooling jacket of the first embodiment. Fig. 8 is a graph schematically showing the effect of the liquid-cooling jacket of the first embodiment. <<Configuration of Liquid Cooling System>> As shown in Fig. 1, the liquid cooling system S1 of the first embodiment is a system of φ mounted on a personal computer body 120 (electronic device) of a tower type personal computer. A system for cooling a CPU 热 (heat generator) constituting the body of the personal computer. The liquid cooling system S1 mainly includes: a liquid cooling jacket J1 in which the CPU 1 〇1 is installed at a predetermined position (refer to FIG. 3); and a heat radiator 121 that discharges heat transferred from the cooling water (heat transfer fluid) to the outside (heat release) a micro-pump 22 (heat transfer fluid supply device) that circulates cooling water; a reserve tank 123 that absorbs expansion/contraction of cooling water according to temperature changes, and a curved hose 124 that connects these; Deliver hot cooling water. As the cooling water, for example, ethylene glycol (ethylene gluc〇i) 13 丨 1355049 is used; In the case of the cooling water circulation, these machines are also operated by the micro-pull 122. <<Composition of Liquid Cooling Cartridge>> Next, the liquid cooling jacket constituting the liquid cooling system S1 will be described in detail; As shown in Figs. 2 and 3, the liquid cooling jacket gJ1 is attached to the center (the predetermined position) of the lower side (inside side) of the liquid cooling jacket gJ1 via thermal diffusion, and the 1〇2 (heat diffuser) cpu 101 is broken. In this way, in the state where the CPU 1〇1 is installed, the water circulation liquid is used to cool the J1 β, and the liquid cooling system causes the CPU 101 to generate heat while being heated by the internal cooling water. In exchange, the heat received from the CPU 101 is transmitted to the cooling water, and as a result, (10) (8) is efficiently cooled. Further, the 'heat-diffusing sheet 1〇2 is a sheet for efficiently transferring the heat of (10) ιι to the bottom wall U of the sheath body 1〇 to be described later, and is formed of, for example, a metal having high thermal conductivity such as copper. . Such a liquid-cooled jacket J1 is mainly composed of a sleeve E body 1 , a flat tube bundle 20 (tube bundle), and a lid unit 30 as shown in Figs. 4 to 7 . The sleeve E, the flat tube bundle 20, and the lid unit 3 are formed of a metal or a metal, unless otherwise specified. Thereby, the liquid cooling jacket J1 is lightened and easy to install. The casing of the shallow bottom of the casing body 1 is the bottom wall 11 and the peripheral wall 12, and the inside thereof is provided with a storage chamber for accommodating the flat tube bundle 20 (refer to 7)). Such a sleeve body 10 is, for example, a part of the opening edge of the body 1 by a scale (die-casting), casting, forging, etc., corresponding to 1355049 The shape of the notch portion 31c of the cap body 31 to be described later is a flat tube bundle> a position matching portion 14 having a meandering shape. The flat official beam 20 is placed in the casing body 1〇, and the space 10a and the space 1 are separated (the hole is broken at the both ends thereof and not the work room 10c (refer to Figs. 4 and 5).

系等的銘合金構成焊㈣,在㈣本體1Q 作熱交換(熱移動)的方式被接合·固定(參考第二以: 間他係作為第-流路A1的功能,空間1(^作為第 路C1的功能。 于作為第二流 扁平管束20料既定數目的扁平管21在其厚度 被束缚 '接合的物件(參考第6、7圖)。各扁平管二且 有一個或複數個(在第一實施例中為兩個)的中空部^、 ▲又’各中空部21a係作為冷卻水流通的第二流路^的功 月匕亦即,各第二流路Bla的剖面看為矩形,肖由位於在 其兩側的扁平管21的周壁21b、21b構成的側壁部(第二户 路構成部)、和由位於其上下側的周壁m或分隔壁”二 構成的上壁部(第二流路構成部)或下壁部(第二流路構成 部)被包圍。因此,扁平管束2()係、具有由複數的第二流路 心’’料’複數的第二流路Bla構成的第二流路群 在此,CPU 1 01係如前述般,在底壁丨丨的下側(外側) 的約略中央位置被安裝(參考第3圖八藉此’ cpu ι〇ι的 熱係經由底壁11,成為傳達至包圍各扁平管21的中空部 21a(第二流路Bia)的周壁21b、和分隔相鄰的中空部 的分隔壁21c。又,傳達至周壁21b和分隔壁21c(熱交換 部)的熱係變成傳達至流通各第二流路Bla的冷卻水。藉 此,CPU 101 係成 A 士 水熱交換。…要和流通第二流路群B1部份的冷卻 又猎由將複數個扁平管21束缚而構 自CPU ] 01的埶僂娃n丄 ’卞S束20, 由於和冷卻水直接熱交換的周壁 2lb(熱父換部)増加,可在⑽丨 熱交換。藉此,可有W…D &quot;水之間有效率地 J有效率地冷卻CPU 101。 H一,1路、第二流路群(複數的第二流路)、第三流路] 說明有關第一流路A1、第二流 的第二流路Bla)、第三流路Cle 群叫複數 第一流w係由微幫浦122供給冷卻水的流路,在微 浦122側(比第二流路群B1上流側)被配置。 第二流路群B1係在第一流路A1的下流側被配置,構 ^第Γ流路群β1的各第二流路Bla係自第-流路A1分 ★藉此冷部水自第一流路A1被分配,成為流入各第二 流路B1 a的方式。 第一机路ci係在第二流路群B1 (亦即,複數的第二流 路Bla)的下流側被配置’使複數的第二流路…集合。藉 此:自各第二流路Bla流出的冷卻水係在第三流路π集合 之後,成為在液冷套匣^^被排出的方式。 第机路A1和第三流^ C1的流路剖面積係被設定比 各第二流路Bla的流路剖面積大。各第二流路—的流路 長(各扁平管21的長度)係對於經由相當於有關習知技術 的爲平管束20的部份的全部蛇行的一個流路,大幅度地變 短。 1355049 因此,以第一流路A1、各第二流路Bla ' 法 的順序μ通的冷卻水受到的壓力損失係幾乎不會發生在 ::路Α1和第三流路C1,在各第二流路Bia,對於自 ,行的-個流路受到的壓力損失,大幅度地變小。藉此’: :使=套SJ1供給冷卻水的微幫浦122的額定‘出下 繁浦12 2的小型化和其噪音被減低。 〈蓋單元〉In the case of the fourth alloy, the heat is exchanged (heat-moving), and it is joined and fixed (refer to the second one: the function of the first-flow channel A1, space 1 (^ as the first The function of the path C1. As a second flow of the flat tube bundle 20, a predetermined number of flat tubes 21 are bound at their thicknesses 'joined objects (refer to Figures 6, 7). Each flat tube has one or more (in In the first embodiment, the two hollow portions ^, ▲ and 'the hollow portions 21a are the second flow paths of the cooling water flowing, that is, the cross sections of the second flow paths Bla are rectangular. The side wall portion (the second house configuration portion) formed by the peripheral walls 21b and 21b of the flat tubes 21 on both sides thereof and the upper wall portion formed by the peripheral wall m or the partition wall "two on the upper and lower sides" ( The second flow path constituting portion) or the lower wall portion (second flow path constituting portion) is surrounded. Therefore, the flat tube bundle 2() has a second flow path having a plurality of second flow path cores The second flow path group formed by Bla is here, and the CPU 101 is approximately the center of the lower side (outer side) of the bottom wall 如 as described above. The heat is transmitted through the bottom wall 11 to the peripheral wall 21b of the hollow portion 21a (second flow path Bia) surrounding the flat tubes 21, and the separation phase. The partition wall 21c of the adjacent hollow portion, and the heat transmitted to the peripheral wall 21b and the partition wall 21c (heat exchange portion) are transferred to the cooling water flowing through each of the second flow paths B1a. Water heat exchange....The cooling of the part of the second flow path group B1 is hunted by the plurality of flat tubes 21 and constructed from the CPU of the CPU. The direct heat exchange of the peripheral wall 2lb (hot father change) is added, and the heat exchange can be performed at (10). Thereby, the CPU 101 can be efficiently cooled efficiently between W...D &quot; water. H1, 1 way a second flow path group (a plurality of second flow paths), a third flow path] a description of the first flow path A1, the second flow path of the second flow path Bla), and a third flow path Cle group called the plural first flow line w The flow path for supplying the cooling water by the micro pump 122 is disposed on the side of the micropus 122 (the upstream side of the second flow path group B1). The second flow path group B1 is first. The downstream side of the road A1 is disposed, and the second flow path Bla of the second flow path group β1 is divided from the first flow path A1. The cold water is distributed from the first flow path A1, and flows into the second flow. The manner of the flow path B1 a. The first machine path ci is disposed on the downstream side of the second flow path group B1 (that is, the plurality of second flow paths B1a), so that a plurality of second flow paths are integrated. The cooling water flowing out from the second flow path Bla is formed in the liquid cooling jacket after the third flow path π is collected. The flow path sectional area of the first machine A1 and the third flow C1 is It is set to be larger than the flow path sectional area of each of the second flow paths Bla. The flow path length of each of the second flow paths (the length of each of the flat tubes 21) is greatly shortened for one flow path through all the meandering portions of the flat tube bundle 20 corresponding to the related art. 1355049 Therefore, the pressure loss caused by the cooling water in the order of the first flow path A1 and the second flow path Bla' method is hardly occurred in the following: the path 1 and the third flow path C1, in the second flow Road Bia, the pressure loss on the flow path from the line to the line is greatly reduced. By this, the miniaturization of the micro-push 122 of the cooling water is supplied to the cooling water, and the noise is reduced. <cover unit>

