WO2006115073A1 - Liquid-cooled jacket - Google Patents

Liquid-cooled jacket Download PDF

Info

Publication number
WO2006115073A1
WO2006115073A1 PCT/JP2006/307846 JP2006307846W WO2006115073A1 WO 2006115073 A1 WO2006115073 A1 WO 2006115073A1 JP 2006307846 W JP2006307846 W JP 2006307846W WO 2006115073 A1 WO2006115073 A1 WO 2006115073A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid cooling
flow path
cooling jacket
heat
fin
Prior art date
Application number
PCT/JP2006/307846
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshimasa Kasezawa
Hisashi Hori
Harumichi Hino
Tsunehiko Tanaka
Takeshi Yoshida
Original Assignee
Nippon Light Metal Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Company, Ltd. filed Critical Nippon Light Metal Company, Ltd.
Priority to US11/918,876 priority Critical patent/US20090065178A1/en
Publication of WO2006115073A1 publication Critical patent/WO2006115073A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/068Shaving, skiving or scarifying for forming lifted portions, e.g. slices or barbs, on the surface of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a liquid cooling jacket that cools a heat generating body such as a CPU.
  • an object of the present invention is to provide a liquid cooling jacket that can efficiently cool a heat generating body such as a CPU that solves the above problems.
  • the present invention provides a heat generating body attached to a predetermined position, and heat generated by the heat generating body is supplied from an external heat transport fluid supply means.
  • a flow path group and a third flow path that collects the plurality of second flow paths on the downstream side of the plurality of second flow paths, and the heat generator is the main part of the second flow path group. It is a liquid cooling jacket characterized by heat exchange.
  • the heat transport fluid from the external heat transport fluid supply means is supplied to the first flow path.
  • the second flow path group and the third flow path are distributed in this order.
  • the heat generated by the heat generating body is transferred to the heat transporting fluid mainly through heat exchange in the second flow path group.
  • the heat generator is suitably cooled.
  • the second flow path group is composed of a plurality of second flow paths branched from the first flow path, and the plurality of second flow paths are assembled in the third flow path.
  • the length of each second flow path is dramatically shortened.
  • the pressure loss of the heat transport fluid that flows through the plurality of second flow paths is significantly smaller than the pressure loss of the heat transport fluid that flows through the second flow path having the one long flow path length.
  • the adjacent second flow paths are completely isolated like the second flow paths B5a and B5a related to the liquid cooling jacket J6 according to the sixth embodiment described later (see FIG. 26). You don't have to!
  • an external heat transport fluid supply means for example, a pump
  • a small output is used to supply the heat transport fluid and distribute the heat transport fluid in the liquid cooling jacket. It is possible to efficiently cool the heat generating body such as.
  • the heat generating body is attached at a predetermined position, and the heat generated by the heat generating body is supplied from an external heat transport fluid supply means and is transmitted to the heat transport fluid flowing through the inside.
  • a liquid cooling jacket having a first flow path, a plurality of second flow path groups including a plurality of second flow paths, and a third flow path toward the downstream side;
  • the generator is a liquid cooling jacket mainly exchanging heat in the second flow path group, and the adjacent second flow path groups are connected in series via a connection flow path.
  • the second channel group has a plurality of second channel groups, and the plurality of second channel groups are liquid cooling jackets arranged in series.
  • a plurality of second flow paths are provided by including a plurality of second flow path groups (second flow path group portions) connected in series via a connection flow path. Heat exchange is possible between the group and the heat generator.
  • the adjacent second flow path groups are arranged in parallel, and one downstream end and the other upstream end are on the same side.
  • the adjacent second flow path group portions are juxtaposed, and one downstream end and the other upstream end are liquid cooling jackets on the same side.
  • the heat exchange fluid passes through one of the second flow path groups adjacent in the flow direction of the heat exchange fluid, the other of the connection flow paths, and the other of the adjacent second flow path groups. It circulates to meander through. Therefore, when the size of the liquid cooling jacket in a plan view is constant, if the number of second flow path groups is increased without changing the number of second flow paths that constitute each second flow path group, The channel cross-sectional area of each second channel constituting each second channel group is reduced. Therefore, when the flow rate of the heat transport fluid flowing through the liquid cooling jacket is constant, the flow velocity of the heat transport fluid in each second flow channel increases as the number of second flow channel groups increases. Therefore, the heat transfer rate from the liquid cooling jacket to the heat transport fluid increases, and as a result, the thermal resistance of the liquid cooling jacket decreases.
  • the adjacent second flow path groups are not arranged side by side, for example, arranged in a single line in the flow path direction, the number of second flow path groups increases.
  • the channel length of each second channel constituting each second channel group is shortened, its cross-sectional area is not reduced, and the flow rate of the heat exchange fluid is not increased. Therefore, the thermal resistance of the liquid cooling jacket does not decrease.
  • the number of second flow path groups is an even number, the inlet and outlet of the heat transport fluid to the liquid cooling jacket can be arranged on the same side, and as a result, the piping connected to the liquid cooling jacket can be routed. Becomes easy.
  • a tube bundle in which a plurality of metal tubes are bundled is provided, and a hollow portion of each tube is the second flow path.
  • Such a liquid cooling jacket includes a tube bundle formed by bundling metal tubes, so that the hollow portion of each tube becomes the second flow path, and the liquid cooling jacket can be easily configured.
  • the number and thickness of the metal pipes to be bundled the number and thickness of the second flow paths (flow channel cut area) can be easily changed.
  • a metal tube having a plurality of hollow portions is provided, and each of the hollow portions is the second flow path.
  • the liquid cooling jacket can be easily configured using a metal tube having a plurality of hollow portions.
  • the width W of the second flow path is 0.2 to 1. Omm.
  • the thermal resistance and the pressure loss experienced by the heat transport fluid passing through the inside can be in a favorable range.
  • width W of the second flow path and the thickness T of the fin between the adjacent second flow paths satisfy the following expression (1).
  • a fin member configured to include the plurality of metal fins and a base plate on which the plurality of metal fins are erected, a jacket body that accommodates the fin members, And the base plate is fixed to the jacket body so as to allow heat exchange.
  • Such a liquid cooling jacket for example, cuts a metal extrusion mold material having a bottom plate serving as a base plate and a plurality of strips serving as a plurality of fins provided upright on the bottom plate. After producing a fin member provided with metal fins, a liquid cooling jacket can be formed by fixing the fin member to, for example, a box-shaped jacket body.
  • a fin member including the fins.
  • a first fin member comprising a first base plate and a plurality of first fins standing on the first base plate, a second base plate, and standing on the second base plate
  • a second fin member comprising a plurality of second fins, wherein the first fin member and the second fin member include the plurality of first fins and the plurality of second fins.
  • the plurality of metal fins are composed of the first fin and the second fin, and the adjacent first fin and second fin are combined. The second flow path is formed between the two.
  • Such a liquid cooling jacket is composed of a plurality of first fins and a plurality of second fins, even if the interval between the first fins and the interval between the second fins are widened, The distance between adjacent metal fins, that is, the distance between the first fin and the second fin can be reduced.
  • the heat generating body is attached to the first base plate side, and the protruding length of the first fin is set to be the same as or shorter than the protruding length of the second fin, 2
  • the fin and the first base plate are thermally connected.
  • the first fin has a protruding length that is the same as the protruding length of the second fin, or shorter than the protruding length of the second fin.
  • the plurality of second fins securely contact the first base plate, and the plurality of second fins and the first base plate are joined so as to be capable of heat exchange. Can be configured. Then, the heat of the heat generating body attached to the first base plate side is transmitted to the plurality of first fins and the plurality of second fins via the first base plate. This heat can then be transferred to the heat transport fluid flowing through the second flow path between the first fin and the second fin.
  • the jacket main body includes a jacket main body having a fin housing chamber that houses the plurality of metal fins, and a sealing body that seals the fin housing chamber, and surrounds the fin housing chamber.
  • the joint portion of the peripheral wall and the sealing body is friction stir welded, and the start end and the end of the friction stir weld overlap
  • brazing material since the sealing body and the jacket body are joined by friction stir welding without using brazing material, there is no possibility that the heat transport fluid (refrigerant) is contaminated by brazing material. There is no risk of corrosion of brazing material or other equipment such as micropumps and radiators that make up the system.
  • the plurality of metal fins are erected on the sealing body and are integral with the sealing body.
  • a liquid cooling jacket since the plurality of metal fins and the sealing body are a single body, the fin housing chamber is sealed with the sealing body, and at the same time, the plurality of metal fins are sealed.
  • the fin can be arranged at a predetermined position in the fin housing chamber. That is, the production process of the liquid cooling jacket can be reduced, and the production can be easily performed and the production cost can be reduced.
  • a plurality of fins made of metal and a sealing body in this way are, for example, a plate made of an aluminum alloy (plate material) as shown in a fifth embodiment to be described later. It can be obtained by paying.
  • the fin and the sealing body are formed as a single body by a skive cage or the like, it is naturally not necessary to join the fin and the sealing body with a brazing material or the like. Thus, contamination of the heat transport fluid can be prevented.
  • the fin and the sealing body are a single body, the heat transferability between them is high. Therefore, if a heat generating body such as a CPU is attached to the sealing body, the heat of the heat generating body is transferred well to the plurality of fins through the sealing body. As a result, the heat dissipation performance of the heat generator in the liquid cooling jacket is enhanced.
  • the friction stir welding is performed while applying a jig to the peripheral wall so that the peripheral wall is not deformed outward.
  • the peripheral wall is deformed outward by the friction stir welding.
  • the distance (gap) between the outer peripheral surface of the shoulder and the outer peripheral surface of the peripheral wall in the tool used for friction stir welding where the peripheral wall is thin is, for example, 2. Omm or less.
  • friction stir welding can be performed without deforming the peripheral wall.
  • the length of the pin of the tool used for the friction stir welding is 60% or less of the thickness of the sealing body.
  • a metal honeycomb body having a plurality of pores is provided, and the pores are the second flow paths.
  • a metal heat exchange sheet having a corrugated cross section and a metal jacket main body to which the heat exchange sheet is fixed so as to be able to exchange heat, the space between the heat exchange sheet and the jacket main body.
  • the second flow path is formed.
  • Such a liquid cooling jacket can be easily configured by fixing a heat exchange sheet having a corrugated cross section to the jacket body so that heat exchange is possible.
  • the metal is aluminum or an aluminum alloy.
  • the metal is made of aluminum or an aluminum alloy, so that the weight is reduced.
  • the heat transport fluid intake port communicating with the first flow path and the heat transport fluid discharge port communicating with the third flow path are arranged symmetrically with respect to the heat generator. It is characterized by being.
  • the heat transport fluid supplied to the first flow path of the intake locus can easily flow through the second flow path in the vicinity of the heat generator. This generates heat in the heat transport fluid Heat exchange can be suitably performed with the body.
  • the intake port and the discharge port are arranged so as to be relatively distant from each other.
  • the heat transport fluid supplied to the first flow path of the intake rocker can easily flow through the plurality of second flow paths. Accordingly, heat exchange can be suitably performed between the heat transport fluid that flows through the entire plurality of second flow paths and the heat generator.
  • the intake port and the discharge port are arranged so as to be close to the heat generating body.
  • the heat transport fluid supplied to the first flow path of the intake rocker can easily flow through the second flow path near the heat generator at a high flow rate.
  • heat exchange can be suitably performed between the heat transport fluid and the heat generator that circulate at this high flow rate. That is, for example, it is not attached to the liquid cooling jacket via a heat diffusion sheet 102 (refer to FIG. 3) called a heat generation body heat spreader such as a CPU, and the heat of the heat generation body is distributed over the entire liquid cooling jacket.
  • a heat diffusion sheet 102 (refer to FIG. 3) called a heat generation body heat spreader such as a CPU
  • the heat generating body is a CPU.
  • FIG. 1 is a configuration diagram of a liquid cooling system according to a first embodiment.
  • FIG. 2 is an overall perspective view of the liquid cooling jacket according to the first embodiment.
  • FIG. 3 is an overall perspective view of the downward force of the liquid cooling jacket according to the first embodiment.
  • FIG. 4 is a perspective view of the liquid cooling jacket according to the first embodiment, with the lid unit omitted. Indicates.
  • FIG. 5 is a plan view of the liquid cooling jacket according to the first embodiment.
  • FIG. 6 is an XX cross-sectional view of the liquid cooling jacket according to the first embodiment shown in FIG.
