TW201113988A - Liquid-cooled jacket - Google Patents

Liquid-cooled jacket Download PDF

Info

Publication number
TW201113988A
TW201113988A TW099140146A TW99140146A TW201113988A TW 201113988 A TW201113988 A TW 201113988A TW 099140146 A TW099140146 A TW 099140146A TW 99140146 A TW99140146 A TW 99140146A TW 201113988 A TW201113988 A TW 201113988A
Authority
TW
Taiwan
Prior art keywords
flow path
liquid
heat
cooling jacket
jacket
Prior art date
Application number
TW099140146A
Other languages
Chinese (zh)
Other versions
TWI355049B (en
Inventor
Yoshimasa Kasezawa
Hisashi Hori
Harumichi Hino
Tsunehiko Tanaka
Takeshi Yoshida
Original Assignee
Nippon Light Metal Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co filed Critical Nippon Light Metal Co
Publication of TW201113988A publication Critical patent/TW201113988A/en
Application granted granted Critical
Publication of TWI355049B publication Critical patent/TWI355049B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/068Shaving, skiving or scarifying for forming lifted portions, e.g. slices or barbs, on the surface of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a liquid-cooled jacket which can cool heat release objects, such as a CPU, etc., efficiently. A water cooling jacket J1 in which the CPU 101 is attached in a predetermined position, the heat generated from the CPU 101 is supplied from an external heat transport fluid supply means and transmitted to cooling water circulating the interior, includes a first passage A1 by the side of a heat transport fluid supply means, a second passage group B1 which has a plurality of second passages B1a which are branched from the first passage A1, and a third passage C1 which gathers a plurality of second passages B1a at the downstream of the plurality of second passages B1a. The CPU 101 is a water cooling jacket J1 which mainly carries out heat exchange by the second passage group B1.

Description

201113988 六、發明說明: 【發明所屬之技術領域】 本發明係有關於使CPU等的熱發生體冷卻的液冷套 匣。 【先前技術】 近年來,以個人電腦作為代表的電子機器係隨著其性 ❹[Technical Field] The present invention relates to a liquid cooling jacket for cooling a heat generating body such as a CPU. [Prior Art] In recent years, electronic computers represented by personal computers have followed their nature.

能提升,被搭載的CPU(熱發生體)的發熱量增大,cpu的冷 卻變的日益重要。習知為了冷卻cpu,使用空氣冷卻風扇 (fan)方式的熱沉(heat sink),然而風扇噪音、或以空氣 冷卻方式的冷卻極限的問題係被大書特書(cl〇se_up),作 為次世代冷卻方式,液冷套£ (也被稱為水冷套厘、液冷模 組[module])係被注目。 7 有關此類的技術,例如,在專利文獻丨中,以蛇行狀 被形成,内藏在其兩端設置進入口、#出口的金屬管的液 冷套匣被提案。 [專利文獻1]日本特開昭63_293865號公報(第2 上攔第2行〜左下攔第15行、第1圖、第2圖) 【發明内容】 的流專利文獻1記載的液冷套^般,冷卻水流 、 ^ 的話,冷卻水受到的壓力損失變大。藉此 不僅無法有效率地冷CPU,且存在 幫浦的輸出變大的問題。 ^為供給冷卻水 201113988 在此,本發明係為了解決上述問題,提供可有效率地 冷部CPU等的熱發生體的液冷套£作為課題。 、作為用以解決上述課題的手段,本發明係為熱發生體 被安裝在既定位置、使該熱發生體發生的熱自外部的埶輪 送流體供給裝置被供給、傳達至流通内部的熱輸送流體的』 液冷套E,包括:上述熱輸送流體供給裝置側的第—流路. 由自上述P流路分歧的複數的第二流路構成的第二流路 群;以及在上述複數的第二流路的下流側,使該複數的第 二流路集合的第三流路;其中上述熱發生體主要係在上述 第二流路群作熱交換。 根據此類的液冷套S,自外部的熱輸送流體供給裝置 的熱輸送流體係被供給至第一流路。其次,以第二流路群、 第三流路的順序流通。X,熱發生體發生的熱主要係藉由 第二流路群作熱交換,傳達至熱輸送流體。其結果,熱發 生體係適當地被冷卻。 在此,第二流路群係自第一流路分歧的複數的第二流 路所構成,纟於此複數的第二流路係在第三流路集合與 第二流路被形成為一支的蛇行狀的情形比較,各第二流路 的長度係A幅度地變m ’流通㈣的第i流路的熱 輪送流體的Μ力損失係,較流通上述一支的長流路長度的 第二流路的熱輸送流體的壓力損失也大幅度地變小。又, 本發明中的相鄰的第二流路係如有關後述的第六實施例的 液冷套匣J6的第二流路B5a、B5a般(參考第26圖),作為 不被完全隔離也可。 201113988 因此,根據此類的液冷套匣,使用輪出小的外部的熱 輸送流體供給裝置(例如,幫浦),供給熱輸送流體,使液 冷套匣内被流通,可有效率地冷卻cpu等的熱發生體。 又,本發明係為熱發生體被安裝在既定位置、使該熱 發生體發生的熱自外部的熱輸送流體供給裝置被供給、傳 達至流通内部的熱輸送流體的液冷套£,朝向、下'流側包 括:第-流路、由複數的第二流路構成的第二流路群、以 Ο ❹ 及第三流路;*中上述熱發生體主要係在上述第二流路群 作熱交換,相鄰的上述第二流路群係經由連結流路以直列 被連接。 亦即,為上述第二流路群係包括複數的第二流路群 部、該複數的第二流路群部係以直列被配置的液冷套厘。 根據此類的液冷㈣,藉由具備經由連結流路以直列 '第=數的第二流路群(第二流路群部),可在複數的 第一机路群、和熱發生體之間作熱交換。 =鄰的上述第二流路群係被並設的同時,其一方 ^和另-方的上流端係在同—側。 -方相鄰的上述第二流路群係被並設的同時、其 另一方的上流端係在同-侧的液冷套厘。 流通方向中經由相鄰的第二流路t體係在熱交換流體的 鄰的第二流路群的另一方,以:群的—方、連結流路、相 平面看來的液冷套£的大小仃的方式流通。因此,將 二流路群的第二流路的支數,時,不改變構成各第 曰加第二流路群的數目時, 201113988 構成:第二流路群的各第二 此,將流過液冷套_ 】面積係變小。因 二流路群的數目變多的 :的流量作為-定時,第 流速係變大。因此,自液μ 流路中的熱輪送流體的 车變大,其結果,液冷套匿的熱抵抗會下降。傳達 :此’相鄰的第二流路群不被並設,例 方向中,以一列狀被配置的情 其,肌路The heat generated by the CPU (heat generating body) that is being mounted is increased, and the cooling of the CPU is becoming more and more important. Conventionally, in order to cool the CPU, an air-cooling fan-type heat sink is used. However, the fan noise or the cooling limit of the air-cooling method is a problem of the book (cl〇se_up). Generation cooling methods, liquid cooling jackets (also known as water-cooled jackets, liquid cooling modules [module]) are attracting attention. (7) In the patent document, for example, in the patent document, a liquid-cooled jacket in which a metal pipe having an inlet port and an #outlet is provided at both ends is proposed. [Patent Document 1] Japanese Laid-Open Patent Publication No. SHO 63-293865 (Second-up, second, second, second, second, second, first, second, and second) In the case of the cooling water flow, ^, the pressure loss of the cooling water becomes large. In this way, not only is it impossible to cool the CPU efficiently, but there is a problem that the output of the pump becomes large. ^ In order to solve the above problems, the present invention provides a liquid cooling jacket which can efficiently generate a heat generating body such as a cold portion CPU. In the present invention, the heat generating body is attached to a predetermined position, and the heat generated by the heat generating body is supplied from the external wheeled fluid supply device and is transmitted to the inside of the heat transfer. The fluid cooling jacket E includes: a first flow path on the heat transfer fluid supply device side; a second flow path group formed by a plurality of second flow paths diverging from the P flow path; and the plurality of The downstream side of the second flow path is a third flow path in which the plurality of second flow paths are combined; wherein the heat generating body is mainly used for heat exchange in the second flow path group. According to such a liquid cooling jacket S, the heat transport flow system from the external heat transfer fluid supply device is supplied to the first flow path. Next, it flows in the order of the second flow path group and the third flow path. X. The heat generated by the heat generating body is mainly transmitted to the heat transfer fluid by heat exchange by the second flow path group. As a result, the heat generating system is appropriately cooled. Here, the second flow path group is formed by a plurality of second flow paths that are diverged from the first flow path, and the plurality of second flow paths are formed into a third flow path set and the second flow path. In the case of the snake-like situation, the length of each of the second flow paths is changed to the amplitude of the flow path A of the flow path A of the first flow path of the fourth flow path. The pressure loss of the heat transfer fluid of the second flow path is also drastically reduced. Further, the adjacent second flow path in the present invention is similar to the second flow paths B5a and B5a of the liquid-cooling jacket J6 of the sixth embodiment to be described later (refer to Fig. 26), and is not completely isolated. can. 201113988 Therefore, according to such a liquid-cooled jacket, a small external heat transfer fluid supply device (for example, a pump) is used to supply a heat transfer fluid to be circulated in the liquid cooling jacket, which can be efficiently cooled. A heat generator such as cpu. Moreover, the present invention is a liquid cooling package in which a heat generating body is attached to a heat generating fluid at a predetermined position, and heat generated by the heat generating body is supplied from the outside to the inside of the heat transfer fluid. The lower flow side includes: a first flow path, a second flow path group composed of a plurality of second flow paths, and a third flow path; wherein the heat generating body is mainly in the second flow path group For heat exchange, the adjacent second flow path groups are connected in series via a connection flow path. That is, the second flow path group includes a plurality of second flow path group portions, and the plurality of second flow path group portions are liquid-cooled ferrules arranged in series. According to the liquid cooling (four) of this type, the second flow path group (second flow path group portion) having the in-order number = via the connection flow path can be provided in the plural first path group and the heat generating body. Exchange between them. = The adjacent second flow path groups are adjacent to each other, and one of the other side and the other side of the upper flow end are on the same side. The second flow path group adjacent to each other is disposed at the same time, and the other upstream end is attached to the liquid cooling jacket on the same side. In the flow direction, via the adjacent second flow path t system, the other side of the adjacent second flow path group of the heat exchange fluid is: a group of squares, a connecting flow path, and a phase plane liquid cooling The size of the way to circulate. Therefore, when the number of the second flow paths of the second flow path group does not change the number of the second flow path groups that constitute each of the second flow paths, 201113988 constitutes: the second flow of the second flow path group will flow through The liquid cooling jacket _ 】 the area is smaller. Since the number of the two-way flow group is increased: the flow rate is - timing, and the first flow rate is increased. Therefore, the heat transfer fluid in the liquid flow path becomes large, and as a result, the heat resistance of the liquid cooling entanglement is lowered. It is conveyed that the adjacent second flow path groups are not arranged in parallel, and in the example direction, they are arranged in a line, and the muscle path is

變多,構成各第二流路群的各第二流路的的= 短,其剖面積不變小,熱交 一 I 液冷㈣的熱抵抗不下降^體的流速係不變大,藉此, 時,可將朝向液冷 同一側,其結果為 又’將第二流路群的數目作為偶數 套ε的熱輸送流體的入口和出口配置在 在液冷套匣連接的配管的處理變得容易 製的管被束缚的管束,各管的中 又’具備複數的金屬 空部為上述第二流路。 此類的液冷套厘係藉由具備複數的金屬製的管被束缚 的管束,各管的中空部成為上述第二流路,可容易地構成 液冷套匣。又,藉由將被束缚的金屬製的管的支數、粗度 等適宜地變更,可容易地變更第二流路的數目、粗度(流ς 剖面積)。 X ^ 又’具備具有複數的中空部的金屬製的管,上述各中 空部係為上述第二流路。 根據此類的液冷套匣,利用具有複數的中空部的金屬 製的管,可容易地構成液冷套匣。 201113988 又’具備以既定間隔配列的複數的金屬製的鰭片 (fin),相鄰的鰭片間為第二流路。 根據此類的液冷套匣,藉由將相鄰的鰭片之間作為第 二流路,可將來自熱發生體的熱經由複數的鰭片,傳達至 流通第二流路的熱輸送流體。 又’上述第二流路的寬度W為〇. 2〜1. 〇fflm。 根據此類的液冷套匣’可將其熱抵抗、和通過内部的 熱輸送流體承受的壓力損失作為良好的範圍。 又’上述第二流路的寬度W和相鄰的上述第二流路之 間的鰭片的厚度τ係滿足下式(1): _〇. 375 X W + 0. 875 g T/¥ S -1. 875 X W + 3. 275 …(1)。 根據此類的液冷套匣,其熱抵抗變小,在熱發生體和 熱輸送流體之間,可良好地作熱交換。 又,上述第二流路的深度D和寬度w係滿足下式(2) ·· 5 X W + 1 $ D $ 16. 25 X W + 2. 75 …(2)。 根據此類的液冷套匣,其熱抵抗變小,在熱發生體和 熱輸送流體之間,可良好地作熱交換。 又’具備:包含上述複數的金屬製的鰭片以及該複數 的金屬製的鰭片被立設的基板所構成的鰭片元件;以及收 容該鰭片元件的套匣本體;上述基板係在上述套匣本體可 作熱交換的方式被固定。 此類的液冷套匣,例如,將具有構成基板的底板、和 在此底板被立設的複數的鰭片所構成的複數的條的金屬製 的擠製件切斷,製作具備上述複數的金屬製的鰭片的鰭片 201113988 :之後藉由將此鰭片元件例如固定在箱狀的套匣 本體而可構成液冷套厘。 又’例如,藉由在金屬製的塊(bi〇⑴形成複數的溝, 亦可製作具備複數的金屬製的鰭片的鰭片元件。 在兮Γ ΐ括:第一鰭片元件’其係具備第一基板、以及 ,第-基板被立設的複數的第'鰭片; :、備第—基板、以及在該第二基板被立設的複數的第 中上述第""鰭片元件和上述第二_片元件係, ΐ = Γ第一鱗片和上述複數的第二鳍片作為互㈣ 般被、,且…述金屬製的複數的鰭片係藉由上述第一鰭 =和上述第二韓片被構成,在相鄰的上述第一鰭片和上述 弟一鰭片之間,上述第二流路被形成。 二缺:為此類的液冷套g係使複數的第一韓片和複數的第 相互嚙口,即使第―鰭片彼此的間隔和第二鰭 =間隔變廣,可將相鄰的金屬製的韓片的間隔,亦即, 鰭片和第二鰭片間的間隔變窄。 上述熱發生體係在上述第一基板側被安裝,上述 鰭片的突出長度係被設定為和上述第二韓片的突出長 目同或短,上述複數的第二籍片和上述第一基板係熱連 此類的液冷套匿係藉由第一韓片的突出長度和第二韓 定、突出長度相同、或比第二鰭片的突出長度短般被設 第二稽片元件和第二韓片元件組合之際,複數的 1片在第-基板確實地抵接,可將複數的第二鰭片和 201113988 第一基板熱交換地接合而構成。 在第—基板側被安裝的熱發生體的熱係經由第一 &,刀別傳達至複數的第一縛片和複數的第二鰭片。其 "、、係可傳達至流通第一鰭片和第二鰭片之間的第二 &路的熱輪送流體。 — 具備.收容上述複數的金屬製的鰭片的鰭片收容When the number of the second flow paths constituting each of the second flow path groups is short, the cross-sectional area thereof is not small, and the heat resistance of the heat exchange-I liquid cooling (4) does not decrease, and the flow velocity of the body is not changed. In this case, the liquid cooling side can be the same side, and as a result, the process of changing the number of the second flow path group as the inlet and the outlet of the heat transfer fluid of the even number of sets ε in the piping connected to the liquid cooling jacket A tube bundle that is easy to manufacture is bundled, and each of the tubes has a plurality of metal hollow portions as the second flow path. The liquid-cooled ferrule of this type is a bundle of tubes which are bundled with a plurality of metal tubes, and the hollow portion of each tube serves as the second flow path, so that the liquid-cooling ferrule can be easily formed. In addition, the number and thickness (running cross-sectional area) of the second flow path can be easily changed by appropriately changing the number, thickness, and the like of the metal pipe to be bound. X ^ is further provided with a metal pipe having a plurality of hollow portions, and each of the hollow portions is the second flow path. According to such a liquid-cooled jacket, a liquid-cooled jacket can be easily constructed by using a metal pipe having a plurality of hollow portions. 201113988 Further, a plurality of metal fins arranged at predetermined intervals are provided, and a second flow path is formed between adjacent fins. According to such a liquid-cooled jacket, heat from the heat generating body can be transmitted to the heat transfer fluid flowing through the second flow path via the plurality of fins by using the adjacent fins as the second flow path. . Further, the width W of the second flow path is 〇. 2~1. 〇fflm. According to such a liquid-cooled jacket, the heat resistance and the pressure loss by the internal heat transfer fluid can be regarded as a good range. Further, the width W of the second flow path and the thickness τ of the fin between the adjacent second flow paths satisfy the following formula (1): _〇. 375 XW + 0. 875 g T/¥ S - 1. 875 XW + 3. 275 ... (1). According to such a liquid-cooled jacket, the heat resistance is small, and heat exchange is favorably performed between the heat generating body and the heat transfer fluid. Further, the depth D and the width w of the second flow path satisfy the following formula (2) · · 5 X W + 1 $ D $ 16. 25 X W + 2. 75 (2). According to such a liquid-cooled jacket, the heat resistance is small, and heat exchange is favorably performed between the heat generating body and the heat transfer fluid. Further, the present invention includes: a fin element including a plurality of metal fins and a substrate in which the plurality of metal fins are erected; and a ferrule body accommodating the fin element; The casing body can be fixed in a heat exchange manner. In the liquid-cooling jacket of this type, for example, a metal extruded member including a bottom plate constituting the substrate and a plurality of fins on which the bottom plate is erected is cut, and the above-mentioned plural is produced. The fins of the metal fins 201113988: The liquid fins can then be formed by fixing the fin elements to, for example, a box-shaped ferrule body. Further, for example, a fin element having a plurality of metal fins can be produced by forming a plurality of grooves in a metal block (1). In the 兮Γ :: first fin element a first substrate and a plurality of 'th fins' on which the first substrate is erected; a first substrate; and a plurality of the first "" fins that are erected on the second substrate The element and the second sheet element system, ΐ = Γ the first scale and the plurality of second fins are mutually (four), and the plurality of fins of the metal are by the first fin = and The second Korean piece is configured such that the second flow path is formed between the adjacent first fin and the first fin. Two defects: the liquid cooling g of the type is a plurality of a Korean piece and a plurality of mutual inter-points, even if the first fins are spaced apart from each other and the second fins are spaced apart, the spacing of adjacent metal Korean films, that is, the fins and the second fins, may be The interval between the sheets is narrowed. The heat generating system is mounted on the first substrate side, and the protruding length of the fins is set. In order to be the same as or shorter than the protruding length of the second Korean film, the plurality of second pieces and the first substrate are thermally connected to each other by the protruding length of the first Korean piece and the second When the Handing, the protruding length is the same, or the second chip element and the second Korean element are combined as compared with the protruding length of the second fin, a plurality of pieces are reliably abutted on the first substrate, and The plurality of second fins are joined to the first substrate of 201113988 in a heat exchange manner. The heat of the heat generating body mounted on the first substrate side is transmitted to the plurality of first binding sheets and plurals via the first & a second fin. The ", can be transmitted to the second & the hot-wheeling fluid flowing between the first fin and the second fin. - having a metal fin for accommodating the plurality of Fin containment