蓋單元30係如第7圖所示般,主要具備蓋本 進入管32、和排出管33。 [蓋本體] 盖本體31係在收容扁平管束2〇的套匣本體ι〇作為蓋 般在套匣本體1〇被接合•固定。在蓋本體31,在第一 流路A1(空間1〇a)連通的進入口 31a、和在第三流路(空 間10c)連通的排出口 31b被形成(參考第7圖)。 又蓋本體31係具有成為缺口的缺口部缺口部 31c的形狀和套£本體1〇的位置配合部14 一致。藉此, 蓋本體31(蓋單元3〇)係僅以既定的方向,成為和套匿本體 1 〇組合的方式。 (進入口、排出口) 進入口 31a和排出口 31b係如第5圖所示般,從平面 上看,使CPU 101作為中心而以點對稱被配 對地遠離般被配置。換言之,進〇31a、排出口31^ 101係在正面看呈現正方形的液冷套£ η的對角線上被配 置。再說明的S ’進人口 31a係在第5圖中的左上側被配 17 下側配置, 現正方形的 置’另一方面’排出口 31b係在第5圖中的右 進入31a和排出口 gib的約略中間位置(呈 液冷套11 J1的約略令心),CPU 1〇1配置。 也因此,自進入管32的冷卻水係經由進入口 31a、第一 流路A1’成為在第二流路群B1的全體(複數的第二流路Bla 的全體)約略均等地被供給。又,流通第二流路群B1全體 的冷卻水的全體,# CPU 1G1之間,成為有效率地被熱交 八人自複數的第二流路B1 a流出的冷卻水係在第三 籲 机路ci集合之後’經由排出口 31b、排出管33,成為在液 冷套£ J1的外部被排出的方式。 [進入管、排出管] 進入官32係在蓋本體31被固定。在進入管32,與液 冷套匣J1的上流側的微幫浦122(參考第1圖)相通的彎軟 管124被連接6又’自微幫浦122的冷卻水係經由進入管 32的中空部和進入口 31a,成為在第一流路M被供給方 式。 · 排出管33係在蓋本體31被固定。在排出管33,與液 冷套11 J1的下流側的放熱器121 (參考第1圖)相通的臂軟 管124被連接。又,在第三流路ci集合的冷卻水係經由排 出口 31b和排出管33的中空部,成為在液冷套匣J1的外 部被排出的方式。 進入管32和排出管33係在蓋本體31的上面側以立設 狀態被固定。藉此,僅由液冷套匣jl的上面侧,使彎軟管 18 1355049 即,在 在液冷 理係容 124 124成為可在進入管32、排出管33連接。亦 被限制空間的個人電腦本體120内(參考第!圖), 套匿J1連接的彎軟管124、124(參考第】圖)的處 《液冷套匣的作用效果》 其次,說明有關液冷套匣n的作用效果。 個人電腦本體120(第1圖)的電源被開啟(ON)的話, 〇 1作動,發熱開始。又,CPU i Q i的熱係經由熱擴散 片102,傳達至本體1〇的底壁u,且主要傳達至構成 扁平s束20的各扁平管21的周壁gib和分隔壁21c。 、另一方面,和個人電腦本體120的電源的0N連動,微 幫浦22作動,冷卻水循環。這樣的話,在液冷套匣η中, 冷卻水以第一流路A1、第二流路群B1(複數的第二流路 B1 a )、第二流路c 1的順序流通。 又,在流通各扁平管21的周壁2ib和分隔壁21ε以及 各第二流路Bla的冷卻水之間被熱交換,傳達至周壁21b 和分隔壁21c的CPU 101的熱傳達(移動)至冷卻水,冷卻 水受熱。 其次,在各第二流路B丨a受熱的冷卻水係在第三流路 C1集合之後,經由排出口 31b、排出管33,在液冷套匣 的外部被排出》被排出的冷卻水係通過彎軟管124,在放 熱器121被供給’在放熱器121中的冷卻水的熱被放熱。 又’溫度降低的冷卻水係經由儲備槽123、彎軟管124,在 微幫浦122流過之後,再被供給至液冷套匣ji。 19 1355049 如此’藉由(1)自0卩11101朝熱擴散片1〇2、底壁1〇1、 各扁平管21的周壁21b和分隔壁21c的熱的傳達、(2)自 周壁21b和分隔壁21c朝冷卻水的熱的傳達、以及(3)在放 熱器121中的冷卻水的放熱連續,cpu 1〇1被有效率地冷 卻。 又,CPU 101的熱係在複數的扁平管21的周壁21b和 刀隔壁21c分散傳達,由於此各周壁2ib和分隔壁21c的 熱傳達至流通各第二流路Bla的冷卻水,可有效率地冷卻 CPU 101 〇 又,在液冷套匣J1被供給的冷卻水係在液冷套匣Η 内,經由流路剖面積大的第一流路Ai,流路長度短,且主 要在流通作為熱交換的複數的第二流路Bla(第二流路群 B1)之後’由於藉由流路剖面積大的第三流路C1集合被排 出,在液冷套匣J1中,冷卻水受到的壓力損失變小。藉此, 可使微幫浦12 2小型化,液冷系統s 1的適用範圍變廣。 又’根據此類的液冷套匣J1(本發明品),如第8圖所 示般,比具有一個長的蛇行的第二流路的習知的液冷套匣 (習知品),藉由低壓力損失且高流量,可使冷卻水流通。 亦即,如第8圖所示般,對於一個微幫浦的壓力損失-流量 曲線’和有關習知品的流量曲線的交點Μ1,上述壓力損失 -流量曲線以及和有關本發明品的流量曲線的交點Μ 2係在 右下側移動(shift),根據液冷套匣j!(本發明品)’可得 知壓力損失變小,流量變高。 《液冷套匣的製作方法》 1355049 主要參考 製作扁平 固定扁平 其次,有關液冷套n η的製作(製造)方法, 第7圖說明。液冷套HJi的製作方法主要包括: 管東20的第一工程;以及在套®本H 10接合· 管束20的第二工程。 〈第一工程〉 使複數個扁平管21以適當的手段—邊接合一 缚。其次,使被束缚的兩端切斷•研削而—致 管束20。 表作扁平 〈第二工程〉 使扁平管束20在套E本體1〇的底壁n的既定位置 以適當的手段⑷-Sn等的焊材和焊劑[flux]),可孰交換 地接合•固定U ’將扁平管束2Q在錢本體iq固定之 際,在扁平管束20的兩端側,確保上述的空間i〇a(第— 流路A1)、空間10c(第三流路π)。 之後,進入管32、排出管33係使在既定位置被固定 的蓋本體31藉由適當的手段,在套匣本體1〇接合·固定。 藉此,可得到液冷套匣门。 又’將蓋本體31在套匣本體10固定之後,固定進入 管32、排出管33在蓋本體31即可。 如此’根據有關第一實施例的液冷套匣η的製作方 法,將複數的扁平管21作為扁平管束20,將此扁平管束 20固定在套匣本體1〇,藉由固定蓋本體31的簡易工程, 可得到液冷套匣j 1。 《第二實施例》 21 其次,有關第二實施例的液冷套ϋ,參考第9、10圖 說明。第9圖係為有關第二實施例的液冷套㈣全體立體 圖,表示省略蓋單元的狀態。第1。圖係為有關在第9圖表 不的第一貫施例的液冷套匣的γ — γ剖面圓。 如第9'10圖所示般,有關第二實施例的液冷套匿係 代替有關第-實施例的液冷套£ η的扁平管束2。,且備 =平=束23作為特徵。扁平管束23的外形尺寸係和有關 第一實施例的扁平管束2G相同,使薄板狀的爲平管以以 :數個,(在第9、1。圖為三個)重疊束缚而被構成。各扁平 &quot;24係在其内部’具有複數的(在第9、1〇圖為12個)中 空部W,各中空部24a係成為第二流路…,其結果,扁 Η:官束23係具有由複數的第二流路.構成的第二流路群 在此’由於各扁平管24係為薄板狀,在其内部 的中空部24a的個數(在第9圖為⑴固)係比在有關第 施例的扁平管21内被形成的中空部…的個數(兩個)多。 藉此’構成扁平管束23的扁平管24的數目(三個)係 成有關第-實施例的扁平管束2〇的扁平管21的數目 第7圖,2。個)少。亦即’有關第二實施例的扁平管束『 係對於有關第一實施例的扁平管束2〇,可減少束缚( 的扁平管24的數目’可不費工夫容易地構成。 《第三實施例》 其-人’有關第二實施例的液冷套匣,參考第 說明第11圖係為有關第三實施例的液冷套厘的全體立體 22 1355049 圖。第12圖係為有關第三實施例的液冷套匿的平面圖。 《液冷套匣的構成》 如第11、12圖所示般,有關第三實施例的液冷套昆 J3係和有關第一實施例的液冷套匣ji比較,具備進入口 34a和排出口 34b在不同位置被形成的蓋本體34。 進入口 3 4 a係在空間1 〇 a (第一流路A1)的約略中央位 置連通’冷卻水成為在空間1 的約略中央位置被供給。 排出口 34b係在空間丨0c(第三流路)的約略中央位置連 通,冷卻水係自此約略中央位置被排出。進入口 34a和排 出口 34b係從平面看,和Cpul〇1作為中心對稱地被設置, 且在接近CPU 101的位置被配置。 又,蓋本體34也和有關第一實施例的蓋本體31相同, 具有與套匣本體1〇的位置配合部14對應的形狀的缺口部 34c。 《液冷套匣的作用效果》 其人簡單說明有關液冷套匣J3的作用效果。 進入口 34a和排出口 34b係藉由作為被配置在接近cpu 101的位置的構成,自進入口 34a被供給至第一流路Μ(空 間10a)的冷卻水係成為容易優先地在CPU 101的附近的第 二机路Ma流通。藉此,在冷卻水和CPU 101之間,可適 田地作熱父換’可有效率地冷卻CPU 101。 《第四實施例》 人有關第四實施例的液冷套匣,參考第13〜圖 說明。第13圖係為有關第四實施例的液冷套匣的全體立體 23 1355049 圖,表示省略蓋單元的狀態。第14圖係為有關在第i3圖 表示的第四實施例的液冷套£的z〜z剖面圖。第15圖係為 在第14圖表示的Z-Z剖面圖的擴大圖。第16圖係為表; 有關第四實施例的液冷套£的鰭片元件的第一製作方法的 立體圖,其巾⑷表示切斷前,⑻為切斷後。第17圖係為 表示有關第四實施例的液冷套匿的鰭片元件的第二製作^ 法的立體圖,《中(a)表示切削前,⑻為切削後。第以圖 係為有關第四實施例的摩擦攪拌接合的立體圖。第19圖係 為有關第四實施例的摩擦攪拌接合的剖面圖。第2 〇圖係表 示有關第四實施例的摩擦攪拌接合中的工具的動作的平 圖。 《液冷套匣的構成》 如第13、14圖所示般,有關第四實施例的液冷套匣 J4係代替有關第一實施例的液冷套匣η的扁平管束2〇, 以具備鋁或鋁合金製的鰭片元件25作為特徵。 —又,有關第四實施例的套Ε本體10係具備在其内側收 容鰭片元件25的鰭片收容室,此鰭片收容室係被圍在周壁 12。又,鰭片元件25係在底壁u被焊接固定且在鰭片 收容室被收容,藉由蓋本體31(密封體)在套匣本體1〇的 開口作為蓋,鰭片收容室係被密封(參考第14圖)^ 〈鰭片元件〉 鰭片凡件25係如第14圖所示般,具備基板25a以及 在此立設的複數的鰭片25b。基板25a係在套£本體1〇的 底壁11以可熱交換的方式被接合•固定。因此,cpu ι〇ι 24 1355049 的熱係經由熱擴散片102、底壁u,成為傳達至 的方式。又,各鰭片25b的上側前 一 J則知係在盍本體31的裏面 抵接。又,基板25a和套£本體1〇係藉由M si—zn系等 的紹合金構成的焊材,確實地以可熱交換的方式被接合為 較佳。 又’相鄰的藉片25b、25b之間係分別成為第二流路 心。亦即’鳍片元件25係具有複數的第二流路B3a,亦 鲁即’由複數的第二流路B3a構成的第二流路群Μ。 如第15圖所示般,相鄰的鰭片25b、25b的距離(亦即, 作為第二流路B3a的寬度的溝寬度ffi)係被設計在 1.1mm藉此,可將液冷套匣J4的熱抵抗、和通過其 内部的冷卻水所受到的麼力損失,藉由後述的實施例說明 般’作為良好的範圍。 又溝寬度W1和鰭片25b的厚度τι(亦即,相鄰的第 二流路B3a、B3a之間的鰭片25b的厚度τι)係滿足以下的 _ 式(1)的關係。藉此,液冷套匣J4的熱抵抗變小,在cpul〇1 和冷卻水之間’可良好地作熱交換。 -0.375 X Π + G.875 S T1/W1 $ -L875 χ W1 + 3 275 …⑴ 又’溝寬度W1和深度D1(第二流路B3a的深度)係滿 足以下的式(2)的關係。藉此,可將液冷套匣J4的熱抵抗 作為最適當。 5 X W1 + 1 ^ D1 $ 16.25 X + 2.75 …(2) 《液冷套匣的作用效果》 其-人’簡單說明有關液冷套匣J4的作用效果。 25 1355049 冷卻水係以第一流路A1、第二流路群B3(複數的第二 流路B 3 a )、第三流路C1的順序流通。垃装 接署,主要在流通 第二流路群B3的冷卻水和複數的鰭片i 30之間作熱交換。 其結果可有效率地冷卻CPI) 10h ' 《液冷套匣的鰭片元件的製作方法》 其次,以例子表示液冷套匣j 4的褚H —生 的鳍片讀25的製作 (製造)方法。 〈鰭片元件的第一製作方法〉 首先,有關鰭片元件25的第一製作古、土 么 泉作方法,參考第16 圖說明。 如第16(a)圖所示般,使用既定的模型,製作具有底 板42和被立設在底板42的複數的鉻μ从人ρ Λ 、- 扪條43的金屬製的擠製件 41。又’藉由將擠製件41在既定的如磨 #几疋的切斷面切斷,可製且 備基板25a(底板42的一部份)和複數的韓片挪(複數的條 43的一部份)的縛片元件25(參考第i6(b)圖)。 〈轉片元件的第二製作方法〉 其次,有關鰭片元件25的第_ 圖說明。 的第-製作方法,參考第17 如第ma_示般’在對應於_片25的外型的大小 的金屬製的塊44,使用適當的 , Λ . 則工具’形成複數的溝 44a。這樣做的話,可製作呈 a, f果乍具備基板25a和複數的鰭片25b 的鰭片7L件25(參考第17(b)圖 《液冷套匣的組裝》 其次’在液冷套匣】4的 *裝中’有關鰭片元件25被 26 1355049 固定的套E本體10和蓋單元30間的摩擦攪拌接合主 參考第18~20圖說明。 σ 如第18圖所示般’在韓片元件25被焊接固定的套匠 本體10,一邊使缺口部31c和位置配合部14配合,一邊 覆蓋蓋單元30。又’如第19圖所示般,奈 \ ^ 奮匣本體10的開 口緣係成為段差,在下降一層的段差部# σ 之上’蓋本體 31被承載。段差部15的寬度W11係兔·Γλ 1乐為了確保冷卻水流過 的第-流路Μ和第三流路Π等的容積,儘可能的小且 體而言,設定在0.卜〇.5mm程度較佳。 接著,將周壁12和蓋本體31間的配合部…吏用摩捧 攪拌接合用的工具20 0,作摩擦攪拌接合。這樣做的話, 在工具200的後#,摩擦授拌接合部κ(參考第15圖)被形 成,周壁丄2和蓋本體31被接合。在此,工具2〇〇的銷2〇1 的。長度L5係在作為被接合元件的蓋本體Μ的厚度η的 6〇乂以下為較佳。如上述,藉由作兔βη〇/ Q1 藉由作為6⑽以下,根據蓋本體 的材質,即使上述的段差部15的寬度wu小,藉由工 具200的加壓力,配合部pi车 變形。 PP1係不易在套^體丨〇的内側 制、Γ鏟工具Λ0係藉由NC等的工作機械(未圖示)被控 ' 且沿者配合部P1被動作(參考第18圖)。 又’摩擦攪拌接合之際,在套匣太 仕奮把本體10的周壁12的 ° _接適當的治具21〇。藉此,月辟nn 9no _ 棺此周壁12薄,工具200 待,例如外周面和周壁12的外周面間的距離L6(間隙) 係例如,即使在以下,藉由工具200的_^ 27 1355049 周壁12不易在外側變形。 再加上,如上述,周壁12薄時,為了避免工具2〇〇和 治具210的接觸,使治具21〇的表面對於配合部η的表 面’下降1.0〜2.0 mm程度較佳。The cover unit 30 mainly includes a cover entry pipe 32 and a discharge pipe 33 as shown in Fig. 7. [Cap body] The cap body 31 is joined and fixed to the ferrule body 1 by a ferrule body ι that accommodates the flat tube bundle 2 as a cover. In the cap body 31, an inlet port 31a that communicates between the first flow path A1 (space 1A) and a discharge port 31b that communicates with the third flow path (space 10c) are formed (refer to Fig. 7). Further, the cover main body 31 has a shape in which the notch portion notch portion 31c which is a notch is formed in conformity with the position fitting portion 14 of the main body 1''. Thereby, the cap body 31 (cover unit 3) is combined with the nest body 1 in only a predetermined direction. (Inlet port, discharge port) The inlet port 31a and the discharge port 31b are arranged as shown in Fig. 5, and the CPU 101 is arranged in a point symmetry with respect to the center as viewed from the plane. In other words, the inlet 31a and the discharge port 31^101 are arranged on the diagonal line of the liquid cooling jacket η which is square in front. The S 'into population 31a, which is described again, is arranged on the lower left side of the fifth figure, and is arranged on the lower side of the line, and the square side is placed on the right side 31a and the discharge port gib in the fifth figure. The approximate middle position (in the case of the liquid cooling jacket 11 J1), CPU 1〇1 configuration. Therefore, the cooling water from the inlet pipe 32 is supplied to the entire second flow path group B1 (the entirety of the plurality of second flow paths Bla) via the inlet port 31a and the first flow path A1'. In addition, the entire cooling water flowing through the entire second flow path group B1 and the #CPU 1G1 are efficiently cooled by the second flow path B1 a of the eight-person self-complexing number. After the collection of the path ci, the discharge port 31b and the discharge pipe 33 are discharged to the outside of the liquid cooling jacket J J1. [Inlet Tube, Discharge Tube] The entry panel 32 is fixed to the lid body 31. In the inlet pipe 32, the curved hose 124 communicating with the micro-pull 122 (refer to FIG. 1) on the upstream side of the liquid-cooling jacket J1 is connected to the cooling water system of the micro-pump 122 via the inlet pipe 32. The hollow portion and the inlet port 31a are supplied to the first flow path M. The discharge pipe 33 is fixed to the cover body 31. In the discharge pipe 33, the arm hose 124 communicating with the radiator 121 (refer to Fig. 1) on the downstream side of the liquid jacket 11 J1 is connected. In addition, the cooling water collected in the third flow path ci passes through the discharge port 31b and the hollow portion of the discharge pipe 33, and is discharged to the outside of the liquid cooling jacket J1. The inlet pipe 32 and the discharge pipe 33 are fixed in an upright state on the upper surface side of the cover body 31. Thereby, the curved hose 18 1355049, that is, the liquid cooling system 124 124 can be connected to the inlet pipe 32 and the discharge pipe 33 only by the upper side of the liquid cooling jacket j1. In the PC main body 120 that is also restricted in space (refer to the figure!), the function of the liquid cooling jacket is shown in the bending hoses 124 and 124 (refer to the figure) connected to J1. The effect of the cold set 匣n. When the power of the personal computer main body 120 (Fig. 1) is turned "ON", 〇 1 is activated, and the heat starts. Further, the heat of the CPU i Q i is transmitted to the bottom wall u of the main body 1 via the heat diffusion sheet 102, and is mainly transmitted to the peripheral wall gib and the partition wall 21c of the flat tubes 21 constituting the flat s bundle 20. On the other hand, in conjunction with the ON of the power supply of the personal computer body 120, the micro-switch 22 is actuated to cool the water circulation. In this case, in the liquid cooling jacket 匣, the cooling water flows in the order of the first flow path A1, the second flow path group B1 (the plural second flow path B1 a ), and the second flow path c 1 . Further, heat is exchanged between the peripheral wall 2ib of the flat tubes 21 and the partition wall 21ε and the cooling water of each of the second channels Bla, and the heat transmitted to the CPU 101 of the peripheral wall 21b and the partition wall 21c is transmitted (moved) to the cooling. Water, cooling water is heated. Then, the cooling water heated by the second flow passage B丨a is collected in the third flow passage C1, and then discharged to the outside of the liquid cooling jacket via the discharge port 31b and the discharge pipe 33. The heat of the cooling water supplied to the radiator 132 in the radiator 121 is exothermic by the curved hose 124. Further, the cooling water having a lowered temperature is supplied to the liquid cooling jacket 经由 after the micro-fluid 122 flows through the storage tank 123 and the bending hose 124. 19 1355049 Thus, by (1) from 0卩11101 toward the heat diffusion sheet 1〇2, the bottom wall 1〇1, the heat transfer of the peripheral wall 21b of each flat tube 21 and the partition wall 21c, (2) from the peripheral wall 21b and The heat transfer of the partition wall 21c toward the cooling water, and (3) the heat release of the cooling water in the radiator 121 are continued, and the cpu 1〇1 is efficiently cooled. Further, the heat of the CPU 101 is dispersed and transmitted to the peripheral wall 21b of the plurality of flat tubes 21 and the blade partition 21c, and the heat of each of the peripheral walls 2ib and the partition wall 21c is transmitted to the cooling water flowing through the respective second flow paths Bla, which is efficient. Cooling the CPU 101, the cooling water supplied to the liquid cooling jacket J1 is in the liquid cooling jacket, and the flow path length is short through the first flow path Ai having a large cross-sectional area of the flow path, and is mainly distributed as heat. After the exchange of the plurality of second flow paths Bla (second flow path group B1), the pressure of the cooling water is received in the liquid cooling jacket J1 because the third flow path C1 having a large cross-sectional area is discharged. The loss becomes smaller. Thereby, the micro pump 12 2 can be miniaturized, and the application range of the liquid cooling system s 1 can be widened. Further, according to such a liquid-cooled jacket J1 (the present invention), as shown in Fig. 8, a conventional liquid-cooled ferrule (a conventional product) having a longer meandering second flow path is used. Low pressure loss and high flow rate allow the cooling water to circulate. That is, as shown in Fig. 8, the intersection of the pressure loss-flow curve of a micro-pump and the flow curve of the conventional product Μ1, the above-mentioned pressure loss-flow curve and the intersection with the flow curve of the present invention The Μ 2 system is shifted at the lower right side, and according to the liquid cooling jacket ! j! (the present invention), it can be seen that the pressure loss is small and the flow rate is high. "Manufacturing method of liquid-cooled jacket" 1355049 Main reference Production of flat fixed flat Next, the production (manufacturing) method of liquid-cooled sleeve n η, Figure 7 illustrates. The liquid cooling jacket HJi manufacturing method mainly includes: the first project of Guandong 20; and the second project of the H10 joint pipe bundle 20 in the sleeve. <First Engineering> A plurality of flat tubes 21 are joined by an appropriate means. Secondly, the two ends of the restraint are cut and grounded to the bundle 20. Flattening <Second Project> The flat tube bundle 20 can be exchanged and fixed at a predetermined position of the bottom wall n of the sleeve E body 1 by a suitable means (4)-Sn or the like (flux). When the flat tube bundle 2Q is fixed to the money body iq, the above-described space i〇a (the first flow path A1) and the space 10c (the third flow path π) are secured on both end sides of the flat tube bundle 20. Thereafter, the inlet pipe 32 and the discharge pipe 33 are joined and fixed to the casing main body 1 by a suitable means by a cover main body 31 fixed at a predetermined position. Thereby, a liquid cooling jacket can be obtained. Further, after the cover main body 31 is fixed to the ferrule body 10, the inlet pipe 32 and the discharge pipe 33 may be fixed to the cover body 31. Thus, according to the manufacturing method of the liquid cooling jacket 有关 according to the first embodiment, the plurality of flat tubes 21 are used as the flat tube bundle 20, and the flat tube bundle 20 is fixed to the ferrule body 1 〇 by the simple fixing of the cap body 31. For engineering, a liquid cooling jacket 匣j 1 can be obtained. <<Second Embodiment>> Next, regarding the liquid-cooling jacket of the second embodiment, reference is made to Figs. Fig. 9 is a perspective view showing the entire liquid cooling jacket (four) of the second embodiment, showing a state in which the cover unit is omitted. First. The figure is a γ-γ cross-sectional circle of the liquid-cooled jacket of the first embodiment of the ninth chart. As shown in Fig. 9'10, the liquid cooling jacket of the second embodiment replaces the flat tube bundle 2 of the liquid cooling jacket of the first embodiment. And = flat = bundle 23 as a feature. The outer shape of the flat tube bundle 23 is the same as that of the flat tube bundle 2G of the first embodiment, and the flat tubes are formed by a plurality of flat tubes (three in the ninth, first, and three figures). Each of the flat &quot;24 series has a plurality of hollow portions W in the ninth and tenth views, and each hollow portion 24a serves as a second flow path. As a result, the flat ridge: the official bundle 23 The second flow path group having a plurality of second flow paths is used here because the flat tubes 24 are in a thin plate shape, and the number of the hollow portions 24a in the inside is (1 (solid) in Fig. 9) More than the number (two) of the hollow portions formed in the flat tubes 21 of the first embodiment. Thereby, the number (three) of the flat tubes 24 constituting the flat tube bundle 23 is the number of the flat tubes 21 relating to the flat tube bundle 2 of the first embodiment. Fig. 7, Fig. 2. Less). That is, the 'flat tube bundle relating to the second embodiment' is reduced for the flat tube bundle 2 of the first embodiment, and the number of the flat tubes 24 can be reduced without any effort. The third embodiment is - Person's liquid-cooling ferrule relating to the second embodiment, with reference to the eleventh drawing of the drawings, is a view of the entire solid body 22 1355049 relating to the liquid-cooled casing of the third embodiment. FIG. 12 is a view relating to the third embodiment. A plan view of the liquid cooling jacket. "Composition of liquid cooling jacket" As shown in Figs. 11 and 12, the liquid cooling jacket J3 of the third embodiment is compared with the liquid cooling jacket of the first embodiment. The cover body 34 having the inlet port 34a and the discharge port 34b formed at different positions is provided. The inlet port 3 4 a is connected to the approximate central position of the space 1 〇a (the first flow path A1) to connect the cooling water to the space 1 The center position is supplied. The discharge port 34b is connected to the approximate center position of the space 丨0c (third flow path), and the cooling water is discharged from the approximate center position. The inlet port 34a and the discharge port 34b are viewed from the plane, and Cpul 〇1 is set symmetrically as the center, The cover body 34 is also disposed in the same position as the cover body 31 of the first embodiment, and has a notch portion 34c having a shape corresponding to the position fitting portion 14 of the casing body 1〇. The effect of the entanglement is described in the following. The inlet port 34a and the discharge port 34b are supplied from the inlet port 34a to the first portion by the configuration of the position close to the cpu 101. The cooling water system of the first-class path (space 10a) is easily circulated in the second machine path Ma in the vicinity of the CPU 101. Thereby, between the cooling water and the CPU 101, it is possible to change the field as a hot parent. The CPU 101 is efficiently cooled. [Fourth Embodiment] A liquid-cooling jacket of the fourth embodiment will be described with reference to Fig. 13 to Fig. 13. Fig. 13 is a perspective view of the liquid crystal jacket of the fourth embodiment. 1355049 is a view showing a state in which the cover unit is omitted. Fig. 14 is a z-z sectional view showing the liquid-cooled jacket of the fourth embodiment shown in Fig. i3. Fig. 15 is a view showing the ZZ shown in Fig. 14. An enlarged view of the section view. Figure 16 is a table; A perspective view of a first method for producing a liquid-cooled fin element of the present invention, wherein the towel (4) indicates before cutting, and (8) is after cutting. Figure 17 is a liquid-cooled nested fin according to the fourth embodiment. A perspective view of the second manufacturing method of the element, "mi" (a) indicates before cutting, and (8) is after cutting. The first drawing is a perspective view of the friction stir welding of the fourth embodiment. Fig. 19 is a fourth embodiment. Fig. 2 is a plan view showing the operation of the tool in the friction stir welding of the fourth embodiment. The constitution of the liquid cooling jacket is as shown in Figs. The liquid-cooling jacket J4 relating to the fourth embodiment is provided with a fin member 25 made of aluminum or an aluminum alloy instead of the flat tube bundle 2 of the liquid-cooling jacket 有关 of the first embodiment. Further, the ferrule body 10 of the fourth embodiment is provided with a fin accommodating chamber for accommodating the fin member 25 on the inner side thereof, and the fin accommodating chamber is surrounded by the peripheral wall 12. Further, the fin element 25 is fixed to the bottom wall u by being welded and housed in the fin accommodation chamber, and the opening of the cover body 1 is used as a cover by the cover body 31 (sealing body), and the fin accommodation chamber is sealed. (Refer to Fig. 14) ^ <Fin Element> As shown in Fig. 14, the fin member 25 includes a substrate 25a and a plurality of fins 25b which are erected here. The substrate 25a is joined and fixed in a heat exchange manner to the bottom wall 11 of the body 1〇. Therefore, the heat of cpu ι〇ι 24 1355049 is transmitted to the heat diffusion sheet 102 and the bottom wall u. Further, the upper side J of each fin 25b is known to be in contact with the inside of the body 31. Further, the substrate 25a and the body 1 are preferably joined by heat exchange so as to be welded by a welding material such as a metal alloy such as a Msi-zn system. Further, the adjacent borrowing pieces 25b and 25b are respectively the second flow path. That is, the fin element 25 has a plurality of second flow paths B3a, that is, a second flow path group 构成 composed of a plurality of second flow paths B3a. As shown in Fig. 15, the distance between the adjacent fins 25b, 25b (i.e., the groove width ffi as the width of the second flow path B3a) is designed to be 1.1 mm, whereby the liquid cooling can be set. The heat resistance of J4 and the loss of force received by the cooling water inside thereof are as good as described by the examples described later. Further, the groove width W1 and the thickness τ1 of the fin 25b (that is, the thickness τ1 of the fin 25b between the adjacent second flow paths B3a and B3a) satisfy the following relationship (1). Thereby, the heat resistance of the liquid cooling jacket J4 becomes small, and heat exchange is favorably performed between cpul〇1 and the cooling water. -0.375 X Π + G.875 S T1/W1 $ -L875 χ W1 + 3 275 (1) Further, the groove width W1 and the depth D1 (the depth of the second flow path B3a) are sufficient to satisfy the relationship of the formula (2). Thereby, the heat resistance of the liquid cooling jacket J4 can be made most appropriate. 5 X W1 + 1 ^ D1 $ 16.25 X + 2.75 ... (2) "The effect of liquid-cooled ferrules" - People's simple description of the effect of the liquid cooling jacket J4. 25 1355049 The cooling water flows in the order of the first flow path A1, the second flow path group B3 (the plural second flow path B 3 a ), and the third flow path C1. The garbage is mainly exchanged between the cooling water flowing through the second flow path group B3 and the plurality of fins i 30. As a result, the CPI can be efficiently cooled. 10h 'The manufacturing method of the fin element of the liquid-cooled jacket>> Next, the production (manufacture) of the fin-reading 25 of the liquid-cooling jacket 4j method. <First Manufacturing Method of Fin Element> First, the first method of making the ancient element and the earth element of the fin element 25 will be described with reference to Fig. 16. As shown in Fig. 16(a), a metal extruded member 41 having a bottom plate 42 and a plurality of chrome μ from the human ρ - and the 扪 strip 43 which are erected on the bottom plate 42 is produced by using a predetermined model. Further, by cutting the extruded member 41 at a predetermined cut surface such as a number of mills, a substrate 25a (a part of the bottom plate 42) and a plurality of Korean pieces can be prepared (multiple strips 43) Part of the tab element 25 (see figure i6(b)). <Second Manufacturing Method of Rotating Element> Next, the description of the fin element 25 will be described. In the first production method, reference is made to the seventh block, as shown in Fig. 3, in a metal block 44 corresponding to the size of the outer shape of the sheet 25, and the tool is used to form a plurality of grooves 44a. In doing so, it is possible to produce a fin 7L member 25 having a substrate 25a and a plurality of fins 25b (refer to Fig. 17(b) "Assembly of liquid cooling jacket" followed by a liquid cooling jacket. 】 4 * * In the case of the fin element 25 fixed by 26 1355049 fixed between the E body 10 and the cover unit 30 friction stir joint main reference 18 ~ 20 illustration. σ as shown in Figure 18 'in Korea The cover member 25 is welded and fixed to the cover body 10, and the cover unit 30 is covered while the notch portion 31c and the position fitting portion 14 are fitted. Further, as shown in Fig. 19, the opening edge of the body 10 The step is a step, and the cover body 31 is carried over the step portion # σ of the descending layer. The width W11 of the step portion 15 is the first flow path and the third flow path for ensuring the flow of the cooling water. The volume of the space is as small as possible and the body is preferably set at 0. 〇. 5 mm. Next, the fitting portion between the peripheral wall 12 and the lid body 31 is used to hold the tool for stirring and bonding 20 0 For friction stir welding. In doing so, at the back # of the tool 200, the friction stir joint κ (refer to Fig. 15) is shaped. The circumferential wall 丄 2 and the lid body 31 are joined. Here, the pin 2 〇 1 of the tool 2 。 is formed. The length L5 is preferably 6 〇乂 or less of the thickness η of the lid body 作为 as the member to be joined. As described above, by making the rabbit βη〇/Q1 6 (10) or less, depending on the material of the lid body, even if the width wu of the step portion 15 described above is small, the fitting portion pi is deformed by the pressing force of the tool 200. It is not easy to be made inside the sleeve body, and the shovel tool Λ 0 is controlled by a working machine (not shown) such as NC and is operated along the fitting portion P1 (refer to Fig. 18). At the time of joining, the set of the peripheral wall 12 of the body 10 is attached to the appropriate jig 21 〇. By this, the nn 9no _ 棺 棺 棺 棺 棺 棺 棺 棺 棺 棺 棺 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 12 工具 工具 12 工具 工具 工具 工具 工具 工具 工具The distance L6 (gap) between the outer peripheral surfaces of 12 is, for example, even if the peripheral wall 12 of the tool 200 is not easily deformed on the outer side by the following. Further, as described above, when the peripheral wall 12 is thin, in order to avoid the tool 2 The contact between the crucible and the jig 210 causes the surface of the jig 21〇 to decrease by 1.0 on the surface of the fitting portion η Preferred degree of 2.0 mm.