  • FIG. 7 is an exploded perspective view of the liquid cooling jacket according to the first embodiment.
  • FIG. 9 is an overall perspective view of the liquid cooling jacket according to the second embodiment, showing a state in which the lid unit is omitted.
  • FIG. 10 is a YY sectional view of the liquid cooling jacket according to the second embodiment shown in FIG.
  • FIG. 11 An overall perspective view of a liquid cooling jacket according to a third embodiment.
  • FIG. 12 is a plan view of a liquid cooling jacket according to a third embodiment.
  • FIG. 13 An overall perspective view of the liquid cooling jacket according to the fourth embodiment, showing a state where the lid unit is omitted.
  • FIG. 14 is a ZZ cross-sectional view of the liquid cooling jacket according to the fourth embodiment shown in FIG.
  • FIG. 15 is an enlarged view of the ZZ cross-sectional view shown in FIG.
  • FIG. 16 is a perspective view showing a first method for producing a fin member of a liquid cooling jacket according to a fourth embodiment, where (a) shows before cutting and (b) shows after cutting.
  • FIG. 17 is a perspective view showing a second production method of the fin member of the liquid cooling jacket according to the fourth embodiment, where (a) shows before cutting and (b) shows after cutting.
  • FIG. 18 is a perspective view showing friction stir welding according to a fourth embodiment.
  • FIG. 21 is a cross-sectional view of a liquid cooling jacket according to a fifth embodiment.
  • FIG. 22 is an enlarged view of the cross-sectional view shown in FIG.
  • FIG. 23 A diagram showing a method for producing a fin member of a liquid cooling jacket according to a fifth embodiment, wherein (a) shows during skive caloe and (b) shows after skive processing.
  • FIG. 24 A diagram showing a method for producing a fin member of the liquid cooling jacket according to the fifth embodiment, showing a state after removing a part of the skive fin shown in FIG. 23 (b). 25] A sectional view showing friction stir welding according to the fifth embodiment.
  • FIG. 26 is a cross-sectional view of a liquid cooling jacket according to a sixth embodiment, where (a) shows a state after assembly and (b) shows a state before assembly.
  • FIG. 27 is a cross-sectional view of a liquid cooling jacket according to a seventh embodiment, where (a) shows a state after assembly and (b) shows a state before assembly.
  • FIG. 28 is a cross-sectional view of a liquid cooling jacket according to an eighth embodiment, where (a) shows a state after assembly and (b) shows a state before assembly.
  • FIG. 29 is a plan view of a liquid cooling jacket according to a ninth embodiment.
  • FIG. 30 is a plan view of a liquid cooling jacket according to a tenth embodiment.
  • FIG. 32 is a cross-sectional view of a flat tube bundle according to a modification.
  • FIG. 33 is a cross-sectional view of a liquid cooling jacket according to a modification, where (a) shows a state after assembly and (b) shows a state before assembly.
  • FIG. 34 is a cross-sectional view of a liquid cooling jacket according to a modification.
  • FIG. 35 is a perspective view of a liquid cooling jacket according to a modification.
  • FIG. 37 is a graph showing the relationship between fin thickness, T1Z groove width W1, and thermal resistance.
  • FIG. 38 is a graph showing the relationship between groove width W1 and fin thickness T1Z groove width W1.
  • FIG. 40 is a graph showing the relationship between the groove width W1 and the groove depth D1.
  • FIG. 1 is a configuration diagram of a liquid cooling system according to the first embodiment.
  • FIG. 2 is an overall perspective view of the liquid cooling jacket according to the first embodiment.
  • FIG. 3 is an overall perspective view of the downward force of the liquid cooling jacket according to the first embodiment.
  • FIG. 4 is a perspective view of the liquid cooling jacket according to the first embodiment, showing a state in which the lid unit is omitted.
  • FIG. 5 is a plan view of the liquid cooling jacket according to the first embodiment, omitting the intake pipe and the discharge noise.
  • 6 is an XX cross-sectional view of the liquid cooling jacket according to the first embodiment shown in FIG.
  • FIG. 7 is an exploded perspective view of the liquid cooling jacket according to the first embodiment.
  • FIG. 8 is a graph schematically showing the effect of the liquid cooling jacket according to the first embodiment.
  • the liquid cooling system S1 is a system mounted on a personal computer main body 120 (electronic device) of a tower-type personal computer, and includes a CPU 101 constituting the personal computer main body 120. This is a system that cools (heat generators).
  • the liquid cooling system S1 includes a liquid cooling jacket J1 (see Fig.
  • radiator 121 heat dissipating means
  • cooling Micropump 122 heat transport fluid supply means
  • an ethylene glycol antifreeze is used as the cooling water.
  • the liquid cooling jacket J1 constituting the liquid cooling system S1 will be described in detail.
  • the liquid cooling jacket J1 has a CPU 101 attached to the center (predetermined position) on the lower side (back side) via a heat diffusion sheet 102 (heat spreader). With the CPU 101 attached in this way, cooling water flows through the liquid cooling jacket J1.
  • the liquid cooling jacket Jl receives the heat generated by the CPU 101 and also exchanges heat with the cooling water circulating inside, thereby transferring the heat received from the CPU 101 to the cooling water.
  • the CPU 101 It is designed to be cooled efficiently.
  • the thermal diffusion sheet 102 is a sheet for efficiently transferring the heat of the CPU 101 to the bottom wall 11 of the jacket body 10 described later, and is formed of a metal having high thermal conductivity such as copper, for example. .
  • the liquid cooling jacket J1 mainly includes a jacket body 10, a flat tube bundle 20 (tube bundle), and a lid unit 30. Unless otherwise specified, the jacket body 10, the flat tube bundle 20, and the lid unit 30 are also formed of aluminum or aluminum alloy force. As a result, the liquid cooling jacket J1 is lightweight and easy to handle.
  • the jacket body 10 is a shallow box that opens on the upper side (one side) (see FIG. 7), has a bottom wall 11 and a peripheral wall 12, and accommodates the flat tube bundle 20 inside thereof. It has a storage room (see Fig. 7).
  • a jacket body 10 is produced by, for example, die casting (die casting), forging, forging or the like.
  • the jacket main body 10 has an alignment portion 14 having a shape corresponding to a notch 31c of the lid main body 31 described later at a part of the opening edge.
  • the flat tube bundle 20 has a space 10a and a space 10c on both ends in the jacket body 10 (see FIGS. 4 and 5), and is made of a brazing material such as an A1-Si—Zn-based aluminum alloy. It is fixed to the bottom wall 11 of the jacket body 10 so that heat exchange (heat transfer) is possible (see FIG. 6).
  • the space 10a functions as the first flow path A1
  • the space 1 Oc functions as the third flow path C1.
  • the flat tube bundle 20 is obtained by bundling and joining a predetermined number of flat tubes 21 in the thickness direction (see FIGS. 6 and 7).
  • Each flat tube 21 has one or a plurality of (two in the first embodiment) hollow portions 21a.
  • Each hollow portion 21a functions as a second flow path Bla through which cooling water flows. That is, each of the second flow paths Bla has a rectangular cross-sectional view, and side walls (second flow path constituting parts) composed of the peripheral walls 21b and 21b of the flat tube 21 located on both sides thereof.
  • the upper wall portion (second flow path constituting portion) or the lower wall portion (second flow passage constituting portion) composed of the peripheral wall 21b or the partition wall 21c positioned on the upper and lower sides thereof is surrounded. Accordingly, the flat tube bundle 20 has a plurality of second flow paths Bla, that is, a second flow path group B1 composed of a plurality of second flow paths Bla.
  • the CPU 101 is mounted at a substantially central position on the lower side (outside) of the bottom wall 11 (see FIG. 3).
  • the heat of the CPU 101 is transferred via the bottom wall 11 to the peripheral wall 21b surrounding the hollow portion 21a (second flow path Bla) of each flat tube 21 and the partition wall 21c that cuts the adjacent hollow portion 21a. It is supposed to be.
  • the thermal force transmitted to the peripheral wall 21b and the partition wall 21c is transmitted to the cooling water flowing through each second flow path Bla.
  • the CPU 101 mainly exchanges heat with the cooling water flowing through the second flow path group B1.
  • the peripheral wall 2 lb heat exchange part
  • first flow path Al the second flow path group B1 (a plurality of second flow paths Bla), and the third flow path C1 will be further described.
  • the first channel A1 is a channel through which cooling water is supplied from the micropump 122, and is arranged on the micropump 122 side (upstream side of the second channel group B1).
  • the second flow path group B1 is disposed downstream of the first flow path A1, and each second flow path Bla constituting the second flow path group B1 is branched from the first flow path A1. .
  • the cooling water is distributed from the first flow path A1 and flows into each second flow path Bla.
  • the third flow path C1 is disposed on the downstream side of the second flow path group Bl, that is, the plurality of second flow paths Bla, and collects the plurality of second flow paths Bla. As a result, the cooling water flowing out from each second flow path Bla is collected in the third flow path C1 and then discharged to the outside of the liquid cooling jacket J1.
  • the channel cross-sectional areas of the first channel A1 and the third channel C1 are determined from the channel cross-sectional area of each second channel Bla. It is set large.
  • the flow path length of each second flow path Bla (the length of each flat tube 21) is as follows for one flow path that meanders through all of the portions corresponding to the flat tube bundle 20 according to the conventional technology. , Has become dramatically shorter.
  • each second flow path Bla the pressure loss experienced by the cooling water flowing in the order of the first flow path Al, each second flow path Bla, and the third flow path C1 hardly occurs in the first flow path A1 and the third flow path C1.
  • the pressure loss received from the single meandering flow path is drastically reduced.
  • the rated output of the micropump 122 that supplies the cooling water to the liquid cooling jacket J1 can be lowered, and the micropump 122 can be reduced in size and noise.
  • the lid unit 30 mainly includes a lid main body 31, an intake pipe 32, and a discharge pipe 33.
  • the lid body 31 is joined and fixed to the jacket body 10 so as to cover the jacket body 10 containing the flat tube bundle 20.
  • the lid body 31 is formed with the force of the intake port 31a communicating with the first flow path A1 (space 10a) and the discharge port 31b communicating with the third flow path C1 (space 10c) (see FIG. 7). .
  • the lid body 31 has a cutout portion 31c that is cut out, and the shape of the cutout portion 31c matches the alignment portion 14 of the jacket body 10. Thereby, the lid body 31 (lid unit 30) is combined with the jacket body 10 only in a predetermined direction.
  • the intake port 31a and the discharge port 31b are arranged symmetrically with respect to the CPU 101 in plan view, and are arranged so as to be relatively distant from each other.
  • the intake port 31a, the discharge port 31b, and the CPU 101 are arranged on a diagonal line of the liquid cooling jacket J1 having a square shape in plan view. More specifically, the intake port 31a is disposed on the upper left side in FIG. 5, while the discharge port 31b is disposed on the lower right side in FIG. 5, and the intake port 3 la and the discharge port 3 lb.
  • the CPU 101 is arranged at a substantially middle position (approximately the center of the liquid cooling jacket J 1 having a square shape).
  • the cooling water from the intake pipe 32 is supplied approximately uniformly to the entire second flow path group B1 (the entire plurality of second flow paths Bla) via the intake port 31a and the first flow path A1. It is supposed to be done. Then, heat is efficiently exchanged between the entire cooling water flowing through the entire second flow path group B1 and the CPU 101! /.
  • the cooling water flowing out from the plurality of second flow paths Bla is collected in the third flow path C1, and then discharged to the outside of the liquid cooling jacket J1 through the discharge port 31b and the discharge pipe 33. It is.
  • the intake pipe 32 is fixed to the lid body 31. Connected to the intake pipe 32 is a flexible tube 124 that leads to a micropump 122 (see FIG. 1) upstream of the liquid cooling jacket J1. Then, the cooling water from the micropump 122 is supplied to the first flow path A1 through the hollow portion of the intake pipe 32 and the intake port 31a.
  • the discharge nove 33 is fixed to the lid body 31. Connected to the discharge pipe 33 is a flexible tube 124 leading to a radiator 121 (see FIG. 1) on the downstream side of the liquid cooling jacket J1. The cooling water collected in the third flow path C1 is discharged to the outside of the liquid cooling jacket J1 through the discharge port 31b and the hollow portion of the discharge pipe 33.