-、套匣本體,以及密封上述鰭片收容室的密封體;其中 匕圍上述鰭片收容室的上述套匣本體的周壁和上述密封體 門的配。被摩擦攪拌接合的㈣,該摩擦授拌接合中的 始端和終端會重疊(overlap)。 根據此類的液冷套E,藉由摩擦授摔接合中的始端和 &lt;會重4可將套£本體的周壁和密封體良好地接合。 藉此,熱輸送流體不易漏至外部。 人 u馬不使用焊材’藉由摩擦授拌接合,將密封體 和套匣本體接合,完全不用擔心藉由焊材等使熱輸送流體 (冷媒)被污染,且完全不用擔心構成液冷系統的微幫浦或 放熱器等的機器類係藉由焊材等而被腐蝕。 又,上述複數的金屬製的鰭片係在上述密封體立設, 和該密封體為一體。 根據此類的液冷套匣,藉 封體為一體’以密封體密封鰭 屬製的鰭片配置在鰭片收容室 減少液冷套匣的生產工程,可 本降低。又’如此般,複數的 由複數的金屬製的鰭片和密 片收容室,且可將複數的金 的既定位置。亦即,不但可 容易生產,且可將其生產成 金屬製的鰭片和密封體為一 201113988 體的物件,例如,如後述的第五實施例記載般,可藉由使 銘合金製的板(板材)刮削(skive)加工而得到。 又,如此方式,藉由刮削加工等,鰭片和密封體以一 體被成形的話,當然就不必以焊材等接合鰭片和密封體, 藉此’可防止熱輸送流體的污染等。 又,由於鰭片和密封體為一體,兩者間的熱傳達性高。 因此,在密封體安裝CPU等的熱發生體的話,熱發生體的 熱係經由密封體,良好地傳達至複數的鰭片。其結果為液 冷套£中的熱發生體的放熱性能變高。 、△又’上述周壁在外側不變形般,—面在上述周壁抵接 治具一面被上述摩擦攪拌接合。 根據此類的液冷套S ’藉由一面在周壁抵接治具一面 作摩擦攪拌接合,藉由摩擦攪拌接合,周壁在外側不易變 :二,如上述,藉由抵接治具’周壁薄,即使在摩擦授 。使用的工具中的肩(sh〇uider)的外周面 :周面間的距峨隙),例如,在〜以下,周壁不會 變形’可作摩擦攪拌接合。 在上二在上述摩擦搜拌接合中使用的工具的銷的長度係 在上迷密封體的厚度的60%以下。 根據此類的液冷套匣,藉由 封骑Mr·— 一的銷的長度在上述密 封體的厚度的6〇%以下, 铸藉由作摩擦攪拌接合,密封體在 鳍片收谷室側不易變形。藉此 變小。 止1片收谷室的容積 上述工具的拔出位置係 又,在上述摩擦攪拌接合中 10 201113988 自上述配合部被拆下。 ^根據此類的液冷套g,藉由工具的拔出位置自上述配 口邠被插下,銷的祓出痕跡不會在配合部被形成。藉此, 可將套匣本體和密封體適合地接合。 又,具備具有複數的細孔的金屬製的蜂巢(h〇neyc〇mb) 體,上述細孔係為上述第二流路。 根據此類的液冷套E,藉由將上述蜂巢體的細孔作為 上述第二流路,使自熱發生體的熱經由蜂巢體,可傳達至 流通第二流路的熱輸送流體。 又,具備:剖面為波狀的金屬製的熱交換片;以及該 熱交換片以可熱交換地被固定的金屬製的套匣本體;其中 在上述熱交換片和上述套匣本體之間,上述第二流路被形 成。 根據此類的液冷套匣,藉由使剖面為波狀的熱交換片 在套s本體以可熱交換的方式固定,可容易地構成。、 D 又’上述金屬係為鋁或鋁合金。 根據此類的液冷套匣,藉由將金屬作為鋁或鋁合金而 被輕量化。 又,連通在上述第一流路的熱輸送流體的進入口、和 連通上述第三流路的熱輸送流體的排出口係,以上述熱發 生體作為中心,對稱地被配置。 根據此類的液冷套H ’自進入口被供給到第一流路的 熱輸送流體係使熱發生體的附近的第二流路流通變容易。 藉此,可將熱輸送流體在和熱發生體之間,適合地作熱六 11 201113988 換0 又,上述進入口和上述排出口係相對地遠離般被配置。 根據此類的液冷套匣,自進入口被供給到第一流路的 熱輸送流體係可將複數的第二流路的全體流通變容易。藉 此’在流通複數的第二流路全體的熱輸送流體和熱發生體 之間,可適合地作熱交換。 又,上述進入口和上述排出口係相對地靠近上述熱發 生體般被配置。 根據此類的液冷套匣,自進入口被供給到第一流路的 熱輸送流體係使熱發生體附近的第二流路以快速的流速流 通變容易。藉此,在以此快速流速流通的熱輸送流體和熱 發生體之間’可適合地作熱交換。亦即,例如,CPU等的 熱發生體係不會經由稱為熱擴散器(heat spreader)的熱 擴散片102(參考第3圖),在液冷套匣被安裝,熱發生體 的熱難以傳達至液冷套匣的全體時,如此,藉由使熱輸送 流體以快速的流速流通熱發生體的附近的第二流路,可有 效率地放熱。 又,上述熱發生體係為CPU。 根據此類的液冷套匣,在CPU和熱輸送流體之間有效 率地作熱交換,可使CPU冷卻。 根據本發明,可提供有效率地冷卻CPU等的熱發生體 的液冷套匣。 【實施方式】 12 201113988 以下有關本發明的實施例,適當地參考圖示詳細說明。 《第一實施例》 首先,有關第一實施例的液冷系統和液冷套匣,參考 第卜8圖說明。第1圖係為有關第一實施例的液冷系統的 構成圖。第2圖係為有關第一實施例的液冷套匣的全體立 體圖。第3圖係為自有關第一實施例的液冷套匣的下方的 全體立體圖。第4圖係為有關第一實施例的液冷套匣的立 體圖,表示省略蓋單元的狀態。第5圖係為有關第一實施 例的液冷套匣的平面圖,省略進入管和排出管。第6圖係 為有關在第2圖表示的第一實施例的液冷套匣的χ_χ剖面 圖。第7圖係為有關第一實施例的液冷套匣的分解立體 圖。第8圖係以模式地表示有關第一實施例的液冷套匣的 效果的圖表® 《液冷系統的構成》 如第1圖所示般,有關第一實施例的液冷系統s 1係為 搭載在直立(tower)型個人電腦的個人電腦本體12〇(電子 機器)的系統,為冷卻構成個人電腦本體12〇的cpu 1〇1(熱 發生體)的系統。液冷系統s 1係主要包括:CPU】〇 ^在既 定位置被安裝的液冷套g J1(參考第3圖);使冷卻水(熱 輸送流體)輸送的熱放出至外部的放熱器121(放熱装置); 使冷卻水循環的微幫浦122(熱輸送流體供給裝置);吸收 根據溫度變化的冷卻水的膨脹/收縮的儲備槽 tank)123;連接這些的彎好124&quot;.;以及輸送熱的冷卻e 水。作為冷卻水,例如,使用乙二醇㈣❿此…⑻) 13 201113988 系的不凍液。 又 的方式 X馬冷卻水循環這 《液冷卡匣的構成》 其次’詳細說明有關構成液冷系統幻的液冷套 如第2、3圖所示般’液冷套EJ1係在其下方侧(裏面 側)的中央(既定位置),經由埶擴And a casing body and a sealing body for sealing the fin accommodation chamber; wherein a peripheral wall of the casing body surrounding the fin accommodation chamber and the sealing body door are disposed. (4) which is frictionally agitated and joined, the beginning and the end of the friction stir joining may overlap. According to the liquid cooling jacket E of this type, the peripheral wall of the body and the sealing body can be well joined by the start of the frictional engagement and the weight 4. Thereby, the heat transfer fluid is less likely to leak to the outside. The human horse does not use the welding material', and the sealing body and the ferrule body are joined by friction feeding, so that there is no fear that the heat transfer fluid (refrigerant) is contaminated by the welding material or the like, and there is no need to worry about constituting the liquid cooling system. A machine such as a micro pump or a radiator is corroded by a welding material or the like. Further, the plurality of metal fins are erected on the sealing body and integrated with the sealing body. According to such a liquid-cooled ferrule, the production of the liquid-cooled ferrule by the sealing fin-finished fins in the fin-sealing chamber can be reduced. Further, in this manner, a plurality of metal fins and a film containing chamber are provided, and a plurality of predetermined positions of gold can be used. That is, not only can it be easily produced, but it can be produced into a metal fin and a sealed body which is a body of the 201113988 body. For example, as described in the fifth embodiment to be described later, the plate made of the alloy can be made of (Sheet) obtained by skive processing. Further, in this manner, when the fin and the sealing body are integrally formed by the scraping process or the like, it is of course unnecessary to join the fin and the sealing body with a welding material or the like, thereby preventing contamination of the heat transfer fluid or the like. Moreover, since the fin and the sealing body are integrated, the heat transfer between the two is high. Therefore, when a heat generating body such as a CPU is attached to the sealing body, the heat of the heat generating body is favorably transmitted to the plurality of fins via the sealing body. As a result, the heat generating property of the heat generating body in the liquid cooling jacket becomes high. And Δ again, the peripheral wall is not deformed on the outer side, and the surface is abutted against the jig by the friction stir welding. According to such a liquid cooling jacket S', by friction stir welding on one side of the peripheral wall abutting the jig, the peripheral wall is not easily changed on the outer side by friction stir welding: Second, as described above, by the abutment jig 'peripheral wall thin Even after being taught by friction. The outer peripheral surface of the shoulder (sh〇uider) in the tool to be used: the gap between the circumferential surfaces), for example, below ~, the peripheral wall is not deformed' can be used for friction stir welding. The length of the pin of the tool used in the above friction stir joining is the same as 60% or less of the thickness of the upper sealing body. According to the liquid-cooling ferrule of this type, the length of the pin of the seal riding Mr.-one is less than 6〇% of the thickness of the sealing body, and the casting is joined by friction stir welding, and the sealing body is on the side of the fin receiving chamber. Not easily deformed. This will become smaller. The volume of the one receiving chamber is removed. The above-mentioned tool is pulled out again from the above-mentioned mating portion in the above-mentioned friction stir welding 10 201113988. According to the liquid cooling jacket g of this type, the extraction position of the tool is inserted from the above-mentioned fitting port, and the pin-out of the pin is not formed at the fitting portion. Thereby, the sleeve body and the sealing body can be suitably joined. Further, a honeycomb honeycomb body having a plurality of fine pores is provided, and the pores are the second flow passages. According to such a liquid cooling jacket E, by using the pores of the honeycomb body as the second flow path, the heat of the heat generating body can be transmitted to the heat transfer fluid flowing through the second flow path via the honeycomb body. Further, the present invention includes: a heat exchange sheet made of a metal having a corrugated cross section; and a metal ferrule body fixed to the heat exchange sheet by heat exchange; wherein the heat exchange sheet and the ferrule body are The second flow path described above is formed. According to such a liquid-cooled jacket, the heat exchange sheet having a corrugated cross section can be easily fixed by heat-exchangeable in the sleeve body. D, 'The above metal is aluminum or aluminum alloy. According to such a liquid-cooled jacket, it is lightweight by using a metal as aluminum or an aluminum alloy. Further, the inlet port of the heat transfer fluid that communicates with the first flow path and the discharge port of the heat transfer fluid that communicates with the third flow path are symmetrically arranged around the heat generating body. According to such a heat transfer flow system in which the liquid cooling jacket H' is supplied from the inlet port to the first flow path, the second flow path in the vicinity of the heat generating body can be easily flowed. Thereby, the heat transfer fluid can be suitably placed between the heat generating body and the heat generating body, and the inlet port and the discharge port are relatively far apart. According to such a liquid-cooled jacket, the heat transport flow system supplied from the inlet port to the first flow path can facilitate the entire flow of the plurality of second flow paths. By this, it is possible to suitably exchange heat between the heat transfer fluid and the heat generating body of the entire second flow path. Further, the inlet port and the discharge port are disposed to be relatively close to the heat generating body. According to such a liquid-cooled jacket, the heat transport flow system supplied from the inlet port to the first flow path makes it easy to flow the second flow path in the vicinity of the heat generating body at a rapid flow rate. Thereby, heat exchange between the heat transfer fluid and the heat generating body flowing at this rapid flow rate can be suitably performed. That is, for example, a heat generating system such as a CPU does not pass through a heat diffusion sheet 102 (refer to FIG. 3) called a heat spreader, and is installed in a liquid cooling jacket, and heat of the heat generating body is hard to be transmitted. When the entire liquid cooling jacket is reached, the heat transfer fluid can be efficiently radiated by flowing the second flow path in the vicinity of the heat generating body at a rapid flow rate. Further, the above heat generation system is a CPU. According to this type of liquid-cooled ferrule, heat is efficiently exchanged between the CPU and the heat transfer fluid to cool the CPU. According to the present invention, it is possible to provide a liquid cooling jacket that efficiently cools a heat generating body such as a CPU. [Embodiment] 12 201113988 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. <<First Embodiment>> First, the liquid cooling system and the liquid cooling jacket of the first embodiment will be described with reference to Fig. 8. Fig. 1 is a configuration diagram of a liquid cooling system relating to the first embodiment. Fig. 2 is a perspective view showing the entire liquid cooling jacket of the first embodiment. Fig. 3 is an overall perspective view from the lower side of the liquid cooling jacket of the first embodiment. Fig. 4 is a perspective view showing the liquid-cooling jacket of the first embodiment, showing a state in which the cover unit is omitted. Fig. 5 is a plan view showing the liquid-cooling jacket of the first embodiment, omitting the inlet pipe and the discharge pipe. Fig. 6 is a cross-sectional view of the liquid cooling jacket of the first embodiment shown in Fig. 2; Fig. 7 is an exploded perspective view showing the liquid cooling jacket of the first embodiment. Fig. 8 is a graph schematically showing the effect of the liquid-cooling jacket of the first embodiment. "Configuration of liquid cooling system" As shown in Fig. 1, the liquid cooling system s 1 relating to the first embodiment It is a system for cooling a cpu 1〇1 (heat generating body) constituting a personal computer main body 12〇 in a system of a personal computer main body 12 (electronic device) mounted on a tower type personal computer. The liquid cooling system s 1 mainly includes: a CPU 〇 ^ a liquid cooling jacket g J1 installed at a predetermined position (refer to FIG. 3 ); and a heat radiator 121 that discharges heat transferred from the cooling water (heat transfer fluid) to the outside ( a heat release device); a micro pump 122 (heat transfer fluid supply device) that circulates cooling water; a reserve tank tank that absorbs expansion/contraction of cooling water according to temperature changes; 123; connects these bends 124&quot; Cooling e water. As the cooling water, for example, an ethylene glycol (four) ❿ (8)) 13 201113988 system of antifreeze is used. Another way X horse cooling water circulation "the composition of the liquid cooling card" Secondly, the detailed description of the liquid cooling jacket that constitutes the liquid cooling system is as shown in the second and third figures, the liquid cooling jacket EJ1 is on the lower side ( The center of the inside side (established position)

1ηι …、獷散片1〇2(熱擴散器),CPU 1 〇 1被文裝。如此,在CPU 1 〇 1祜忠壯&amp; ,、,4 Ui破女裝的狀態下,藉由冷 部水流通液冷套匣J1内,液冷矣 夜令套E J1係使CPU 101發生1ηι ..., 犷 片 1 〇 2 (heat spreader), CPU 1 〇 1 is loaded with text. In this way, in the state where the CPU 1 〇 1祜 Zhong Zhuang &amp; , , 4 Ui breaks the women's wear, the cold water circulation liquid is cooled in the jacket J1, and the liquid cooling night set E J1 causes the CPU 101 to occur.

的熱受熱的同時,藉由和流诵肉A 和/;,L通内部的冷卻水作熱交換,將 接受自CPU 101的教傳这5六么卩士 …得運至冷部水,其結果為CPU 101有 效率地被冷卻。又,熱擴散片102係為用以使CPU101的 熱有效率地傳達至後述的套s本體10的底壁u的片,例 如,由具有銅等的高熱傳導性的金屬形成。 此類的液冷套匠η係如第4〜7圖所示般,主要包括套 Ε本體1G、扁平管束20(管束)、蓋單元3G。套£本體10' 扁平管束20:蓋單元3。只要未特別記載,係由紹或銘合 金破形成。藉此,液冷套匣Η輕量化被達到,安裝容易。 〈套匣本體〉 套E本體1 〇為上方側(一方側)開口的淺底的箱體(參 考第7圖),具有底壁u和周壁12,在其内側具備收容扁 平S束的收容室(參考第7圖)。此類的套匣本體1〇係, ί如藉由壓鑄(模鑄[die-casting])、鑄造、鍛造等被製 作。又,套匣本體〗〇係在其開口緣的一部份,具有對應於 14 201113988 後述的蓋本體31的缺口部31c的形狀的位置配合部14。 〈扁平管束&gt; 扁平管束2。係在套E本體!。内,一 保空間10a和空間1〇吖來去楚/ 「面、 、陶端側確 系耸的▲人 5圖),藉由 、, 5金構成焊材等,在套S本體1〇的底壁u 作熱交換(熱移動)的方式被接合•固定(參考第6圖)。^ 間l〇a係作為第一流路^的功能,空間係 路C1的功能。 巧弟一抓While the heat is being heated, the heat exchange with the internal cooling water of the L-flow meat A and /; L will be accepted from the CPU 101, and the 5-6 gentlemen will be transported to the cold water. As a result, the CPU 101 is efficiently cooled. Further, the heat diffusion sheet 102 is a sheet for efficiently transferring the heat of the CPU 101 to the bottom wall u of the sleeve body 10 to be described later, and is formed of, for example, a metal having high thermal conductivity such as copper. Such a liquid-cooled jacket η system mainly includes a sleeve body 1G, a flat tube bundle 20 (tube bundle), and a lid unit 3G as shown in Figs. 4 to 7. Set of body 10' flat tube bundle 20: cover unit 3. As long as it is not specifically recorded, it is formed by Shao or Minghe. Thereby, the liquid cooling jacket is lighter in weight and easy to install. <Rack body> The casing E is a shallow-bottomed case (see Fig. 7) that is open on the upper side (one side), and has a bottom wall u and a peripheral wall 12, and a storage chamber for accommodating a flat S bundle on the inner side thereof. (Refer to Figure 7). Such a sleeve body is made of, for example, die-casting, casting, forging, and the like. Further, the sleeve body is provided with a position fitting portion 14 corresponding to the shape of the notch portion 31c of the cap body 31 to be described later on 14201113988. <flat tube bundle> Flat tube bundle 2. Attached to the E body! . Inside, a space 10a and a space 1 come and go to Chu / "face, the end of the pottery side of the tower ▲ people 5 map", by, 5 gold constitute welding consumables, in the bottom of the S body The wall u is heat-exchanged (heat-moving) in a way that is joined and fixed (refer to Figure 6). ^Inter-l〇a is used as the function of the first flow path ^, and the function of the space system C1.