又,如第20圖所示般,摩擦攪拌接合令的始端和制 作為重疊(參考符號Q)般’使工具2〇〇動作。藉此,套展 本體10和蓋本體31係、無間隙地被接合,冷卻水不易漏套 外部。其次’將工具200自配合W拆下,將銷2〇ι拔下 *此銷2 01的拔除軌跡係不會被形成在配合部p 1。 《第五實施例》 其次,有關第五實施例的液冷套匣,參考第2卜託圖 s月第21圖係為有關第五實施例的液冷套匣的剖面圖。 第22圖係為在第21圖表示的剖面圖的擴大圖。第μ圖係 為表示有關第五實施例的液冷套匿的鯖片元件的製作方法 的圖不,其中(a)為到削加工中,(b)為刮削加工後。第24 圖係為表不有關第五實施例的液冷套匣的鰭片元件的製作Further, as shown in Fig. 20, the beginning and the end of the friction stir welding command cause the tool 2 to operate as an overlap (reference symbol Q). Thereby, the cover body 10 and the cover body 31 are joined without a gap, and the cooling water is less likely to leak outside the sleeve. Next, the tool 200 is removed from the fitting W, and the pin 2 is removed. * The plucking trajectory of the pin 2 01 is not formed in the fitting portion p1. [Fifth Embodiment] Next, regarding the liquid-cooling jacket of the fifth embodiment, reference is made to a sectional view of the liquid-cooling jacket of the fifth embodiment with reference to Fig. 21 of the second drawing. Fig. 22 is an enlarged view of the cross-sectional view shown in Fig. 21. Fig. 5 is a view showing a method of manufacturing the crotch element of the liquid-cooled entanglement according to the fifth embodiment, wherein (a) is for the cutting process and (b) is for the scraping process. Figure 24 is a diagram showing the fabrication of fin elements of the liquid-cooled jacket of the fifth embodiment.

方法的圖不,其中表示將在第23(b)圖所示的刮削鳍片的 —部份去除之後。第2 5圖係表示有關第五實施例的摩 拌接合的剖面圖。 稞攪 又’對於有關第四實施例的液冷套匣J4,說明不 部份》 °』的 《液冷套匣的構成》The figure of the method does not indicate that it will be removed after the portion of the scraping fin shown in Fig. 23(b). Fig. 25 is a cross-sectional view showing the frictional engagement of the fifth embodiment.稞 又 ’ 'For the liquid-cooled jacket J4 of the fourth embodiment, the description of the composition of the liquid-cooled ferrule

如第21圖所示般’有關第五實施例的液冷套匣係 主要具備套匣本體10C和鋁或鋁合金製的鰭片元件29,CpiJ 28 101係成為被安裝在鰭片元件29的底壁 成0 套匡本請係在第21圖的下側開口,為在内部具有 鰭片收容室的薄型的箱體。 靡片元件2 9係、如後述般,將一片板6 i作到削加工(參 考第23⑷圖),具備底壁29a和複數的金屬製的籍片·。As shown in Fig. 21, the liquid-cooling jacket of the fifth embodiment mainly includes a sleeve body 10C and a fin member 29 made of aluminum or aluminum alloy, and the CpiJ 28 101 is attached to the fin member 29. The bottom wall is made up of a set of 匡 请, please open it on the lower side of the 21st figure, and it is a thin case which has a fin accommodating chamber inside. The cymbal element 2 9 is formed by cutting a sheet 6 i as described later (refer to Fig. 23 (4)), and includes a bottom wall 29a and a plurality of metal sheets.