  • the intake noise 32 and the discharge pipe 33 are fixed to the upper surface side of the lid body 31 in a standing state. Accordingly, the flexible tubes 124 and 124 can be connected to the intake pipe 32 and the discharge nozzle 33 only from the upper surface side of the liquid cooling jacket J1. That is, in the personal computer main body 120 with limited space (see FIG. 1), the flexible tubes 124 and 124 (see FIG. 1) connected to the liquid cooling jacket J1 can be easily routed.
  • the CPU 101 When the personal computer main unit 120 (Fig. 1) is turned on, the CPU 101 operates and begins to generate heat. Then, the heat of the CPU 101 is transmitted to the bottom wall 11 of the jacket body 10 via the thermal diffusion sheet 102, and further transmitted to the peripheral wall 21b and the partition wall 21c of each flat tube 21 that mainly forms the flat tube bundle 20.
  • the micropump 122 in conjunction with turning on the power source of the personal computer main body 120, the micropump 122 operates and the cooling water circulates. Then, in the liquid cooling jacket J1, the cooling water flows in the order of the first flow path Al, the second flow path group B1 (a plurality of second flow paths Bla), and the third flow path C1.
  • the cooling water received in each second flow path Bla is collected in the third flow path C1, and then discharged to the outside of the liquid cooling jacket J1 via the discharge port 3 lb and the discharge pipe 33.
  • the discharged cooling water is supplied to the radiator 121 through the flexible tube 124, and the heat of the cooling water is radiated from the radiator 121.
  • the cooling water whose temperature has decreased flows through the reserve tank 123 and the flexible tube 124 to the micro pump 122, and is then supplied again to the liquid cooling jacket J1.
  • the thermal power of the CPU 101 is distributed and transmitted to the peripheral walls 21b and the partition walls 21c of the plurality of flat tubes 21, and the heat of each of the peripheral walls 21b and the partition walls 21c is transmitted to the cooling water flowing through each second flow path Bla.
  • CPU101 can be cooled efficiently.
  • the cooling water supplied to the liquid cooling jacket J1 has a short channel length and mainly heat in the liquid cooling jacket J1 via the first channel A1 having a large channel cross-sectional area.
  • the plurality of second flow paths Bla second flow path group B1 to be exchanged
  • they are collected and discharged in the third flow path C1 having a large cross-sectional area of the flow path, so that the cooling water flows in the liquid cooling jacket J1.
  • the pressure loss received is getting smaller.
  • the micropump 122 can be reduced in size, and the application range of the liquid cooling system S1 is widened.
  • the manufacturing method of the liquid cooling jacket J1 mainly includes a first step of manufacturing the flat tube bundle 20 and a second step of joining and fixing the flat tube bundle 20 to the jacket body 10.
  • a plurality of flat tubes 21 are bundled while being joined by an appropriate means. Next, both ends of the bundle are cut and ground to prepare a flat tube bundle 20.
  • the flat tube bundle 20 at a predetermined position of the bottom wall 11 of the jacket body 10, with suitable means (A1- Si- brazing material and flux of Z n, etc.), heat exchangeably connected and fixed.
  • suitable means A1- Si- brazing material and flux of Z n, etc.
  • the lid body 31 with the intake pipe 32 and the discharge nozzle 33 fixed in place is joined and fixed to the jacket body 10 by an appropriate means. In this way, the liquid cooling jacket J1 can be obtained.
  • the intake pipe 32 and the discharge pipe 33 may be fixed to the lid body 31! /.
  • the flat tube bundle 20 is fixed to the jacket main body 10 as a plurality of flat tubes 21 and the lid main body 31 is fixed.
  • the liquid cooling jacket J1 can be obtained by a simple process of fixing.
  • FIG. 9 is an overall perspective view of the liquid cooling jacket according to the second embodiment, showing a state in which the lid unit is omitted.
  • FIG. 10 shows a YY cut of the liquid cooling jacket according to the second embodiment shown in FIG. FIG.
  • the liquid cooling jacket J2 according to the second embodiment includes a flat tube bundle 23 instead of the flat tube bundle 20 of the liquid cooling jacket J1 according to the first embodiment. It is characterized by.
  • the flat tube bundle 23 has the same external dimensions as the flat tube bundle 20 according to the first embodiment, a plurality of thin plate-like flat tubes 24 (three in FIGS. 9 and 10) can be bundled together. It consists of Each flat tube 24 has a plurality of (12 in FIG. 9 and FIG. 10) hollow portions 24a therein, and each hollow portion 24a serves as a second flow path B2a.
  • the flat tube bundle 23 has a second flow path group B2 composed of a plurality of second flow paths B2a.
  • each flat tube 24 has a thin plate shape
  • the number of hollow portions 24a formed therein (12 in FIG. 9) is formed in the flat tube 21 according to the first embodiment. More than the number (2) of the hollow portions 21a formed.
  • the number (three) of the flat tubes 24 constituting the flat tube bundle 23 is less than the number of the flat tubes 21 (see FIG. 7, 20) constituting the flat tube bundle 20 according to the first embodiment. That is, the flat tube bundle 23 according to the second embodiment can reduce the number of flat tubes 24 to be bundled (stacked) with respect to the flat tube bundle 20 according to the first embodiment, and can be configured easily without trouble. can do.
  • FIG. 11 is an overall perspective view of the liquid cooling jacket according to the third embodiment.
  • FIG. 12 is a plan view of a liquid cooling jacket according to the third embodiment.
  • the liquid cooling jacket J3 according to the third embodiment is formed at a position where the intake port 34a and the discharge port 34b are different from the liquid cooling jacket J1 according to the first embodiment.
  • a lid body 34 is provided.
  • the intake port 34a communicates with a substantially central position of the space 10a (first flow path A1), and cooling water is supplied to a substantially central position of the space 10a.
  • the discharge port 34b communicates with a substantially central position of the space 10c (third flow path), and this substantially central position force also discharges the cooling water.
  • the intake port 34a and the discharge port 34b are arranged symmetrically with respect to the CPU 101 in a plan view, and are arranged at positions approaching the CPU 101.
  • the lid body 34 also has a cutout 34c having a shape corresponding to the alignment portion 14 of the jacket body 10 in the same manner as the lid body 31 according to the first embodiment.
  • the cooling water power supplied from the intake port 34a to the first flow path A1 (space 10a) near the cooling hydraulic power CPU101 It becomes easy to distribute preferentially to 2 flow paths Bla. As a result, heat exchange can be suitably performed between the cooling water and the CPU 101, and the CPU 101 can be efficiently cooled.
  • FIG. 13 is an overall perspective view of the liquid cooling jacket according to the fourth embodiment, showing a state in which the lid unit is omitted.
  • FIG. 14 is a Z-Z sectional view of the liquid cooling jacket according to the fourth embodiment shown in FIG.
  • FIG. 15 is an enlarged view of the Z-Z sectional view shown in FIG.
  • FIG. 16 is a perspective view showing a first method for producing a fin member of a liquid cooling jacket according to the fourth embodiment, where (a) shows before cutting and (b) shows after cutting.
  • FIG. 17 is a perspective view showing a second method for producing the fin member of the liquid cooling jacket according to the fourth embodiment, where (a) shows before cutting and (b) shows after cutting.
  • FIG. 18 is a perspective view showing friction stir welding according to the fourth embodiment.
  • FIG. 19 is a cross-sectional view showing friction stir welding according to the fourth embodiment.
  • FIG. 20 is a plan view showing the movement of the tool in the friction stir welding according to the fourth embodiment.
  • the liquid cooling jacket J4 according to the fourth embodiment is replaced by a fin member 25 made of aluminum or aluminum alloy instead of the flat tube bundle 20 of the liquid cooling jacket J1 according to the first embodiment. It is provided with.
  • the jacket body 10 includes a fin housing chamber that houses the fin member 25 on the inner side thereof, and the fin housing chamber is surrounded by the peripheral wall 12.
  • the fin member 25 is fixed to the bottom wall 11 by brazing and is accommodated in the fin housing chamber, and the lid main body 31 (sealing body) covers the opening of the jacket main body 10 so as to accommodate the fin. Room Sealed (see Figure 14).
  • the fin member 25 includes a base plate 25a and a plurality of fins 25b erected on the base plate 25a.
  • the base plate 25a is joined and fixed to the bottom wall 11 of the jacket body 10 so as to allow heat exchange. Therefore, the heat is transmitted to the fins 25b via the heat and heat diffusion sheet 102 and the bottom wall 11 of the CPU 101. Further, the upper ends of the fins 25b are in contact with the back surface of the lid body 31.
  • the base plate 25a and the jacket main body 10 are preferably joined to each other by a brazing material having an aluminum alloying force such as A1-Si—Zn so that heat exchange can be ensured.
  • a space between adjacent fins 25b and 25b is a second flow path B3a.
  • the fin member 25 has a plurality of second flow paths B3a, that is, a second flow path group B3 including a plurality of second flow paths B3a.
  • the distance between adjacent fins 25b and 25b, that is, the groove width W1 that is the width of the second flow path B3a is designed to be 0.2-1. .
  • the thermal resistance of the liquid cooling jacket J4 and the pressure loss experienced by the cooling water passing through the liquid cooling jacket J4 can be in a favorable range as will be described in the examples described later.
  • the groove width W1 and the thickness Tl of the fin 25b that is, the thickness T1 of the fin 25b between the adjacent second flow paths B3a and B3a satisfy the relationship of the following equation (1). ing.
  • the thermal resistance of the liquid cooling jacket J4 is reduced, and heat can be exchanged favorably between the CPU 101 and the cooling water.
  • the groove width W1 and the depth D1 satisfy the relationship of the following equation (2). Thereby, the thermal resistance of the liquid cooling jacket J4 can be optimized.
  • the cooling water flows in the order of the first flow path Al, the second flow path group B3 (a plurality of second flow paths B3a), and the third flow path C1. Then, between the cooling water flowing through the second flow path group B3 and the plurality of fins 25b, Heat exchanged. As a result, the CPU 101 can be efficiently cooled.
  • a metal extrusion die 41 having a bottom plate 42 and a plurality of strips 43 standing on the bottom plate 42 is produced using a predetermined mold.
  • the fin member 25 provided with the base plate 25a (a part of the bottom plate 42) and a plurality of fins 25b (a part of the plurality of strips 43) is produced by cutting the extruded die 41 at a predetermined cut surface. (See Figure 16 (b)).
  • a second manufacturing method of the fin member 25 will be described with reference to FIG. 17 (a).
  • a plurality of grooves 44a are formed in a metal block 44 having a size corresponding to the outer shape of the fin member 25 using an appropriate cutting tool.
  • the fin member 25 including the base plate 25a and the plurality of fins 25b can be manufactured (see FIG. 17B).
  • the cover unit 30 is put on the jacket body 10 to which the fin member 25 is fixed by brazing, while aligning the notch portion 31c and the alignment portion 14.
  • the opening edge of the jacket body 10 is stepped, and the lid body 31 is placed on the stepped portion 15 that is lowered by one step.
  • the width W11 of the stepped portion 15 is set to be as small as possible, specifically about 0.1 to 0.5 mm, in order to secure the volume of the first flow path A1 and the third flow path C1 through which the cooling water flows. Is preferred.
  • the joint P1 between the peripheral wall 12 and the lid body 31 is friction stir welded using the tool 200 for friction stir welding.
  • the friction stir weld K See FIG. 15
  • the length L5 of the pin 201 of the tool 200 is preferably 60% or less of the thickness T2 of the lid body 31 that is the member to be joined. In this way, the force due to the material of the lid main body 31 allows the mating portion P1 of the jacket main body 10 to be adjusted by the pressing force of the tool 200 even if the width W11 of the stepped portion 15 is small. It becomes difficult to deform inside.
  • the tool 200 is controlled and rotated by a machine tool (not shown) such as an NC and is driven along the mating portion P1 (see FIG. 18).
  • a machine tool such as an NC
  • an appropriate jig 210 is applied to the peripheral surface of the peripheral wall 12 of the jacket body 10.
  • the distance L6 (gap) between the outer peripheral surface of the shono-redder 202 of the TUNORE 200 and the outer peripheral surface of the peripheral wall 12 is 2. Omm or less, for example, the pressing force of the tool 200 is thin. This makes it difficult for the peripheral wall 12 to be deformed outward.
  • the surface of the jig 210 is 1.0-2 with respect to the surface of the mating part P1. It is preferable to lower it by about Omm.