扁平s束20係為既定數目的扁平管21在其厚度方向 被束缚、接合的物件(參考第6、7圖)。各扁平管係具 有個或複數個(在第一實施例中為兩個)的中空部2 i。 =,各中空部21a係作為冷卻水流通的第二流路…的功 月匕亦即’各第二流路Bla的剖面看為矩形,肖由位於在 其兩側的扁平管21的周壁21b、21b構成的側壁部(第二流 ㈣成部和由位於其上下側的周壁21b或分隔壁21j 構成的上壁部(第二流路構成部)或下壁部(第二流路構成 邰)被包圍。因&amp; ’扁平管束20係具有由複數的第二流路 亦即,複數的第二流路Bla構成的第二流路群M。 在此,CPU 1 01係如前述般,在底壁11的下側(外側) 的約略中央位置被安裝(參考第3圖)。藉此,cpu ι〇ι的 熱係經由底壁11’成為傳達至包圍各扁平管21的中空部 21a(第二流路Bla)的周壁21b、和分隔相鄰的中空部21a 的釦隔壁21c。又,傳達至周壁21b和分隔壁21 c(埶交換 部)的熱係變成傳達至流通各第二流路Bla的冷卻藉 15 201113988 此’ CPU 101係成為 水熱交換。 主要和流通第 二流路群B1部份的冷卻 又’藉由將複數個扁 自⑽m的熱傳達且由;^束缚而構成扁平管束I 21b(熱交換部)增加 、冷部水直接熱交換的周壁 熱交換。藉此,可有效H 冷卻水之間有效率地 有政率地冷卻CPU 1 01。 =二、第二流路群(複數的第二流路)、第三 在此,更說明有關第 的第二流路_、第三流路c卜1第一群叫複數 幫浦::===:122供給冷卻水的流路, 弟一抓路群B1上流側)被配置。 第一机路群B1係在第-流路A1的下流側被配置,構 、一机路群B1的各第二流路Ma係自第一流路μ分 歧。藉此’冷卻水自第-流路A1被分配,成為流入各第二 流路B1 a的方式。 第—机路ci係在第二流路群B1 (亦即,複數的第二流 路Bla)的下流側被配置,使複數的第二流路βι&amp;集合。藉 自各第二流路Bla流出的冷卻水係在第三流路π集合 之後,成為在液冷套匣:1被排出的方式。 第流路A1和第三流路C1的流路剖面積係被設定比 第一机路β 1 a的流路剖面積大。各第二流路B1 a的流路 長(各扁平管21的長度)係對於經由相當於有關習知技術 的扁平官束20的部份的全部蛇行的一個流路,大幅度地變 短。 16 201113988 因此,以第-流路Μ、各第二流路Bla、第三流路以 的順序流通的冷卻水受到的壓力損失係幾乎不會發生 -流路Ai和第三流路C1,在各第二流路βι&amp;,對於自上述 蛇行的-個流路受到的壓力損失,大幅度地變小。藉此, 可使在液冷套H n供給冷卻水的微幫浦122的額定^出下 降,微幫浦122的小型化和其噪音被減低。 〈蓋單元〉The flat s-beam 20 is an object in which a predetermined number of flat tubes 21 are bound and joined in the thickness direction thereof (refer to Figs. 6 and 7). Each of the flat tubes has one or a plurality of (two in the first embodiment) hollow portions 2 i. = each of the hollow portions 21a is a second flow path that flows as cooling water, that is, the cross section of each of the second flow paths Bla is rectangular, and the peripheral wall 21b of the flat tubes 21 located on both sides thereof The side wall portion (the second flow (four) portion) and the upper wall portion (second flow path configuration portion) or the lower wall portion (the second flow path structure) constituted by the peripheral wall 21b or the partition wall 21j located on the upper and lower sides thereof The flat tube bundle 20 has a second flow path group M composed of a plurality of second flow paths, that is, a plurality of second flow paths Bla. Here, the CPU 101 is as described above. The heat is applied to the hollow portion 21a surrounding the flat tubes 21 via the bottom wall 11' via the bottom wall 11'. The peripheral wall 21b of the second flow path Bla and the buckle partition wall 21c that partitions the adjacent hollow portion 21a. Further, the heat transmitted to the peripheral wall 21b and the partition wall 21c (the exchange portion) is transmitted to the second flow. The cooling of the flow path Bla l 15 201113988 This 'CPU 101 system becomes the water heat exchange. Mainly and the cold part of the second flow path group B1 In addition, by transferring a plurality of flat heats from (10) m and restraining them, the flat tube bundles I 21b (heat exchange portions) are increased, and the cold wall water is directly exchanged for heat exchange, thereby effectively cooling the water. Efficiently cool CPU 1 01. = 2, the second flow path group (the second flow path of the plural), the third here, more about the second flow path _, the third flow The first group of the road c Bu 1 is called the plural pump::===: 122, the flow path for supplying cooling water, and the upper side of the branch group B1 is configured. The first path group B1 is disposed on the downstream side of the first channel A1, and each of the second channels Ma of the one-way group B1 is differentiated from the first channel μ. Thereby, the cooling water is distributed from the first flow path A1, and flows into the respective second flow paths B1a. The first machine path ci is disposed on the downstream side of the second flow path group B1 (i.e., the plurality of second flow paths Bla), and a plurality of second flow paths βι&amp; The cooling water flowing out from each of the second flow paths Bla is collected in the third flow path π, and is discharged in the liquid cooling jacket: 1. The flow path sectional area of the first flow path A1 and the third flow path C1 is set to be larger than the flow path sectional area of the first machine path β 1 a. The flow path length of each of the second flow paths B1a (the length of each of the flat tubes 21) is greatly shortened for one flow path through all the meanders of the portion corresponding to the flat official beam 20 of the related art. 16 201113988 Therefore, the pressure loss caused by the cooling water flowing in the order of the first flow path, the second flow path Bla, and the third flow path hardly occurs - the flow path Ai and the third flow path C1 are The pressure loss of the second flow path βι&amp; for the flow path from the meandering is greatly reduced. Thereby, the rating of the micro pump 122 for supplying the cooling water to the liquid cooling jacket H n can be lowered, and the miniaturization of the micro pump 122 and the noise thereof can be reduced. <cover unit>

、蓋單元30係如第7圖所示般,主要具備蓋本體31、 進入管32、和排出管33。 [蓋本體] 蓋本體3丨係在收容扁平管束2〇的套厘本體1〇作為蓋 般’在套S本體10被接合·固定。在蓋本體3ι,在第一 流路AU空間1Ga)連通的進人σ 31a、和在第三流路〇(空 間l〇c)連通的排出口 31b被形成(參考第7圖)。 又’蓋本體31係具有成為缺口的缺口部3u,缺口部 31c的形狀和套匣本體1〇的位置配合部14 —致。藉此, 蓋本體31(蓋單元3。)係僅以既定的方向,成為和套;本體 10組合的方式。 (進入口、排出口) 進入口 31a和排出口 31b係如第5圖所示般,從平面 上看:使CPU 101作為中心而以點對稱被配置的同時,相 對地遠離般被配置。換言之,進入口 31a、排出口 Wb'CH 1。1係在正面看呈現正方形的液冷套Ε η的對角線上被配 置。再說明的話’進入口 31a係在第5圖中的左上侧被配 17 201113988 :,另-方面’排出口 31b係在第5圖中的右下側配置, 在進入口…和排出口 31]3的約略中間位置(呈現正方形的 液冷套匣J1的約略中心),CPU 1〇1配置。 因此,自進入管32的冷卻水係經由進入口 31a、 流路A1’成為在第二流路_的全體(複數的第二流路… 的全體)約略均等地被供給。又,流通第二流路群W全體 ^冷卻水的全體,# cpu m之間,成為有效率地被熱交 換0 其次,自複數的第二流路Bla流出的冷卻水係在第三 :路C1集σ之後,經由排出口 31b'排出管,成為在液 ~套匣J1的外部被排出的方式。 [進入管、排出管] 、進入g 32係在蓋本體31被固定。在進入管,與液 :套g ji的上流側的微幫浦122(參考第】圖)相通的彎軟 官124被連接。又,自微幫浦122的冷卻水係經由進入管 32的中空部和進入口…,成為在第一流路a&quot;皮供給的方 式。 '排出s 33係在蓋本體31被固定。在排出管,與液 :套E J1、的下流側的放熱器121(參考第】圖)相通的彎軟 被連接又,在第三流路C1集合的冷卻水係經由排 4 σ 31b和排出f 33的中空部’成為在液冷套Ε η的外 部被排出的方式。 α進S 32和排出管33係在蓋本體31的上面側以立設 、、被固冑藉此,僅由液冷套匣η的上面側,使彎軟管 18 201113988 124、124成為可太、也 ^ 、 珉為了在進入管32、排出管33連接。亦即,/ 被限制空間的個人電腦 矣库參考第1圖),在液冷 套 連接的彎軟管124、m(參考第i圖)的處理係容 易。 《液冷套匣的作用效果》 其次,說明有關液冷套匣η的作用效果。 個人電腦本體120(第1圖)的電源被開啟(0N)的話, cpu un作動,發熱開始。又,cpu m的熱係經由熱擴散 片102’傳達至套匣本體1〇的底壁u,且主要傳達至構成 扁平管束20的各扁平管21的周壁21b和分隔壁2ic。 另一方面’和個人電腦本體120的電源的on連動,微 幫浦22作動,冷卻水循環。這樣的話,在液冷套匣只中, 冷卻水以第一流路A1、第二流路群β1(複數的第二流路 B1 a )、弟^流路C1的順序流通。 又’在流通各扁平管21的周壁21b和分隔壁21c以及 ❹ 各第二流路B1 a的冷卻水之間被熱交換,傳達至周壁2 J b 和分隔壁21 c的CPU 1 01的熱傳達(移動)至冷卻水,冷卻 水受熱。 其次’在各第二流路B1 a受熱的冷卻水係在第三流路 C1集合之後,經由排出口 31b、排出管33,在液冷套匣J1 的外部被排出。被排出的冷卻水係通過彎軟管124,在放 熱器121被供給’在放熱器121中的冷卻水的熱被放熱。 又,溫度降低的冷卻水係經由儲備槽123、彎軟管124,在 微幫浦122流過之後,再被供給至液冷套匣J1。 19 201113988 如此,藉由(1)自CPU 101朝熱擴散片102、底壁1〇1、 各扁平管21的周壁21b和分隔壁21c的熱的傳達、(2)自 周壁21b和分隔壁21c朝冷卻水的熱的傳達、以及在放 熱器121中的冷卻水的放熱連續,cpu 1〇1被有效率地冷 卻。 又,CPU 101的熱係在複數的扁平管21的周壁21b和 分隔壁21c分散傳達,由於此各周壁21]:)和分隔壁21c的 熱傳達至流通各第二流路Bla的冷卻水,可有效率地冷卻 CPU 101 。 又,在液冷套匣J1被供給的冷卻水係在液冷套g n 内,經由流路剖面積大的第一流路A1,流路長度短,且主 要在流通作為熱交換的複數的第二流路Bla(第二流路群 B1)之後,由於藉由流路剖面積大的第三流路π集合被排 出,在液冷套匣J1中,冷卻水受到的壓力損失變小。藉此, 可使微幫浦1 22小型化,液冷系統S1的適用範圍變廣。 又,根據此類的液冷套匣n (本發明品),如第8圖所 示般,比具有一個長的蛇行的第二流路的習知的液冷套匣 (習知品),藉由低壓力損失且高流量,可使冷卻水流通。 亦即,如第8圖所示般,對於一個微幫浦的壓力損失_流量 曲線,和有關習知品的流量曲線的交點M1,上述壓力損失 -流量曲線以及和有關本發明品的流量曲線的交點M2係在 右下側移動(shift),根據液冷套匣η(本發明品),可得 知壓力損失變小,流量變高。 《液冷套匣的製作方法》 20 201113988 其次,有關液冷套SJ1的製作(製造)方法 第7圖說明。液冷套匣:1 ’考 管束2。的第-工…及在套=主要包括:製作扁平 管束20的第二工程。在套S本體10接合•固定扁平 〈第一工程〉 使複數個扁平管21以適當的手段-邊接合一邊束 縛。其次,使被束縛的兩端切斷·研削而—致, 管束20。As shown in FIG. 7, the cover unit 30 mainly includes a cover body 31, an inlet pipe 32, and a discharge pipe 33. [Cap body] The cap body 3 is attached to and fixed to the sleeve body 10 by the cover body 1 that accommodates the flat tube bundle 2'. In the cover body 3i, the entrance σ31a communicating in the first flow path AU space 1Ga) and the discharge port 31b communicating in the third flow path 空 (space l〇c) are formed (refer to Fig. 7). Further, the cap body 31 has a notch portion 3u which is a notch, and the shape of the notch portion 31c coincides with the position fitting portion 14 of the ferrule body 1A. Thereby, the cover body 31 (the cover unit 3) is formed in a combination with the sleeve and the body 10 only in a predetermined direction. (Inlet port, discharge port) The inlet port 31a and the discharge port 31b are arranged as shown in Fig. 5, and are arranged in a point symmetry with the CPU 101 as a center, and are disposed relatively apart from each other. In other words, the inlet port 31a and the discharge port Wb'CH 1.1 are arranged on the diagonal of the liquid-cooling jacket η which is square in front. In addition, the entrance port 31a is assigned 17 201113988 on the upper left side in Fig. 5, and the other side 'discharge port 31b is arranged on the lower right side in Fig. 5, at the entrance port... and the discharge port 31] The approximate middle position of 3 (presenting the approximate center of the liquid cooling jacket J1), CPU 1〇1 configuration. Therefore, the cooling water from the inlet pipe 32 is supplied to the entire second flow path (the entire second flow path, ...) via the inlet port 31a and the flow path A1'. Further, the entire flow path group W is distributed, and the entire cooling water is efficiently exchanged between the #cpu m. Next, the cooling water flowing out from the plurality of second flow paths Bla is in the third: After the C1 set σ, the tube is discharged through the discharge port 31b', and is discharged to the outside of the liquid to the jacket J1. [Inlet pipe, discharge pipe], and entry into the g 32 are fixed to the cover body 31. In the inlet pipe, the bending softener 124 communicating with the micro-pull 122 (refer to the figure) on the upstream side of the liquid g-ji is connected. Further, the cooling water from the micro-pump 122 passes through the hollow portion of the inlet pipe 32 and the inlet port, and is supplied to the first flow path a&quot; The 'discharge s 33' is fixed to the lid body 31. In the discharge pipe, the soft line communicating with the radiator 121 (refer to the first drawing) on the downstream side of the liquid: the sleeve E J1 is connected, and the cooling water collected in the third flow path C1 is discharged through the row 4 σ 31b. The hollow portion 'of the f 33' is formed to be discharged outside the liquid cooling jacket η. The α inlet S 32 and the discharge pipe 33 are erected on the upper surface side of the lid body 31, and are fixed by the upper side of the liquid cooling jacket ,η, so that the curved hose 18 201113988 124, 124 becomes too Also, in order to connect the inlet pipe 32 and the discharge pipe 33. That is, the personal computer in the restricted space is referred to in Fig. 1), and the processing of the curved hoses 124 and m (refer to the i-th) connected to the liquid cooling jacket is easy. "Effects of liquid cooling jacket" Next, the effect of the liquid cooling jacket η is explained. When the power of the personal computer main body 120 (Fig. 1) is turned on (0N), the cpu un is activated, and the heat starts. Further, the heat of the cpu m is transmitted to the bottom wall u of the casing body 1 through the heat diffusion sheet 102', and is mainly transmitted to the peripheral wall 21b and the partition wall 2ic of the flat tubes 21 constituting the flat tube bundle 20. On the other hand, in conjunction with the power supply of the personal computer body 120, the micro-switch 22 is actuated to cool the water circulation. In this case, in the liquid cooling jacket, the cooling water flows in the order of the first flow path A1, the second flow path group β1 (the plural second flow path B1 a ), and the other flow path C1. Further, heat is exchanged between the peripheral wall 21b of the flat tubes 21 and the partition wall 21c and the cooling water of each of the second flow passages B1a, and is transmitted to the heat of the CPU 1 01 of the peripheral wall 2 J b and the partition wall 21 c. Communicate (move) to the cooling water, which is heated. Then, the cooling water heated by the respective second flow paths B1 a is collected in the third flow path C1, and then discharged through the discharge port 31b and the discharge pipe 33 outside the liquid cooling jacket J1. The discharged cooling water passes through the curved hose 124, and the heat of the cooling water supplied to the radiator 121 in the radiator 121 is released. Further, the cooling water having a lowered temperature is supplied to the liquid cooling jacket J1 after flowing through the microfluid 122 via the reserve tank 123 and the bending hose 124. 19 201113988 Thus, by (1) heat transfer from the CPU 101 toward the heat diffusion sheet 102, the bottom wall 1〇1, the peripheral wall 21b of each flat tube 21, and the partition wall 21c, (2) from the peripheral wall 21b and the partition wall 21c The heat transfer to the cooling water and the heat release of the cooling water in the radiator 121 are continuously performed, and the cpu 1〇1 is efficiently cooled. Further, the heat of the CPU 101 is dispersed and transmitted to the peripheral wall 21b of the plurality of flat tubes 21 and the partition wall 21c, and the heat of the peripheral walls 21]:) and the partition wall 21c is transmitted to the cooling water flowing through the respective second flow paths Bla. The CPU 101 can be cooled efficiently. Further, the cooling water supplied to the liquid cooling jacket J1 is in the liquid cooling jacket gn, and the flow path length is short via the first flow path A1 having a large flow path cross-sectional area, and is mainly distributed as a second of the plurality of heat exchanges. After the flow path Bla (second flow path group B1), the third flow path π set having a large flow path sectional area is discharged, and the pressure loss of the cooling water is reduced in the liquid cooling jacket J1. Thereby, the micro pump 1 22 can be miniaturized, and the application range of the liquid cooling system S1 can be widened. Further, according to such a liquid-cooled jacket n (the present invention), as shown in Fig. 8, a conventional liquid-cooled ferrule (a conventional product) having a longer meandering second flow path is used. Low pressure loss and high flow rate allow the cooling water to circulate. That is, as shown in Fig. 8, the intersection of the pressure loss-flow curve of a micro-pump, the intersection point M1 of the flow curve with respect to the conventional product, the above-mentioned pressure loss-flow curve, and the flow curve relating to the present invention The M2 system is shifted in the lower right side, and according to the liquid cooling jacket η (the present invention), it is known that the pressure loss is small and the flow rate is high. "Manufacturing method of liquid cooling jacket" 20 201113988 Next, the production (manufacturing) method of the liquid cooling jacket SJ1 is illustrated in Fig. 7. Liquid-cooled ferrule: 1 ‘tube bundle 2. The first work - and the set = mainly include: the second project of making the flat tube bundle 20. Engagement in the sleeve S body 10 • Fixing flatness <First item> The plurality of flat tubes 21 are bound by an appropriate means-edge joining. Next, the ends of the restraint are cut and ground, and the bundle 20 is bundled.