29a(密封體)的構 複數的W 29b係在底壁29a之上立設,和底壁w被一 體構成。藉此,在底壁29a和鰭片咖之間,熱良好地傳 達0 又,底壁29a係作為密封上述的韓片&amp;容室的密封體 ㈣H相鄰的W 29b ' 29b之間作為第二流路B4a 的功能(參考第22圖^又,液冷套昆乃係具有藉由複數 的第二流路B4a構成的第二流路群B4。又,在鰭片元件29 被安裝在套匣本體1 〇C的狀態中,和第四實施例相同,在 液冷套匣J5内,成為第一流路A1和第三流路π被形成的 方式(參考第13圖)。 《液冷套匣的作用效果》 其次’簡單說明有關液冷套匣J5的作用效果。 冷卻水係依序流通在第一流路Ai(參考第13圖)、第 二流路群B4(複數的第二流路B4a)、第三流路ci(參考第 13圖)。又,主要在流通第二流路群B4的冷卻水和複數的 縛片25b之間被熱交換’可有效率地冷卻cpu 101。在此, 因為底壁29a和鰭片29b係被一體構成,CPU 101的熱係 良好地傳達在複數的鰭片29b,其結果可良好地放熱。 29 1355049 《液冷套匣的鰭片元件的製作方法》 “-人,有關利用刮削加工的液冷套匣J5的鰭片 29的製作(製造、太土 . . _ 件 作方法,參考第23和24圖說明。 如第23(a)圖所示般,將板狀的板61進行在日本特 2〇〇卜326308號公報、日本特開2()()卜352()2()號公報 栽的刮削加工。詳細而言,藉由在板6i將切削工具二 兄角切人’將板61的—部份切下’使複數的到削鰭片63 形成。重複此複數次’製作具有複數的刮削鰭片63的刮削 、門體64 (參考第23(b)圖)》因此,未被切下的板61的部 伤係成為鰭片元件29的底壁29a(密封體)。 接著,和套匣本體1〇C組裝,構成液冷套匣J5之際, 在液冷套匣J5内’第一流路A1和第三流路π被形成般, 將複數的刮削鰭片63的外周側部分以切削工具去除。這樣 做的話’如第24圖所示般,可得到具備底壁29a、與在此 一體地立設的複數的鰭片29b的鳍片元件29。 疋,鰭片元件29的製作方法並不限定於此,在將有 關第四實施例的擠製件41切斷後的鰭片元件25(參考第16 圖)、或藉由溝加工形成的鰭片元件25 (參考第17圖)中, 藉由去取鰭片25b的一部份構成也可。 《液冷套匣的組裝》 又,如第25圖所示般,將套匣本體1〇(:和鰭片元件 29組合,和第四實施例相同,一邊抵接治具21〇,一邊將 八配0部P2作摩擦攪拌接合。又,工具200的銷201的長 度L5係在作為被接合元件的鰭片元件29的底壁2 9a (密封 30 1355049 體)的厚度T3的60%以下為較佳。 《第六實施例》 其久’有關第六實施例的液冷套g,參考第26圖戈 明°第2 6圖係為有關第六實施例的液冷套匣的剖面圖,其 中(a)係表示組裝後的完成狀態,(b)係表示組裝前。 《液冷套匣的構成》 如第26(a)圖所不般,有關第六實施例的液冷套匿 係和有關第一實施例的液冷套匣J1比較,具備套匣本體 i〇A(第一鰭片元件)和蓋單元35(第二鰭片元件)作為特 徵。套ϋ本體10A係具備底壁ιι(第一基板)和在底壁u 隔著既定間隔被立設的複數的鰭片13。另一方面,蓋單元 35係具備蓋本體36(第二基板)和在蓋本體36隔著既定間 隔立設的複數的鰭片3 7。 套S本體10A和蓋單元35係以複數的鰭片13和複數 的鰭片37作為被响合的方式而被組合,蓋本體36係在套 匣本體10A被接合•固定。液冷套匣J6的鰭片全體係由被 嚙合的複數的鰭片13和複數的鰭片37所構成。又,鄰接 的縛片13和鰭片37之間成為第二流路B5a,液冷套gjg 係具有由複數的第二流路B5a構成的第二流路群B5。 如上述,藉由使複數的鰭片13和複數的鰭片37嚙合, 構成鰭片全體’可使複數的鰭片13的間隔dl和複數的鰭 片37的間隔d2分別變廣’根據切削工具等的溝加工變得 容易。 自複數的鰭片13的底壁η的突出長度L1係如第26(b) 圓 rttl 一 不般,被設定為與由自複數的鰭片37的蓋本體%的 :長度L2相同或較短的方式。又’複數的鰭片和底 —係藉由適當的手段,可熱交換地被接合•固定,熱連 藉此,套匣本體10A側(第一基板侧)的CPU 1 〇 1的熱 系不止傳達至複數的鰭片13,也傳達至複數的鰭片37。 亦即,藉由將複數的鰭片13的突出長度L1設定為和 數的韓片37的突出長度L2相同或較短,在組裝套匿本 體1〇A和蓋單元35之際,複數的罐片37的前端(頂部)係The W 29b of the 29a (sealing body) is erected above the bottom wall 29a, and the bottom wall w is integrally formed. Thereby, between the bottom wall 29a and the fin coffee, the heat is well transmitted, and the bottom wall 29a serves as a sealing body (four) H adjacent to the Korean film &amp; chamber, which is adjacent to the W 29b ' 29b. The function of the second flow path B4a (refer to Fig. 22), the liquid cooling jacket has a second flow path group B4 composed of a plurality of second flow paths B4a. Further, the fin element 29 is mounted on the sleeve. In the state of the main body 1 〇C, as in the fourth embodiment, in the liquid cooling jacket J5, the first flow path A1 and the third flow path π are formed (refer to Fig. 13). The effect of 匣 其次 其次 其次 其次 简单 简单 简单 简单 简单 简单 简单 简单 ' ' ' ' ' ' ' ' ' ' ' ' ' 简单 ' B4a), the third flow path ci (refer to Fig. 13). Further, the heat is exchanged between the cooling water flowing through the second flow path group B4 and the plurality of pieces 25b, and the cpu 101 can be efficiently cooled. Therefore, since the bottom wall 29a and the fins 29b are integrally formed, the heat of the CPU 101 is well transmitted to the plurality of fins 29b, and the result is good. 29 1355049 "Manufacturing method of fin element for liquid-cooled ferrule" "-Man, production of fin 29 of liquid-cooled ferrule J5 by scraping (manufacturing, terracotta. _ part method, reference Fig. 23 and Fig. 24. As shown in Fig. 23(a), the plate-like plate 61 is carried out in Japanese Patent No. 326308, and Japanese Special Two () () 352 () 2 ( The scraping process is carried out by the bullet. In detail, by cutting the two corners of the cutting tool on the plate 6i, the portion of the plate 61 is cut off to form a plurality of finned fins 63. This is repeated a plurality of times. The scraping and the door body 64 having the plurality of scraping fins 63 are produced (refer to Fig. 23(b)). Therefore, the portion of the uncut plate 61 is wound into the bottom wall 29a (sealing body) of the fin member 29. Then, when assembling with the casing body 1〇C to form the liquid cooling jacket J5, the first flow path A1 and the third flow path π are formed in the liquid cooling jacket J5, and the plurality of scraping fins 63 are formed. The outer peripheral side portion is removed by a cutting tool. In doing so, as shown in Fig. 24, a plurality of fins 2 having a bottom wall 29a and integrally formed therewith can be obtained. The fin element 29 of 9b. The method of manufacturing the fin element 29 is not limited thereto, and the fin element 25 (refer to Fig. 16) or the borrowing of the extruded member 41 according to the fourth embodiment is used. The fin element 25 formed by the groove processing (refer to Fig. 17) may be formed by taking a part of the fin 25b. "Assembling of the liquid cooling jacket" Further, as shown in Fig. 25, The ferrule body 1 〇 (: and the fin element 29 are combined, and, similarly to the fourth embodiment, while the jig 21 is abutted, the octagonal portion P2 is friction stir welded. Further, the length L5 of the pin 201 of the tool 200 is preferably 60% or less of the thickness T3 of the bottom wall 29a (the body of the seal 30 1355049) of the fin member 29 as the member to be joined. <<Sixth Embodiment>> For a long time, the liquid cooling jacket g relating to the sixth embodiment is referred to as a sectional view of the liquid-cooling jacket of the sixth embodiment, wherein (a) ) indicates the completion state after assembly, and (b) indicates the assembly. <<Composition of Liquid Cooling Envelope>> As shown in Fig. 26(a), the liquid cooling jacketing system according to the sixth embodiment is provided with a casing body i比较 in comparison with the liquid cooling jacket J1 of the first embodiment. A (first fin element) and cover unit 35 (second fin element) are featured. The casing body 10A includes a bottom wall ι (first substrate) and a plurality of fins 13 that are erected at a predetermined interval between the bottom walls u. On the other hand, the cover unit 35 includes a cover body 36 (second substrate) and a plurality of fins 37 that are erected at a predetermined interval between the cover bodies 36. The sleeve S body 10A and the cover unit 35 are combined in such a manner that a plurality of fins 13 and a plurality of fins 37 are coupled, and the cover body 36 is engaged and fixed to the sleeve body 10A. The fin system of the liquid cooling jacket J6 is composed of a plurality of fins 13 and a plurality of fins 37 that are engaged. Further, between the adjacent tabs 13 and the fins 37, the second flow path B5a is formed, and the liquid cooling jacket gjg has a second flow path group B5 composed of a plurality of second flow paths B5a. As described above, by engaging the plurality of fins 13 and the plurality of fins 37, the fins are formed 'to widen the interval d1 of the plurality of fins 13 and the interval d2 of the plurality of fins 37, respectively, according to the cutting tool. Ditch processing is easy. The protruding length L1 of the bottom wall η of the self-complex fins 13 is set to be the same as or shorter than the length L2 of the cover body % of the self-complex fins 37 as in the 26th (b)th circle rttl. The way. Further, the 'plural fins and the bottoms are heat-exchange-bonded and fixed by appropriate means, and the heat is connected thereto, and the heat of the CPU 1 〇1 on the side of the casing 10A (on the first substrate side) is not limited. The fins 13 that are transmitted to the plurality of fins are also transmitted to the plurality of fins 37. That is, by setting the protruding length L1 of the plurality of fins 13 to be the same as or shorter than the protruding length L2 of the number of the Korean sheets 37, a plurality of cans are assembled at the time of assembling the nesting body 1A and the cover unit 35. The front end (top) of the sheet 37

在套匣本冑1〇A的底i 11確實地抵接,可確實地熱連接複 數的鰭片37和底壁11。 《液冷套匣的作用效果》 其次,簡單說明有關液冷套匣J6的作用效果。 根據此類的液冷套匣J6,冷卻水流通在第二流路群B5 的話’傳達至複數的鰭片13和複數的鰭片37的“^“的 熱係傳達至流通的冷卻水,CPU 101係被有效率地冷卻。 《第七實施例》The bottom i 11 of the sleeve 确实1〇A is surely abutted, and the plurality of fins 37 and the bottom wall 11 can be surely thermally connected. "Effects of liquid cooling ferrules" Secondly, a brief description of the effect of the liquid cooling jacket J6. According to the liquid-cooling jacket J6 of this type, when the cooling water flows through the second flow path group B5, the heat of the "^" transmitted to the plurality of fins 13 and the plurality of fins 37 is transmitted to the circulating cooling water, and the CPU The 101 series is cooled efficiently. Seventh Embodiment

其次’有關第七實施例的液冷套匣,參考第27圖戈 明。第27圖係為有關第七實施例的液冷套匣的剖面圖,其 中(a)係表不組裝後的完成狀態,(b)係表示組裝前。 《液冷套匣的構成》 如第27(a)、27(b)圖所示般’有關第七實施例的液a 套M J 7係代替有關第一實施例的液冷套匣j 1的扁平管束 2〇,而具備具有複數的細孔26a的金屬製的蜂巢體26作為 特徵。 32 1355049 〈蜂巢體〉 蜂巢體26係在套E本體i。的底壁U藉由適當的手 t僖Γ交換地被接合•以。因此,cpuiqi的熱係成 卻=至包圍細孔26a的㈣26b。各細孔心係作為冷 P水化通的第二流路B6a的功能。亦即,蜂巢體26係具有 複數的第二流路B6a構成的第二流路群B6。又在此, ,第27圖所示般,雖'然以例子表示具有剖面看呈現矩形的 :孔…的蜂巢體26’然而細孔.的形狀並不限定於此, 他為六角形等也可。又盛i钟 辟 哥也j又蜂巢體26和套匣本體1〇的底 壁π係藉由焊材,確實可熱交換地被接合為較佳。_ 《液冷套匣的作用效果》 其次,簡單說明有關液冷套匣J7的作用效果。 冷卻水係依序流通在第一流路A1、第二流路群B6(複 數的第二流路B6a)、第三流路π。又,主要在蜂巢體α 的周壁26b和流通第二流路B5a的冷卻水之間作熱交換, 周土 26b的熱成為傳達至冷卻水的方式。其結果可有效 地冷卻CPU 1〇1。 半 《第八實施例》 其次,有關第八實施例的液冷套匣,參考第28圖說 月第28圖係為有關第八實施例的液冷套匣的剖面圖,其 中(a)係表示組裝後的完成狀態,(b)係表示組裝前。” 《液冷套匣的構成》 如第28(a)、28(b)圖所示般,有關第八實施例的液冷 套匣J8係、代替冑關第-實施例的液冷套£ J1 W扁平管: 1355049 2〇,而具備剖面為波狀的金屬製的熱交換片2?(裂斷片 [breaking sheet])作為特徵。 〈熱交換片&gt;Next, regarding the liquid-cooled ferrule of the seventh embodiment, reference is made to Fig. 27 Geman. Figure 27 is a cross-sectional view showing the liquid-cooled jacket of the seventh embodiment, wherein (a) indicates the completion state after assembly, and (b) indicates before assembly. <<Composition of Liquid Cooling Envelope>> As shown in Figs. 27(a) and 27(b), the liquid a set of MJ 7 relating to the seventh embodiment is substituted for the liquid cooling jacket j 1 of the first embodiment. The flat tube bundle 2 is provided with a metal honeycomb body 26 having a plurality of fine pores 26a. 32 1355049 <Hive body> The honeycomb body 26 is in the sleeve E body i. The bottom wall U is joined by the appropriate hand t僖Γ exchange. Therefore, the heat system of cpuiqi becomes = to (4) 26b surrounding the pores 26a. Each of the fine pore centers functions as the second flow path B6a of the cold P hydration. That is, the honeycomb body 26 has a second flow path group B6 composed of a plurality of second flow paths B6a. Here, as shown in Fig. 27, although the honeycomb body 26' having a rectangular shape in a cross section is shown by way of example, the shape of the pores is not limited thereto, and it is also a hexagonal shape. can. It is also preferable that the bottom wall π of the honeycomb body 26 and the casing body 1 is detachably joined by heat welding. _ "The effect of liquid cooling jacket" Second, a brief description of the effect of the liquid cooling jacket J7. The cooling water flows in the first flow path A1, the second flow path group B6 (the plural second flow path B6a), and the third flow path π in this order. Further, heat exchange is mainly performed between the peripheral wall 26b of the honeycomb body α and the cooling water flowing through the second flow path B5a, and the heat of the surrounding soil 26b is transmitted to the cooling water. As a result, the CPU 1〇1 can be effectively cooled. [Eighth Embodiment] Next, with respect to the liquid-cooled jacket of the eighth embodiment, referring to Fig. 28, the figure 28 is a sectional view of the liquid-cooled jacket of the eighth embodiment, wherein (a) indicates The completed state after assembly, and (b) indicates before assembly. "Composition of liquid-cooled jacket" As shown in Figs. 28(a) and 28(b), the liquid-cooling jacket J8 of the eighth embodiment is used instead of the liquid-cooling jacket of the first embodiment. J1 W flat tube: 1355049 2〇, and has a metal heat exchange sheet 2? (breaking sheet) with a corrugated profile as a feature. <Heat exchange sheet>

熱父換片27係具備由A1_Mn系、M_Fe Mn系等的銘 合金形成的片本體27a以及在其下面側由A1_Si〜h系等的 鋁合金所形成的焊材層27b。又,因為熱交換片”的焊材 層27b係部分地被熔融、硬化,在套匣本體丨〇的底壁1 ] 可熱交換地被接合•固定。因此,cpu 1〇1的熱係經1底 壁11’成為傳達至熱交換片27的方式。 _ 又,在熱交換片27和套匣本體10或蓋本體31之間, 複數的第二流路B7a被形成。亦即,液冷套匣J8係具有由 複數的第二流路B7a構成的第二流路群B7。 《液冷套匣的作用效果》 其次,簡單說明有關液冷套匣J8的作用效果。The hot parent sheet 27 includes a sheet main body 27a made of an alloy such as A1_Mn type or M_Fe Mn type, and a solder material layer 27b formed of an aluminum alloy such as A1_Si to h type on the lower surface side. Further, since the welding material layer 27b of the heat exchange sheet is partially melted and hardened, the bottom wall 1 of the casing body 可 is heat-exchangeably joined and fixed. Therefore, the heat of the cpu 1〇1 is 1 The bottom wall 11' is conveyed to the heat exchange sheet 27. _ Further, between the heat exchange sheet 27 and the ferrule body 10 or the lid body 31, a plurality of second flow paths B7a are formed. The casing J8 has a second flow path group B7 composed of a plurality of second flow paths B7a. "Effects of the liquid cooling jacket" Next, the effect of the liquid cooling jacket J8 will be briefly described.