  • the tool 200 is moved so that the start end and the end end in the friction stir welding overlap (see symbol Q). Thereby, the jacket main body 10 and the lid main body 31 are joined without a gap, and the cooling water leaks to the outside.
  • the tool 200 is removed from the mating part P1, and the pin 201 is removed. As a result, it is not formed in the extraction force matching portion P1 of the pin 201.
  • FIG. 21 is a cross-sectional view of the liquid cooling jacket according to the fifth embodiment.
  • FIG. 22 is an enlarged view of the cross-sectional view shown in FIG.
  • FIG. 23 is a view showing a method for producing the fin member of the liquid cooling jacket according to the fifth embodiment, where (a) shows a state during skive processing and (b) shows a state after skive processing.
  • FIG. 24 is a view showing a method for producing the fin member of the liquid cooling jacket according to the fifth embodiment, and shows a state after removing a part of the skive fin shown in FIG. 23 (b).
  • FIG. 25 is a cross-sectional view showing friction stir welding according to the fifth embodiment.
  • the liquid cooling jacket J5 mainly includes a jacket body 10C and a fin member 29 made of aluminum or aluminum alloy, and the CPU 101 is a bottom wall of the fin member 29. It is configured to be attached to 29a (sealing body).
  • the jacket body 10C is a thin box having an opening on the lower side of FIG. 21 and having a fin housing chamber therein.
  • the fin member 29 is obtained by skiving one plate 61 (see FIG. 23 (a)), and includes a bottom wall 29a and a plurality of metal fins 29b. .
  • the plurality of fins 29b are erected on the bottom wall 29a, and are configured integrally with the bottom wall 29a. As a result, heat is transferred favorably between the bottom wall 29a and the fins 29b.
  • the bottom wall 29a functions as a sealing body for sealing the fin housing chamber. Further, the space between the adjacent fins 29b and 29b functions as the second flow path B4a (see FIG. 22).
  • the liquid cooling jacket J5 has a second flow path group B4 configured by a plurality of second flow paths B4a. In the state where the fin member 29 is attached to the jacket main body 10C, the first flow path A1 and the third flow path C1 are formed in the liquid cooling jacket J5 as in the fourth embodiment. (See Fig. 13).
  • the cooling water flows in the order of the first flow path A1 (see FIG. 13), the second flow path group B4 (a plurality of second flow paths B4a), and the third flow path C1 (see FIG. 13). Then, heat is mainly exchanged between the cooling water flowing through the second flow path group B4 and the plurality of fins 25b, and the CPU 101 can be efficiently cooled.
  • the bottom wall 29a and the fins 29b are integrally formed, the heat of the CPU 101 can be transferred well to the plurality of fins 29b, and as a result, heat can be dissipated well.
  • a plate-like plate 61 is skived as described in JP-A-2001-326308, JP-A-2001-352020, and the like.
  • the cutting tool 62 is cut at an acute angle to cut and raise a part of the plate 61 to form a plurality of skive fins 63. This is repeated a plurality of times to produce a skive intermediate 64 having a plurality of skive fins 63 (see FIG. 23 (b)).
  • the portion of the plate 61 that is not cut and raised serves as the bottom wall 29a (sealing body) of the fin member 29.
  • the production method of the fin member 29 is not limited to this, and the fin member 25 (see Fig. 16) after cutting the extruded die 41 according to the fourth embodiment or formed by grooving.
  • the fin member 25 may be configured by removing a part of the fin 25b.
  • the jacket main body 10C and the fin member 29 are combined, and the mating portion P2 is friction stir welded while applying the jig 210 in the same manner as in the fourth embodiment.
  • the length L5 of the pin 201 of the tool 200 is preferably 60% or less of the thickness T3 of the bottom wall 29a (sealing body) of the fin member 29 which is a member to be joined.
  • FIG. 26 is a cross-sectional view of the liquid cooling jacket according to the sixth embodiment, where (a) shows a completed state after assembly, and (b) shows before assembly.
  • the liquid cooling jacket J6 includes a jacket body 10A (first fin member), a lid, and a liquid cooling jacket J1 according to the first embodiment.
  • a unit 35 (second fin member) is provided.
  • the jacket main body 10A includes a bottom wall 11 (first base plate) and a plurality of fins 13 erected on the bottom wall 11 at a predetermined interval.
  • the lid unit 35 is separated from the lid body 36 (second base plate) and the lid body 36 by a predetermined distance. It is provided with a plurality of standing fins 37.
  • the jacket body 10A and the lid unit 35 are combined so that the plurality of fins 13 and the plurality of fins 37 are held together, and the lid body 36 is joined and fixed to the jacket body 10A. Yes.
  • the entire fin of the liquid cooling jacket J6 is composed of a plurality of fins 13 and a plurality of fins 37 which are entangled.
  • the space between adjacent fins 13 and fins 37 is a second flow path B5a, and the liquid cooling jacket J6 has a second flow path group B5 including a plurality of second flow paths B5a.
  • the protruding length L1 of the plurality of fins 13 from the bottom wall 11 is set to be the same as or shorter than the protruding length L2 of the plurality of fins 37 from the lid body 36, as shown in Fig. 26 (b). ing.
  • the plurality of fins 37 and the bottom wall 11 are joined and fixed so as to be capable of heat exchange by an appropriate means, and are thermally connected. As a result, the thermal power of the CCU 101 on the jacket body 10A side (first base plate side) is also transmitted to the plurality of fins 37 connected by the plurality of fins 13 alone.
  • the protruding length L1 of the plurality of fins 13 is set to be the same as or shorter than the protruding length L2 of the plurality of fins 37, when the jacket body 10A and the lid unit 35 are assembled, the plurality of fins 37
  • the tip (top) reliably contacts the bottom wall 11 of the jacket body 10A, and the plurality of fins 37 and the bottom wall 11 can be reliably thermally connected.
  • FIG. 27 is a cross-sectional view of the liquid cooling jacket according to the seventh embodiment.
  • (A) is a completed state after assembly.
  • the state, (b) shows before assembly.
  • the liquid cooling jacket J7 according to the seventh embodiment is replaced with a plurality of flat tube bundles 20 of the liquid cooling jacket J1 according to the first embodiment.
  • a metal Hercam body 26 having a pore 26a is provided.
  • the two-cam body 26 is joined and fixed to the bottom wall 11 of the jacket body 10 by an appropriate means so that heat exchange is possible. Therefore, the heat of the CPU 101 is transmitted to the peripheral wall 26b surrounding the pore 26a.
  • Each pore 26a functions as a second flow path B6a through which cooling water flows. That is, the two-cam body 26 has a second flow path group B6 including a plurality of second flow paths B6a.
  • the shape of the force hole 26a exemplifying the hermetic body 26 having the narrow hole 26a having a rectangular cross-sectional view is not limited to this, and may be a hexagon or the like. May be. Further, it is preferable that the her cam body 26 and the bottom wall 11 of the jacket main body 10 are joined to each other by a brazing material so that heat exchange can be surely performed.
  • the cooling water flows in the order of the first channel Al, the second channel group B6 (a plurality of second channels B6a), and the third channel C1. Then, heat is mainly exchanged between the peripheral wall 26b of the honeycomb body 26 and the cooling water flowing through the second flow path B5a, so that the heat of the peripheral wall 26b is transferred to the cooling water. As a result, the CPU 101 is efficiently cooled.
  • FIG. 28 is a cross-sectional view of the liquid cooling jacket according to the eighth embodiment, where (a) shows a completed state after assembly, and (b) shows before assembly.
  • the liquid cooling jacket J8 according to the eighth embodiment has a cross-section instead of the flat tube bundle 20 of the liquid cooling jacket J1 according to the first embodiment. It is equipped with a corrugated metal heat exchange sheet 27 (brazing sheet). [0125] ⁇ Heat exchange sheet>
  • the heat exchange sheet 27 is composed of a sheet body 27a formed of an aluminum alloy such as Al-Mn or Al-Fe-Mn, and a solder formed from an aluminum alloy such as A1-Si-Zn on the lower surface side. Material layer 27b.
  • the heat exchange sheet 27 is bonded and fixed to the bottom wall 11 of the jacket main body 10 so as to allow heat exchange by partially melting and hardening the brazing material layer 27b. Therefore, the heat of the CPU 101 is transferred to the heat exchange sheet 27 through the bottom wall 11.
  • a plurality of second flow paths B7a are formed between the heat exchange sheet 27 and the jacket body 10 or the lid body 31. That is, the liquid cooling jacket J8 has a second channel group B7 including a plurality of second channels B7a.
  • the cooling water flows in the order of the first flow path Al, the second flow path group B7 (a plurality of second flow paths B7a), and the third flow path C1. Then, heat is exchanged between the heat exchange sheet 27 and the cooling water flowing through the second flow path B7a, so that the heat of the heat exchange sheet 27 is transferred to the cooling water. As a result, the CPU 101 is efficiently cooled.
  • FIG. 29 is a plan view of the liquid cooling jacket according to the ninth embodiment.
  • the lid body is removed for easy understanding.
  • the liquid cooling jacket J9 according to the ninth embodiment includes one flat tube bundle 20 but includes three flat tube bundles 20 in the liquid cooling jacket J1 according to the first embodiment.
  • the three flat tube bundles 20 are arranged in a line in the jacket body 10B so that the hollow portions 21a (second flow paths Bla) of the flat tube bundles 20 are in the same direction.
  • the three flat tube bundles 20 have a space 10d between the upstream flat tube bundle 20 and the midstream flat tube bundle 20 in the jacket main body 10B, and between the midstream flat tube bundle 20 and the downstream flat tube bundle 20. With 10 d installed, they can contact the bottom wall 11 of the jacket body 10B so that they can exchange heat. Go-Fixed.
  • the spaces 10d and 10d function as fourth flow paths El and El (connection flow paths) that connect the second flow path group B1 of the flat tube bundle 20 in series.
  • the channel cross-sectional area of the fourth channel E1 is set larger than the channel cross-sectional area of the second channel Bla constituting each second channel group B1. That is, the liquid cooling jacket J9 has three second flow path groups Bl, Bl, B1 (second flow path group portions) arranged in series.
  • Cooling water is the first channel Al, the second channel group Bl upstream, the fourth channel El, the second channel group B 1 in the middle stream, the fourth channel El, the second channel group Bl downstream, Circulates in the order of the third flow path C1. That is, the cooling water flows in series through the three second flow path groups Bl, Bl, B1. Here, since the cooling water passes through the fourth flow path E1 between the adjacent second flow path groups Bl and B1, the pressure loss received by the cooling water in the fourth flow path E1 is reduced. .
  • the load acting on the micropump 122 can be reduced by / J.
  • FIG. 30 is a plan view of a liquid cooling jacket according to the tenth embodiment.
  • FIG. 31 is a graph showing the relationship between the number of turns and the thermal resistance.
  • the liquid cooling jacket J10 according to the tenth embodiment is similar to the liquid cooling jacket J9 according to the ninth embodiment.
  • Bl, B1 second flow path group
  • the second flow path groups Bl, B1 adjacent to each other in the flow direction of the cooling water pass through the fourth flow path E1 (connection flow path). Connected in series.
  • the adjacent second flow path groups Bl and B1 are arranged side by side, and among the adjacent second flow path groups B1, the downstream end of the upstream one and the downstream side The upstream end of the one is disposed on the same side, and the downstream end and the upstream end are connected in series via the fourth flow path E1.
  • the second flow path group B1 at the upstream position and the middle The second flow path group Bl at the flow position is adjacent in the flow direction of the cooling water and is juxtaposed in the horizontal direction of FIG.
  • the downstream end of the second flow path group B1 at the upstream position and the upstream end of the second flow path group B1 at the midstream position face the lower side in FIG. 30, which is the same side.
  • the cooling water meanders and flows through the inside thereof. Then, the thermal resistance of the liquid cooling jacket J10 is less than the uncooled liquid cooling jacket I, J9 / J.
  • the type of the heat generating body is not limited to this, and may be, for example, a power module, an LED lamp, or the like.
  • the flat tube bundle 20 is configured by bundling a plurality of flat tubes 21 in the thickness direction, but may be configured by further bundling in the width direction.
  • the liquid cooling jacket J1 according to the first embodiment has been described with respect to the case where the flat tube bundle 20 is provided by bundling a plurality of flat tubes 21 (see Fig. 6).