〈第二工程〉 、、使扁平管束20在套ϋ本體1〇的底壁^的既定位置, 以適田的手段(A1_Sn等的焊材和焊劑[f iux]),可熱交換 地接合·固定。又’將扁平管束20在套匣本體1〇固定之 際在扁平管束20的兩端側,確保上述的空間1〇a(第一 流路A1)、空間1〇c(第三流路π)。 之後,進入管32、排出管33係使在既定位置被固定 的盖本體31藉由適當的手段,在套匣本體1〇接合·固定。 藉此’可得到液冷套匣Π。 又’將蓋本體31在套匣本體10固定之後,固定進入 管32、排出管33在蓋本體31即可。 如此’根據有關第一實施例的液冷套匣J1的製作方 法’將複數的扁平管21作為扁平管束20,將此扁平管束 20固定在套匣本體10,藉由固定蓋本體31的簡易工程, 可得到液冷套匣j 1。 《第一實施例》 21 201113988 其次’有關第二實施例的液冷套£,參考第9、ι〇圖 說明。第9圖係為有關第二實施例的液冷套昆的全體立體 圖’表示省略蓋單元的狀態。第10圖係為有關在第9圖表 示的第二實施例的液冷套匣的Y-Y剖面圖。 如第9、1〇圖所示般,有關第二實施例的液冷套㈣ 代替有關第一實施例的液冷套匣η的扁平管束,具 扁平管束23作為特徵。扁平f束23的外形尺寸: 第-實施例的爲平管束20相同’使薄板狀的爲平管24以 複數個(在第9、1G圖為三個)重疊束缚而被構成。各扁平 管24係在其内部’具有複數的(在第9、10圖為12個)中 空部24a,各中空部24a係成為第二流路,其結果,扁 =管束23係具有由複數的第二流路B2a構成的第二流路群 在此,由於各扁平管24係為薄板狀,在其内部被形成 的中空部24a的個數(在第9圖為12個)係 施例的扁平管21内被形成的中空部21a的個數=);實 藉此,構成扁平管束23的扁平管24的數目(三個)係比構 成有關第一實施例的扁平管束20的扁平管21的數目(參考 第7圖,20個)少。亦即,#關第二實施例的扁平管束^ 係對於有關第一實施例的扁平管束2〇,可減少束缚(重疊) 的扁平官24的數目,可不費工夫容易地構成。 《第三實施例》 其-人,有關第三實施例的液冷套匣,參考第11、1 說明。筮τ π _ 乐1 1圖係為有關第三實施例的液冷套匣的全體立體 22 201113988 圖第12圖係為有關第三實施例的液冷套匣的平面圖。 《液冷套匣的構成》 如第11、12圖所示般,有關第三實施例的液冷套匣 J3係和有關第一實施例的液冷套匣η比較,具備進入口 34a和排出口 34b在不同位置被形成的蓋本體 進入口 34a係在空間1〇a(第一流路A1)的約略中央位 置連通冷卻水成為在空間1 〇a的約略中央位置被供給。 t出係在空間i〇c(第三流路)的約略中央位置連 通,冷卻水係自此約略中央位置被排出。進入口…和排 出口 34b係從平面看,和cpum作為中心對稱地被設置, 且在接近CPU 101的位置被配置。 又蓋本體34也和有關第一實施例的蓋本體31相同, 八有與套E本體1 〇的位置配合部丨4對應的形狀的缺口部 34c ° 《液冷套匣的作用效果》 ❹ 其次,簡單說明有關液冷套匣J3的作用效果。 進入口 34a和排出口 34b係藉由作為被配置在接近cpu 1〇1的位置的構成,自進入口 34a被供給至第一流路Ai (空 間l〇a)的冷卻水係成為容易優先地在cpu ι〇ι的附近的第 ♦路B1 a机通。藉此,在冷卻水和cpu 1 〇 1之間,可適 當地作熱交#,可有效率地冷卻CPU HU。 《第四實施例》 其次’有關第四實施例的液冷套匣,參考第13〜20圖 說月第13圖係為有關第四實施例的液冷套匣的全體立體 23 201113988 省略蓋單元的狀態。第“圖係為 表不的第四實施例的液冷套昆的Η剖面圖。第15:圖 示的Ζ_Ζ剖面圖的擴大圖。第16圖係為Ϊ為 有關第四實施例的液冷套&amp;的續片元件的第—C 立體圖,其中(a)表示切斷前,(b)為切斷後 二法的 表示有關第四實施例的液冷套厘的續片元件的第二::為 :的立體圖’其中⑷表示切削前,(b)為切削後。方 係為有關第四實施例的摩擦授拌接合的立體圖。 圖 為有關第四實施例的摩擦授拌接合的剖面圖。第2 : 不有關第四實施例的摩擦攪拌接合中的卫具的動平 圖。 *卸 《液冷套匣的構成》 如第13、14圖所示般,有關第四實施例的液冷套厘 係代替有關第一實施例的液冷套匣π的扁平管束, 以具備鋁或鋁合金製的鰭片元件25作為特徵。 又’有關第四實施例的套£本體1G係具備在其内側收 容鰭片元件25的鰭片收容室’此鰭片收容室係被圍在周壁 12:又,韓片元件25係在底壁η被焊接固定,且在韓片 收容室被收容,藉由蓋本體31(密封體)在套g本體1〇的 竭口作為蓋,鰭片收容室係被密封(參考第14圖)。 〈鰭片元件〉 鰭片兀件25係如第丨4圖所示般,具備基板25a以及 在此立設的複數的鰭片25b。基板25a係在套匣本體1〇的 底2 11以可熱交換的方式被接合•固定。因此,CPU 1 〇i 24 201113988 經由熱擴散片102、底壁u’成為傳達至各鰭片挪 .又,各鰭片25b的上侧前端係在蓋本體31的裏面 认 ,基板25a和套匣本體10係藉由Al-Si-Zn系等 浐口金構成的焊材,確實地以可熱交換的方式合為 較佳。 Ο ❹ 又,相鄰的韓片25b、25b之間係分別成為第二流路 a。亦即,鰭片元件25係具有複數的第二流路心,亦 即由複數的第二流路B3a構成的第二流路群別。 如第15圖所示般,相鄰的鰭片25b、25b的距離(亦即, 作為第二流路B3a的寬度的溝寬度Η)係被設計在 lmm藉此,可將液冷套匣J4的熱抵抗、和通過其 内部的冷卻水所受到的屋力損失,藉由後述的實施例說明 般,作為良好的範圍。 又’溝寬度W1和鰭片25b的厚度n(亦即,相鄰的第 二流路B3a、B3a之間的鰭片25b的厚度T1)係滿足以下的 式(1)的關係。藉此’液冷套!i J4的熱抵抗變小,在cpui〇i 和冷卻水之間’可良好地作熱交換。 -0.375 X W1 + 0.875 $ T1ml 875 χ 们 + 3 275 …⑴ 又,溝見度W1和深度Dl(第二流路B3a的深度)係滿 足以下的式(2)的關係。藉此,可將液冷套E J4的熱抵抗 作為最適當。 5 X W1 + 1 $ D1 S 16. 25 X W1 + 2. 75 …(2) 《液冷套匣的作用效果》 其次,簡單說明有關液冷套匣J4的作用效果。 25 201113988 冷卻水係以第—达找Λ、 流路咖)、第三流路;^ ^第二流路群β3(複數的第二 ^ 一 c的順序流通。接基 士® 第二^路群β3的冷部水和複數 者,主要在流通 其結果可有效率地冷卻cpu i(u。e 5b之間作熱交換。 《液冷套匣的鰭片 乃兀件的製作方法》 人’以例子表示液冷套 (製造)方法。 打瑪片凡件25的製作 〈鰭片元件的第一製作方法〉 首先’有關鰭片元# 圖說明。 件25的第-製作方法,參考第16 如第16⑷圖所示般,使用既^的模型 板42和被立設在底柘 裹作具有底 41。又,_由將擠剪杜、的條43的金屬製的擠製件 μ &amp; ^ 1在既定的切斷面切斷,可製作且 備基板制底板42的—部份)和複數 =條 ㈣一部份)的鰭片元件25(參考第刚圖)。(複數的條 〈鰭片7L件的第二製作方法〉 其久’有關鰭片元件2 $沾楚_制 圖說明。 的第-製作方法,參考第17 如第17(a)圖所示般,在對應於鰭片25 #外型的大小 的金屬製的塊44,倍η、^αλα_ι_ ^ 使用適當的切削工具,形成複數的溝 44a。這樣做的話,可势竹且 I作具備基板25a和複數的鰭片25b 的鰭片元件25(參考第n(b)圖)。 《液冷套匣的組裝》 其次’在液冷套S J4的組裝中,有關鰭片元件25被 26 201113988 :定的套Ε本體10和蓋單元3。間的摩 . 參考第18〜20圖說明。 接口主要 本體二第二圖:不般’在鰭片元件25被焊接固定的套® 覆n〇部…和位置配合部“配合,—邊 覆皿盡早70 30。又,如帛19圖所示般 口緣係成為段差,在下降一層的段 的開 —段差…寬…:二= Ο Ο :::流?和第一等的容積,儘可能:::: 。,叹疋在0.1〜〇.5mm程度較佳。 接著,將周壁12和蓋本體31間的配合部n 的工具綱,作摩擦授拌接合。這樣做的話:、 二後方,摩擦攪拌接合(參考W圖)被形 :長Λ? 被接合。在此,工具 6。%二為接合元件的蓋本體31的厚度T2的 31的材曾' “°如上述’藉由作為60%以下,根據蓋本體 -2。〇二’:使上述的段差部15的寬度W11小,藉由工 變:的加壓力,配合部,係不易在套e本體i。的内側 制二=°係藉由NC等的工作機械(未圖示)被控 &amp;著配合部P1被動作(參考第18圖)。 周面又抵合之際,在套s本體10的周壁12的 的肩2:= 具21°。藉此’周壁12薄,工具_ 町屬202的外周面和周壁12 係,例如,即使在2 n 卜周面間的距離L6(間隙) 使在2·°随以下,藉由工具200的加壓力, 27 201113988 周壁12不易在外側變形。 再 如上述’周壁丨2薄時’為了避免工具2〇〇和 八21G的接觸’使治具2 i Q的表面對於配合部μ的表 面,下降1.0〜2. Omm程度較佳。 又’如第20圖所示般,摩擦攪拌接合中的始端和終端 作為重疊(參考符號⑴般,使工具·動作。藉此,套£ 本體10和蓋本體3 i係無間隙地被接合,冷卻水不易漏到 外部。其次,將工具200自配合部P1拆下,將銷2〇1拔下。 藉此鎖'2 01的拔除軌跡係不會被形成在配合部η。 《第五實施例》 :其次,有關第五實施例的液冷套匣,參考第21〜25圖 說明。第21圖係為有關第五實施例的液冷套匣的剖面圖。 第22圖係為在第21圖表示的剖面圖的擴大圖。第23圖係 為表不有關第五實施例的液冷套匣的鰭片元件的製作方法 的圖不,其中(a)為刮削加工中,(b)為刮削加工後。第24 圖係為表示有關第五實施例的液冷套匣的鰭片元件的製作 方:的圖示’其中表示將在帛23(b)圖所示的刮削鳍片的 部份去除之後。第25圖係表示有關第五實施例的摩 拌接合的剖面圖。 ^'攪 對於有關第四貫施例的液冷套匣說明不 部份。 』的 《液冷套匣的構成》 如第21圖所示般,有關第五實施例的液冷套匣邝係 主要具備套Ε本體10c和鋁或鋁合金製的韓片元件29,C= 28 201113988 101係成為被女裝在鰭片元件29的底辟 成。 的底壁29a(密封體)的構 套匣本體10C係在第21 你弟d圖的下側開口,為 鰭片收容室的薄型的箱體。 η。丨具有 鰭片元件29係如後述般,將— τ 5板b 1作刮削Λπ n f灸 考第23(a)圖),具備底壁2仏和 】加(參 双双的盒屬製的•鳍片29b。 複數的鰭片29b係在底壁29a ^ ^ 上立5又,和底壁29a被一<Second Project> The flat tube bundle 20 is heat-exchange-bonded at a predetermined position of the bottom wall of the casing body 1 by means of an appropriate field (a welding material such as A1_Sn and flux [f iux]). fixed. Further, when the flat tube bundle 20 is fixed to the end of the flat tube bundle 20, the above-described space 1〇a (first flow path A1) and space 1〇c (third flow path π) are secured. Thereafter, the inlet pipe 32 and the discharge pipe 33 are joined and fixed to the casing main body 1 by a suitable means by a cover main body 31 fixed at a predetermined position. By this, a liquid cooling jacket can be obtained. Further, after the cover main body 31 is fixed to the ferrule body 10, the inlet pipe 32 and the discharge pipe 33 may be fixed to the cover body 31. Thus, the plurality of flat tubes 21 are used as the flat tube bundle 20 according to the manufacturing method of the liquid-cooling jacket J1 according to the first embodiment, and the flat tube bundle 20 is fixed to the sleeve body 10, and the simple construction of the cover body 31 is fixed. , the liquid cooling jacket j 1 can be obtained. <<First Embodiment>> 21 201113988 Next, regarding the liquid cooling jacket of the second embodiment, reference is made to the description of the ninth and ι〇 drawings. Fig. 9 is a perspective view showing the entire liquid crystal jacket of the second embodiment, showing a state in which the cover unit is omitted. Fig. 10 is a Y-Y sectional view showing a liquid-cooled jacket of the second embodiment shown in Fig. 9. As shown in Figs. 9, 1 and 2, the liquid-cooling jacket (4) relating to the second embodiment is replaced with a flat tube bundle 23 in place of the flat tube bundle of the liquid-cooling jacket 有关η of the first embodiment. The outer dimensions of the flat f-beam 23 are the same as those of the flat tube bundle 20 in the first embodiment. The flat plate 24 is formed by laminating a plurality of flat tubes 24 (three in the ninth and tenth views). Each of the flat tubes 24 has a plurality of (12 in the ninth and tenth views) hollow portions 24a, and each of the hollow portions 24a serves as a second flow path. As a result, the flat tube bundle 23 has a plurality of In the second flow path group of the second flow path B2a, the number of the hollow portions 24a formed in the flat tubes 24 is a thin plate shape (12 in the ninth figure). The number of the hollow portions 21a formed in the flat tubes 21 is =); by this, the number (three) of the flat tubes 24 constituting the flat tube bundle 23 is smaller than the flat tubes 21 constituting the flat tube bundle 20 of the first embodiment. The number (refer to Figure 7, 20) is small. That is, the flat tube bundle of the second embodiment can reduce the number of the flattened members 24 that are restrained (overlapping) with respect to the flat tube bundle 2 of the first embodiment, and can be easily constructed without any effort. <<Third Embodiment>> It is a person, and the liquid-cooling jacket of the third embodiment is described with reference to Figs.筮τ π _ 乐 1 1 is a whole solid view of the liquid-cooled jacket of the third embodiment. 22 201113988 FIG. 12 is a plan view of the liquid-cooled ferrule relating to the third embodiment. <<Composition of Liquid Cooling Envelope>> As shown in Figs. 11 and 12, the liquid cooling jacket J3 of the third embodiment is provided with an inlet port 34a and a row in comparison with the liquid cooling jacket 有关 n of the first embodiment. The lid main body inlet port 34a, which is formed at a different position from the outlet 34b, is connected to the cooling water at a substantially central position of the space 1A (the first flow path A1) so as to be supplied at approximately the center of the space 1 〇a. The t-out is connected to the approximate central position of the space i〇c (the third flow path), and the cooling water system is discharged from the approximate central position. The entrance port ... and the exhaust port 34b are arranged symmetrically from the plane as viewed from the plane, and are disposed at positions close to the CPU 101. The cover body 34 is also the same as the cover body 31 of the first embodiment, and has a notch portion 34c of a shape corresponding to the position matching portion 4 of the sleeve E body 1 《 "The effect of the liquid cooling jacket" ❹ , briefly explain the effect of the liquid cooling jacket J3. The inlet port 34a and the discharge port 34b are configured to be disposed at a position close to the cpu 1〇1, and the cooling water supplied to the first channel Ai (space l〇a) from the inlet port 34a is easily prioritized. The ♦ road B1 a machine near the cpu ι〇ι. Thereby, between the cooling water and the cpu 1 〇 1, the heat can be appropriately made to cool the CPU HU efficiently. <<Fourth Embodiment>> Next, regarding the liquid-cooling jacket of the fourth embodiment, referring to Figures 13 to 20, the 13th figure of the month is the entire stereoscopic shape of the liquid-cooled jacket of the fourth embodiment 23 201113988 status. The "figure is a cross-sectional view of the liquid-cooled jacket of the fourth embodiment shown in the figure. The fifteenth: an enlarged view of the cross-sectional view of the Ζ_Ζ shown in the figure. Figure 16 is a liquid cooling of the fourth embodiment. A first-C perspective view of the splicing element of &amp;&gt;, wherein (a) represents before cutting, and (b) is a second representation of the splicing element relating to the liquid-cooled ferrule of the fourth embodiment after the cutting: Fig. 3A is a perspective view of the friction stir welding of the fourth embodiment, wherein (4) is before cutting, and (b) is after cutting. The figure is a perspective view of the friction stir joining of the fourth embodiment. (2): A plan view of the guard in the friction stir welding of the fourth embodiment. * Unloading the "structure of the liquid cooling jacket" As shown in Figs. 13 and 14, the liquid relating to the fourth embodiment The cold sleeve is replaced by a flat tube bundle of the liquid cooling jacket π of the first embodiment, and is characterized by a fin member 25 made of aluminum or aluminum alloy. Further, the sleeve body 1G of the fourth embodiment is provided with a fin accommodating chamber in which the fin member 25 is accommodated inside. The fin accommodating chamber is surrounded by the peripheral wall 12: The member 25 is welded and fixed to the bottom wall η, and is housed in the Korean accommodating chamber. The lid body 31 (sealing body) serves as a lid at the vent of the sleeve body 1 and the fin accommodating chamber is sealed (refer to Fig. 14] <Fin element> The fin element 25 includes a substrate 25a and a plurality of fins 25b which are erected here as shown in Fig. 4. The substrate 25a is attached to the ferrule body 1 The bottom 2 11 is joined and fixed in a heat exchange manner. Therefore, the CPU 1 〇i 24 201113988 is transmitted to the respective fins via the heat diffusion sheet 102 and the bottom wall u'. Further, the upper front end of each fin 25b In the inside of the cover main body 31, the substrate 25a and the ferrule body 10 are preferably made of a heat exchange material by a solder material made of a gold-plated gold such as an Al-Si-Zn system. Ο ❹ The adjacent Korean sheets 25b and 25b are respectively formed as the second flow path a. That is, the fin element 25 has a plurality of second flow path cores, that is, a second portion composed of the plurality of second flow paths B3a. Flow path group. As shown in Fig. 15, the distance between adjacent fins 25b, 25b (i.e., the groove width as the width of the second flow path B3a) The design is designed to be 1 mm, and the heat resistance of the liquid-cooling jacket J4 and the loss of the house force received by the cooling water inside thereof can be regarded as a good range as described in the examples to be described later. The groove width W1 and the thickness n of the fin 25b (that is, the thickness T1 of the fin 25b between the adjacent second flow paths B3a and B3a) satisfy the relationship of the following formula (1). Set! i J4's thermal resistance is reduced, and it can be exchanged well between cpui〇i and cooling water. -0.375 X W1 + 0.875 $ T1ml 875 χ We + 3 275 ... (1) Again, the visibility W1 and The depth D1 (the depth of the second flow path B3a) satisfies the relationship of the following formula (2). Thereby, the heat resistance of the liquid cooling jacket E J4 can be made most appropriate. 5 X W1 + 1 $ D1 S 16. 25 X W1 + 2. 75 (2) "Effects of liquid cooling jacket" Next, a brief description of the effect of the liquid cooling jacket J4. 25 201113988 Cooling water system is the first to find the raft, the flow path), the third flow path; ^ ^ the second flow group β3 (the second of the plural ^ c is in the order of circulation. Connect to the Keith® second ^ road The cold water and the plural of the group β3 are mainly used to circulate the result, and the heat exchange between the cpu i (u.e 5b) can be efficiently cooled. The method of manufacturing the fin of the liquid-cooled ferrule is a person' The liquid cooling jacket (manufacturing) method is shown by way of example. The production of the wafer piece 25 (the first method of making the fin element) First, the description of the fin element # Fig. 25 - the production method, refer to the 16th As shown in Fig. 16(4), the mold plate 42 of the same type and the base member 41 which is erected on the bottom sill are provided with the bottom 41. Further, _ by the metal of the strip 43 which will be squeezed, μ &amp; ^ 1 is a fin element 25 (refer to the front view) in which a predetermined cut surface is cut and a part of the substrate base 42 and a plurality of parts (four) are prepared. (Multiple strips <Second fabrication method of fins 7L> Long time' related to fin element 2 $ 楚 _ _ drawing description. The first production method, refer to the 17th as shown in Figure 17 (a) In the metal block 44 corresponding to the size of the fin 25 #, ηη, ^αλα_ι_ ^ use a suitable cutting tool to form a plurality of grooves 44a. In doing so, it is possible to have the substrate 25a. And the fin element 25 of the plurality of fins 25b (refer to the nth (b) diagram). "Assembly of the liquid cooling jacket" Next, in the assembly of the liquid cooling jacket S J4, the relevant fin element 25 is 26 201113988 : The set of the body 10 and the cover unit 3. The friction between the two. Refer to the description of the 18th to 20th. The main body of the interface is the second picture: the other part is not fixed in the fin element 25. And the position matching part "cooperate, - the edge of the dish as early as 70 30. Also, as shown in Figure 19, the edge of the mouth becomes a step difference, the section of the section that is descending one layer is poor... wide...: two = Ο Ο ::: The flow volume and the first volume are as much as possible::::, and the sigh is preferably at a level of 0.1 to 〇5 mm. Next, between the peripheral wall 12 and the cover body 31 The tool of the joint n is used for friction and mixing. In this case: the rear, the friction stir joint (refer to the W figure) is shaped: long Λ? is joined. Here, the tool 6. % is the joint element The material of the thickness T2 of the cover body 31 has been "°" as described above by 60% or less, according to the cover body-2. 〇2': the width W11 of the step portion 15 described above is made small by the work change: The pressing force and the fitting portion are not easily controlled by the working machine (not shown) such as NC by the working machine (not shown) of the sleeve e body i (refer to Fig. 18). When the circumference is in contact, the shoulder 2 of the peripheral wall 12 of the sleeve s body 10:= has 21°. By this, the 'week wall 12 is thin, and the outer circumference of the tool _ genus 202 and the peripheral wall 12 are, for example, even The distance L6 (gap) between the circumferential faces of 2 n is such that, with the pressure of the tool 200, the peripheral wall 12 of the 2011 200988 is not easily deformed on the outside by the pressing force of the tool 200. The above-mentioned 'week wall 丨 2 thin when' is to avoid The contact between the tool 2〇〇 and the 8G is 'the surface of the jig 2 i Q is reduced by 1.0 to 2. Omm is better for the surface of the mating portion μ. As shown in Fig. 20, the beginning and the end of the friction stir welding are overlapped (refer to symbol (1), and the tool is moved. Thereby, the body 10 and the cover body 3 i are joined without a gap, and the cooling water is not easily leaked. Next, the tool 200 is detached from the fitting portion P1, and the pin 2〇1 is detached. Thereby, the plucking trajectory of the lock '2 01 is not formed in the fitting portion η. Fifth Embodiment: Second Regarding the liquid-cooling jacket of the fifth embodiment, reference is made to the description of Figs. 21 to 25. Figure 21 is a cross-sectional view showing a liquid-cooled jacket of the fifth embodiment. Fig. 22 is an enlarged view of the cross-sectional view shown in Fig. 21. Fig. 23 is a view showing a method of manufacturing the fin member of the liquid-cooled jacket of the fifth embodiment, wherein (a) is a scraping process and (b) is a scraping process. Fig. 24 is a view showing the fabrication of the fin member of the liquid-cooled jacket of the fifth embodiment: wherein the portion of the scraping fin shown in Fig. 23(b) is removed. Figure 25 is a cross-sectional view showing the frictional engagement of the fifth embodiment. ^' Stirring is not part of the liquid cooling ferrule for the fourth embodiment. "Construction of liquid-cooled jacket" As shown in Fig. 21, the liquid-cooled jacket of the fifth embodiment mainly includes a sleeve body 10c and a Korean component 29 made of aluminum or aluminum alloy, C= 28 201113988 The 101 series became the bottom of the fin component 29. The casing body 10C of the bottom wall 29a (sealing body) is opened at the lower side of the 21st drawing of the younger brother, and is a thin casing of the fin accommodating chamber. η. The crucible has a fin element 29 as described later, and the τ 5 plate b 1 is scraped Λ π nf moxibustion test 23 (a)), and has a bottom wall 2 仏 and a plus (see both pairs of boxes) fins Sheet 29b. The plurality of fins 29b are attached to the bottom wall 29a ^ 5 and the bottom wall 29a is