冷卻水係依序流通在第一流路A1、第二流路群B 7 (複 數的第二流路B7a)、第三流路C1。又,主要在熱交換片 27和流通第二流路B7a的冷卻水之間作熱交換,熱交換片 27的熱成為傳達至冷卻水的方式。其結果可有效率地冷卻 CPU 1(Π。 《第九實施例》 其次,有關第九實施例的液冷套匣,參考第29圖說 明。第29圖係為有關第九實施例的液冷套匣的平面圖。 又,在第29圖中,為了容易了解,描繪蓋本體以外的狀態。 《液冷套匣的構成》 34 1355049The cooling water flows in the first flow path A1, the second flow path group B7 (the plural second flow path B7a), and the third flow path C1 in this order. Further, heat exchange is mainly performed between the heat exchange sheet 27 and the cooling water flowing through the second flow path B7a, and the heat of the heat exchange sheet 27 is transmitted to the cooling water. As a result, the CPU 1 can be efficiently cooled (Π. Ninth Embodiment) Next, the liquid-cooling jacket of the ninth embodiment will be described with reference to Fig. 29. Fig. 29 is a liquid cooling relating to the ninth embodiment. In addition, in Fig. 29, in order to make it easy to understand, the state other than the cover body is drawn. "Composition of liquid cooling jacket" 34 1355049

如第29圖所示般,有關第九實施例的液冷套匣J9係 (雖然有關第一實施例的液冷套匣η係具備一個扁平管束 20)具備三個扁平管束20。又,三個扁平管束2〇係在套匣 本體10B内,各扁平管束2〇的中空部21a(第二流路Μ&quot; 成為同一方向般,以一列狀被配置。又,三個扁平管束2〇 係在套匣本體1 0B内,藉由在上流的扁平管束2〇和中流的 扁平官束20之間以及中流的扁平管束2()和下流的扁平管 束20之間,空間! 0d、空間i 〇d分別被設置的狀態下,在 套S本體10B的底壁u可熱交換地被接合·固定。 空間l〇d、lGd係作為使扁平管束2G的第二流路群^ 直列地連通的第四流路E1(連結流路)的功能。第四流 路E1的流路剖面積係被設定為比構成各第二流路群B1二 第二流路…的流路剖面積大。亦即,液冷套E J9係且有 以直列地被配置的三個第—技 群部)。 η個第〜路群(第二流路 φ 《液冷套匣的作用效果》 其次,簡單說明有關液冷套EJ9的作用效果。 冷卻水係依序流通在第—户 域 杜乐/瓜路A1、上流的第二流路群 、第四流路E1、中产的坌_ 4 群 Ύ 土 ^ 中机的第一流路群Β1、第四流路E1、 下々丨L的第二流路群b】、筮二$妨As shown in Fig. 29, the liquid-cooling jacket J9 of the ninth embodiment (although the liquid-cooling jacket 第一 of the first embodiment is provided with one flat tube bundle 20) is provided with three flat tube bundles 20. Further, the three flat tube bundles 2 are attached to the ferrule body 10B, and the hollow portions 21a of the flat tube bundles 2 (the second flow paths quot are arranged in a line in the same direction. Further, three flat tube bundles 2 The tether is in the casing body 10B, between the upper flat tube bundle 2〇 and the flattened official beam 20 in the middle flow, and between the flat tube bundle 2 () in the middle stream and the flat tube bundle 20 in the downflow, space! 0d, space In the state in which i 〇d is set, the bottom wall u of the sleeve S body 10B is heat-exchangeably joined and fixed. The spaces l〇d and lGd serve as the second flow path group of the flat tube bundle 2G in series. The function of the fourth flow path E1 (connection flow path) is to set the flow path sectional area of the fourth flow path E1 to be larger than the flow path sectional area of each of the second flow path group B1 and the second flow path. That is, the liquid cooling jacket E J9 is provided with three first-group units arranged in an in-line manner. Ηth to the right group (the second flow path φ "The effect of the liquid cooling jacket" Next, a brief description of the effect of the liquid cooling jacket EJ9. The cooling water system is sequentially distributed in the first - household Dulu / Gua Lu A1, the second flow path group of the upper flow, the fourth flow path E1, the first flow path group Β1 of the middle 产4 group Ύ soil, the second flow path E1, and the second flow path group of the lower 々丨L b], 筮二$