  • a liquid cooling jacket J11 provided with a flat tube 28 having a plurality of hollow portions 28a partitioned by a plurality of partition walls may be used.
  • each hollow The portion 28a functions as the second flow path B8a
  • the flat tube 28 has a second flow path group B8 including a plurality of second flow paths B8a.
  • the positions of the force intake port 31a and the discharge port 31b described in the case where the intake port 31a and the discharge port 31b are formed in the lid body 31 are as follows.
  • it may be formed on the peripheral wall 12 of the jacket body 10.
  • the positions of the intake pipe 32 and the discharge pipe 33 are not limited to the upper surface side of the liquid cooling jacket J1, but may be positioned on the side surface side.
  • the liquid cooling jacket J12 may include a base plate 56 and a second fin member 55 including a plurality of second fins 57 provided on the second base plate 56.
  • the liquid cooling jacket J12 shown in Fig. 33 will be further described.
  • the first fin member 50 and the second fin member 55 are configured such that the plurality of first fins 52 and the plurality of second fins 57 are intermingled.
  • the whole of the plurality of metal fins in the liquid cooling jacket J12 is composed of a plurality of first fins 52 and a plurality of second fins 57.
  • a second flow path B9a is formed between the two fins 57.
  • the first fin member 50 is located on the CPU 101 side, and the first base plate 51 is fixed to the bottom wall 11 of the jacket body 10 so as to allow heat exchange.
  • the liquid cooling jacket J12 has a second flow path group B9 including a plurality of second flow paths B9a.
  • the protruding length L3 of the plurality of first fins 52 from the first base plate 51 is set to be the same as or shorter than the protruding length L4 of the plurality of second fins 57 from the second base plate 56.
  • the plurality of second fins 57 and the first base plate 51 are joined and fixed so as to be capable of heat exchange by an appropriate means, and are thermally connected.
  • the first flow path Al and the third flow path C1 are formed by providing the spaces 10a and 10c between the jacket body 10 and the flat tube bundle 20, respectively ( (Refer to Fig. 5)
  • the spaces 10a and 10c are not provided, but outside the jacket body 10
  • a branch pipe may be provided on the upstream side of this, the hollow part may be used as the first flow path, and the collecting pipe may be provided on the downstream side, and the hollow part may be used as the third flow path.
  • the fin member 25 is fixed to the jacket body 10.
  • a liquid cooling jacket J13 in which the fin member 25 is fixed to the side surface of the jacket body 10 may be used.
  • the CPU 101 may be attached to the lid body 31.
  • a configuration may be adopted in which the intake pipe 32 serving as the cooling water intake port into the liquid cooling jacket J13, the discharge pipe 33 serving as the discharge port, and the force jacket body 10 are attached.
  • the fin body is integrally formed on the side surface of the jacket body 10 of the lid body 31.
  • the jacket body 10 is provided with four legs 16 having through holes 16a, and screws 125 are passed through the through holes 16a.
  • the removal position of the tool 200 is preferably a portion corresponding to the through hole 16a. Then, after pulling out the tool 200 at such a position, the trace of the tool 200 can be hidden by forming the through hole 16a in the trace part.
  • the groove width W1 (see Fig. 15) of the second flow path B3a is 0.2mm, 0.5mm, 1. Omm. Was made.
  • Table 1 shows the specifications of the liquid cooling jacket J4.
  • the overall channel width W0 is the width of the first channel A1 and the third channel C1.
  • the overall flow path length L0 is the sum of the length of the first flow path A1, the length of the second flow path B3a, and the length of the third flow path C1 (see FIGS. 13 and 14).
  • the micropump 122 (see Fig. 1) is operated so that this water flows at 5 (LZmin) (see Table 2), and the groove width of the second flow path B3a
  • LZmin 5
  • Table 2 5
  • W1 and pressure loss of liquid-cooled jacket J4 were measured by appropriate methods.
  • the target thermal resistance was set to 0.008 (° CZW) or less.
  • the groove width W1 of the second flow path B3a is preferably 0.2 to 1.1 mm.
  • the groove width W1 of the second flow path B3a is set to three types of 0.2 mm, 0.5 mm, and 1. Omm (see Table 1). Thickness of fin 25b against groove width Wl
  • the groove width W1 of the second flow path B3a is 0.5 mm
  • the range is 0.7 ⁇ T 1 / W1 ⁇ 2.1.
  • the groove width Wl of the second flow path B3a is 0.2 mm, 0.8 ⁇ T1 / Wl ⁇ 2.9.
  • the groove width W1 of the second flow path B3a is set to three types of 0.2 mm, 0.5 mm, and 1. Omm (see Table 1).
  • the depth D1 was appropriately changed with respect to the groove width W1 of the two flow paths B3a, and the relationship between “depth Dl” and “thermal resistance” was examined.
  • each groove width W1 had a range of groove depth D1 in which the thermal resistance was reduced. Then, in the same manner as in Example 2, when this range is obtained, 2 ⁇ D1 ⁇ 6 when the groove width W1 is 0.2 mm, 4 ⁇ D2 ⁇ 11 when the groove width W1 is 0.5 mm, and the groove width Wl is 1. For Omm, 6 ⁇ D1 ⁇ 18.
  • the rotation speed of the tool 200 was 6000 rpm, and the joining speed was 200 mmZmin.
  • the thickness T11 of the peripheral wall 12 (see Fig. 19) was 4 mm.
  • the lid body 31 can be satisfactorily bonded without deforming the peripheral wall 12 even when the distance L6 where the peripheral wall 12 is thin is 0.5 mm. confirmed.
  • the length L5 of the pin 201 is 6 of the thickness T2 of the lid body 31 that is the member to be joined. In the range of 0.0% or less, it was confirmed that the peripheral wall 12 and the lid body 31 can be joined well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A liquid-cooled jacket (J1) capable of efficiently cooling a heat generating body such as a CPU. The CPU (101) is installed at a prescribed position, and a heat generated by the CPU (101) is transmitted to a cooling water supplied from a heat carrying fluid supply means on the outside and circulating in the liquid-cooled jacket. The liquid-cooled jacket (J1) comprises a first flow passage (A1) on the heat carrying fluid supply means side, a second flow passage group (B1) formed of a plurality of second flow passages (B1a) branched from the first flow passage (A1), and a third flow passage (C1) formed by converging the plurality of second flow passages (B1a) on the downstream side of the plurality of second flow passages (B1a). The CPU (101) uses the liquid-cooled jacket (J1) exchanging heat mainly in the second flow passage group (B1).

Description

明 細 書  Specification
液冷ジャケット  Liquid cooling jacket
技術分野  Technical field
[0001] 本発明は、 CPUなどの熱発生体を冷却する液冷ジャケットに関する。  The present invention relates to a liquid cooling jacket that cools a heat generating body such as a CPU.
背景技術  Background art
[0002] 近年、パーソナルコンピュータに代表される電子機器は、その性能が向上するにつ れて、搭載される CPU (熱発生体)の発熱量が増大し、 CPUの冷却が益々重要にな つている。従来、 CPUを冷却するために、空冷ファン方式のヒートシンクが使用され てきたが、ファン騒音や、空冷方式での冷却限界といった問題カ^ローズアップされ るようになり、次世代冷却方式として、液冷ジャケット (水冷ジャケット、液冷モジユー ルとも称される)が注目されて 、る。  [0002] In recent years, as the performance of electronic devices typified by personal computers has improved, the amount of heat generated by the mounted CPU (heat generator) has increased, and CPU cooling has become increasingly important. Yes. Conventionally, air-cooled fan-type heat sinks have been used to cool CPUs. However, problems such as fan noise and cooling limits in air-cooled systems have been raised. Cold jackets (also called water-cooled jackets and liquid-cooled modules) are attracting attention.
[0003] このような技術について、例えば、蛇行状に形成され、その両端に取込口、排出口 が設けられた金属管を内蔵する液冷ジャケットが提案されて 、る(特開昭 63— 2938 65号公報の第 2頁右上欄第 2行目〜左下欄第 15行目、第 1図、第 2図を参照)。 発明の開示  [0003] With regard to such a technique, for example, a liquid cooling jacket having a metal tube formed in a meandering shape and provided with an intake port and an exhaust port at both ends thereof has been proposed (Japanese Patent Laid-Open No. Sho 63-63). No. 293865, page 2, upper right column, line 2 to lower left column, line 15 (see Fig. 1, Fig. 2). Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、前記した特許文献に記載の液冷ジャケットのように、冷却水が流通す る流路が 1本であると、冷却水が受ける圧力損失が大きくなる。これにより、 CPUを効 率的に冷却できないだけでなぐ冷却水を供給するポンプの出力を大きくしなければ ならな ヽと ヽぅ問題があった。 [0004] However, if the flow path through which the cooling water flows is one like the liquid cooling jacket described in the above-mentioned patent document, the pressure loss received by the cooling water increases. As a result, there is a problem that the output of the pump that supplies cooling water that cannot be efficiently cooled by the CPU must be increased.
[0005] そこで、本発明は、前記問題を解決すベぐ CPUなどの熱発生体を効率的に冷却 できる液冷ジャケットを提供することを課題とする。 [0005] Accordingly, an object of the present invention is to provide a liquid cooling jacket that can efficiently cool a heat generating body such as a CPU that solves the above problems.
課題を解決するための手段  Means for solving the problem
[0006] 前記課題を解決するための手段として、本発明は、熱発生体が所定位置に取り付 けられ、当該熱発生体が発生する熱を、外部の熱輸送流体供給手段から供給され、 内部を流通する熱輸送流体に伝達させる液冷ジャケットであって、前記熱輸送流体 供給手段側の第 1流路と、前記第 1流通路から分岐した複数の第 2流路からなる第 2 流路群と、前記複数の第 2流路の下流側で、当該複数の第 2流路を集合させる第 3 流路と、を有し、前記熱発生体は前記第 2流路群で主に熱交換することを特徴する 液冷ジャケットである。 [0006] As means for solving the above-mentioned problems, the present invention provides a heat generating body attached to a predetermined position, and heat generated by the heat generating body is supplied from an external heat transport fluid supply means. A liquid cooling jacket for transmitting to a heat transport fluid that circulates inside, a second flow path comprising a first flow path on the heat transport fluid supply means side and a plurality of second flow paths branched from the first flow path. A flow path group and a third flow path that collects the plurality of second flow paths on the downstream side of the plurality of second flow paths, and the heat generator is the main part of the second flow path group. It is a liquid cooling jacket characterized by heat exchange.
[0007] このような液冷ジャケットによれば、外部の熱輸送流体供給手段からの熱輸送流体 は、第 1流路に供給される。次いで、第 2流路群、第 3流路の順で流通する。そして、 熱発生体が発生する熱は、主として第 2流路群で熱交換することによって、熱輸送流 体に伝達する。その結果として、熱発生体は好適に冷却される。  [0007] According to such a liquid cooling jacket, the heat transport fluid from the external heat transport fluid supply means is supplied to the first flow path. Next, the second flow path group and the third flow path are distributed in this order. The heat generated by the heat generating body is transferred to the heat transporting fluid mainly through heat exchange in the second flow path group. As a result, the heat generator is suitably cooled.
[0008] ここで、第 2流路群は、第 1流路から分岐した複数の第 2流路からなり、この複数の 第 2流路は第 3流路で集合しているため、第 2流路が 1本の蛇行状に形成された場合 と比較して、各第 2流路の長さは飛躍的に短くなる。これにより、複数の第 2流路を流 通する熱輸送流体の圧力損失が、前記 1本の長い流路長さの第 2流路を流通する熱 輸送流体の圧力損失よりも飛躍的に小さくなる。また、本発明において隣り合う第 2流 路は、後記する第 6実施形態に係る液冷ジャケット J6に係る第 2流路 B5a、 B5aのよう に(図 26参照)、完全に隔離されて!、なくてもよ!、こととする。  [0008] Here, the second flow path group is composed of a plurality of second flow paths branched from the first flow path, and the plurality of second flow paths are assembled in the third flow path. Compared with the case where the flow path is formed in one meandering shape, the length of each second flow path is dramatically shortened. As a result, the pressure loss of the heat transport fluid that flows through the plurality of second flow paths is significantly smaller than the pressure loss of the heat transport fluid that flows through the second flow path having the one long flow path length. Become. Also, in the present invention, the adjacent second flow paths are completely isolated like the second flow paths B5a and B5a related to the liquid cooling jacket J6 according to the sixth embodiment described later (see FIG. 26). You don't have to!