G Ο 體構成。藉此,在底壁29a和鰭 達。 zyb之間,熱良好地傳 又,底壁2 9 a係作為漆;4+ I·、本、, …封上述的鰭片收容室的密封體 的功能。又,相鄰的鰭片29b 9b之間作為弟二流路B4a 的功能(參考第22圖)。又,游太 沾楚“ w圃)又,液冷套K J5係具有藉由複數 的第二流路B4a構成的第二流 L峪拜B4。又,在鰭片元件29 破安裝在套匣本體l〇C的妝能由 .^ l旳狀態中,和第四實施例相同,在 液冷套匣J5内,成為第—户改Α1 Λ松 +上 瓜路A1和第三流路C1被形成的 方式(參考第13圖)。 《液冷套匣的作用效果》 其次,簡單說明有關液冷套E J5的作用效果。 _ V卻水係依序机通在第一流路(參考帛13圖)、第 二流路群B4(複數的第二流路仏)、第三流路π(參考第 圖)又主要在流通第二流路群Β4的冷卻水和複數的 片25b之間被熱交換,可有效率地冷卻⑽⑻。在此, 為底壁29a和‘鰭片29b係被一體構成,cpu 1〇1的熱係 良好地傳達在複數的鰭片29b,其結果可良好地放熱。 29 201113988 液冷套E的韓片元件的製作方法》 ”人有關利用刮削加工的液冷套匣J5的鰭片元 29的製作(製造)方法,參考第23和24圖說明。G Ο body composition. Thereby, the bottom wall 29a and the fins are reached. Between zyb, the heat is well transmitted, and the bottom wall 2 9 a is used as a lacquer; 4+ I·, this, ..., the function of sealing the sealing body of the above fin storage chamber. Further, the adjacent fins 29b to 9b function as the second flow path B4a (refer to Fig. 22). Further, the swim is too "w圃", and the liquid cooling jacket K J5 has a second flow L B4 composed of a plurality of second flow paths B4a. Further, the fin member 29 is broken in the ferrule The makeup of the body l〇C can be made into the same state as the fourth embodiment, and in the liquid-cooled jacket J5, it becomes the first-home change Λ1 Λ松+上瓜路A1 and the third flow path C1 The way of formation (refer to Figure 13). "The effect of liquid cooling jacket" Secondly, a brief description of the effect of the liquid cooling jacket E J5. _ V but the water system is in the first flow path (refer to 帛 13 Fig.), the second flow path group B4 (the plural second flow path), and the third flow path π (refer to the figure) are mainly mainly between the cooling water flowing through the second flow path group 4 and the plurality of pieces 25b. Heat exchange can efficiently cool (10) (8). Here, the bottom wall 29a and the 'fin sheet 29b are integrally formed, and the heat of the cpu 1〇1 is well transmitted to the plurality of fins 29b, and the result is good heat release. 29 201113988 How to make the Korean component of the liquid cooling jacket E" The production (manufacture) of the fin 29 of the liquid cooling jacket J5 by the scraping process , With reference to FIGS. 23 and 24 described.

卜3(a)圖所示般,將板狀的板61進行在日本 2〇〇卜32咖號公報、日本特開讓-35期號公報= 載的到肖]加工。^細而言,藉由在板6ι將切削工具Μ以 八角人將板61的-部份切下,使複數的刮削縛片μ 形成。重複此複數次,製作具有複數的刮削籍片 中、間體Μ(參考第23⑻圖)。因此,未被切下的㈣的部 系成為_片元件29的底壁29a(密封體)。 接著,和套昆本體10c組裝,構成液冷套g J5之際, 在液冷套ϋ J5内’第一流路M和第三流路π被形成般, 將複數的刮削鰭片63的外周側部分以切削卫具去除。這樣 做的話’如第24圖所示般,可得到具備底壁.、與在此 體也立的複數的鰭片2此的鳍片元件29。As shown in Fig. 3(a), the plate-shaped plate 61 is processed in Japanese Patent No. 32, No. 32, No. 35, No. 35, No. In detail, a plurality of scraping tabs μ are formed by cutting the cutting tool at the plate 6 to the octagonal portion of the plate 61. This is repeated a plurality of times to produce a medium and a plurality of scraping pieces (refer to Fig. 23 (8)). Therefore, the portion (4) that has not been cut becomes the bottom wall 29a (sealing body) of the sheet member 29. Then, when the liquid cooling jacket g J5 is assembled with the jacket body 10c, the first flow path M and the third flow path π are formed in the liquid cooling jacket J5, and the outer peripheral side of the plurality of scraping fins 63 is formed. Partially removed with a cutting aid. If so, as shown in Fig. 24, a fin member 29 having a bottom wall and a plurality of fins 2 standing also in the body can be obtained.