地沒诵第一路C卜亦即,冷卻水係直列 地仇通二個相鄰的第二流路群耵、 且歹J 係在相鄰的第二流路群βι ' ,冷卻水 . 1之間,藉由經由第四产i 以,在第四流路E1令, 田弟四机路 藉由f 又的壓力損失變低。亦即, 错由-路剖面積大的第四流路 係在第一流路群β 1、b 1 35 1355049 之間’與不經過第四流路£1的流路長度的長的第二 的情形比較’可使作用在微幫浦122㈣荷變小。 《第十實施例》 其次,有關第十實施例的液冷套E,參考第3〇、 說明。第圖係為有關第十實施例的液冷套£的平面圖。 第31圖係為相數和熱抵抗間的關係的圖表。 如第30圖所示般,有關第十實施例的液冷套匿川係 和有關第九實施例的液冷㈣J9相同,具有以直列地被連 接的三個第二流路群m、M、B1(第二流路群部),在冷卻· 水的流通方向中’相鄰的第二流路群MM係經由第四流 路E1 (連結流路),以直列被連接。 疋在液冷套匣ji〇中,相鄰的第二流路群B1、B1 被並設的同時’相鄰的第二流路群bi中,上流侧的物件的 下流端和下流側的物件的上流端係在同一側被配置,上述 下^端和上流端係經由第四流路E卜直列地被連接。具體 :言,如第30圖所示般,上流位置的第二流路群bi和中 :位置的第一机路_ β1係在冷卻水的流通方向中相鄰的· 同時’在第30圖的橫方向中被並設。又,例如,上流位置 的:二流路群Β1的下流端和中流位置的第二流路群Μ的 上流端係在同一側,朝向第30圖中的下側。 在此在本狁明書中,如上述,相鄰的第二流路群B1、 1被並列地配置,對於第九實施例,以,,返回”表現。 因此,根據此類的液冷套匣J1〇,冷卻水蛇行,流過 其内部。這樣做的話,液冷套匿J1〇的熱抵抗係變得比未 36 1355049 返回的液冷套匣J9小。 再加以說明的話,從平而主^ 攸十面看的液冷套匣的大小作為一 疋時,不改變構成各第二流路 七 ·- ^ _ 群β 1的第一 ^路的個數,而 使返回數增加,使第二流路 峪群β1的數目變多的話,構成各 第一流路群Β1的各第二户致 . 一爪的奴路剖面積變小。藉此,流 通液冷套g的冷卻水的流量 里作為一定時,第二流路群B1的 數目變多的話,通過各第々 合笫一々丨•·路的冷卻水的流速變大。所 以’熱有效率地由液冷矣序僅、去s人,、 干田仪兮#匣傳達至冷卻水,液冷套匣的埶 抵抗下降。 … 一雖然本發明已以較佳實施例揭露如上然其並非用以 限疋本發明’任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 在上述的各實施例中,雖然說明有關將熱發生體作為 CPU 101的情形,熱發生體的種類係不限定於此,例如, φ 電力模組(power module)、發光二極體燈(LED lamp)等也 ο 在上述的第一實施例中’雖然扁平管束2〇的複數的扁 平ί 21係在其厚度方向被束缚而被構成,但在亦可其寬度 方向被束缚而被構成。 雖然說明有關上述的第一實施例的液冷套匣j1具備 扁平管21以複數個被束缚的扁平管束2〇的情形(參考第6 圖),其他,例如,如第32圖所示般,代替扁平管束2〇, 具備具有以複數的分隔壁分隔的複數的中空部28a的扁平 37 1355049 管28的液冷套匣ju也可。此情形各中空部28a係作為第 二流路B8a的功能,扁平管28係具有由複數的第二流路 B8a構成的第二流路群。 在有關上述的第一實施例的液冷套匣j 1,雖然說明有 關進入口 31a和排出口 31b在蓋本體31被形成的情形,但 進入口 31a和排出口 31b的位置並不限於此,例如,在套 匣本體10的周壁12被形成的情形也可。伴隨於此,進入 管32和排出管33的位置也不限定在液冷套匣;1的上面 側,位在側面側也可。 在有關上述的第六實施例的液冷套匣J6,雖然鰭片^ 在套ϋ本體10A、鰭片37在蓋本體36分別被立設而構成(參 考第26圖)’如第33(a)、33(b)圖所示般,具備具有第一 基板51以及在第一基板51被立設的複數的第一鰭片52的 第-籍片元件5G、和具有第二基板56以及在第二基板π 被立設的複數的第二鰭片57的第二鰭片元件55的液冷套 S J12也可。 有關在第33圖所示的液冷套匣J12,加以說明的話, 第鰭片兀件50和第二縛片元件55係複數的第—籍片^ 鰭片Μ 4合般被組合,液冷…12中的金 =的複數的鰭片全體係藉由複數的第一韓片Μ和 的第二…被構成,在相鄰的第一藉片 =,=路一成…第…元件= …熱交 基板51係編本體⑺的底壁 38 又液冷套£ J12係、具有由複數的第二流路_構成 的第^流路群Β9β又,自複數的第—鰭片Μ的第一基板 一的犬出長度L3係被設定為和自複數的第二鰭片57的第 二基板56的突出長度u相同或較短。又,複數的第二鰭 和帛基板51係藉由適當的手段,以可熱交換地被 接合•固定,作熱連接。 、一在上述的第—實施例中,雖然藉由在套E本體10和爲 平b束20之間設置空間1〇a、1〇c,將第一流路a卜第三 流路C1分別形成(參考第5圖),其他,例如,不設置空間 1 〇c在套匣本體丨〇的外側,在其上流側設置分歧管, 使其中工邛作為第一流路,在下流側設置集合管,使其中 空部作為第三流路也可。 在有關上述的第四實施例的液冷套匣J4(參考第14 圖)雖然鰭片70件25係為在套匣本體10被固定的構成, 如第34圖所不般,在蓋本體31的套E本體1〇側面固定鰭 片元件2^的液冷套匿m也可。又,如第^圖所示般: cm οι係為被安裝在蓋本體31的構成也可。又,成為冷 部水至液冷套匣J13内的進入口的進入管32和成為排出口 的j出e 33係為被安裝在套匣本體1〇的構成也可。其他, =本體31的套g本體1()側面,—體地形成鰭片的構成 又,如第35圖所示般,套匣本體1〇係具備四個具有 插通孔1 6a的腳部1 6,在各插通孔1 6a插通螺絲釘} 25, 液冷套匣J13被安裝在個人電腦本體12〇(參考第丨圖)的 39 1355049 框,126時’工具200的拔出位置係為相當於插通孔心 的部份為較佳地。又,在此類的位置拔出工具2〇〇之後, 在此拔出的痕跡部份,藉由形成插通孔16a,可隱藏工具 2〇〇的拔出痕跡。 又’第34圖係為第35圖的X卜Xi剖面。 [實施例] 以下基於實施例更具體地說明本發明。 (1)貫施例1、第二流路B3a的溝寬度w 1的檢討 有關第四實施例的液冷套匣j4(參考第13圖),製作 第二流路B3a的溝寬度W1(參考第]:5圖)作為^^咖、 〇· 5mm、1.0M的鋁合金製的物品,表示在表J製作的液冷 套匣J4的樣式。 又’在表1中’全體流路寬度W0係為第一流路M和 第三流路ci的寬度。又,全體流路長度LM系為第一流路 A1的長度 '第二流路B3a的長度、以及第三流路π長度 的和(參考第13、14圖)。 [表1 ] 鋁合金的熱傳導率(W/mk) 200 全體流路寬度WO(mm) 100 全體流路長度LO(mm) 100 第二流路B3a的溝寬度W1 (mm) 2, 〇. s 1 η 第二流路B3a的深度D1 (mm) 10 又,使用作為冷卻水的水,此水係以5(L/min)流動般, 使微幫浦122(參考第1圖)作動(參考表2),檢討有關第二 1355049 流路B3a的溝寬度W1以及液冷套S J4的熱抵抗和壓力損 失間的關係。熱抵抗和壓力損失係以適當的方法測定。又, 在此樣式的液冷套E J4’將作為目標的熱抵抗作為在 0. 008(°C/W)以下。 冷卻水 水 冷卻水的流量(L/min) -____5. 0 [表2] 如第36圖所示般,由於隨著第二流路Β3&amp;的溝寬度 籲 W1變小,液冷套匣J4和冷卻水的接觸面積變大,液冷套 匡J4的熱抵抗變小。另一方面,第二流路的溝寬度 W1比l.lmin大的話,熱抵抗變得比作為目標的〇.〇〇8(C)c/w) 大的情形被確認。 又,冷卻水藉由液冷套匣J4所承受的壓力損失係在第 一流路B3a的溝寬度W1變得比〇. 2mm小的話,被確認出比 0.01(°C/W)大。 # 因此,第二流路B3 a的溝寬度W1係為〇. 2〜丨.丨m m較佳。 (2)實施例2、鰭片25b的厚度T1和第二流路B3a的 溝寬度W1間的關係的檢討 其次,和實施例1相同,將第二流路B3a的溝寬度W1 設定為0.2龍、0.5mm、1.0mm的三種類(參考表υ,對於 各第二流路B3a的溝寬度W1,使鰭片25b的厚度Τ1適當 地變化,檢討有關,,鰭片25b的厚度T1和溝寬度π的比 率(T1/W1)” 、以及”熱抵抗”間的關係。 如第37圖所示般,在各溝寬度W1中,有熱抵抗變小 41 1355049 的” n/wr的範圍。此範圍係作為在各溝寬度π中的最 小熱抵抗的5%增加的值以下的範圍。 具體而言,第二流路B3a的溝寬度為1 〇關時因 為最小熱抵抗為0. 〇〇73rC/W) ’其5%增加的值係成為 0.0073 X L 05 = 0.0076rC/W)。又,成為 〇 〇〇76'rc/w) 以下的範圍係成為〇. 5 S Tl/Wl g h 4。 和此相同,在第二流路B3a的溝寬度W1為〇5mm,上 述範圍係成為〇·7 $ T1/W1 $ 。又’在第二流路咖 的溝寬度W1為〇.2mm,上述範圍係成為0 8g T1/W1 $ 2 9。 又’基於此,使X軸替換作為,,溝寬度W1 ”、γ軸作 為”鰭片厚度η/溝寬度W1” &amp;話,如第38圖所示的圖表 被得到。如第38圖所示般’確認出”溝寬度π ”、”鰭 片厚度T1/溝寬度W1 ”係滿足下式⑴為較佳。 曰 0_375 X W1 + 〇. 875 S Tl/Wl g -1.875 X W1 + 3. 275 …(1) ()實施例3、第二流路B3a的溝寬度和深度D1間 的關係的檢討 八、在有關第四實施例的液冷套匣J4中,將第二流 路心的溝寬度W1設定為〇.2賴、0.5mm、l.〇mm的三種類 ^參考表1)肖於各第二流路咖的溝寬度们,使其深度 ^田地變化’檢討有關”深度Μ ”、以及”熱抵抗”間 的關係。 如第39圖所 中’有熱抵抗變小 和實施例2相同, 示般,和實施例2相同,在各溝寬度w 1 的溝深度D1的範圍的情形被確認。又, 求得此範圍的話,溝寬度W1為〇. 2mm, 42 1355049 各 D1 $ 6,溝寬度 W1 為 〇. 5ππη,4 $ Dl s u 溝 寬度 W1 為 1. 〇mm,6 S D1 S 18。 又,基於此,使X軸替換作為”溝寬度Wl” 、γ軸作 為溝深度D1的話’如第圖所示的圖表被得到。如 第40圖所示般,”溝寬度W1” 、和”溝深度Dl,,係滿足 下式(2)為較佳被確認。 5 X W + 1 S D S 16.25 X W + 2.75 ...⑵There is no first road C, that is, the cooling water system is inline to two adjacent second flow path groups, and the 歹J is in the adjacent second flow path group βι ', cooling water. 1 Between the fourth production path E1 and the third flow path E1, the pressure loss of the four-way road by f is lowered. That is, the fourth flow path having a large cross-sectional area is between the first flow path group β 1 and b 1 35 1355049 and the second long flow path length without passing through the fourth flow path £1. The situation comparison 'can make the effect on the micro-pull 122 (four) load smaller. Tenth Embodiment Next, regarding the liquid cooling jacket E of the tenth embodiment, reference is made to the third embodiment. The figure is a plan view of the liquid cooling jacket relating to the tenth embodiment. Figure 31 is a graph of the relationship between phase number and thermal resistance. As shown in Fig. 30, the liquid-cooled chime system of the tenth embodiment is the same as the liquid-cooled (four) J9 of the ninth embodiment, and has three second flow path groups m, M connected in series. In the B1 (second flow path group), the adjacent second flow path group MM is connected in series via the fourth flow path E1 (connected flow path) in the cooling/water flow direction. In the liquid cooling jacket, the adjacent second flow path groups B1, B1 are juxtaposed while the adjacent second flow path group bi, the downstream end and the downstream side of the object on the upstream side The upstream ends are arranged on the same side, and the lower ends and the upstream ends are connected in series via the fourth flow path E. Specifically, as shown in Fig. 30, the second flow path group bi and the middle position of the upstream position are adjacent to each other in the flow direction of the cooling water. The horizontal direction is set in parallel. Further, for example, at the upstream position, the downstream end of the second flow path group 1 and the upstream end of the second flow path group 中 at the intermediate flow position are on the same side, and are oriented toward the lower side in Fig. 30. Here, in the present specification, as described above, the adjacent second flow path groups B1 and 1 are arranged side by side, and in the ninth embodiment, the performance is returned. Therefore, the liquid cooling cover according to this type匣J1〇, the cooling water snakes and flows through the inside. In doing so, the heat resistance of the liquid-cooled jacket J1〇 becomes smaller than the liquid-cooling jacket J9 that is not returned by 36 1355049. When the size of the liquid-cooled jacket of the main surface is taken as one, the number of the first roads constituting each of the second flow paths VII--^ _ group β 1 is not changed, and the number of returns is increased. When the number of the second-flow path group β1 is increased, the second roads of the first flow path group 构成1 are formed. The sectional area of the slave road of the one-claw is reduced. Thereby, the flow rate of the cooling water flowing through the liquid cooling jacket g is When the number of the second flow path groups B1 is constant, the flow rate of the cooling water passing through each of the first and second channels is increased. Therefore, the heat is efficiently cooled by the liquid cooling process only. People, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, It is to be understood that the scope of the present invention is not limited by the scope of the invention, and may be modified and retouched without departing from the spirit and scope of the invention. In the above-described embodiments, although the case where the heat generating body is used as the CPU 101 is described, the type of the heat generating body is not limited thereto, for example, the φ power module (power) In the first embodiment described above, the plurality of flat sheets 21 of the flat tube bundle 2 are configured to be bound in the thickness direction thereof, but may be The width direction is bound to be configured. Although the liquid cooling jacket j1 of the first embodiment described above is provided with the flat tube 21 in a plurality of bundled flat tube bundles 2 (refer to Fig. 6), others, for example, As shown in Fig. 32, instead of the flat tube bundle 2, a liquid-cooling jacket 匣ju having a flat portion 37 1355049 tube 28 having a plurality of hollow portions 28a partitioned by a plurality of partition walls may be provided. In this case, each hollow portion 28a As a function of the second flow path B8a, the flat tube 28 has a second flow path group composed of a plurality of second flow paths B8a. In the liquid cooling jacket j1 relating to the above-described first embodiment, although the entry is explained The port 31a and the discharge port 31b are formed in the lid body 31, but the positions of the inlet port 31a and the discharge port 31b are not limited thereto, and for example, the case where the peripheral wall 12 of the casing body 10 is formed may be used. The position of the inlet pipe 32 and the discharge pipe 33 is not limited to the upper side of the liquid-cooling jacket; 1 but also to the side surface side. In the liquid-cooling jacket J6 relating to the sixth embodiment described above, although the fins ^ The ferrule body 10A and the fins 37 are respectively erected on the cover body 36 (refer to FIG. 26). As shown in FIGS. 33(a) and 33(b), the first substrate 51 is provided and a first chip element 5G of the plurality of first fins 52 on which the first substrate 51 is erected, and a second fin having a second substrate 56 and a plurality of second fins 57 that are erected on the second substrate π The liquid cooling jacket S J12 of the sheet member 55 is also acceptable. With regard to the liquid-cooling jacket J12 shown in Fig. 33, the first fin member 50 and the second tab member 55 are combined in a plurality of first-piece fins, and liquid-cooled. The whole system of the fins of the gold=12 is composed of a plurality of first Korean films and a second one, in the adjacent first borrowing piece =, = road one...the ...component = ... The heat transfer substrate 51 is a bottom wall 38 of the body (7) and a liquid cooling jacket J12, and has a second flow path group Β9β composed of a plurality of second flow paths _, and the first number of the first plurality of fins The dog length L3 of the substrate 1 is set to be the same as or shorter than the protruding length u of the second substrate 56 of the second fin 57. Further, the plurality of second fins and the ruthenium substrate 51 are joined and fixed in a heat exchange manner by a suitable means for thermal connection. In the above-described first embodiment, the first flow path a and the third flow path C1 are respectively formed by providing spaces 1〇a, 1〇c between the sleeve E body 10 and the flat b bundle 20. (Refer to Fig. 5), other, for example, no space 1 〇c is provided on the outer side of the casing body ,, and a branch pipe is disposed on the upstream side thereof, wherein the work pipe is used as the first flow path, and the collecting pipe is disposed on the downstream side. The hollow portion may be used as the third flow path. In the liquid-cooling jacket J4 (refer to FIG. 14) relating to the fourth embodiment described above, although the fin 70 member 25 is configured to be fixed to the casing body 10, as in the 34th diagram, the cover body 31 is provided. The set of E body 1 〇 side fixed fin element 2 ^ liquid cooling nest can also be. Further, as shown in Fig. 2, cm οι may be configured to be attached to the cover body 31. Further, the inlet pipe 32 which is the inlet port of the cold water to the liquid cooling jacket J13 and the j outlet e 33 which serves as the discharge port may be attached to the casing body 1〇. Other, = the body of the body 31, the side of the body 1 (), the body is formed into a fin. Further, as shown in Fig. 35, the sleeve body 1 has four legs having the insertion holes 16a. 1 6, in each of the insertion holes 1 6a inserted through the screw} 25, the liquid cooling jacket J13 is installed in the personal computer body 12 〇 (refer to the figure) 39 1355049 box, 126 hours 'tool 200 pull out position It is preferable that the portion corresponding to the insertion hole is preferable. Further, after the tool 2 is pulled out at such a position, the trace portion of the tool 2 can be hidden by forming the insertion hole 16a in the portion of the trace which is pulled out. Further, Fig. 34 is a X-Xi cross section of Fig. 35. [Examples] Hereinafter, the present invention will be more specifically described based on examples. (1) Review of the groove width w1 of the first embodiment and the second flow path B3a. Regarding the liquid-cooling jacket j4 of the fourth embodiment (refer to Fig. 13), the groove width W1 of the second flow path B3a is created (refer to The following is a pattern of the liquid-cooled jacket J4 produced in Table J as an article made of aluminum alloy of ^^, 〇·5mm, and 1.0M. Further, in Table 1, the total flow path width W0 is the width of the first flow path M and the third flow path ci. Further, the total flow path length LM is the sum of the length of the first flow path A1 'the length of the second flow path B3a and the length of the third flow path π (refer to Figs. 13 and 14). [Table 1] Thermal conductivity (W/mk) of aluminum alloy 200 Overall flow path width WO (mm) 100 Whole flow path length LO (mm) 100 Second flow path B3a groove width W1 (mm) 2, 〇. s 1 η Depth D1 (mm) of the second flow path B3a 10 Further, water as cooling water is used, and the water system is operated at 5 (L/min) to activate the micro pump 122 (refer to Fig. 1). Table 2), reviewing the relationship between the groove width W1 of the second 1355049 flow path B3a and the heat resistance and pressure loss of the liquid cooling jacket S J4. Thermal resistance and pressure loss are measured in an appropriate manner. Further, the liquid-cooling jacket E J4' of this type has a target thermal resistance of not more than 0.08 (°C/W). Cooling water cooling water flow rate (L/min) -____5. 0 [Table 2] As shown in Fig. 36, since the groove width of the second flow path &3&amp; W1 becomes smaller, the liquid cooling jacket J4 The contact area with the cooling water becomes large, and the heat resistance of the liquid cooling jacket J4 becomes small. On the other hand, when the groove width W1 of the second flow path is larger than l.lmin, the thermal resistance is confirmed to be larger than the target 〇.〇〇8(C)c/w). In addition, the pressure loss of the cooling water by the liquid cooling jacket J4 is smaller than 〇. 2 mm when the groove width W1 of the first passage B3a is smaller than 0.01 (°C/W). # Therefore, the groove width W1 of the second flow path B3a is 〇. 2~丨.丨m m is preferable. (2) Example 2, review of the relationship between the thickness T1 of the fin 25b and the groove width W1 of the second flow path B3a, and the groove width W1 of the second flow path B3a is set to 0.2 dragon as in the first embodiment. Three types of 0.5 mm and 1.0 mm (refer to the reference sheet, the thickness Τ1 of the fin 25b is appropriately changed for the groove width W1 of each of the second flow paths B3a, and the thickness T1 and the groove width of the fin 25b are reviewed. The relationship between the ratio of π (T1/W1)" and "thermal resistance". As shown in Fig. 37, in the width W1 of each groove, there is a range of "n/wr" where the heat resistance is reduced to 41 1355049. The range is a range below the value of 5% of the minimum heat resistance in each groove width π. Specifically, the groove width of the second flow path B3a is 1 〇 because the minimum heat resistance is 0. 〇〇73rC /W) 'The value of 5% increase is 0.0073 XL 05 = 0.0076rC/W). Further, the range below 〇 〇〇 76'rc/w) is 〇. 5 S Tl/Wl g h 4. Similarly, the groove width W1 of the second flow path B3a is 〇5 mm, and the above range is 〇·7 $ T1/W1 $ . Further, the groove width W1 of the second flow path is 〇.2 mm, and the above range is 0 8g T1/W1 $ 2 9 . Further, 'based on this, the X-axis is replaced by the groove width W1", and the γ-axis is referred to as "fin thickness η/groove width W1" &amp; a graph as shown in Fig. 38 is obtained. It is preferable to say that the groove width π ", the fin thickness T1/the groove width W1" satisfies the following formula (1). 曰0_375 X W1 + 〇. 875 S Tl/Wl g -1.875 X W1 + 3. 275 (1) () Review of the relationship between the groove width and the depth D1 of the third embodiment and the second flow path B3a. In the liquid-cooling jacket J4 of the fourth embodiment, the second flow path is The groove width W1 is set to three types of 〇.2 赖, 0.5mm, l. 〇mm^Reference Table 1) The width of each groove of the second flow path is made to make the depth ^ field change 'review related' depth Μ Relationship between "and heat resistance". As shown in Fig. 39, the heat resistance is reduced to be the same as in the second embodiment. As shown in the second embodiment, the range of the groove depth D1 at each groove width w 1 is the same as in the second embodiment. In the case of this range, the groove width W1 is 〇. 2mm, 42 1355049, each D1 $6, the groove width W1 is 〇. 5ππη, 4 $ Dl su groove width W1 is 1. 〇mm,6 S D1 S 18. Further, based on this, when the X-axis is replaced with the "groove width W1" and the γ-axis is the groove depth D1, the graph shown in the figure is obtained. As shown, "ditch width W1" and "ditch depth Dl" are preferably confirmed by satisfying the following formula (2). 5 X W + 1 S D S 16.25 X W + 2.75 ...(2)

(4)實施例4、治具的有效性的檢討 其次,在第四實施例中的套匣本體1〇和蓋本體Η間 的摩擦攪拌接合中,檢討有關在套g本體1〇的周壁。抵 接治具210的有效性。又,在此檢討中,使用在表3所示 的兩種類的工具200。\,如表4所示般,使a工具或B 工具中的肩202的外周面、以及套g本體ι〇的周壁⑽ 外周面間的距離L6變化(參考㈣圖),且改變治具21〇 的有/無,將周壁12和蓋 miu 盖本體31作摩擦攪拌接合。又,葬 由目視評價接合部的品質。〇 曰 良。 0係表不良好,X係表示接合不 又’工具200的迴轉數係為60〇〇rpra 2〇〇_Λπιη。又’周壁12的厚度τη(參考第 ’接合速度作為 1 9圖)作為4mm。 [表3](4) Example 4 Review of the effectiveness of the jig Next, in the friction stir welding between the ferrule body 1 〇 and the cover body 第四 in the fourth embodiment, the peripheral wall of the body 1 在 is reviewed. The effectiveness of the jig 210 is met. Also, in this review, the two types of tools 200 shown in Table 3 are used. \, as shown in Table 4, the distance L6 between the outer peripheral surface of the shoulder 202 in the a tool or the B tool and the outer peripheral surface of the peripheral wall (10) of the sleeve body ι is changed (refer to (d) diagram), and the jig 21 is changed. The presence/absence of the crucible is used to frictionally agitate the peripheral wall 12 and the cover miu cover body 31. Also, the quality of the joint was visually evaluated. 〇 良 Good. The 0 series is not good, and the X system indicates that the joint is not the same. The number of revolutions of the tool 200 is 60〇〇rpra 2〇〇_Λπιη. Further, the thickness τη of the peripheral wall 12 (refer to the first 'joining speed as a map of 19') is 4 mm. [table 3]

43 1355049 [表4 ]43 1355049 [Table 4]

如表4所明瞭般’使用治具21〇時,周壁i2薄即使 距離U為0.5,確認出不會使周壁12變形,可使蓋本 體31良好地接合。 ⑸實施例5、銷的長度L5和蓋本體31的厚度n間 的關係 其次,檢討有關工具200的銷2〇1的長度[5和蓋本體 31的厚度Τ2間的關係(參考第19圖)。在此檢討中,如表 5所示般,將銷201的長度L5固定在2.0mm,使蓋本體31 的厚度T2變化,藉由目視評價接合部品質。 [表5]As is clear from Table 4, when the jig 21 is used, the peripheral wall i2 is thin even if the distance U is 0.5, and it is confirmed that the peripheral wall 12 is not deformed, and the cover body 31 can be joined well. (5) Example 5, relationship between the length L5 of the pin and the thickness n of the cap body 31 Next, the relationship between the length [5 of the pin 2〇1 of the tool 200 and the thickness Τ2 of the cap body 31 is reviewed (refer to Fig. 19). . In this review, as shown in Table 5, the length L5 of the pin 201 was fixed at 2.0 mm, and the thickness T2 of the cap body 31 was changed, and the quality of the joint portion was visually evaluated. [table 5]