したがって、このような液冷ジャケットによれば、出力の小さい外部の熱輸送流体供 給手段 (例えば、ポンプ)を使用して、熱輸送流体を供給し、液冷ジャケット内を流通 させて、 CPUなどの熱発生体を効率的に冷却することができる。  Therefore, according to such a liquid cooling jacket, an external heat transport fluid supply means (for example, a pump) with a small output is used to supply the heat transport fluid and distribute the heat transport fluid in the liquid cooling jacket. It is possible to efficiently cool the heat generating body such as.
[0009] また、本発明は、熱発生体が所定位置に取り付けられ、当該熱発生体が発生する 熱を、外部の熱輸送流体供給手段から供給され、内部を流通する熱輸送流体に伝 達させる液冷ジャケットであって、下流側に向かって、第 1流路と、複数の第 2流路か らなる第 2流路群を複数と、第 3流路と、を有し、前記熱発生体は前記第 2流路群で 主に熱交換する液冷ジャケットであって、隣り合う前記第 2流路群は、連結流路を介 して直列で接続されて 、ることを特徴とする。  [0009] Further, according to the present invention, the heat generating body is attached at a predetermined position, and the heat generated by the heat generating body is supplied from an external heat transport fluid supply means and is transmitted to the heat transport fluid flowing through the inside. A liquid cooling jacket having a first flow path, a plurality of second flow path groups including a plurality of second flow paths, and a third flow path toward the downstream side; The generator is a liquid cooling jacket mainly exchanging heat in the second flow path group, and the adjacent second flow path groups are connected in series via a connection flow path. To do.
すなわち、前記第 2流路群は、複数の第 2流路群部を有し、当該複数の第 2流路群 部は直列に配置されている液冷ジャケットである。  That is, the second channel group has a plurality of second channel groups, and the plurality of second channel groups are liquid cooling jackets arranged in series.
[0010] このような液冷ジャケットによれば、連結流路を介して直列で接続された複数の第 2 流路群 (第 2流路郡部)を備えたことにより、複数の第 2流路群と、熱発生体との間で 熱交換することができる。 [0011] また、隣り合う前記第 2流路群は並設されていると共に、その一方の下流端と他方 の上流端とは同一側であることを特徴とする。 [0010] According to such a liquid cooling jacket, a plurality of second flow paths are provided by including a plurality of second flow path groups (second flow path group portions) connected in series via a connection flow path. Heat exchange is possible between the group and the heat generator. [0011] Further, the adjacent second flow path groups are arranged in parallel, and one downstream end and the other upstream end are on the same side.
すなわち、隣り合う前記第 2流路群部は並設されていると共に、その一方の下流端 と他方の上流端とは同一側である液冷ジャケットである。  That is, the adjacent second flow path group portions are juxtaposed, and one downstream end and the other upstream end are liquid cooling jackets on the same side.
[0012] このような液冷ジャケットによれば、熱交換流体が、熱交換流体の流通方向におい て隣り合う第 2流路群の一方、連結流路、隣り合う第 2流路群の他方を通って、蛇行 するように流通する。したがって、平面視における液冷ジャケットの大きさを一定とした 場合、各第 2流路群を構成する第 2流路の本数を変えずに、第 2流路群の数を多くす れば、各第 2流路群を構成する各第 2流路の流路断面積が小さくなる。よって、液冷 ジャケットを流れる熱輸送流体の流量が一定とした場合、第 2流路群の数が多くなれ ば、各第 2流路における熱輸送流体の流速が大きくなる。ゆえに、液冷ジャケットから 熱輸送流体への熱の伝達率が大きくなり、その結果として、液冷ジャケットの熱抵抗 が下がる。  [0012] According to such a liquid cooling jacket, the heat exchange fluid passes through one of the second flow path groups adjacent in the flow direction of the heat exchange fluid, the other of the connection flow paths, and the other of the adjacent second flow path groups. It circulates to meander through. Therefore, when the size of the liquid cooling jacket in a plan view is constant, if the number of second flow path groups is increased without changing the number of second flow paths that constitute each second flow path group, The channel cross-sectional area of each second channel constituting each second channel group is reduced. Therefore, when the flow rate of the heat transport fluid flowing through the liquid cooling jacket is constant, the flow velocity of the heat transport fluid in each second flow channel increases as the number of second flow channel groups increases. Therefore, the heat transfer rate from the liquid cooling jacket to the heat transport fluid increases, and as a result, the thermal resistance of the liquid cooling jacket decreases.
これに対し、隣り合う第 2流路群が並設されておらず、例えば、その流路方向にお いて、 1列状で配置されている場合、第 2流路群の数が多くなつても、各第 2流路群を 構成する各第 2流路の流路長が短くなるだけであり、その断面積は小さくならず、熱 交換流体の流速は大きくならない。よって、液冷ジャケットの熱抵抗は下がらない。 また、第 2流路群の数を偶数とすれば、液冷ジャケットへの熱輸送流体の入口及び 出口を同一側に配置することができ、その結果として、液冷ジャケットに接続する配管 の取り回しが容易となる。  On the other hand, if the adjacent second flow path groups are not arranged side by side, for example, arranged in a single line in the flow path direction, the number of second flow path groups increases. However, only the channel length of each second channel constituting each second channel group is shortened, its cross-sectional area is not reduced, and the flow rate of the heat exchange fluid is not increased. Therefore, the thermal resistance of the liquid cooling jacket does not decrease. Further, if the number of second flow path groups is an even number, the inlet and outlet of the heat transport fluid to the liquid cooling jacket can be arranged on the same side, and as a result, the piping connected to the liquid cooling jacket can be routed. Becomes easy.
[0013] また、複数の金属製の管が束ねられてなる管束を備え、各管の中空部が前記第 2 流路であることを特徴とする。  [0013] In addition, a tube bundle in which a plurality of metal tubes are bundled is provided, and a hollow portion of each tube is the second flow path.
[0014] このような液冷ジャケットは、金属製の管を束ねてなる管束を備えることで、各管の 中空部が第 2流路となり、液冷ジャケットを容易に構成することができる。また、束ねる 金属製の管の本数、太さなどを適宜に変更することで、第 2流路の数、太さ(流路断 面積)を容易に変更することができる。  [0014] Such a liquid cooling jacket includes a tube bundle formed by bundling metal tubes, so that the hollow portion of each tube becomes the second flow path, and the liquid cooling jacket can be easily configured. In addition, by appropriately changing the number and thickness of the metal pipes to be bundled, the number and thickness of the second flow paths (flow channel cut area) can be easily changed.
[0015] また、複数の中空部を有する金属製の管を備え、前記各中空部が前記第 2流路で あることを特徴とする。 [0016] このような液冷ジャケットによれば、複数の中空部を有する金属製の管を用いて、液 冷ジャケットを容易に構成することができる。 [0015] In addition, a metal tube having a plurality of hollow portions is provided, and each of the hollow portions is the second flow path. [0016] According to such a liquid cooling jacket, the liquid cooling jacket can be easily configured using a metal tube having a plurality of hollow portions.
[0017] また、所定間隔で配列した複数の金属製のフィンを備え、隣り合うフィンの間が前記 第 2流路であることを特徴とする。 [0017] Further, it is characterized in that a plurality of metal fins arranged at a predetermined interval are provided, and the second flow path is between adjacent fins.
[0018] このような液冷ジャケットによれば、隣り合うフィンの間を第 2流路としたことにより、熱 発生体からの熱を複数のフィンを介して、第 2流路を流通する熱輸送流体に伝達す ることがでさる。 [0018] According to such a liquid cooling jacket, since the second flow path is provided between the adjacent fins, the heat from the heat generator is circulated through the second flow path via the plurality of fins. It can be transmitted to the transport fluid.
[0019] また、前記第 2流路の幅 Wは 0. 2〜1. Ommであることを特徴とする。  [0019] The width W of the second flow path is 0.2 to 1. Omm.
[0020] このような液冷ジャケットによれば、その熱抵抗と、内部を通る熱輸送流体が受ける 圧力損失とを、良好な範囲とすることができる。  [0020] According to such a liquid cooling jacket, the thermal resistance and the pressure loss experienced by the heat transport fluid passing through the inside can be in a favorable range.
[0021] また、前記第 2流路の幅 Wと、隣り合う前記第 2流路の間のフィンの厚さ Tとは、次の 式(1)を満たすことを特徴とする。 [0021] Further, the width W of the second flow path and the thickness T of the fin between the adjacent second flow paths satisfy the following expression (1).
-0. 375 XW+0. 875≤T/W≤- 1. 875 XW+ 3. 275 · · · (1)  -0. 375 XW + 0. 875≤T / W≤- 1. 875 XW + 3.275 (1)
[0022] このような液冷ジャケットによれば、その熱抵抗が小さくなり、熱発生体と熱輸送流 体との間で、良好に熱交換することができる。 [0022] According to such a liquid cooling jacket, the thermal resistance is reduced, and good heat exchange can be performed between the heat generating body and the heat transporting fluid.
[0023] また、前記第 2流路の深さ Dと、幅 Wとは、次の式(2)を満たすことを特徴とする。 [0023] Further, the depth D and the width W of the second flow path satisfy the following expression (2).
5 XW+ 1≤D≤16. 25 XW+ 2. 75 · · · (2)  5 XW + 1≤D≤16. 25 XW + 2. 75 (2)
[0024] このような液冷ジャケットによれば、その熱抵抗が小さくなり、熱発生体と熱輸送流 体との間で、良好に熱交換することができる。 [0024] According to such a liquid cooling jacket, the thermal resistance is reduced, and good heat exchange can be performed between the heat generating body and the heat transporting fluid.
[0025] また、前記複数の金属製のフィンと、当該複数の金属製のフィンが立設されたベー ス板とを含んで構成されたフィン部材と、当該フィン部材を収容するジャケット本体と、 を備え、前記ベース板が前記ジャケット本体に熱交換可能に固定されていることを特 徴とする。 [0025] Further, a fin member configured to include the plurality of metal fins and a base plate on which the plurality of metal fins are erected, a jacket body that accommodates the fin members, And the base plate is fixed to the jacket body so as to allow heat exchange.
[0026] このような液冷ジャケットは、例えば、ベース板となる底板と、この底板に立設された 複数のフィンとなる複数の条とを有する金属製の押し出し型材を切断し、前記複数の 金属製のフィンを備えるフィン部材を作製した後、このフィン部材を、例えば箱状のジ ャケット本体に固定することによって液冷ジャケットを構成することができる。  [0026] Such a liquid cooling jacket, for example, cuts a metal extrusion mold material having a bottom plate serving as a base plate and a plurality of strips serving as a plurality of fins provided upright on the bottom plate. After producing a fin member provided with metal fins, a liquid cooling jacket can be formed by fixing the fin member to, for example, a box-shaped jacket body.
また、例えば、金属製のブロックに複数の溝を形成することによって、複数の金属製 のフィンを備えるフィン部材を作製することもできる。 Also, for example, by forming a plurality of grooves in a metal block, a plurality of metal It is also possible to produce a fin member including the fins.
[0027] また、第 1ベース板と、当該第 1ベース板に立設された複数の第 1フィンとを具える 第 1フィン部材と、第 2ベース板と、当該第 2ベース板に立設された複数の第 2フィンと を具える第 2フィン部材と、を備え、前記第 1フィン部材と前記第 2フィン部材とは、前 記複数の第 1フィンと前記複数の第 2フィンとが嚙み合わさるようにして、組み合わさ れており、前記金属製の複数のフィンは、前記第 1フィンと前記第 2フィンとで構成さ れており、隣り合う前記第 1フィンと前記第 2フィンとの間に前記第 2流路が形成されて いることを特徴とする。  [0027] Also, a first fin member comprising a first base plate and a plurality of first fins standing on the first base plate, a second base plate, and standing on the second base plate A second fin member comprising a plurality of second fins, wherein the first fin member and the second fin member include the plurality of first fins and the plurality of second fins. The plurality of metal fins are composed of the first fin and the second fin, and the adjacent first fin and second fin are combined. The second flow path is formed between the two.
[0028] このような液冷ジャケットは、複数の第 1フィンと、複数の第 2フィンとを嚙み合わせた ので、第 1フィン同士の間隔および第 2フィン同士の間隔を広くしても、隣り合う金属 製のフィンの間隔、つまり、第 1フィンと第 2フィンとの間隔を狭くすることができる。  [0028] Since such a liquid cooling jacket is composed of a plurality of first fins and a plurality of second fins, even if the interval between the first fins and the interval between the second fins are widened, The distance between adjacent metal fins, that is, the distance between the first fin and the second fin can be reduced.