/、疋,鰭片兀件29的製作方法並不限定於此,在將有 關第四實施例的擠製件41切斷後的鰭片元件25(參考第16 圖)、或藉由溝加工形成的鰭片元件25(參考第Η圖)中, 藉由去取鰭片25b的一部份構成也可。 《液冷套匣的組裝》 又’如第25圖所示般’將套£本體⑽和鰭片元件 29組合’和第四實施例相同,一邊抵接治m〇,一邊將 其配合部P2作摩擦授拌接合。又,工具的銷2〇1的長 度L5係在作為被接合元件的鰭片元件29的底壁㈣密封 30 201113988 體)的厚度T3的60%以下為較佳。 《第六實施例》 其次,有關第六實施例的液冷套匣,參考第26圖說 月第26圖係為有關第六實施例的液冷套匣的剖面圖,其 中(a)係表示組裝後的完成狀態,(b)係表示組裝前。、 《液冷套匣的構成》 如第26 (a)圖所示般,有關第六實施例的液冷套匣 係和有關第-實施例的液冷套E η比較,具備套臣本體 μα(第一縛片元件)和蓋單元35(第二鰭片元件)作為特 徵二套匿本體10Α係具備底壁U(第一基板)和在底壁u 隔著既定間隔被立設的複數的鰭片13。另一方面,蓋單元 35係具備蓋本體36(第二基板)和在蓋本體託隔著既定間 隔立設的複數的鰭片37。 套匣本體10A和蓋單元35係以複數的鰭片13和複數 的鰭片37作為被喃合的方式而被組合,蓋本體%係在套 〇 E本體10A被接合•固定。液冷套匣J6的鰭片全體係由被 嚙合的複數的鰭片13和複數的鰭片37所構成。又,鄰接 的錄片13和鰭片37之間成為第二流路_,液冷套g凡 係具有由複數的第二流路B5a構成的第二流路群β5。 如上述,藉由使複數的鰭片13和複數的鰭片Μ嚙合, 構成鰭片全體’可使複數㈣片13的間隔di和複數的續 片37的間隔d2^別變廣,根據切削工具等的溝加工變得 容易。 自複數的鰭片13的底壁u的突出長度u係如第26(b) 31 201113988 圖所不般,被設定為與由自複數㈣片37的蓋本體%的 突出長“2相同或較短的方式。又,複數的鰭片37和底 壁11係藉由適當的手段,可熱交換地被接合•以,熱連 接。藉此’套£本體10A側(第一基板側)的cpu 1〇1的熱 係不止傳達至複數的鰭片13,也傳達至複數的鰭片37。’、’、 亦即,藉由將複數的鰭片13的突出長度“設定為和 複數的鰭片37的突出長度L2相同或較短,在組裝套昆本 體10A和蓋單元35之際,複數的鰭片37的前端(頂部)係 在套®本體1GA的底壁u確實地抵接,可確實地熱連接複〇 數的鰭片37和底壁11。 《液冷套匣的作用效果》 /、人’簡單5兒明有關液冷套匿j 6的作用效果。 根據此類的液冷套匣j 6,冷卻水流通在第二流路群肠 的話,傳達至複數的鰭片13和複數的鰭片37的cpui〇i的 熱係傳達至流通的冷卻水,CPU 101係被有效率地冷卻。 《第七實施例》 其次’有關第七實施例的液冷套匣’參考第27圖說 t』 第2 7圖係為有關第七實施例的液冷套匿的剖面圖,其 中(a)係表示組裝後的完成狀態,(b)係表示組裝前。 《液冷套匣的構成》 如第27(a)、27(b)圖所示般,有關第七實施例的液冷 套匣J7係代替有關第一實施例的液冷套匣J1的扁平管束 2〇’而具備具有複數的細孔26a的金屬製的蜂巢體26作為 32 201113988 〈蜂巢體〉 蜂巢體26係在套匿本體1〇的底壁11藉由適當的手 段’可熱交換地被接合•固定。因此,CPU 1 01的熱係成 為傳達至包圍細孔26a的周壁26b。各細孔26a係作為冷 卻水流通的第二流路B6a的功能。亦即,蜂巢體26係具有 由複數的第二流路B6a構成的第二流路群B6。又,在此, 如第2 7圖所示般’雖然以例子表示具有剖面看呈現矩形的 〇 細孔26&amp;的蜂巢體26,然而細孔26a的形狀並不限定於此, 其他為六角形等也可。又,蜂巢體26和套匣本體1〇的底 壁11係藉由焊材’確實可熱交換地被接合為較佳。 《液冷套匣的作用效果》 其次,簡單說明有關液冷套匣J7的作用效果。 冷卻水係依序流通在第一流路A1、第二流路群b6(複 數的第二流路B6a)、第三流路C1。又,主要在蜂巢體26 的周壁26b和流通第二流路B5a的冷卻水之間作熱交換, 〇 11壁26b的熱成為傳達至冷卻水的方式。其結果可有效率 地冷卻CPU 101。 《第八實施例》 其a,有關第八貫施例的液冷套匿,參考第28圖 明。第28圖係為有關第八實施例的液冷套匣的剖面圖,其 中(〇係表示組裝後的完成狀態,(㈧係表示組裝前。 《液冷套匣的構成》 如第28(a)、28(b)圖所示般,有關第八實施例的液冷 套匣J8係代替有關第一實施例的液冷套匣η的扁平管束 33 201113988 2〇’而具備剖面為波狀的金屬製的熱交換片27(裂斷片 [breaking sheet])作為特徵。 〈熱交換片&gt; 熱交換…具備由dA卜㈣系等的紹 =成的片本體27a以及在其下面側由跡zn系等的 紹口金所形成的焊材層27b。又’因為熱交換片 層奶係部分地被熔融、硬化,在㈣本體1〇的底= 被接合·固定。因此,i〇i的熱係:由底 壁 成為傳達至熱交換片27的方式。 、又,在熱交換片27和套匣本體1〇或蓋本體 複數的第二流路B7a被形成。亦即,液冷套E J8係且有由 複數的第二流路B7a構成的第二流路群β7。 - 《液冷套匣的作用效果》 /、人,簡單說明有關液冷套匣的作用效果。 冷卻水係依序流通在第一流路Λ1、第二流$ 數的第二流路_、第三流路C1。又,主要::二(複 27和流诵笛,A 入主要在熱交換片 27的叙、〜路…的冷卻水之間作熱交換,熱交換片 ’、、、成為傳達至冷卻水的方式。豆沾 :、 CPU 10丨。 。果可有效率地冷卻 《第九實施例》 其攻士 有關第九實施例的液冷套g,A去货〇 n 明。第29 _ U 131參考第29圖說 又,在第9二 第九實施例的液冷套厘的平面圖。 :圖中,為了容易了解,描繪蓋本體以外 。 (夜冷套E的構成》 34 201113988 Ο ❹ 如第29圖所示般,有關第九實施例的液冷套ϋ (雖然有關第一實施例的液冷套匿J1係具備-個扁平管束 20)具備三個扁平管束2〇。又,三個扁平管束2〇係在套匿 本體,各爲平管束20的中空部21a(第二流路_ 成為同-方向般’以一列狀被配置。又,三個扁平管束20 係在套E本體10B内’藉由在上流的扁平管束2〇和中流的 扁平管束2°之間以及中流的扁平管束2。和下流的扁;管 束20之間,空間1〇d、空間10d分別被設置的狀態下 套ϋ本體H1B的底壁u可熱交換地被接合·固定。 空間1〇d、1〇d係作為使扁平管束的第二流路群B1 直列地連通的第四流路心E1(連結流路)的功能。第四产 路E1的流路剖面積係、被設定為比構成各第二流路群B1 ^ 第二流路Ma的流路剖面積大。亦即,液冷套…具有 =)列地被配置的三個第二流路群^叫第二流路 《液冷套匣的作用效果》 其次,簡單說明有關液冷套SJ9的作用效果。 B1 係依序流通在第-流路A1、上流㈣二流路群 卜第四4E卜中流的第二流路群βι '第四流 下流的第二流路群B卜第三流路…亦即,冷卻、 地流通三個相鄰的第二流路群βι、Μ、耵, 、'_、歹* 係在相鄰的第二流路群 ,冷卻水 …在第四流…,冷卻水承:壓=::路 错由流路剖面積大的第四流㈣係在第二流路群二; 35 201113988 之間,與不經過第四流路El的流路長度的長的第二流路群 的情形比較,可使作用在微幫浦丨22的負荷變小。 《第十實施例》 丹久’有關 夕勹禾ου、圖 說明。第30圖係為有關第十實施例的液冷套匣的平面圖。 第31圖係為返回數和熱抵抗間的關係的圖表。 如第30圖所示般,有關第十實施例的液冷套昆係 和有關第九實施例的液冷套£ J9相同,具有以直列地被連 接的三個第二流路群B1、B1、B1(第二流路群部),在冷卻 水的流通方向中’相鄰的第二流路群心^係經由第二流 路E1 (連結流路),以直列被連接。 只是,在液冷套匿J1〇中’相鄰的第二流路群B1、B1 被並設的同時,相鄰的第- 幻弟一,肌路群B1中,上流側的物件的 下流端和下流側的物件的 &amp; 的上/瓜知係在同一側被配置,上述 下流端和上流端係經由第 ώ . Et , ^ 田乐四机路E1,直列地被連接。具俨 而言,如第30圖所干4π·,.., ' /、斂,上&gt;,IL位置的第二流路群B丨 流位置的第二流路群+ a 辟係在冷卻水的流通方向中相鄰 同時’在第30圖的橿太&amp; 士、a 2 、 、向中破並設。又,例如,上流位置 的第二流路群B1的 直 下机鳊和中流位置的第二流路群B1的 上流端係在同一側,朝 朝向第3 0圖中的下側。 在此,在本說明蚩φ , t ^ 培肀,如上述,相鄰的第二流路群B1、 B1被並列地配置,對 ;苐九貫施例,以”返回,,表現。 因此’根據此類的、%、人士 的液冷套匣J10,冷卻水蛇行,流過 其内口P。這樣做的話, /夜冷套E J1 0的熱抵抗係變得比未 36 201113988 返回的液冷套匣J9小。 再加以說明的話,從早而養以 定時,不改變構成各第套㈣大小作為-▲搆成各第—流路群B1的第二流路的個數 m磁 吏第―化路群B1的數目變多的話,構成各 抓' B1的各第二流路的流路剖面小 通液冷套匣的冷卻水的泣吾你也 稽此机 數目變^ 定時,第二流路群B1的 數目變夕的話’通過各第二流路的冷卻水的流速變大 Ο 以’熱有效率地由液冷套E傳達至冷卻水 抵抗下降。 去比的熟 一雖然本發明已以較佳實施例揭露如上然其並非用以 限々定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内’當可作些許之更動與满飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 在上述的各實施例中,雖然說明有關將熱發生體作為 CPU 101的情形,熱發生體的種類係不限定於此,例如, ❹ 電力模組(power* module)、發光二極體燈(LED iamp)等也 可〇 在上述的第一實施例中,雖然扁平管束2〇的複數的扁 平管21係在其厚度方向被束縛而被構成,但在亦可其寬度 方向被束缚而被構成。 雖然說明有關上述的第一實施例的液冷套匣具備 扁平管21以複數個被束缚的扁平管束20的情形(參考第6 圖),其他,例如,如第32圖所示般,代替扁平管束2〇, 具備具有以複數的分隔壁分隔的複數的中空部28a的扁平 37 201113988 g 28的液冷套匣j〗】也可。此情形各尹空部係作為第 二流路B8a的功能,扁平管28係具有由複數的第二流路 B8a構成的第二流路群Eg。 在有關上述的第一實施例的液冷套匣J1,雖然說明有 關進入口 31a和排“ 31b在蓋本冑31被形成的情形,但 進入口 3“和排出口 31b的位置並不限於此,例如,在套 匣本體10的周壁12被形成的情形也可。伴隨於此,進入 管32和排出管33的位置也不限定在液冷套£ &quot;的上面 側,位在側面側也可。 在有關上述的第六實施例的液冷套匣J6,雖然鰭片13 在套E本體10A、鰭片37在蓋本體36分別被立設而構成(夾 考第26圖)’如帛33(a)、33(b)圖所示般具備具有第二 基板51以及在第一基板51被立設的複數的第一鰭片μ的 第-鰭片元件50、和具有第二基板56以及在第二基板% 破立設的複數Μ二鰭片57的第二鰭片元件55的液冷套 匣J12也可。 有關在第33圖所示的液冷套匣J12,加以說明的話, 第一鰭片元件50和第二鰭片元件55係複數的第一鰭片Μ 和複數的第二鰭片57嚙合般被組合,液冷套匿ji2中的金 屬製的複數的鰭片全體係藉由複數的第一鰭片52和複數 的第二鰭片57被構成,在相鄰的第一鰭片52和第二鰭片 57之間’第二流路B9a被形成。χ,第一鰭片元件係 位在mim側,其第一基板51係在套£本體1〇的底壁 11以可熱交換地被固定。 38 201113988 又’液冷套E J12係具有由複數的第二流路B9a構成 的第二流路群B9。又,自複數的第一鰭片52的第一基板 51的突出長度L3係被設定為和自複數的第二鰭片57的第 二基板56的突出長度L4相同或較短。又,複數的第二鋒 片57和第一基板51係藉由適當的手段,以可熱交換地被 接合•固定,作熱連接。 在上述的第一實施例中’雖然藉由在套匣本體和扁 平管束20之間設置空間i〇a、i〇c,將第一流路Ai、第三 一 &quot;il路C1分別形成(參考第5圖),其他,例如,不設置空間 1 〇a ' 1 〇c ’在套匣本體丨〇的外側,在其上流側設置分歧管, 使其中空部作為第一流路,在下流側設置集合管,使其中 空部作為第三流路也可。 在有關上述的第四實施例的液冷套匣J4(參考第14 圖),雖然鰭片元件2 5係為在套匣本體1 〇被固定的構成, 如第34圖所示般,在蓋本體31的套匣本體1〇側面固定鰭 ❹片兀•件25的液冷套匣j13也可。又,如第34圖所示般’ cpuiοι係為被安裝在蓋本體31的構成也可。又,成為冷 卻水至液冷套匣j13内的進入口的進入管32和成為排出口 的排出管33係為被安裝在套匿本體1〇的構成也可。其他, 在蓋本體31的套匣本體10侧面,一體地形成鰭片的構成 也可。 又,如第35圖所示般,套匣本體10係具備四個具有 插通孔16a的腳部1 6,在各插通孔丨6a插通螺絲釘丨25, 液冷套匣J13被安裝在個人電腦本體12〇(參考第丨圖)的 39 201113988 框體126時,工具200的拔出位置係為相當於插通孔16a 的部份為較佳地。又,在此類的位置拔出工具2〇〇之後, 在此拔出的痕跡部份,藉由形成插通孔i 6a,可隱藏工具 2 〇 〇的拔出痕跡。 又,第34圖係為第35圖的X卜X1剖面。 [實施例] 以下基於實施例更具體地說明本發明。 (1)實施例1、第二流路B3a的溝寬度W1的檢討 有關第四實施例的液冷套匣J4(參考第13圖),製作 第二流路B3a的溝寬度W1(參考帛15圖)作為q 2随、 〇广、U襲的銘合金製的物品,表示在表…/, 疋, the method of manufacturing the fin member 29 is not limited thereto, and the fin member 25 (refer to Fig. 16) obtained by cutting the extruded member 41 according to the fourth embodiment, or formed by groove processing In the fin element 25 (refer to the figure), a part of the fin 25b may be formed. "Assembly of liquid-cooled ferrule" Further, as shown in Fig. 25, the combination of the body (10) and the fin member 29 is the same as that of the fourth embodiment, and the fitting portion P2 is abutted while being treated. Used as a friction stir mix. Further, the length L5 of the pin 2〇1 of the tool is preferably 60% or less of the thickness T3 of the bottom wall (four) seal 30 201113988 of the fin element 29 as the member to be joined. <<Sixth Embodiment>> Next, with respect to the liquid-cooled jacket of the sixth embodiment, referring to Fig. 26, the figure of the month 26 is a sectional view of the liquid-cooled jacket of the sixth embodiment, wherein (a) indicates assembly. After the completion state, (b) indicates before assembly. [Composition of liquid-cooled jacket] As shown in Fig. 26(a), the liquid-cooled jacket of the sixth embodiment is compared with the liquid-cooling jacket E η of the first embodiment, and has a nest body μα The (first tab element) and the cover unit 35 (second fin element) as the feature two nesting body 10 are provided with a bottom wall U (first substrate) and a plurality of vertical walls u are disposed at regular intervals Fin 13. On the other hand, the cover unit 35 includes a cover body 36 (second substrate) and a plurality of fins 37 that are erected at a predetermined interval between the cover body holders. The casing body 10A and the cover unit 35 are combined in such a manner that a plurality of fins 13 and a plurality of fins 37 are halved, and the cover body % is engaged and fixed to the casing E body 10A. The fin system of the liquid cooling jacket J6 is composed of a plurality of fins 13 and a plurality of fins 37 that are engaged. Further, the adjacent recording sheet 13 and the fins 37 become a second flow path_, and the liquid cooling jacket g has a second flow path group β5 composed of a plurality of second flow paths B5a. As described above, by engaging the plurality of fins 13 and the plurality of fins , to form the entire fins, the interval di of the plurality of (four) sheets 13 and the interval d2 of the plurality of slabs 37 can be widened, according to the cutting tool. Ditch processing is easy. The protruding length u of the bottom wall u of the self-complex fins 13 is set to be the same as or longer than the protruding length "2" of the cover body % of the self-complex (four) sheet 37 as shown in the 26th (b) 31 201113988 diagram. In a short manner, the plurality of fins 37 and the bottom wall 11 are heat-exchangeably joined by a suitable means, and are thermally connected. Thus, the cpu of the body 10A side (the first substrate side) is provided. The heat of 1〇1 is transmitted not only to the plurality of fins 13, but also to the plurality of fins 37. ', ', that is, by setting the protruding length of the plurality of fins 13 to a plurality of fins The protruding length L2 of 37 is the same or shorter, and the front end (top) of the plurality of fins 37 is reliably abutted against the bottom wall u of the sleeve body 1GA when the sleeve body 10A and the lid unit 35 are assembled, and can be surely Geothermally connects the entangled fins 37 and the bottom wall 11. "The effect of liquid-cooled rafts" /, people's simple 5 children's effect on liquid cooling occlusion j 6 effect. According to the liquid cooling jacket j6 of this type, the cooling water is distributed to the intestine of the second flow path group, and the heat of the cpui〇i transmitted to the plurality of fins 13 and the plurality of fins 37 is transmitted to the circulating cooling water. The CPU 101 is cooled efficiently. <<Seventh Embodiment>> Next, 'the liquid-cooled jacket of the seventh embodiment' is referred to in Fig. 27, and the second diagram is a sectional view of the liquid-cooled enclosure of the seventh embodiment, wherein (a) Indicates the completion status after assembly, and (b) indicates before assembly. <<Composition of Liquid Cooling Envelope>> As shown in Figs. 27(a) and 27(b), the liquid cooling jacket J7 relating to the seventh embodiment is in place of the flat of the liquid cooling jacket J1 of the first embodiment. The tube bundle 2〇' is provided with a metal honeycomb body 26 having a plurality of pores 26a as 32 201113988 <Honeycomb body> The honeycomb body 26 is attached to the bottom wall 11 of the nest body 1 by a suitable means 'heat exchangeable Bonded • Fixed. Therefore, the heat system of the CPU 101 is transmitted to the peripheral wall 26b surrounding the fine hole 26a. Each of the fine holes 26a functions as a second flow path B6a through which the cooling water flows. That is, the honeycomb body 26 has a second flow path group B6 composed of a plurality of second flow paths B6a. Here, as shown in Fig. 27, the honeycomb body 26 having the rectangular pores 26 &amp; which is rectangular in cross section is shown by way of example, but the shape of the pores 26a is not limited thereto, and the other is hexagonal. Etc. Further, it is preferable that the honeycomb body 26 and the bottom wall 11 of the casing body 1 are joined by the welding material 'which is surely heat exchangeable. "Effects of liquid cooling jacket" Secondly, a brief description of the effect of the liquid cooling jacket J7. The cooling water flows in the first flow path A1, the second flow path group b6 (the plural second flow path B6a), and the third flow path C1 in this order. Further, heat is mainly exchanged between the peripheral wall 26b of the honeycomb body 26 and the cooling water flowing through the second flow path B5a, and the heat of the wall 26b of the crucible 11 is transmitted to the cooling water. As a result, the CPU 101 can be efficiently cooled. <<Eighth Embodiment>> Its a, regarding the liquid-cooled occlusion of the eighth embodiment, refer to Fig. 28. Figure 28 is a cross-sectional view showing the liquid-cooled ferrule of the eighth embodiment, wherein (the lanthanum indicates the completed state after assembly, ((h) indicates the assembly before. The composition of the liquid-cooled ferrule" as in the 28th (a) As shown in Fig. 28(b), the liquid-cooling jacket J8 relating to the eighth embodiment is provided with a corrugated profile instead of the flat tube bundle 33 201113988 2〇' of the liquid-cooling jacket 有关 of the first embodiment. A metal heat exchange sheet 27 (breaking sheet) is characterized. <Heat exchange sheet> Heat exchange ... includes a sheet body 27a of a dA (four) system or the like and a trace zn on the lower side thereof The welding material layer 27b formed by Shaokou gold, etc., because the heat exchange sheet milk system is partially melted and hardened, and the bottom of the body (4) is joined and fixed. Therefore, the heat system of i〇i The bottom wall is conveyed to the heat exchange sheet 27. Further, the heat exchange sheet 27 and the sleeve body 1 or the cover body second flow path B7a are formed. That is, the liquid cooling jacket E J8 is Further, there is a second flow path group β7 composed of a plurality of second flow paths B7a. - "The effect of the liquid cooling ferrule" /, person, Jane Explain the effect of the liquid cooling jacket. The cooling water system flows in the first flow path Λ1, the second flow path of the second flow number _, and the third flow path C1. Further, the main: two (re-27 The streamer flutes, A is mainly exchanged between the cooling water of the heat exchange sheet 27, and the heat exchange sheet ', and is conveyed to the cooling water. The bean paste: CPU 10丨. The ninth embodiment can be efficiently cooled. The squadron of the ninth embodiment of the liquid cooling jacket g, A goes to the cargo 〇 n. The 29th _ U 131 refers to the 29th figure, again, in the ninth A plan view of the liquid cooling jacket of the nine embodiment: In the drawing, the cover body is drawn for easy understanding. (Configuration of the night cold jacket E) 34 201113988 Ο ❹ As shown in Fig. 29, the ninth embodiment is The liquid-cooled jacket (although the liquid-cooled jacket J1 of the first embodiment has a flat tube bundle 20) has three flat tube bundles 2 又. Further, three flat tube bundles 2 are tied to the body, each being flat The hollow portions 21a of the tube bundle 20 (the second flow paths are in the same direction as the same direction) are arranged in a line. Again, the three flat tube bundles 20 are attached to the sleeve E. In the body 10B, the space 1〇d and the space 10d are respectively disposed between the upper flat tube bundle 2〇 and the middle flat tube bundle 2° and the middle flow flat tube bundle 2 and the downstream flat tube bundle 20 In the state, the bottom wall u of the casing body H1B is joined and fixed in a heat exchange manner. The spaces 1〇d and 1〇d serve as the fourth flow path center E1 in which the second flow path group B1 of the flat tube bundle is connected in series ( The function of the connection flow path. The flow path sectional area of the fourth production path E1 is set to be larger than the flow path sectional area of each of the second flow path group B1 ^ second flow path Ma. That is, the liquid cooling jacket has three rows of the second flow path group that are arranged in the column = the second flow path. "The effect of the liquid cooling jacket" Next, the effect of the liquid cooling jacket SJ9 will be briefly described. B1 is sequentially flowed through the first flow path A1, the upper flow (four) two flow path group, the fourth flow path group of the fourth 4Eb flow, and the second flow path group B, the third flow path of the fourth flow downstream, that is, Cooling, ground circulation three adjacent second flow path groups βι, Μ, 耵, , '_, 歹* are in the adjacent second flow path group, cooling water... in the fourth flow..., cooling water bearing :pressure=:: the second flow of the road fault is the fourth flow (4) with a large cross-sectional area of the flow path, and the second flow path group 2; 35 201113988, and the second flow of the flow path length without passing through the fourth flow path El In comparison with the situation of the road group, the load acting on the micro-pull 22 can be made smaller. "Tenth Embodiment" Dan Jiu's related to Xi Xihe ου, figure description. Figure 30 is a plan view showing a liquid-cooled jacket of the tenth embodiment. Figure 31 is a graph of the relationship between the number of returns and thermal resistance. As shown in Fig. 30, the liquid cooling jacket of the tenth embodiment is the same as the liquid cooling jacket of the ninth embodiment, and has three second flow path groups B1, B1 connected in series. B1 (second flow path group portion), in the flow direction of the cooling water, the adjacent second flow path group cores are connected in series via the second flow path E1 (connection flow path). However, in the liquid-cooled enclosure J1〇, the adjacent second flow path groups B1 and B1 are juxtaposed, and the adjacent first-disjoint one, the muscle road group B1, and the downstream end of the upper-side object The upper and lower ends of the &amp; In other words, as shown in Fig. 30, 4π·, .., ' /, convergence, upper &gt;, the second flow path group of the second flow path group B at the IL position is a second flow path group + a The water flow direction is adjacent to the same time 'in the 30th picture of the 橿 too &amp; 士, a 2 , , and the middle break. Further, for example, the direct lowering of the second flow path group B1 at the upstream position and the upstream end of the second flow path group B1 at the intermediate flow position are on the same side, and are directed toward the lower side in the third drawing. Here, in the description 蚩φ, t ^ training, as described above, the adjacent second flow path groups B1, B1 are arranged side by side, and the second embodiment is "returned, expressed." According to this type, the liquid cooling jacket J10 of the person, the cooling water snakes and flows through the inner mouth P. In doing so, the heat resistance of the /night cold jacket E J1 0 becomes more than the liquid returned by 36 201113988 In the case of the ninth flow path group B1 When the number of the chemical road group B1 is increased, the flow path of each of the second flow paths of each of the 'B1's is small, and the number of the cooling water of the liquid cooling jacket is changed. When the number of the flow path group B1 is changed, the flow rate of the cooling water passing through each of the second flow paths becomes larger, and the heat is efficiently transferred from the liquid cooling jacket E to the cooling water to resist the decrease. The present invention has been disclosed in its preferred embodiments, and it is not intended to limit the invention, and those skilled in the art, without departing from the invention. In the spirit and scope of the invention, the scope of protection of the present invention is defined by the scope of the appended claims. In the above embodiments, although the heat generating body is described In the case of the CPU 101, the type of the heat generating body is not limited thereto, and for example, a power module, a light emitting diode, or the like may be employed in the first embodiment described above. In addition, although the plurality of flat tubes 21 of the flat tube bundle 2 are configured to be bound in the thickness direction thereof, they may be configured to be bound in the width direction. Although the liquid cooling jacket of the first embodiment described above is explained. In the case where the flat tube 21 is provided with a plurality of bundled flat tube bundles 20 (refer to Fig. 6), other, for example, as shown in Fig. 32, instead of the flat tube bundle 2, there are plural numbers separated by a plurality of partition walls. The flat portion of the hollow portion 28a is a liquid cooling jacket of 201113988 g28. In this case, each of the Yin vacancies functions as the second flow path B8a, and the flat tube 28 has a plurality of second flow paths B8a. Second stream In the liquid-cooling jacket J1 relating to the first embodiment described above, although the description is made regarding the entry port 31a and the row "31b in the case where the cover book 31 is formed, the position of the inlet port 3" and the discharge port 31b are The present invention is not limited thereto, for example, in the case where the peripheral wall 12 of the casing body 10 is formed. Accordingly, the positions of the inlet pipe 32 and the discharge pipe 33 are not limited to the upper side of the liquid cooling jacket, and are located at the upper side. In the liquid-cooling jacket J6 of the sixth embodiment described above, the fins 13 are formed in the cover body main body 10A and the fins 37 in the cover body 36, respectively (FIG. 26) a first fin element 50 having a second substrate 51 and a plurality of first fins μ that are erected on the first substrate 51, as shown in the drawings 33(a) and 33(b), and having the first The liquid crystal jacket J12 of the second substrate 56 and the second fin element 55 of the plurality of second fins 57 which are erected on the second substrate may be used. With regard to the liquid-cooling jacket J12 shown in Fig. 33, the first fin member 50 and the second fin member 55 are integrally engaged with the plurality of first fins Μ and the plurality of second fins 57. In combination, the plurality of metal fins in the liquid-cooled nesting ji2 are constructed by a plurality of first fins 52 and a plurality of second fins 57, adjacent first fins 52 and second A second flow path B9a is formed between the fins 57. That is, the first fin member is tied to the mim side, and the first substrate 51 is attached to the bottom wall 11 of the body 1 to be heat-exchangeably fixed. 38 201113988 Further, the liquid cooling jacket E J12 has a second flow path group B9 composed of a plurality of second flow paths B9a. Further, the projection length L3 of the first substrate 51 of the plurality of first fins 52 is set to be the same as or shorter than the projection length L4 of the second substrate 56 of the second fin 57. Further, the plurality of second front sheets 57 and the first substrate 51 are joined and fixed in a heat exchange manner by a suitable means for thermal connection. In the first embodiment described above, although the spaces i 〇 a, i 〇 c are provided between the ferrule body and the flat tube bundle 20, the first flow path Ai and the third one quot; il path C1 are respectively formed (refer to Fig. 5), other, for example, no space 1 〇a ' 1 〇c ' is placed outside the casing body ,, and a branch pipe is provided on the upstream side thereof so that the hollow portion serves as the first flow path and is disposed on the downstream side. The collecting pipe may have a hollow portion as a third flow path. In the liquid-cooling jacket J4 (refer to Fig. 14) relating to the fourth embodiment described above, although the fin member 25 is configured to be fixed in the casing body 1, as shown in Fig. 34, in the cover The casing body 1 of the main body 31 is also provided with a liquid cooling jacket j13 for fixing the fin fins and members 25. Further, as shown in Fig. 34, the cpuiοι may be attached to the cover body 31. Further, the inlet pipe 32 which is the inlet port of the cooling water to the liquid cooling jacket j13 and the discharge pipe 33 which serves as the discharge port may be attached to the casing body 1〇. Others, a configuration in which fins are integrally formed on the side surface of the ferrule body 10 of the cover body 31 may be employed. Further, as shown in Fig. 35, the casing body 10 is provided with four leg portions 16 having insertion holes 16a, and the insertion holes 丨6a are inserted into the screws 丨25, and the liquid cooling jacket J13 is mounted. In the case of the case 126 of the personal computer main body 12 (refer to the figure) 39 201113988, it is preferable that the tool 200 is pulled out at a position corresponding to the insertion hole 16a. Further, after the tool 2 is pulled out at such a position, the portion of the trace which is pulled out can be formed by the insertion hole i 6a to hide the extraction mark of the tool 2 〇 . Further, Fig. 34 is a X-X1 cross section of Fig. 35. [Examples] Hereinafter, the present invention will be more specifically described based on examples. (1) Review of the groove width W1 of the first embodiment and the second flow path B3a With respect to the liquid-cooling jacket J4 of the fourth embodiment (refer to Fig. 13), the groove width W1 of the second flow path B3a is created (refer to 帛15). Figure) As an item made of the alloy of q 2, 〇广, and U, it is shown in the table...