銷的長度L5 蓋本體的厚度 T2(ram) L5/T2(°/〇) 一· 接合部品質 2. 0 6. 0 33. 3 --------- 〇 2. 0 5. 0 40. 0 --—— 0 2. 0 4.0 50. 0 0 2. 0 3. 0 66. 6 X 如表5所示般’銷201的長度L5係在被接合元件的蓋 本體31的厚度T2的60.0%以下的範圍,確認出可將周辟 12和蓋本體31良好地接合。 1355049 【圖式簡單說明】 第1圖係為有關第一實施例的液冷系統的構成圖; 第2圖係為有關第一實施例的液冷套匣的全體立體 圖, 第3圖係為自有關第一實施例的液冷套匣的下方的全 體立體圖; 第4圖係為有關第一實施例的液冷套匣的立體圖,表 示省略蓋單元的狀態; 第5圖係為有關第一實施例的液冷套匣的平面圖; 第6圖係為有關在第2圖表示的第一實施例的液冷套 匣的Χ-Χ剖面圖; 第7圖係為有關第一實施例的液冷套匣的分解立體 圖, 第8圖係以模式地表示有關第一實施例的液 效果的圖表; 第9圖係為有關第二實施例的液冷套匣的全體立體 圖,表示省略蓋單元的狀態; 第10圖係為有關在帛9圖纟示的第二實施例的 匣的Υ-Υ剖面圖; 第11圖係為有關第三實施例的液冷套匣的全 圖; 灿A aa 圖係為有關第三實施例的液冷套匣的平面圖; 13圖係為有關第四實施例的液冷套匣的全體立贈 圖,表示省略蓋單元的狀態; 體 45 丄功049 第14圖係為有關在第13圖表示的第四實施例的液冷 套匣的Z-Z剖面圖; 第15圖係為在第]7 々你罘14圖表不的Z_Z剖面圖的擴大圖; 第6圖係為表示有關第四實施例的液冷套匡的雜月 元件的第一製作方法的立體圖,1 圃,其中(a)表不切斷前,(b) 為切斷後; 第17圖係為表示有關第四實施例的液冷套㈣雜片 疋件的第二製作方法的立體圖’其中⑷表示切削前,㈤ 為切削後; 第18圖係為有關第四實施例的摩擦擾掉接合的立體 圖,· 第1 9圖係為有關第四實施例的摩擦撥摔接合的剖 圖; 第20圖係表示有關第四實施例的摩擦授掉接合 工具的動作的平面圖; 第21圖係為有關笛, 貫施例的液冷套匣的剖面圖; 2圖係為在第21圖表示的剖面圖的擴大圖; 元件圖係為表示有關第五實施例的液冷套㈣鰭片 牛的裝作方法的圖示’其中⑷ 到削加工後; Ύ Qb)為 -妹L24圖係為表示有關第五實施例的液冷套厘的嗜片 兀件的製作方法的圖示的鰭片 到削韓片的-部份去除後r使在第23(b)圖所示的 第25圖係表示有關第五實施例的摩擦攪拌接合的剖 46 1355049 面圖; 第26圖係為有關第六實施例的液冷套匣的剖面圓,其 ' 中(a)表示組裝後’(b)為組裝前; 第27圖係為有關第七實施例的液冷套匣的剖面圖,其 中(a)表示組裝後’(b)為組裝前; 第28圖係為有關第八實施例的液冷套匣的剖面圖,其 中(a)表示組裝後’(b)為組裝前; _ 第29圖係為有關第九實施例的液冷套匣的平面圖; 第30圖係為有關第十實施例的液冷套匣的平面圖; 第31圖係為返回數和熱抵抗間的關係的圖表; 第32圖係為有關變形例的扁平管束的剖面圖; 第33圖係為有關變形例的液冷套匣的剖面圖,其中(a) 表示組裝後,(b)為組裝前; 第34圖係為有關變形例的液冷套匣的剖面圖; 第3 5圖係為有關變形例的液冷套匣的立體圖; • 第36圖係為溝寬度W1、熱抵抗、及壓力損失間的關 係的圖表; 第37圖係為鰭片的厚度n/溝寬度π和熱抵抗間的 關係的圖表; 第38圖係為溝寬度W1和鰭片的厚度Τ1/溝寬度们間 的關係的圖表; 第39圖係為溝深度D1和熱抵抗間的關係的圖表;以 及 第40圖係表示溝寬度π和溝深度M間的關係的圖 47 1355049 表。 【主要元件符號說明】 A1第一流路、Length of the pin L5 Thickness of the cover body T2 (ram) L5/T2 (°/〇) I. Quality of the joint 2. 0 6. 0 33. 3 --------- 〇 2. 0 5. 0 40. 0 --- 0 2. 0 4.0 50. 0 0 2. 0 3. 0 66. 6 X As shown in Table 5, the length L5 of the pin 201 is the thickness T2 of the cover body 31 of the engaged component. In the range of 60.0% or less, it was confirmed that the cover 12 and the cap body 31 can be joined well. 1355049 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a configuration diagram of a liquid cooling system according to a first embodiment; Fig. 2 is a perspective view of a liquid cooling jacket of the first embodiment, and Fig. 3 is a self view A perspective view of the lower portion of the liquid-cooling jacket of the first embodiment; FIG. 4 is a perspective view of the liquid-cooling jacket of the first embodiment, showing a state in which the cover unit is omitted; and FIG. 5 is a first embodiment related to the first embodiment. Figure 6 is a plan view of a liquid-cooled jacket; Figure 6 is a cross-sectional view of the liquid-cooled jacket of the first embodiment shown in Figure 2; and Figure 7 is a liquid-cooling relating to the first embodiment. Fig. 8 is a perspective view schematically showing the liquid effect of the first embodiment; Fig. 9 is a perspective view showing the liquid cooling jacket of the second embodiment, showing the state in which the cover unit is omitted. Figure 10 is a cross-sectional view of the crucible of the second embodiment shown in Figure 9; Figure 11 is a full view of the liquid-cooled jacket of the third embodiment; Can A aa diagram Is a plan view of the liquid-cooled ferrule relating to the third embodiment; The overall drawing of the liquid-cooled jacket of the embodiment shows the state in which the cover unit is omitted; the body 45 丄 049 Fig. 14 is a ZZ sectional view of the liquid-cooled ferrule of the fourth embodiment shown in Fig. 13. Fig. 15 is an enlarged view of a Z_Z sectional view of the chart of Fig. 7; Fig. 6 is a first manufacturing method for the miscellaneous element of the liquid-cooled ferrule of the fourth embodiment; A perspective view, 1 圃, where (a) is before the cut, (b) is after the cut; and Fig. 17 is a perspective view showing the second method of making the liquid-cooled sleeve (four) of the fourth embodiment Wherein (4) indicates before cutting, (5) is after cutting; Fig. 18 is a perspective view of the frictional spitting joint of the fourth embodiment, and Fig. 19 is a cross-sectional view of the frictional disengagement of the fourth embodiment; Figure 20 is a plan view showing the action of the friction-removing bonding tool of the fourth embodiment; Figure 21 is a cross-sectional view of the liquid-cooling ferrule relating to the flute, and the second embodiment is shown in Figure 21 An enlarged view of the cross-sectional view; the component diagram is a liquid-cooled jacket (four) fin representing the fifth embodiment The illustration of the mounting method 'in which (4) is after the shaving; Ύ Qb) is the illustration of the fin of the liquid-cooled ferrule of the fifth embodiment. After the partial removal of the cut piece of Korean, the figure 25 shown in Fig. 23(b) shows a sectional view of the friction stir welding of the fifth embodiment, Fig. 46 1355049; Fig. 26 is the relevant The cross-sectional circle of the liquid-cooled jacket of the sixth embodiment, wherein '(a) indicates after assembly '(b) is before assembly; and FIG. 27 is a cross-sectional view of the liquid-cooled ferrule relating to the seventh embodiment, wherein a) indicates after assembly '(b) is before assembly; Figure 28 is a cross-sectional view of the liquid-cooled ferrule relating to the eighth embodiment, wherein (a) indicates after assembly '(b) is before assembly; _ 29th 1 is a plan view of a liquid-cooled jacket of the ninth embodiment; FIG. 30 is a plan view of the liquid-cooled jacket of the tenth embodiment; and FIG. 31 is a graph showing a relationship between the number of returns and thermal resistance; Figure 32 is a cross-sectional view of a flat tube bundle according to a modification; Figure 33 is a cross-sectional view of a liquid-cooled ferrule relating to a modification, wherein (a) After assembly, (b) is before assembly; Figure 34 is a cross-sectional view of the liquid-cooled jacket of the modification; Figure 35 is a perspective view of the liquid-cooled jacket of the modification; A graph of the relationship between the groove width W1, the thermal resistance, and the pressure loss; Fig. 37 is a graph showing the relationship between the thickness n/the groove width π of the fin and the thermal resistance; the 38th figure is the groove width W1 and the fin A graph of the relationship between the thickness Τ 1 and the groove width; Fig. 39 is a graph showing the relationship between the groove depth D1 and the heat resistance; and Fig. 40 shows the relationship between the groove width π and the groove depth M. Fig. 47 1355049 table. [Main component symbol description] A1 first flow path,

Bla第二流路、 J1液冷套匣、 10a、10c 空間、 12周壁、 20扁平管束、 21 a中空部、 21 c分隔壁、 31a進入口、 101 CPU(熱發生體)、 201 銷、 210治具、 L5銷的長度、 L6工具的外周面和周 P1配合部、 T1鰭片的厚度、 T11周壁的厚度、 W11段差部的寬度。 B1第二流路群、 C1第三流路、 10套匣本體、 11底壁、 15段差部、 21扁平管、 21b周壁、 31蓋本體、 31b排出口、 200工具、 202 肩、 K摩擦攪拌接合部、 的外周面間的距離、 Q重疊部份、 T2蓋本體的厚度、 W1溝寬度、Bla second flow path, J1 liquid cooling jacket, 10a, 10c space, 12 perimeter wall, 20 flat tube bundle, 21 a hollow, 21 c partition, 31a inlet, 101 CPU (heat generator), 201 pin, 210 The length of the jig, the L5 pin, the outer peripheral surface of the L6 tool, the circumference P1 fitting portion, the thickness of the T1 fin, the thickness of the T11 peripheral wall, and the width of the W11 step portion. B1 second flow path group, C1 third flow path, 10 sets of raft body, 11 bottom wall, 15 step difference part, 21 flat tube, 21b peripheral wall, 31 cover body, 31b discharge port, 200 tools, 202 shoulder, K friction stir The distance between the outer peripheral surface of the joint portion, the Q overlap portion, the thickness of the T2 cover body, the width of the W1 groove,

4848

Claims (1)

1355049 七、申請專利範圍: . 1.種液冷套匣,熱發生體被安裝在既定位置、使該 •熱發生體發生的熱傳達至自外部的熱輸送流體供給裝置被 供給、流通内部的熱輪送流體, 其特徵在於包括: 套£本體’上述熱輸送流體流動於内冑,且具有收容 金屬製的鰭片的鰭片收容室;以及 _ 密封體,密封上述縛片收容室; 其中包圍上述韓片收容室的上述套E本體的周壁和上 述密封體間的配合部係被摩擦攪拌接合; 上述金屬製的鰭片係在上述密封體立設,和該密封體 為一體。 2.如申請專利範圍第1項所述之液冷套E,其中該摩 擦授拌接合中的始端和終端係重疊。 如申。月專利範圍第i或2項所述之液冷套匿,其中 •上述周壁在外側不變形般,一邊在上述周壁抵接治具二邊 破上述摩擦攪拌接合。 4.如申請專利範圍第1或2項所述之液冷套厘,其中 在上述摩擦攪拌接合中使用的工具的銷的長度係在上述密 封體的厚度的60%以下。 5·如申請專利範圍第3項所述之液冷套匡,其中在上 边摩擦授拌接合中使用的工具的銷的長度係在 的厚度的60%以下。 如申叫專利範圍第1或2項所述之液冷套匣,其中 49 1355049 在上此摩擦攪拌接合中’上述工具的拔出位置係自上述配 合部被拆下。 7. 如申請專利範圍第3項所述之液冷套匣,其中在上 述摩擦攪拌接合中,上述工具的拔出位置係自上述配合部 被拆下。 8. 如申請專利範圍第4項所述之液冷套匣,其中在上 述摩擦攪拌接合中,上述工具的拔出位置係自上述配合部 被拆下。 9. 如申請專利範圍第5項所述之液冷套匣,其中在上 此摩擦攪拌接合中,上述工具的拔出位置係自上述配合部 被拆下。 501355049 VII. Patent application scope: 1. The liquid is cold-set, the heat generating body is installed at a predetermined position, and the heat generated by the heat generating body is transmitted to the heat transfer fluid supply device from the outside to be supplied and distributed inside. The hot-wheeling fluid is characterized in that: the body of the above-mentioned heat-transporting fluid flows to the inner raft, and has a fin accommodating chamber for accommodating metal fins; and a sealing body that seals the stencil accommodating chamber; The fitting portion between the peripheral wall of the sleeve E main body surrounding the Korean sheet storage chamber and the sealing body is friction stir welded, and the metal fin is erected on the sealing body and integrated with the sealing body. 2. The liquid cooling jacket E according to claim 1, wherein the beginning and the end of the friction feeding joint overlap. Such as Shen. The liquid-cooled cloak according to item ith or item 2 of the patent, wherein the peripheral wall is not deformed on the outer side, and the friction stir welding is broken on both sides of the peripheral wall abutting jig. 4. The liquid cooling jacket according to claim 1 or 2, wherein the length of the pin of the tool used in the friction stir welding is 60% or less of the thickness of the sealing body. 5. The liquid-cooled jacket of claim 3, wherein the length of the pin of the tool used in the upper friction stir joining is less than 60% of the thickness of the tool. The liquid-cooled jacket of the first or second aspect of the patent application, wherein 49 1355049 is in the friction stir welding, the pulling-out position of the tool is removed from the fitting portion. 7. The liquid-cooled jacket according to claim 3, wherein in the friction stir welding, the pulling-out position of the tool is removed from the fitting portion. 8. The liquid-cooled jacket according to claim 4, wherein in the friction stir welding, the extraction position of the tool is removed from the fitting portion. 9. The liquid-cooled jacket of claim 5, wherein in the friction stir welding, the extraction position of the tool is removed from the mating portion. 50
TW099140146A 2005-04-21 2006-04-20 Liquid-cooled jacket TW201113988A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005123403 2005-04-21

Publications (2)

Publication Number Publication Date
TW201113988A TW201113988A (en) 2011-04-16
TWI355049B true TWI355049B (en) 2011-12-21

Family

ID=37214696

Family Applications (3)

Application Number Title Priority Date Filing Date
TW099140147A TW201113989A (en) 2005-04-21 2006-04-20 Liquid-cooled jacket
TW095114120A TW200644199A (en) 2005-04-21 2006-04-20 Liquid-cooled jacket
TW099140146A TW201113988A (en) 2005-04-21 2006-04-20 Liquid-cooled jacket

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW099140147A TW201113989A (en) 2005-04-21 2006-04-20 Liquid-cooled jacket
TW095114120A TW200644199A (en) 2005-04-21 2006-04-20 Liquid-cooled jacket

Country Status (5)

Country Link
US (1) US20090065178A1 (en)
JP (2) JP5423638B2 (en)
CN (1) CN100543975C (en)
TW (3) TW201113989A (en)
WO (1) WO2006115073A1 (en)