[0029] また、前記熱発生体は前記第 1ベース板側に取り付けられ、前記第 1フィンの突出 長さは、前記第 2フィンの突出長さと同一または短く設定されており、前記複数の第 2 フィンと前記第 1ベース板とは熱的に接続していることを特徴とする。  [0029] In addition, the heat generating body is attached to the first base plate side, and the protruding length of the first fin is set to be the same as or shorter than the protruding length of the second fin, 2 The fin and the first base plate are thermally connected.
[0030] このような液冷ジャケットは、第 1フィンの突出長さが第 2フィンの突出長さと同一、ま たは第 2フィンの突出長さよりも短く設定されていることにより、第 1フィン部材と第 2フ イン部材とを組み合わせた際に、複数の第 2フィンが第 1ベース板に確実に当接し、 複数の第 2フィンと第 1ベース板とを熱交換可能に接合して、構成することができる。 そして、第 1ベース板側に取り付けられた熱発生体の熱は、第 1ベース板を介して、 複数の第 1フィンと複数の第 2フィンとに、それぞれ伝達する。次いで、この熱が、第 1 フィンと第 2フィンとの間の第 2流路を流通する熱輸送流体に伝達することができる。  [0030] In such a liquid cooling jacket, the first fin has a protruding length that is the same as the protruding length of the second fin, or shorter than the protruding length of the second fin. When the member and the second fin member are combined, the plurality of second fins securely contact the first base plate, and the plurality of second fins and the first base plate are joined so as to be capable of heat exchange. Can be configured. Then, the heat of the heat generating body attached to the first base plate side is transmitted to the plurality of first fins and the plurality of second fins via the first base plate. This heat can then be transferred to the heat transport fluid flowing through the second flow path between the first fin and the second fin.
[0031] また、前記複数の金属製のフィンを収容するフィン収容室を有するジャケット本体と 、前記フィン収容室を封止する封止体と、を備え、前記フィン収容室を取り囲む前記 ジャケット本体の周壁と前記封止体との合わせ部が摩擦攪拌接合されていると共に、 当該摩擦攪拌接合における始端と終端とがオーバーラップしていることを特徴とする  [0031] The jacket main body includes a jacket main body having a fin housing chamber that houses the plurality of metal fins, and a sealing body that seals the fin housing chamber, and surrounds the fin housing chamber. The joint portion of the peripheral wall and the sealing body is friction stir welded, and the start end and the end of the friction stir weld overlap
[0032] このような液冷ジャケットによれば、摩擦攪拌接合における始端と終端とがオーバー ラップしていることにより、ジャケット本体の周壁と、封止体とを良好に接合することが できる。これにより、熱輸送流体が外部に漏れにくくなる。 [0032] According to such a liquid cooling jacket, since the start end and the end end in the friction stir welding overlap, the peripheral wall of the jacket main body and the sealing body can be satisfactorily joined. it can. This makes it difficult for the heat transport fluid to leak to the outside.
また、ロウ材等を使用せずに、摩擦攪拌接合によって、封止体とジャケット本体とを 接合するため、ロウ材等によって熱輸送流体 (冷媒)が汚染されるおそれは全くなぐ さらに、液冷システムを構成するマイクロポンプやラジェータ等の機器類が、ロウ材等 によって腐食するおそれは全くない。  In addition, since the sealing body and the jacket body are joined by friction stir welding without using brazing material, there is no possibility that the heat transport fluid (refrigerant) is contaminated by brazing material. There is no risk of corrosion of brazing material or other equipment such as micropumps and radiators that make up the system.
[0033] また、前記複数の金属製のフィンは、前記封止体に立設しており、当該封止体と一 体であることを特徴とする。  [0033] Further, the plurality of metal fins are erected on the sealing body and are integral with the sealing body.
[0034] このような液冷ジャケットによれば、複数の金属製のフィンと封止体とがー体であるこ とにより、封止体でフィン収容室を封止すると同時に、複数の金属製のフィンをフィン 収容室の所定位置に配置させることができる。すなわち、液冷ジャケットの生産工程 を減らすことができ、容易に生産可能であると共に、その生産コストを下げることがで きる。また、このように複数の金属製のフィンと封止体とがー体であるものは、例えば、 後記する第 5実施形態に記載するように、アルミニウム合金製のプレート (板材)をス 力イブカ卩ェすることで得ることができる。  [0034] According to such a liquid cooling jacket, since the plurality of metal fins and the sealing body are a single body, the fin housing chamber is sealed with the sealing body, and at the same time, the plurality of metal fins are sealed. The fin can be arranged at a predetermined position in the fin housing chamber. That is, the production process of the liquid cooling jacket can be reduced, and the production can be easily performed and the production cost can be reduced. In addition, a plurality of fins made of metal and a sealing body in this way are, for example, a plate made of an aluminum alloy (plate material) as shown in a fifth embodiment to be described later. It can be obtained by paying.
また、このように、スカイブカ卩ェ等によって、フィンと封止体とがー体で成形されたも のであれば、当然に、フィンと封止体とをロウ材等によって接合する必要はなぐこれ により、熱輸送流体の汚染等を防止することができる。  In addition, if the fin and the sealing body are formed as a single body by a skive cage or the like, it is naturally not necessary to join the fin and the sealing body with a brazing material or the like. Thus, contamination of the heat transport fluid can be prevented.
さらに、フィンと封止体とがー体であるため、両者間における熱伝達性は高い。よつ て、封止体に CPU等の熱発生体を取り付ければ、熱発生体の熱が封止体を介して、 複数のフィンに良好に伝達する。その結果として、液冷ジャケットにおける熱発生体 の放熱性能は高くなる。  Furthermore, since the fin and the sealing body are a single body, the heat transferability between them is high. Therefore, if a heat generating body such as a CPU is attached to the sealing body, the heat of the heat generating body is transferred well to the plurality of fins through the sealing body. As a result, the heat dissipation performance of the heat generator in the liquid cooling jacket is enhanced.
[0035] また、前記周壁が外側に変形しないように前記周壁に治具を当てながら前記摩擦 攪拌接合されたことを特徴とする。  [0035] Further, the friction stir welding is performed while applying a jig to the peripheral wall so that the peripheral wall is not deformed outward.
[0036] このような液冷ジャケットによれば、周壁に治具を当てながら摩擦攪拌接合すること により、摩擦攪拌接合によって周壁が外側に変形しに《なる。また、このように治具 を当てることにより、周壁が薄ぐ摩擦攪拌接合に使用するツールにおけるショルダー の外周面と、周壁の外周面との距離(隙間)が、例えば、 2. Omm以下であっても、周 壁を変形させずに、摩擦攪拌接合することができる。 [0037] また、前記摩擦攪拌接合にお!、て使用するツールのピンの長さは、前記封止体の 厚さの 60%以下であることを特徴とする。 [0036] According to such a liquid cooling jacket, when the friction stir welding is performed while applying a jig to the peripheral wall, the peripheral wall is deformed outward by the friction stir welding. In addition, by applying the jig in this way, the distance (gap) between the outer peripheral surface of the shoulder and the outer peripheral surface of the peripheral wall in the tool used for friction stir welding where the peripheral wall is thin is, for example, 2. Omm or less. However, friction stir welding can be performed without deforming the peripheral wall. [0037] In addition, the length of the pin of the tool used for the friction stir welding is 60% or less of the thickness of the sealing body.
[0038] このような液冷ジャケットによれば、ツールのピンの長さが封止体の厚さの 60%以 下であることにより、摩擦攪拌接合によって封止体力フィン収容室側に変形しに《な る。これにより、フィン収容室の容積が小さくなることは防止される。 [0038] According to such a liquid cooling jacket, when the length of the pin of the tool is 60% or less of the thickness of the sealing body, it is deformed to the sealing body strength fin housing chamber side by friction stir welding. become. Thereby, it is prevented that the capacity | capacitance of a fin storage chamber becomes small.
[0039] また、前記摩擦攪拌接合にお!、て、前記ツールの抜き位置は、前記合わせ部から 外されて!/ヽることを特徴とする。 [0039] Further, in the friction stir welding, the removal position of the tool is removed from the mating portion!
[0040] このような液冷ジャケットによれば、ツールの抜き位置が合わせ部力 外されている ことにより、ピンの抜け跡が合わせ部に形成されることはない。これにより、ジャケット 本体と封止体とを好適に接合することができる。 [0040] According to such a liquid cooling jacket, the removal position of the tool is removed from the mating portion force, so that no pin trace is formed at the mating portion. Thereby, a jacket main body and a sealing body can be joined suitably.
[0041] また、複数の細孔を有する金属製のハニカム体を備え、前記細孔が前記第 2流路 であることを特徴とする。 [0041] In addition, a metal honeycomb body having a plurality of pores is provided, and the pores are the second flow paths.
[0042] このような液冷ジャケットによれば、ハ-カム体の細孔を第 2流路としたことにより、熱 発生体からの熱をハニカム体を介して、第 2流路を流通する熱輸送流体に伝達する ことができる。 [0042] According to such a liquid cooling jacket, since the pores of the her cam body are used as the second flow path, the heat from the heat generating body flows through the second flow path through the honeycomb body. Can be transferred to heat transport fluid.
[0043] また、断面が波状の金属製の熱交換シートと、当該熱交換シートが熱交換可能に 固定された金属製のジャケット本体と、を備え、前記熱交換シートと前記ジャケット本 体の間に、前記第 2流路が形成されて 、ることを特徴とする。  [0043] Also, a metal heat exchange sheet having a corrugated cross section and a metal jacket main body to which the heat exchange sheet is fixed so as to be able to exchange heat, the space between the heat exchange sheet and the jacket main body. In addition, the second flow path is formed.
[0044] このような液冷ジャケットは、断面が波状の熱交換シートを、ジャケット本体に熱交換 可能に固定することによって、容易に構成することができる。 [0044] Such a liquid cooling jacket can be easily configured by fixing a heat exchange sheet having a corrugated cross section to the jacket body so that heat exchange is possible.
[0045] また、前記金属はアルミニウムまたはアルミニウム合金であることを特徴とする。 [0045] The metal is aluminum or an aluminum alloy.
[0046] このような液冷ジャケットによれば、金属をアルミニウムまたはアルミニウム合金とし たことにより、軽量化される。 [0046] According to such a liquid cooling jacket, the metal is made of aluminum or an aluminum alloy, so that the weight is reduced.
[0047] また、前記第 1流路に連通する熱輸送流体の取込口と、前記第 3流路に連通する 熱輸送流体の排出口とは、前記熱発生体を中心として、対称に配置されていることを 特徴とする。 [0047] In addition, the heat transport fluid intake port communicating with the first flow path and the heat transport fluid discharge port communicating with the third flow path are arranged symmetrically with respect to the heat generator. It is characterized by being.
[0048] このような液冷ジャケットによれば、取込ロカ 第 1流路に供給された熱輸送流体が 、熱発生体の近傍の第 2流路を流通しやすくなる。これにより、熱輸送流体を熱発生 体との間で、好適に熱交換することができる。 [0048] According to such a liquid cooling jacket, the heat transport fluid supplied to the first flow path of the intake locus can easily flow through the second flow path in the vicinity of the heat generator. This generates heat in the heat transport fluid Heat exchange can be suitably performed with the body.
[0049] また、前記取込口と前記排出口とは、相対的に遠ざ力るように配置されていることを 特徴とする。  [0049] Further, the intake port and the discharge port are arranged so as to be relatively distant from each other.
[0050] このような液冷ジャケットによれば、取込ロカ 第 1流路に供給された熱輸送流体が 、複数の第 2流路の全体を流通しやすくなる。これにより、複数の第 2流路全体を流 通する熱輸送流体と熱発生体との間で、好適に熱交換することができる。  [0050] According to such a liquid cooling jacket, the heat transport fluid supplied to the first flow path of the intake rocker can easily flow through the plurality of second flow paths. Accordingly, heat exchange can be suitably performed between the heat transport fluid that flows through the entire plurality of second flow paths and the heat generator.
[0051] また、前記取込口と前記排出口とは、前記熱発生体に近づくように配置されている ことを特徴とする。  [0051] Further, the intake port and the discharge port are arranged so as to be close to the heat generating body.