Tm 1 λ 11 μα is K T 又’在表1中’全體流路寬度w〇係為第一流路 第三流路心寬度…全體流路長度L0 — A1的長度、第二流路B3a的長度、 ’敗机路 的和(參考第U、14圖)。 乂及第二流路Π長度 _[表 1]Tm 1 λ 11 μα is KT Further, in Table 1, the total flow path width w is the first flow path, the third flow path center width, the length of the entire flow path length L0 - A1, the length of the second flow path B3a, 'The sum of the roads of defeat (see U, 14).乂 and the second flow path length _[Table 1]

金的熱傳導率(W/mk) ^流路寬度WO(mm) 士體流路長度LO (mm) 路 B3a 的溝寬度 wi(mm) 一的深度 Dl(mm) 又,使用作為冷卻水的水,此^一一~~ 使微幫浦122(參考第1圖)作動(表考 min ’爪動般, /亏表2),檢討有關第二 201113988 流路B3a的溝寬度W1以及液冷套匣】4的熱抵抗和壓力損 失間的關係。熱抵抗和壓力損失係以適當的方法測定。又, 在此樣式的液冷套E J4 ’將作為目標的熱抵抗作為在 0. 008(°C/W)以下。 [表2] 冷卻水 水 冷卻水的流量(L/miη) 5. 0 如第36圖所示般,由於隨著第二流路B3a的溝寬度 〇 W1變小,液冷套匣J4和冷卻水的接觸面積變大,液冷套 E J4的熱抵抗變小。另一方面,第二流路B3a的溝寬度 W1比1,1mm大的話,熱抵抗變得比作為目標的〇〇〇8(C)c/w) 大的情形被域認。 又,冷卻水藉由液冷套匣J4所承受的壓力損失係在第 二流路B 3 a的溝寬度W i變得比〇 _ 2 m m小的話,被確認出比 0. 01(°C/W)大。 因此,第二流路B 3 a的溝寬度w i係為〇 · 2〜丨.丨m m較佳。 。⑵實施例2、錯片25b的厚度n和第二流路⑽的 溝寬度W1間的關係的檢討 其次,和實施例1相同,將第二流路B3a的溝寬度W1 設定為0.2龍、0.5mm、1.0mm的三種類(參考表D,對於 各第二流路B3a的溝寬度Wi,使鰭片25b的厚度n適當 地變化,檢討有關”,鰭4 25b的厚度T1*溝寬度们的比 率(T1/W1)” 、以及”熱抵抗”間的關係。 如第37圖所示般’在各溝寬度π中,有熱抵抗變小 41 201113988 的” T1/W1”的範圍。此範圍係作為在各溝寬度W1中的最 小熱抵抗的5%增加的值以下的範圍。 具體而言’第二流路B3a的溝寬度W1為1. 〇mm時,因 為最小熱抵抗為0.0073rC/W),其5%增加的值係成為 〇. 0073 X 1. 05 = 〇· 0076(T/W)。又,成為 〇. 〇〇76(〇c/w) 以下的範圍係成為〇. 5 $ T1/W1各i 4。 —和此相同’在第二流路B3a的溝寬度^為^ 5mm,上 ::::成為〇.7客T1/W1 S 2.1。又,在第二流路B3a 、H1為上述範圍係成為…T驗2. 9。 為”韓片厚度m溝寬度η”心寬度们”、Y軸作 被得到。如第38圖所示般,確::第38圖所示的圖表 片厚度⑴溝寬度W1,,係滿足下=冑寬度Π”、”錯 ~0. 375 X W1 + 〇. 875 $ T1/Wl / )為較佳。 (3)實施例3、第二流路心广…㈣…⑴ 的關係的檢討 /霉寬度W1和深度D1間 π -人,在 β丨别乐四貫施例的液冷 :的溝寬度Π設定為。,2 ⑼中,將第二 參考表η’對於各第二流 ·,、“随的三種 D1適當地變化’檢討有關”深的溝寬度π’使其深 的關係。 又 、以及”熱抵抗” 第39圖所示般,和實施例 ’有熱抵抗變小的溝深度 〜才目同,在各溝寬度W1 和實施例2相同,求得此範圍的:圍的情形被確認。又, 溝寬度W1為〇. 2mm, 42 201113988 2 $ D1 各 6,溝寬度 W1 為 〇.5mm,4 $ M $ 見度 W1 為 1. 〇mm,6 $ D1 $ 18。 丨 ,,又,基於此,使X軸替換作為,,溝寬度W1,’ 、γ軸作 i 度Di”的話,如第40圖所示的圖表被㈣卜# 第4。圖所示般’ ”溝寬度W1”、和,,溝深度卟 下式(2)為較佳被確認。 滿足 5 X 评 + 1 S D $ 16.25 X W + 2.75 …⑵ ❹ ❹ (4)實施例4、治具的有效性的檢討 其次,在第四實施例中的套昆本體1〇和蓋本體3 的摩擦授拌接合中,檢討有關在套昆本體1Q的周壁以 接治具2U)的有效性。又,在此檢討中,使用在表3所示 的兩種類的工具200…如表4所示般,使A工具或B =中的肩202的外周面、以及套^本體1〇的周壁。的 外周面間的距離L6變化(參考第19圖),且改變治呈21〇 的有/無,將周壁丨2和蓋本體31作摩擦攪拌接人。藉 由目視評價接合部的品質。〇係表示良好’ ^、表示接合不 良。The thermal conductivity of gold (W/mk) ^Flow width WO (mm) The length of the flow path LO (mm) The width of the groove B3a wi (mm) The depth of one D1 (mm) Again, the water used as cooling water , ^一一一~~ Make the micro-pull 122 (refer to Figure 1) act (watch test min 'claw-like, / loss table 2), review the groove width W1 and liquid-cooled sleeve of the second 201113988 flow path B3a匣] The relationship between thermal resistance and pressure loss. Thermal resistance and pressure loss are measured in an appropriate manner. Further, the liquid-cooling jacket E J4 ' in this mode has a target thermal resistance of 8.0 (° C/W or less). [Table 2] Flow rate of cooling water cooling water (L/miη) 5. 0 As shown in Fig. 36, since the groove width 〇W1 of the second flow path B3a becomes smaller, the liquid cooling jacket J4 and cooling The contact area of the water becomes large, and the heat resistance of the liquid cooling jacket E J4 becomes small. On the other hand, when the groove width W1 of the second flow path B3a is larger than 1,1 mm, the thermal resistance becomes larger than the target 〇〇〇8(C)c/w). Further, the pressure loss of the cooling water by the liquid cooling jacket J4 is determined to be greater than 0 2 mm when the groove width W i of the second flow path B 3 a is smaller than 〇 2 mm. /W) Big. Therefore, the groove width w i of the second flow path B 3 a is preferably 〇 2 to 丨. . (2) In the second embodiment, the relationship between the thickness n of the erroneous piece 25b and the groove width W1 of the second flow path (10) is the same as that of the first embodiment, and the groove width W1 of the second flow path B3a is set to 0.2, 0.5, 0.5. Three types of mm and 1.0 mm (refer to Table D, for the groove width Wi of each of the second flow paths B3a, the thickness n of the fins 25b is appropriately changed, and the review is concerned," the thickness of the fins 45b is T1* the width of the grooves The relationship between the ratio (T1/W1)" and "thermal resistance". As shown in Fig. 37, in the width π of each groove, there is a range of "T1/W1" where the heat resistance becomes smaller 41 201113988. This range The range is less than or equal to a value of 5% of the minimum heat resistance in each groove width W1. Specifically, the groove width W1 of the second flow path B3a is 1. 〇mm, because the minimum heat resistance is 0.0073 rC/ W), the value of 5% increase is 〇. 0073 X 1. 05 = 〇· 0076(T/W). Further, the range below 〇. 〇〇76(〇c/w) is 〇. 5 $ T1/W1 each i 4. - Same as this' The groove width ^ in the second flow path B3a is ^ 5 mm, and the above :::: becomes 〇. 7 guest T1/W1 S 2.1. Further, the second flow paths B3a and H1 are in the above range. For the "Korean thickness m groove width η" heart width", the Y-axis is obtained. As shown in Fig. 38, it is true that: the thickness of the slice (1) groove width W1 shown in Fig. 38 is satisfied. = 胄 width Π", "wrong ~ 0. 375 X W1 + 〇. 875 $ T1/Wl / ) is better. (3) Example 3, the second flow path is wide... (4) Review of the relationship of (1) / Π-person between the mold width W1 and the depth D1, and the liquid cooling: the groove width Π of the β 丨 四 四 施 Π Π Π Π Π , , , , 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二"The three D1 changes as appropriate" review the relationship between the "deep groove width π" and the deep relationship. Also, as well as the "heat resistance" shown in Figure 39, and the example 'have heat resistance and small groove Depth ~ is the same, and the groove width W1 is the same as in the second embodiment, and the range is determined: the groove width W1 is 〇. 2mm, 42 201113988 2 $ D1 each 6, the groove width W1 〇.5mm,4 $ M $ Visibility W1 is 1. 〇mm,6 $ D1 $ 18. 丨,, again, based on this, the X axis is replaced by, the groove width W1, ', γ axis for i degrees Di", like the 4th The chart shown in Figure 0 is (4) Bu #4. As shown in the figure, the groove width W1" and the groove depth 卟 (2) are preferably confirmed. Satisfy 5 X rating + 1 SD $ 16.25 XW + 2.75 (2) ❹ ❹ (4) Example 4, Review of the effectiveness of the fixture Next, the friction of the sleeve body 1〇 and the cover body 3 in the fourth embodiment In the mixing and joining, review the validity of the 2K) in the peripheral wall of the 1Q body. Further, in this review, the two types of tools 200 shown in Table 3 were used. As shown in Table 4, the outer peripheral surface of the shoulder 202 of the A tool or B = and the peripheral wall of the sleeve 1 body were used. The distance L6 between the outer peripheral faces is changed (refer to Fig. 19), and the change is performed with the presence/absence of 21 ,, and the peripheral wall 丨 2 and the cap body 31 are friction stir-fed. The quality of the joint was evaluated by visual observation. The sputum indicates good '^, indicating that the joint is not good.

43 201113988 [表4丄 工具 A工具— A工具43 201113988 [Table 4丄 Tools A Tools - A Tools

L6(mm) ------ —具 接合部品質 .0 _有 0 」5 ___—有 0 .0 __有 X j 0 M. X 時 ^ ^ T c ^ 一…周壁12薄,即使 離 L6 為 〇. 5_,# 確的出不會使周壁12變形,可使蓋本 體31良好地接合。 (5)實施例 的關係 、鱗的長度L5和蓋本體31的厚度T2間 其次,檢討有關工具200的銷2〇1的長度15和蓋本體 31的厚度T2間的關係(參考第19圖)。在此檢討中,如表 5所示般’將銷201的長度L5固定在2· Omm,使蓋本體31 的厚度T2變化’藉由目視評價接合部品質。 [表5] 銷的長度L5 ---- 盍本體的厚度 T2(mm) L5/T2(°/〇) 接合部品質 s 2.0 6.0 33. 3 0 s 2.0 5.0 40. 0 0 ^ 2-〇 4. 0 50. 0 --— 0 __ 2. 0 3.0 66. 6 ------ _L 1 如表5所示般’銷201的長度L5係在被接合元件的蓋 本體31的厚度了2的60. 〇%以下的範圍,確認出可將周壁 U和蓋本體31良好地接合。 44 201113988 【圖式簡單說明】 第1圖係為有關第一實施例的液冷系統的構成圖; 第2圖係為有關第一實施例的液冷套匣的全體立體 圖; 第3圖係為自有關第一實施例的液冷套匣的下方的全 體立體圖; 第4圖係為有關第一實施例的液冷套匣的立體圖,表 示省略蓋單元的狀態; 第5圖係為有關第一實施例的液冷套匣的平面圖; 第6圖係為有關在第2圖表示的第一實施例的液冷套 匣的X-X剖面圖; 苐7圖係為有關第一實施例的液冷套匣的分解立體 圖; 第8圖係以模式地表示有關第一實施例的液冷套匣的 效果的圖表; 第9圖係為有關第二實施例的液冷套匣的全體立體 圖,表示省略蓋單元的狀態; 第10圖係為有關在第9圖表示的第二實施例的液冷套 匣的Y-Y剖面圖; 第11圖係為有關第三實施例的液冷套匣的全體立體 圖; 第12圖係為有關第三實施例的液冷套匡的平面圖. 第13圖係為有關第四實施例的液冷套匠的全體立體 圖,表示省略蓋單元的狀態; 45 201113988 第Ϊ4圖係為有關名筮 套㈣z-z剖面圖;3圖表示的第四實施例的液冷 =圖係為在第14圖表示的W剖面圖的擴大圖; 元件的第=為表不有關第四實施例的液冷套匣的鰭片 兀件的第—製作方法的立體圖 為切斷後; /、T(a)表不切斷則,(b) 元件:第17 Γ系為表示有關第四實施例的液冷套㈣鰭片 的第一製作方法的立體圖,1 為切削後; /、中(a)表不切削前,(b) 圖;第18圖係為有關第四實施例的摩擦授掉接合的立體 圖; 9圖係為有關第四實施例的摩擦攪拌接合的剖面 工且:動::係表示有關第四實施例的摩擦攪拌接合中的 〃的動作的平面圖; 圖係為有關第五實施例的液冷套£的剖面圖; 圖係為在第21圖表示的剖面圖的擴大圖; 23 ®係'為表示有關第五實施例的液冷套匿的“ 疋件的製作方法的圖示,其中(a)表干…套㈣轉片 到削加工後; ,、中⑷表-刮削加工中,(b)為 第24圖係為表示有關第五實施 -件的製作方法的圖示,其中表示使在第2=的縫片 到削鳍片的-部份去除後·, 23⑻圖所示的 第Μ圖係表示有關第五實施例的摩擦授拌接合 46 201113988 面圖; 第26圖係為有關第六實施例的液冷套匣的剖面圖,其 中(a)表示組裝後’(b)為組裝前; 第27圖係為有關第七實施例的液冷套匿的剖面圖,其 中(a)表示組裝後’(b)為組裝前; 第28圖係為有關第八實施例的液冷套E的剖面圖,其 中(a )表示組裝後’(b )為組裝前; Ο Ο 第29圖係為有關第九實施例的液冷套昆的平面圖; 第30圖係為有關第十實施例的液冷套g的平面圖; 第31圖係為返回數和熱抵抗間的關係的圖表; 第32圖係為有關變形例的扁平管束_ ® 0 ; 第圖係為有關變形例的液冷套匣的剖面圖,立中(a) 表示組裝後,(b)為組裝前; '、 第34圖係為有關變形例的液冷套E的剖面圖; 第35圖係為有關變形例的液冷套£的立體圖; 圖係為溝寬度W1、熱抵抗、及壓力損失間的關 係的圖表; 第37圖係為鰭片的厚度n/溝寬度^和熱抵抗間的 關係的圖表; 第圖係為溝寬度W1和鰭片的厚度Τ1/溝寬度間 的關係的圖表; 及 第圖係為溝深度D1和熱抵抗間的關係的圖表;以 第4〇圖係表示溝寬度W1和溝深度D1間的關係的圖 47 201113988 表。 【主要元件符號說明】 A1 第一流路、 B1 第二流路群、 Bla 第二流路、 C1 第三流路、 J1 液冷套匣、 10 套匣本體、 10a 、10c空間、 11 底壁、 12 周壁、 15 段差部、 20 扁平管束、 21 扁平管、 21a 中空部、 21b 周壁、 21c 分隔壁、 31 蓋本體、 31a 進入口、 31b 排出口、 101 CPU(熱發生體)、 200 工具、 201 鎖、 202 肩、 210 治具、 K &gt; 摯擦攪拌接合部、 L5 銷的長度、 L6 工具的外周面和周壁的外周面 間的距離、 PI 配合部、 Q重疊部份、 T1 鰭片的厚度、 T2 蓋本體的厚度、 Til 周壁的厚度、 W1 溝寬度、 Wll 段差部的寬度。 48L6(mm) ------—with joint quality.0 _with 0 ”5 ___—with 0 .0 __ with X j 0 M. X ^ ^ T c ^ one...week wall 12 thin, even From L6, it is 〇. 5_, # Indeed, the peripheral wall 12 is not deformed, and the cover body 31 can be well joined. (5) Between the relationship of the embodiment, the length L5 of the scale, and the thickness T2 of the lid body 31, the relationship between the length 15 of the pin 2〇1 of the tool 200 and the thickness T2 of the lid body 31 is reviewed (refer to Fig. 19). . In this review, as shown in Table 5, the length L5 of the pin 201 was fixed at 2 mm and the thickness T2 of the cap body 31 was changed. The quality of the joint was visually evaluated. [Table 5] Pin length L5 ---- 盍 body thickness T2 (mm) L5/T2 (° / 〇) Joint quality s 2.0 6.0 33. 3 0 s 2.0 5.0 40. 0 0 ^ 2-〇4 0 50. 0 --- 0 __ 2. 0 3.0 66. 6 ------ _L 1 As shown in Table 5, the length L5 of the pin 201 is the thickness of the cover body 31 of the engaged component. In the range of 60% or less, it was confirmed that the peripheral wall U and the lid body 31 can be joined well. 44 201113988 [Simplified description of the drawings] Fig. 1 is a configuration diagram of a liquid cooling system according to the first embodiment; Fig. 2 is a perspective view of the liquid cooling jacket of the first embodiment; Fig. 4 is a perspective view of the liquid cooling jacket of the first embodiment, showing a state in which the cover unit is omitted; Figure 6 is a plan view of the liquid-cooled jacket of the embodiment; Figure 6 is a cross-sectional view of the liquid-cooled jacket of the first embodiment shown in Figure 2; Figure 7 is a liquid-cooled jacket of the first embodiment. FIG. 8 is a diagram schematically showing the effect of the liquid-cooling jacket of the first embodiment; FIG. 9 is a perspective view of the liquid-cooling jacket of the second embodiment, showing that the cover is omitted. Figure 10 is a YY cross-sectional view of the liquid-cooled jacket of the second embodiment shown in Figure 9; Figure 11 is an overall perspective view of the liquid-cooled jacket of the third embodiment; Figure 12 is a plan view of the liquid cooling jacket of the third embodiment. Figure 13 is a perspective view of the liquid cooling jacket of the fourth embodiment, showing the state in which the cover unit is omitted; 45 201113988 The fourth figure is a sectional view of the name set (four) z-z; the fourth embodiment of the figure 3 The liquid cooling of the example is an enlarged view of the W cross-sectional view shown in Fig. 14; the third part of the element is a perspective view showing the first method of manufacturing the fin member of the liquid-cooled jacket of the fourth embodiment. After cutting, /, T(a) is not cut, (b) Element: 17th is a perspective view showing the first manufacturing method of the liquid-cooling sleeve (four) fin of the fourth embodiment, 1 is cutting After; /, medium (a) before cutting, (b); Fig. 18 is a perspective view of the friction-inducing joint of the fourth embodiment; 9 is a friction stir welding of the fourth embodiment The cross-section of the liquid-cooled jacket of the fifth embodiment is shown in Fig. 21; the figure is the sectional view of the liquid-cooled jacket of the fifth embodiment; An enlarged view of the cross-sectional view shown; 23 ® 'for indicating liquid-cooled occlusion of the fifth embodiment A diagram showing the manufacturing method of the parts, in which (a) the surface is dry... the sleeve (4) is transferred to the surface after the cutting; the middle (4) is in the table - the scraping process, and the (b) is the 24th figure is the fifth embodiment. The illustration of the manufacturing method shows that after the slit of the 2nd = to the portion of the finned fin is removed, the second graph shown in Fig. 23(8) shows the friction stir joining 46 of the fifth embodiment. 201113988 FIG. 26 is a cross-sectional view of the liquid-cooled jacket of the sixth embodiment, wherein (a) indicates that (b) is assembled before assembly; and FIG. 27 is a liquid relating to the seventh embodiment. A cold-enveloped cross-sectional view in which (a) indicates that after assembly ((b) is before assembly; and Figure 28 is a cross-sectional view of liquid-cooled jacket E relating to the eighth embodiment, wherein (a) indicates after assembly' ( b) is a pre-assembly; Ο Ο Figure 29 is a plan view of the liquid-cooled jacket of the ninth embodiment; Figure 30 is a plan view of the liquid-cooling jacket g relating to the tenth embodiment; A graph of the relationship between the number and the thermal resistance; Fig. 32 is a flat tube bundle _ ® 0 relating to the modification; the figure is a liquid cooling jacket relating to the modification The cross-sectional view of the crucible, the middle (a) indicates the assembly, and (b) is the pre-assembly; ', the 34th is the cross-sectional view of the liquid cooling jacket E of the modification; and the 35th is the liquid of the modification. A perspective view of the cold pack; the graph is a graph of the relationship between the groove width W1, thermal resistance, and pressure loss; Figure 37 is a graph showing the relationship between the thickness n/ditch width of the fin and the thermal resistance; The graph is a graph showing the relationship between the groove width W1 and the thickness Τ1/ditch width of the fin; and the graph is a graph showing the relationship between the groove depth D1 and the heat resistance; the groove width W1 and the groove depth are represented by the fourth graph. Figure 47 of the relationship between D1 201113988 table. [Main component symbol description] A1 First flow path, B1 second flow path group, Bla second flow path, C1 third flow path, J1 liquid cooling jacket, 10 sets of raft body, 10a, 10c space, 11 bottom wall, 12 circumference wall, 15 section difference, 20 flat tube bundle, 21 flat tube, 21a hollow part, 21b peripheral wall, 21c partition wall, 31 cover body, 31a inlet port, 31b discharge port, 101 CPU (heat generator), 200 tool, 201 Lock, 202 shoulder, 210 fixture, K &gt; 搅拌 friction stir joint, length of L5 pin, distance between outer peripheral surface of L6 tool and outer peripheral surface of peripheral wall, PI fitting, Q overlap, T1 fin Thickness, thickness of T2 cover body, thickness of Til peripheral wall, width of W1 groove, width of Wll step. 48

Claims (1)