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600220B2 (en) * 2005-09-01 2010-12-15 三菱マテリアル株式会社 Cooler and power module
JP4697475B2 (en) * 2007-05-21 2011-06-08 トヨタ自動車株式会社 Power module cooler and power module
US8081462B2 (en) * 2007-09-13 2011-12-20 Rockwell Automation Technologies, Inc. Modular liquid cooling system
JP5002522B2 (en) * 2008-04-24 2012-08-15 株式会社日立製作所 Cooling device for electronic equipment and electronic equipment provided with the same
US8079508B2 (en) * 2008-05-30 2011-12-20 Foust Harry D Spaced plate heat exchanger
JP2010022711A (en) * 2008-07-23 2010-02-04 Fujitsu Ltd Water pillow for heat radiation
JP5061065B2 (en) * 2008-08-26 2012-10-31 株式会社豊田自動織機 Liquid cooling system
JP5023020B2 (en) * 2008-08-26 2012-09-12 株式会社豊田自動織機 Liquid cooling system
JP5531573B2 (en) * 2008-12-09 2014-06-25 日本軽金属株式会社 Method for joining resin member and metal member, method for manufacturing liquid cooling jacket, and liquid cooling jacket
US20100181054A1 (en) * 2009-01-21 2010-07-22 Lockheed Martin Corporation Plate-Frame Graphite-Foam Heat Exchanger
JP5262822B2 (en) * 2009-02-23 2013-08-14 日本軽金属株式会社 Manufacturing method of liquid cooling jacket
CN102472593A (en) 2009-07-16 2012-05-23 洛克希德马丁公司 Helical tube bundle arrangements for heat exchangers
EP2454548B1 (en) 2009-07-17 2020-04-01 Lockheed Martin Corporation Heat exchanger and method for making
US9777971B2 (en) * 2009-10-06 2017-10-03 Lockheed Martin Corporation Modular heat exchanger
US20110127022A1 (en) * 2009-12-01 2011-06-02 Lockheed Martin Corporation Heat Exchanger Comprising Wave-shaped Fins
EP2525637B1 (en) * 2010-01-12 2020-10-28 Nippon Light Metal Co., Ltd. Liquid-cooled integrated substrate and method for manufacturing liquid-cooled integrated substrate
JP5533215B2 (en) 2010-05-10 2014-06-25 富士通株式会社 Cooling jacket and electronic device having the same
JP5813300B2 (en) 2010-08-23 2015-11-17 三桜工業株式会社 Cooling system
US9388798B2 (en) 2010-10-01 2016-07-12 Lockheed Martin Corporation Modular heat-exchange apparatus
US9670911B2 (en) 2010-10-01 2017-06-06 Lockheed Martin Corporation Manifolding arrangement for a modular heat-exchange apparatus
US20120080170A1 (en) * 2010-10-04 2012-04-05 Hsiu-Wei Yang Plate-type heat pipe sealing structure and manufacturing method thereof
DE102012201710A1 (en) * 2011-02-14 2012-08-16 Denso Corporation heat exchangers
CN102116464B (en) * 2011-04-21 2012-10-10 无锡马山永红换热器有限公司 High-power light-emitting diode (LED) street lamp radiator
WO2012147544A1 (en) 2011-04-26 2012-11-01 富士電機株式会社 Cooler for semiconductor module, and semiconductor module
US20140069615A1 (en) * 2011-05-12 2014-03-13 Toyota Jidosha Kabushiki Kaisha Cooler and method for producing the same
CN102856275A (en) * 2011-06-29 2013-01-02 鸿富锦精密工业(深圳)有限公司 Cooling system
JP5953206B2 (en) * 2011-11-11 2016-07-20 昭和電工株式会社 Liquid cooling type cooling device and manufacturing method thereof
KR101906648B1 (en) 2012-02-09 2018-10-10 휴렛 팩커드 엔터프라이즈 디벨롭먼트 엘피 Heat dissipating system
US9529395B2 (en) 2012-03-12 2016-12-27 Hewlett Packard Enterprise Development Lp Liquid temperature control cooling
JP5496279B2 (en) * 2012-07-25 2014-05-21 株式会社放熱器のオーエス Heat exchanger and manufacturing method thereof
CN102790027B (en) * 2012-08-27 2016-03-30 无锡市福曼科技有限公司 The multiple flow passages water cooling plant of computer CPU
CN102790025B (en) * 2012-08-27 2016-03-30 无锡市福曼科技有限公司 The multiple flow passages water-cooling structure of computer CPU
DE112013004552T8 (en) * 2012-09-19 2015-07-30 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing a semiconductor device
JP6112640B2 (en) 2012-09-28 2017-04-12 ヒューレット パッカード エンタープライズ デベロップメント エル ピーHewlett Packard Enterprise Development LP Cooling assembly
EP2824703B1 (en) * 2012-10-29 2022-06-29 Fuji Electric Co., Ltd. Semiconductor device
US9788452B2 (en) 2012-10-31 2017-10-10 Hewlett Packard Enterprise Development Lp Modular rack system
JP6082479B2 (en) * 2013-01-31 2017-02-15 ヒューレット パッカード エンタープライズ デベロップメント エル ピーHewlett Packard Enterprise Development LP Liquid cooling
JP6150195B2 (en) * 2013-02-13 2017-06-21 アクア株式会社 Electrical equipment and filters
CN105210185A (en) * 2013-05-17 2015-12-30 富士通株式会社 Semiconductor device, semiconductor device manufacturing method, and electronic apparatus
CN103365385A (en) * 2013-07-10 2013-10-23 北京百度网讯科技有限公司 Server component for complete cabinet and complete cabinet employing same
CN103402344A (en) * 2013-08-08 2013-11-20 安徽巨一自动化装备有限公司 Water channel structure of water-cooled heat sink of high-power electronic component
US20150068707A1 (en) * 2013-09-09 2015-03-12 Nec Corporation Electronic component cooling apparatus
DE102013110815B3 (en) * 2013-09-30 2014-10-30 Semikron Elektronik Gmbh & Co. Kg Power semiconductor device and method for producing a power semiconductor device
EP2879278B1 (en) * 2013-11-27 2017-06-28 Skf Magnetic Mechatronics Versatile cooling housing for an electrical motor
US10214109B2 (en) 2013-11-28 2019-02-26 Fuji Electric Co., Ltd. Method for manufacturing cooler for semiconductor-module, cooler for semiconductor-module, semiconductor-module and electrically-driven vehicle
CN103796492B (en) * 2014-01-25 2017-01-18 清华大学 Heat collecting end using lotus root-shaped cellular material microchannel module
JP2015175542A (en) * 2014-03-14 2015-10-05 パナソニックIpマネジメント株式会社 Cooling device
JP6238800B2 (en) * 2014-03-17 2017-11-29 株式会社フジクラ Cooling structure
CN105814685B (en) * 2014-05-20 2018-07-13 富士电机株式会社 Semiconductor module cooler and its manufacturing method
WO2015198720A1 (en) 2014-06-26 2015-12-30 日立オートモティブシステムズ株式会社 Power semiconductor module and method for manufacturing power semiconductor module
WO2016013072A1 (en) * 2014-07-23 2016-01-28 日本軽金属株式会社 Radiator
JP6378960B2 (en) * 2014-07-29 2018-08-22 株式会社キーレックス Press machine
WO2016021565A1 (en) * 2014-08-06 2016-02-11 富士電機株式会社 Semiconductor device
CN105636402B (en) * 2014-10-28 2018-01-09 奇瑞新能源汽车技术有限公司 A kind of water-cooling radiating structure of motor and electric machine controller
CN107000114B (en) * 2014-11-05 2020-08-25 日本轻金属株式会社 Method for manufacturing liquid cooling sleeve and liquid cooling sleeve
WO2017033923A1 (en) 2015-08-26 2017-03-02 日本軽金属株式会社 Bonding method, liquid cooling jacket production method, and liquid cooling jacket
JP6372515B2 (en) * 2015-08-26 2018-08-15 日本軽金属株式会社 Liquid cooling jacket manufacturing method and liquid cooling jacket
US10890385B2 (en) 2016-01-21 2021-01-12 Etalim Inc. Apparatus and system for exchanging heat with a fluid
JP2017195226A (en) * 2016-04-18 2017-10-26 昭和電工株式会社 Liquid-cooled type cooling device
CN107768333B (en) * 2016-08-23 2019-11-29 湖南中车时代电动汽车股份有限公司 Electric machine controller radiator
DK3290822T3 (en) * 2016-08-30 2020-02-24 Alfa Laval Corp Ab PLATE HEAT EXCHANGE FOR SOLAR HEAT
TWI635248B (en) * 2016-09-02 2018-09-11 宏碁股份有限公司 Evaporator and manufacturing method thereof
CN107801351B (en) * 2016-09-05 2023-08-01 宏碁股份有限公司 Evaporator and manufacturing method thereof
CN206089440U (en) * 2016-09-14 2017-04-12 深圳市力沣实业有限公司 Heat radiation structure and have this heat radiation structure's three -dimensional forming and hot -pressing system of glass
US10139168B2 (en) 2016-09-26 2018-11-27 International Business Machines Corporation Cold plate with radial expanding channels for two-phase cooling
CN106840562B (en) * 2017-01-09 2018-12-04 北京航空航天大学 With the split type shielding fixture and method in tenon blade high-temperature vibrating fatigue test in a kind of turbomachine
CN107104252A (en) * 2017-05-02 2017-08-29 安徽江淮松芝空调有限公司 A kind of battery water cooling plant for electric car
WO2019016824A1 (en) * 2017-07-19 2019-01-24 Shiv Nadar University A method for modifying surface grain structure of the material and apparatus thereof
DE102017217537B4 (en) * 2017-10-02 2021-10-21 Danfoss Silicon Power Gmbh Power module with integrated cooling device
JP6939481B2 (en) * 2017-11-30 2021-09-22 富士通株式会社 Cooling jackets and electronics
CN110543069A (en) * 2018-05-28 2019-12-06 中强光电股份有限公司 Liquid cooling type radiator
US20210016388A1 (en) * 2018-06-14 2021-01-21 Nippon Light Metal Company, Ltd. Method for manufacturing composite slab
WO2020017094A1 (en) * 2018-07-19 2020-01-23 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket
JP2020075255A (en) * 2018-11-05 2020-05-21 日本軽金属株式会社 Production method of liquid cooling jacket and friction stir welding method
JP7367394B2 (en) * 2018-11-22 2023-10-24 富士電機株式会社 Semiconductor module, vehicle and manufacturing method
JP7243262B2 (en) * 2019-02-15 2023-03-22 富士電機株式会社 Semiconductor module, vehicle and manufacturing method
FR3092901B1 (en) * 2019-02-20 2022-07-22 Rouge Eng Designs Heat sink for lighting system
EP3742097B1 (en) * 2019-05-23 2023-09-06 Ovh Water block assembly
JP7118262B2 (en) * 2019-05-30 2022-08-15 三菱電機株式会社 semiconductor equipment
JP7312093B2 (en) * 2019-11-21 2023-07-20 株式会社Soken power converter
KR102094009B1 (en) * 2020-01-13 2020-03-26 방민철 Temperature control apparatus for chemical liquid for manufacturing semiconductor
JP7347234B2 (en) * 2020-01-24 2023-09-20 日本軽金属株式会社 Liquid cooling jacket manufacturing method and friction stir welding method
JP7347235B2 (en) * 2020-01-24 2023-09-20 日本軽金属株式会社 Liquid cooling jacket manufacturing method and friction stir welding method
US11157050B1 (en) 2020-04-28 2021-10-26 Hewlett Packard Enterprise Development Lp Compute node tray cooling
US20210358833A1 (en) * 2020-05-14 2021-11-18 Lite-On Semiconductor Corporation Direct cooling power semiconductor package
US20220084740A1 (en) * 2020-09-14 2022-03-17 Intel Corporation Embedded cooling channel in magnetics
US11175102B1 (en) * 2021-04-15 2021-11-16 Chilldyne, Inc. Liquid-cooled cold plate
CN113311929A (en) * 2021-06-25 2021-08-27 郑州轻工业大学 Air-cooling and liquid-cooling integrated CPU radiator and radiating method
WO2023162413A1 (en) * 2022-02-25 2023-08-31 三菱電機株式会社 Cooler, method for manufacturing cooler, semiconductor device, and method for manufacturing semiconductor device
US20230292469A1 (en) * 2022-03-08 2023-09-14 Amulaire Thermal Technology, Inc. Liquid-cooling heat-dissipation structure
US20240023288A1 (en) * 2022-07-12 2024-01-18 Dell Products L.P. Radiator with top layer coolant tank

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667949A (en) * 1979-11-07 1981-06-08 Hitachi Ltd Cooling body of electrical parts
JPS61226946A (en) * 1985-04-01 1986-10-08 Hitachi Ltd Cooling device for integrated circuit chip
JP2558578B2 (en) * 1992-09-30 1996-11-27 住友軽金属工業株式会社 Heat dissipation device for heating element
JP3010080U (en) * 1994-10-12 1995-04-18 東洋ラジエーター株式会社 Electronic component cooler
WO2000016397A1 (en) * 1998-09-16 2000-03-23 Hitachi, Ltd. Electronic device
JP2001035981A (en) * 1999-07-16 2001-02-09 Toshiba Corp Cooler for semiconductor element and power-converting device using it
JP2001313357A (en) * 2000-04-27 2001-11-09 Hitachi Ltd Method for manufacturing heat sink plate, and heat sink structure
JP2002098454A (en) * 2000-07-21 2002-04-05 Mitsubishi Materials Corp Liquid-cooled heat sink and its manufacturing method
JP3077903U (en) * 2000-11-24 2001-06-12 能超 張 Micro thin plate type water cooling device usable for computer CPU
JP2005077052A (en) * 2003-09-03 2005-03-24 Hitachi Metals Ltd Flat heat pipe
TWM258569U (en) * 2004-05-18 2005-03-01 Cooler Master Co Ltd Liquid flow-path plate of water cooling heat sink

Also Published As

Publication number Publication date
CN100543975C (en) 2009-09-23
JP5423638B2 (en) 2014-02-19
CN101167184A (en) 2008-04-23
JP2011040778A (en) 2011-02-24
TW200644199A (en) 2006-12-16
JP2011018940A (en) 2011-01-27
TWI370527B (en) 2012-08-11
US20090065178A1 (en) 2009-03-12
TW201113988A (en) 2011-04-16
WO2006115073A1 (en) 2006-11-02
JP5423637B2 (en) 2014-02-19
TW201113989A (en) 2011-04-16

Similar Documents

Publication Publication Date Title
TWI355049B (en)
JP2006324647A (en) Liquid-cooled jacket
JP4687706B2 (en) Liquid cooling jacket
US11209216B2 (en) Ultra thin heat exchangers for thermal management
US11058032B2 (en) Memory module cooler with vapor chamber device connected to heat pipes
US20090294105A1 (en) Selectively Grooved Cold Plate for Electronics Cooling
TWM311234U (en) Water-cooling base
US20160293518A1 (en) Semiconductor module cooler and method for manufacturing same
JP2007232339A (en) Micro heat exchanger and its manufacturing method
JP2005191527A (en) Stacked cooler
EP3570321A1 (en) Cooling device and method for manufacturing cooling device
AU2007216908B2 (en) Air conditioner heat transfer water tank and manufacturing process thereof
JP2023041767A (en) Heat exchanger
TW200848994A (en) Heat dissipation device
JP2005167224A (en) Expansion tank device, its manufacturing method, and liquid-cooled heat radiator
JP2007240098A (en) Heat exchanger
JP2009195912A (en) Method of manufacturing pipe connecting parts and method of manufacturing casing component member
JP4521250B2 (en) Heat dissipation device and manufacturing method thereof
TW201807786A (en) Water-cooling radiator structure
JP2011222815A (en) Laminated heat exchanger and method for producing the same
JPS61102799A (en) Liquid chilling box and manufacture thereof
JP2011192746A (en) Cooling tube and method of manufacturing the same
TWI331270B (en) Expansion tank device, process for fabricating expansion tank device, and liquid cooling radiator
TWM629048U (en) Heat dissipation device assembly
TW595757U (en) Card-type liquid cooling heat sink module