201113988 七、申請專利範圍: 1. 種液冷套匣’熱發生體被安裝在既定位置、使該 熱發生體發生的熱傳達至自外部的熱輸送流體供給裝置被 . 供給、流通内部的熱輸送流體, 其特徵在於包括: 套E本體’上述熱輪送流體流動於内部,且具有收容 金屬製的鰭片的鰭片收容室;以及 ❹ 密封體’密封上述鰭片收容室; 其中包圍上述‘鰭片收容室的上述套匣本體的周壁和上 述密封體間的配合部係被摩擦授拌接合; 上述金屬製的鰭片係在上述密封體立設,和該密封體 為一體。 2. 如申請專利範圍第1項所述之液冷套£,其中該摩 擦授拌接合中的始端和終端係重疊。 3. 如申請專利範圍第丨或2項所述之液冷套匡,其中 ◎上述周壁在外侧不變形般,-邊在上述周壁抵接治具一邊 被上述摩擦攪拌接合。 .如申叫專利範圍第1或2項所述之液冷套匣,其中 在上述摩擦授拌接合中使用的工具的銷的長度係在上述密 封體的厚度的60%以下。 5·如申叫專利範圍第3項所述之液冷套匣,其中在上 述摩擦攪拌接合中使用的工具的鎖的長度係在上述密封體 的厚度的60%以下。 6.如申請專利範圍第1或2項所述之液冷套g,其中 49 201113988 在上述摩擦授拌接合中,上述工具的拔出位置係自上述配 合部被拆下。 7·如申請專利範圍第3項所述之液冷套匣,其中在上 述摩擦攪拌接合中’上述工具的拔出位置係自上述配合部 被拆下。 8·如申請專利範圍第4項所述之液冷套匣,其中在上 述摩擦攪拌接合中’上述工具的拔出位置係自上述配合部 被拆下。 y.如申請專利範圍第 ” n 扣固矛 υ q地心狀令奮匣,其中在 述摩擦攪拌接合中’上述工具的拔出位置係自 被拆下。 50201113988 VII. Patent application scope: 1. The liquid cooling jacket 匣 'The heat generating body is installed at a predetermined position, and the heat generated by the heat generating body is transmitted to the heat transfer fluid supply device from the outside. The conveying fluid is characterized in that: the sleeve E body 'the hot-wheeling fluid flows inside, and has a fin accommodating chamber for accommodating metal fins; and the 密封 sealing body' seals the fin accommodating chamber; The fitting portion between the peripheral wall of the ferrule body and the sealing body in the fin accommodating chamber is frictionally joined; the metal fin is erected on the sealing body and integrated with the sealing body. 2. The liquid cooling jacket of claim 1, wherein the beginning and the end of the friction mixing joint overlap. 3. The liquid-cooled jacket according to the above or 2, wherein the peripheral wall is not deformed on the outer side, and is joined by the friction stirrer while the peripheral wall abuts the jig. The liquid-cooled jacket according to the first or second aspect of the invention, wherein the length of the pin of the tool used in the friction stir welding is 60% or less of the thickness of the sealing body. 5. The liquid-cooled jacket of the third aspect of the invention, wherein the length of the lock of the tool used in the friction stir welding is less than 60% of the thickness of the sealing body. 6. The liquid cooling jacket g according to claim 1 or 2, wherein, in the friction stir welding, the pulling-out position of the tool is removed from the fitting portion. 7. The liquid-cooled jacket according to claim 3, wherein in the friction stir welding, the pulling-out position of the tool is removed from the fitting portion. 8. The liquid-cooled jacket according to claim 4, wherein in the friction stir welding, the extraction position of the tool is removed from the fitting portion. y. If the scope of the patent application is “n”, the fastening position of the tool is removed, and the extraction position of the above tool is removed.
TW099140146A 2005-04-21 2006-04-20 Liquid-cooled jacket TW201113988A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005123403 2005-04-21

Publications (2)

Publication Number Publication Date
TW201113988A true TW201113988A (en) 2011-04-16
TWI355049B TWI355049B (en) 2011-12-21

Family

ID=37214696

Family Applications (3)

Application Number Title Priority Date Filing Date
TW099140147A TW201113989A (en) 2005-04-21 2006-04-20 Liquid-cooled jacket
TW095114120A TW200644199A (en) 2005-04-21 2006-04-20 Liquid-cooled jacket
TW099140146A TW201113988A (en) 2005-04-21 2006-04-20 Liquid-cooled jacket

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW099140147A TW201113989A (en) 2005-04-21 2006-04-20 Liquid-cooled jacket
TW095114120A TW200644199A (en) 2005-04-21 2006-04-20 Liquid-cooled jacket

Country Status (5)

Country Link
US (1) US20090065178A1 (en)
JP (2) JP5423638B2 (en)
CN (1) CN100543975C (en)
TW (3) TW201113989A (en)
WO (1) WO2006115073A1 (en)

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600220B2 (en) * 2005-09-01 2010-12-15 三菱マテリアル株式会社 Cooler and power module
JP4697475B2 (en) * 2007-05-21 2011-06-08 トヨタ自動車株式会社 Power module cooler and power module
US8081462B2 (en) * 2007-09-13 2011-12-20 Rockwell Automation Technologies, Inc. Modular liquid cooling system
JP5002522B2 (en) * 2008-04-24 2012-08-15 株式会社日立製作所 Cooling device for electronic equipment and electronic equipment provided with the same
US8079508B2 (en) * 2008-05-30 2011-12-20 Foust Harry D Spaced plate heat exchanger
JP2010022711A (en) * 2008-07-23 2010-02-04 Fujitsu Ltd Water pillow for heat radiation
JP5061065B2 (en) * 2008-08-26 2012-10-31 株式会社豊田自動織機 Liquid cooling system
JP5023020B2 (en) * 2008-08-26 2012-09-12 株式会社豊田自動織機 Liquid cooling system
JP5531573B2 (en) * 2008-12-09 2014-06-25 日本軽金属株式会社 Method for joining resin member and metal member, method for manufacturing liquid cooling jacket, and liquid cooling jacket
US20100181054A1 (en) * 2009-01-21 2010-07-22 Lockheed Martin Corporation Plate-Frame Graphite-Foam Heat Exchanger
JP5262822B2 (en) * 2009-02-23 2013-08-14 日本軽金属株式会社 Manufacturing method of liquid cooling jacket
CN102472593A (en) 2009-07-16 2012-05-23 洛克希德马丁公司 Helical tube bundle arrangements for heat exchangers
EP2454548B1 (en) 2009-07-17 2020-04-01 Lockheed Martin Corporation Heat exchanger and method for making
US9777971B2 (en) * 2009-10-06 2017-10-03 Lockheed Martin Corporation Modular heat exchanger
US20110127022A1 (en) * 2009-12-01 2011-06-02 Lockheed Martin Corporation Heat Exchanger Comprising Wave-shaped Fins
EP2525637B1 (en) * 2010-01-12 2020-10-28 Nippon Light Metal Co., Ltd. Liquid-cooled integrated substrate and method for manufacturing liquid-cooled integrated substrate
JP5533215B2 (en) 2010-05-10 2014-06-25 富士通株式会社 Cooling jacket and electronic device having the same
JP5813300B2 (en) 2010-08-23 2015-11-17 三桜工業株式会社 Cooling system
US9388798B2 (en) 2010-10-01 2016-07-12 Lockheed Martin Corporation Modular heat-exchange apparatus
US9670911B2 (en) 2010-10-01 2017-06-06 Lockheed Martin Corporation Manifolding arrangement for a modular heat-exchange apparatus
US20120080170A1 (en) * 2010-10-04 2012-04-05 Hsiu-Wei Yang Plate-type heat pipe sealing structure and manufacturing method thereof
DE102012201710A1 (en) * 2011-02-14 2012-08-16 Denso Corporation heat exchangers
CN102116464B (en) * 2011-04-21 2012-10-10 无锡马山永红换热器有限公司 High-power light-emitting diode (LED) street lamp radiator
WO2012147544A1 (en) 2011-04-26 2012-11-01 富士電機株式会社 Cooler for semiconductor module, and semiconductor module
US20140069615A1 (en) * 2011-05-12 2014-03-13 Toyota Jidosha Kabushiki Kaisha Cooler and method for producing the same
CN102856275A (en) * 2011-06-29 2013-01-02 鸿富锦精密工业(深圳)有限公司 Cooling system
JP5953206B2 (en) * 2011-11-11 2016-07-20 昭和電工株式会社 Liquid cooling type cooling device and manufacturing method thereof
KR101906648B1 (en) 2012-02-09 2018-10-10 휴렛 팩커드 엔터프라이즈 디벨롭먼트 엘피 Heat dissipating system
US9529395B2 (en) 2012-03-12 2016-12-27 Hewlett Packard Enterprise Development Lp Liquid temperature control cooling
JP5496279B2 (en) * 2012-07-25 2014-05-21 株式会社放熱器のオーエス Heat exchanger and manufacturing method thereof
CN102790027B (en) * 2012-08-27 2016-03-30 无锡市福曼科技有限公司 The multiple flow passages water cooling plant of computer CPU
CN102790025B (en) * 2012-08-27 2016-03-30 无锡市福曼科技有限公司 The multiple flow passages water-cooling structure of computer CPU
DE112013004552T8 (en) * 2012-09-19 2015-07-30 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing a semiconductor device
JP6112640B2 (en) 2012-09-28 2017-04-12 ヒューレット パッカード エンタープライズ デベロップメント エル ピーHewlett Packard Enterprise Development LP Cooling assembly
EP2824703B1 (en) * 2012-10-29 2022-06-29 Fuji Electric Co., Ltd. Semiconductor device
US9788452B2 (en) 2012-10-31 2017-10-10 Hewlett Packard Enterprise Development Lp Modular rack system
JP6082479B2 (en) * 2013-01-31 2017-02-15 ヒューレット パッカード エンタープライズ デベロップメント エル ピーHewlett Packard Enterprise Development LP Liquid cooling
JP6150195B2 (en) * 2013-02-13 2017-06-21 アクア株式会社 Electrical equipment and filters
CN105210185A (en) * 2013-05-17 2015-12-30 富士通株式会社 Semiconductor device, semiconductor device manufacturing method, and electronic apparatus
CN103365385A (en) * 2013-07-10 2013-10-23 北京百度网讯科技有限公司 Server component for complete cabinet and complete cabinet employing same
CN103402344A (en) * 2013-08-08 2013-11-20 安徽巨一自动化装备有限公司 Water channel structure of water-cooled heat sink of high-power electronic component
US20150068707A1 (en) * 2013-09-09 2015-03-12 Nec Corporation Electronic component cooling apparatus
DE102013110815B3 (en) * 2013-09-30 2014-10-30 Semikron Elektronik Gmbh & Co. Kg Power semiconductor device and method for producing a power semiconductor device
EP2879278B1 (en) * 2013-11-27 2017-06-28 Skf Magnetic Mechatronics Versatile cooling housing for an electrical motor
US10214109B2 (en) 2013-11-28 2019-02-26 Fuji Electric Co., Ltd. Method for manufacturing cooler for semiconductor-module, cooler for semiconductor-module, semiconductor-module and electrically-driven vehicle
CN103796492B (en) * 2014-01-25 2017-01-18 清华大学 Heat collecting end using lotus root-shaped cellular material microchannel module
JP2015175542A (en) * 2014-03-14 2015-10-05 パナソニックIpマネジメント株式会社 Cooling device
JP6238800B2 (en) * 2014-03-17 2017-11-29 株式会社フジクラ Cooling structure
CN105814685B (en) * 2014-05-20 2018-07-13 富士电机株式会社 Semiconductor module cooler and its manufacturing method
WO2015198720A1 (en) 2014-06-26 2015-12-30 日立オートモティブシステムズ株式会社 Power semiconductor module and method for manufacturing power semiconductor module
WO2016013072A1 (en) * 2014-07-23 2016-01-28 日本軽金属株式会社 Radiator
JP6378960B2 (en) * 2014-07-29 2018-08-22 株式会社キーレックス Press machine
WO2016021565A1 (en) * 2014-08-06 2016-02-11 富士電機株式会社 Semiconductor device
CN105636402B (en) * 2014-10-28 2018-01-09 奇瑞新能源汽车技术有限公司 A kind of water-cooling radiating structure of motor and electric machine controller
CN107000114B (en) * 2014-11-05 2020-08-25 日本轻金属株式会社 Method for manufacturing liquid cooling sleeve and liquid cooling sleeve
WO2017033923A1 (en) 2015-08-26 2017-03-02 日本軽金属株式会社 Bonding method, liquid cooling jacket production method, and liquid cooling jacket
JP6372515B2 (en) * 2015-08-26 2018-08-15 日本軽金属株式会社 Liquid cooling jacket manufacturing method and liquid cooling jacket
US10890385B2 (en) 2016-01-21 2021-01-12 Etalim Inc. Apparatus and system for exchanging heat with a fluid
JP2017195226A (en) * 2016-04-18 2017-10-26 昭和電工株式会社 Liquid-cooled type cooling device
CN107768333B (en) * 2016-08-23 2019-11-29 湖南中车时代电动汽车股份有限公司 Electric machine controller radiator
DK3290822T3 (en) * 2016-08-30 2020-02-24 Alfa Laval Corp Ab PLATE HEAT EXCHANGE FOR SOLAR HEAT
TWI635248B (en) * 2016-09-02 2018-09-11 宏碁股份有限公司 Evaporator and manufacturing method thereof
CN107801351B (en) * 2016-09-05 2023-08-01 宏碁股份有限公司 Evaporator and manufacturing method thereof
CN206089440U (en) * 2016-09-14 2017-04-12 深圳市力沣实业有限公司 Heat radiation structure and have this heat radiation structure's three -dimensional forming and hot -pressing system of glass
US10139168B2 (en) 2016-09-26 2018-11-27 International Business Machines Corporation Cold plate with radial expanding channels for two-phase cooling
CN106840562B (en) * 2017-01-09 2018-12-04 北京航空航天大学 With the split type shielding fixture and method in tenon blade high-temperature vibrating fatigue test in a kind of turbomachine
CN107104252A (en) * 2017-05-02 2017-08-29 安徽江淮松芝空调有限公司 A kind of battery water cooling plant for electric car
WO2019016824A1 (en) * 2017-07-19 2019-01-24 Shiv Nadar University A method for modifying surface grain structure of the material and apparatus thereof
DE102017217537B4 (en) * 2017-10-02 2021-10-21 Danfoss Silicon Power Gmbh Power module with integrated cooling device
JP6939481B2 (en) * 2017-11-30 2021-09-22 富士通株式会社 Cooling jackets and electronics
CN110543069A (en) * 2018-05-28 2019-12-06 中强光电股份有限公司 Liquid cooling type radiator
US20210016388A1 (en) * 2018-06-14 2021-01-21 Nippon Light Metal Company, Ltd. Method for manufacturing composite slab
WO2020017094A1 (en) * 2018-07-19 2020-01-23 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket
JP2020075255A (en) * 2018-11-05 2020-05-21 日本軽金属株式会社 Production method of liquid cooling jacket and friction stir welding method
JP7367394B2 (en) * 2018-11-22 2023-10-24 富士電機株式会社 Semiconductor module, vehicle and manufacturing method
JP7243262B2 (en) * 2019-02-15 2023-03-22 富士電機株式会社 Semiconductor module, vehicle and manufacturing method
FR3092901B1 (en) * 2019-02-20 2022-07-22 Rouge Eng Designs Heat sink for lighting system
EP3742097B1 (en) * 2019-05-23 2023-09-06 Ovh Water block assembly
JP7118262B2 (en) * 2019-05-30 2022-08-15 三菱電機株式会社 semiconductor equipment
JP7312093B2 (en) * 2019-11-21 2023-07-20 株式会社Soken power converter
KR102094009B1 (en) * 2020-01-13 2020-03-26 방민철 Temperature control apparatus for chemical liquid for manufacturing semiconductor
JP7347234B2 (en) * 2020-01-24 2023-09-20 日本軽金属株式会社 Liquid cooling jacket manufacturing method and friction stir welding method
JP7347235B2 (en) * 2020-01-24 2023-09-20 日本軽金属株式会社 Liquid cooling jacket manufacturing method and friction stir welding method
US11157050B1 (en) 2020-04-28 2021-10-26 Hewlett Packard Enterprise Development Lp Compute node tray cooling
US20210358833A1 (en) * 2020-05-14 2021-11-18 Lite-On Semiconductor Corporation Direct cooling power semiconductor package
US20220084740A1 (en) * 2020-09-14 2022-03-17 Intel Corporation Embedded cooling channel in magnetics
US11175102B1 (en) * 2021-04-15 2021-11-16 Chilldyne, Inc. Liquid-cooled cold plate
CN113311929A (en) * 2021-06-25 2021-08-27 郑州轻工业大学 Air-cooling and liquid-cooling integrated CPU radiator and radiating method
WO2023162413A1 (en) * 2022-02-25 2023-08-31 三菱電機株式会社 Cooler, method for manufacturing cooler, semiconductor device, and method for manufacturing semiconductor device
US20230292469A1 (en) * 2022-03-08 2023-09-14 Amulaire Thermal Technology, Inc. Liquid-cooling heat-dissipation structure
US20240023288A1 (en) * 2022-07-12 2024-01-18 Dell Products L.P. Radiator with top layer coolant tank

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667949A (en) * 1979-11-07 1981-06-08 Hitachi Ltd Cooling body of electrical parts
JPS61226946A (en) * 1985-04-01 1986-10-08 Hitachi Ltd Cooling device for integrated circuit chip
JP2558578B2 (en) * 1992-09-30 1996-11-27 住友軽金属工業株式会社 Heat dissipation device for heating element
JP3010080U (en) * 1994-10-12 1995-04-18 東洋ラジエーター株式会社 Electronic component cooler
WO2000016397A1 (en) * 1998-09-16 2000-03-23 Hitachi, Ltd. Electronic device
JP2001035981A (en) * 1999-07-16 2001-02-09 Toshiba Corp Cooler for semiconductor element and power-converting device using it
JP2001313357A (en) * 2000-04-27 2001-11-09 Hitachi Ltd Method for manufacturing heat sink plate, and heat sink structure
JP2002098454A (en) * 2000-07-21 2002-04-05 Mitsubishi Materials Corp Liquid-cooled heat sink and its manufacturing method
JP3077903U (en) * 2000-11-24 2001-06-12 能超 張 Micro thin plate type water cooling device usable for computer CPU
JP2005077052A (en) * 2003-09-03 2005-03-24 Hitachi Metals Ltd Flat heat pipe
TWM258569U (en) * 2004-05-18 2005-03-01 Cooler Master Co Ltd Liquid flow-path plate of water cooling heat sink

Also Published As

Publication number Publication date
CN100543975C (en) 2009-09-23
JP5423638B2 (en) 2014-02-19
CN101167184A (en) 2008-04-23
JP2011040778A (en) 2011-02-24
TWI355049B (en) 2011-12-21
TW200644199A (en) 2006-12-16
JP2011018940A (en) 2011-01-27
TWI370527B (en) 2012-08-11
US20090065178A1 (en) 2009-03-12
WO2006115073A1 (en) 2006-11-02
JP5423637B2 (en) 2014-02-19
TW201113989A (en) 2011-04-16

Similar Documents

Publication Publication Date Title
TW201113988A (en) Liquid-cooled jacket
JP2006324647A (en) Liquid-cooled jacket
JP4687706B2 (en) Liquid cooling jacket
TWI300466B (en) Channeled flat plate fin heat exchange system, device and method
TWI311903B (en) Liquid cooling system
TWI273210B (en) Heat-dissipation device and fabricating method thereof
US20140231055A1 (en) Heat Exchanger Produced from Laminar Elements
US20090294105A1 (en) Selectively Grooved Cold Plate for Electronics Cooling
JP2006286767A (en) Cooling jacket
TW200529733A (en) Liquid cooling system and electronic apparatus having the same therein
TWM318751U (en) Heat dissipating device able to connect in series with water-cooled circulation system
TW200540388A (en) Apparatus and method of efficient fluid delivery for cooling a heat producing device
TWI605236B (en) Liquid cooling jacket and manufacturing method of liquid cooling jacket
EP3570321A1 (en) Cooling device and method for manufacturing cooling device
AU2007216908B2 (en) Air conditioner heat transfer water tank and manufacturing process thereof
WO2005045333A1 (en) Expansion tank device, process for fabricating expansion tank device, and liquid cooling radiator
JP2010203631A (en) U-turn tube
JP6775675B2 (en) How to use three-fluid heat exchanger and three-fluid heat exchanger
JP2008300447A (en) Heat radiation device
TW200847914A (en) Micro-tube/multi-port counter flow radiator design for electronic cooling applications
TWM311237U (en) Fixing plate of heat sink
JP2007278614A (en) Core part structure for oil cooler
TW201111730A (en) Heat exchanger
JP2004218930A (en) Plate fin type heat exchanger
TWM314369U (en) Improved structure for water-cooling head of water-cooling heat dissipation system