[0052] このような液冷ジャケットによれば、取込ロカ 第 1流路に供給された熱輸送流体が 、熱発生体の近傍の第 2流路を速い流速で流通しやすくなる。これにより、この速い 流速で流通する熱輸送流体と熱発生体との間で、好適に熱交換することができる。 すなわち、例えば、 CPU等の熱発生体力 ヒートスプレッダと称される熱拡散シート 1 02 (図 3参照)を介して液冷ジャケットに取り付けられておらず、熱発生体の熱が液冷 ジャケットの全体に伝達しにく 、場合、このように熱輸送流体を熱発生体の近傍の第 2流路を速い流速で流通させることにより、効率的に放熱させることができる。  [0052] According to such a liquid cooling jacket, the heat transport fluid supplied to the first flow path of the intake rocker can easily flow through the second flow path near the heat generator at a high flow rate. Thereby, heat exchange can be suitably performed between the heat transport fluid and the heat generator that circulate at this high flow rate. That is, for example, it is not attached to the liquid cooling jacket via a heat diffusion sheet 102 (refer to FIG. 3) called a heat generation body heat spreader such as a CPU, and the heat of the heat generation body is distributed over the entire liquid cooling jacket. In such a case, it is possible to efficiently dissipate heat by allowing the heat transport fluid to flow through the second flow path in the vicinity of the heat generator at a high flow rate in this way.
[0053] また、前記熱発生体は CPUであることを特徴とする。  [0053] Further, the heat generating body is a CPU.
[0054] このような液冷ジャケットによれば、 CPUと熱輸送流体との間で効率的に熱交換し、 CPUを冷却することができる。  [0054] According to such a liquid cooling jacket, it is possible to efficiently exchange heat between the CPU and the heat transport fluid to cool the CPU.
発明の効果  The invention's effect
[0055] 本発明によれば、 CPUなどの熱発生体を効率的に冷却できる液冷ジャケットを提 供することができる。そして、本発明の諸側面および効果、並びに、他の効果および さらなる特徴は、添付の図面を参照して後述する本発明の例示的かつ非制限的な実 施の形態の詳細な説明により、一層明らかとなるであろう。  [0055] According to the present invention, it is possible to provide a liquid cooling jacket capable of efficiently cooling a heat generating body such as a CPU. Further aspects and advantages of the present invention, as well as other effects and further features, will become more apparent from the detailed description of exemplary and non-limiting embodiments of the present invention described below with reference to the accompanying drawings. It will be clear.
図面の簡単な説明  Brief Description of Drawings
[0056] [図 1]第 1実施形態に係る液冷システムの構成図である。 FIG. 1 is a configuration diagram of a liquid cooling system according to a first embodiment.
[図 2]第 1実施形態に係る液冷ジャケットの全体斜視図である。  FIG. 2 is an overall perspective view of the liquid cooling jacket according to the first embodiment.
[図 3]第 1実施形態に係る液冷ジャケットの下方力もの全体斜視図である。  FIG. 3 is an overall perspective view of the downward force of the liquid cooling jacket according to the first embodiment.
[図 4]第 1実施形態に係る液冷ジャケットの斜視図であり、蓋ユニットを省略した状態 を示す。 FIG. 4 is a perspective view of the liquid cooling jacket according to the first embodiment, with the lid unit omitted. Indicates.
[図 5]第 1実施形態に係る液冷ジャケットの平面図である。  FIG. 5 is a plan view of the liquid cooling jacket according to the first embodiment.
[図 6]図 2に示す第 1実施形態に係る液冷ジャケットの X— X断面図である。  6 is an XX cross-sectional view of the liquid cooling jacket according to the first embodiment shown in FIG.
圆 7]第 1実施形態に係る液冷ジャケットの分解斜視図である。 [7] FIG. 7 is an exploded perspective view of the liquid cooling jacket according to the first embodiment.
圆 8]第 1実施形態に係る液冷ジャケットの効果を模式的に示すグラフである。 8] A graph schematically showing the effect of the liquid cooling jacket according to the first embodiment.
圆 9]第 2実施形態に係る液冷ジャケットの全体斜視図であり、蓋ユニットを省略した 状態を示す。 [9] FIG. 9 is an overall perspective view of the liquid cooling jacket according to the second embodiment, showing a state in which the lid unit is omitted.
[図 10]図 9に示す第 2実施形態に係る液冷ジャケットの Y—Y断面図である。  FIG. 10 is a YY sectional view of the liquid cooling jacket according to the second embodiment shown in FIG.
圆 11]第 3実施形態に係る液冷ジャケットの全体斜視図である。 圆 11] An overall perspective view of a liquid cooling jacket according to a third embodiment.
[図 12]第 3実施形態に係る液冷ジャケットの平面図である。 FIG. 12 is a plan view of a liquid cooling jacket according to a third embodiment.
圆 13]第 4実施形態に係る液冷ジャケットの全体斜視図であり、蓋ユニットを省略した 状態を示す。 圆 13] An overall perspective view of the liquid cooling jacket according to the fourth embodiment, showing a state where the lid unit is omitted.
[図 14]図 13に示す第 4実施形態に係る液冷ジャケットの Z— Z断面図である。  14 is a ZZ cross-sectional view of the liquid cooling jacket according to the fourth embodiment shown in FIG.
[図 15]図 14に示す Z— Z断面図の拡大図である。 FIG. 15 is an enlarged view of the ZZ cross-sectional view shown in FIG.
[図 16]第 4実施形態に係る液冷ジャケットのフィン部材の第 1作製方法を示す斜視図 であり、(a)は切断前、(b)は切断後を示す。  FIG. 16 is a perspective view showing a first method for producing a fin member of a liquid cooling jacket according to a fourth embodiment, where (a) shows before cutting and (b) shows after cutting.
[図 17]第 4実施形態に係る液冷ジャケットのフィン部材の第 2作製方法を示す斜視図 であり、(a)は切削前、(b)は切削後を示す。  FIG. 17 is a perspective view showing a second production method of the fin member of the liquid cooling jacket according to the fourth embodiment, where (a) shows before cutting and (b) shows after cutting.
[図 18]第 4実施形態に係る摩擦攪拌接合を示す斜視図である。  FIG. 18 is a perspective view showing friction stir welding according to a fourth embodiment.
圆 19]第 4実施形態に係る摩擦攪拌接合を示す断面図である。 圆 19] A sectional view showing friction stir welding according to a fourth embodiment.
圆 20]第 4実施形態に係る摩擦攪拌接合におけるツールの動きを示す平面図である 20] A plan view showing the movement of the tool in the friction stir welding according to the fourth embodiment.
[図 21]第 5実施形態に係る液冷ジャケットの断面図である。 FIG. 21 is a cross-sectional view of a liquid cooling jacket according to a fifth embodiment.
[図 22]図 21に示す断面図の拡大図である。 FIG. 22 is an enlarged view of the cross-sectional view shown in FIG.
圆 23]第 5実施形態に係る液冷ジャケットのフィン部材の作製方法を示す図であり、 ( a)はスカイブカロェ中、(b)はスカイブ加工後を示す。 FIG. 23] A diagram showing a method for producing a fin member of a liquid cooling jacket according to a fifth embodiment, wherein (a) shows during skive caloe and (b) shows after skive processing.
圆 24]第 5実施形態に係る液冷ジャケットのフィン部材の作製方法を示す図であり、 図 23 (b)に示すスカイブフィンの一部を取り除いた後を示す。 圆 25]第 5実施形態に係る摩擦攪拌接合を示す断面図である。 24] A diagram showing a method for producing a fin member of the liquid cooling jacket according to the fifth embodiment, showing a state after removing a part of the skive fin shown in FIG. 23 (b). 25] A sectional view showing friction stir welding according to the fifth embodiment.
[図 26]第 6実施形態に係る液冷ジャケットの断面図であり、(a)は組み付け後、(b)は 組み付け前を示す。  FIG. 26 is a cross-sectional view of a liquid cooling jacket according to a sixth embodiment, where (a) shows a state after assembly and (b) shows a state before assembly.
[図 27]第 7実施形態に係る液冷ジャケットの断面図であり、(a)は組み付け後、(b)は 組み付け前を示す。  FIG. 27 is a cross-sectional view of a liquid cooling jacket according to a seventh embodiment, where (a) shows a state after assembly and (b) shows a state before assembly.
[図 28]第 8実施形態に係る液冷ジャケットの断面図であり、(a)は組み付け後、(b)は 組み付け前を示す。  FIG. 28 is a cross-sectional view of a liquid cooling jacket according to an eighth embodiment, where (a) shows a state after assembly and (b) shows a state before assembly.
[図 29]第 9実施形態に係る液冷ジャケットの平面図である。  FIG. 29 is a plan view of a liquid cooling jacket according to a ninth embodiment.
[図 30]第 10実施形態に係る液冷ジャケットの平面図である。 FIG. 30 is a plan view of a liquid cooling jacket according to a tenth embodiment.
圆 31]折り返し数と熱抵抗との関係を示すグラフである。 [31] This is a graph showing the relationship between the number of turns and the thermal resistance.
[図 32]変形例に係る扁平管束の断面図である。 FIG. 32 is a cross-sectional view of a flat tube bundle according to a modification.
[図 33]変形例に係る液冷ジャケットの断面図であり、(a)は組み付け後、(b)は組み 付け前を示す。  FIG. 33 is a cross-sectional view of a liquid cooling jacket according to a modification, where (a) shows a state after assembly and (b) shows a state before assembly.
[図 34]変形例に係る液冷ジャケットの断面図である。  FIG. 34 is a cross-sectional view of a liquid cooling jacket according to a modification.
[図 35]変形例に係る液冷ジャケットの斜視図である。  FIG. 35 is a perspective view of a liquid cooling jacket according to a modification.
圆 36]溝幅 W1と、熱抵抗及び圧力損失との関係を示すグラフである。 36] A graph showing the relationship between the groove width W1, thermal resistance and pressure loss.
[図 37]フィンの厚さ T1Z溝幅 W1と、熱抵抗との関係を示すグラフである。  FIG. 37 is a graph showing the relationship between fin thickness, T1Z groove width W1, and thermal resistance.
[図 38]溝幅 W1と、フィンの厚さ T1Z溝幅 W1との関係を示すグラフである。  FIG. 38 is a graph showing the relationship between groove width W1 and fin thickness T1Z groove width W1.
圆 39]溝の深さ D1と、熱抵抗との関係を示すグラフである。 [39] This is a graph showing the relationship between the depth D1 of the groove and the thermal resistance.
[図 40]溝幅 W1と、溝の深さ D1との関係を示すグラフである。  FIG. 40 is a graph showing the relationship between the groove width W1 and the groove depth D1.
符号の説明 Explanation of symbols
A1 第 1流路  A1 1st flow path
B1 第 2流路群  B1 Second channel group
Bla 第 2流路  Bla second channel
C1 第 3流路  C1 3rd flow path
J1 液冷ジャケット  J1 liquid cooling jacket
10 ジャケット本体  10 Jacket body
10a スペース 10c スペース 10a space 10c space
11 底壁  11 Bottom wall
12 周壁  12 perimeter wall
15 段差部  15 steps
20 扁平管束  20 Flat tube bundle
21 扁平管  21 Flat tube
21a 中空部  21a Hollow part
21b 周壁  21b wall
21c 仕切壁  21c partition wall
31 蓋本体  31 Lid body
31a 取込口  31a Inlet
31b 排出口  31b outlet
101 CPU (熱発生体)  101 CPU (heat generator)
200 ツール  200 tools
201 ピン  201 pin
202 ショノレダ一  202 Shonoreda
210 治具  210 Jig
K 摩擦攪拌接合部  K friction stir weld
L5 ピンの長さ  L5 pin length
L6 ツールの外周面と周壁の外周面との距離 L6 Distance between the outer peripheral surface of the tool and the outer peripheral surface of the peripheral wall
PI 合わせ部 PI matching section
Q オーバーラップ部分  Q Overlap part
Tl フィンの厚さ  Tl Fin thickness
T2 蓋本体の厚さ  T2 lid body thickness
Ti l 周壁の厚さ  Ti l Wall thickness
Wl 溝幅  Wl Groove width
Wl l 段差部の幅  Wl l Step width
発明を実施するための最良の形態 [0058] 以下、本発明の実施形態について、図面を適宜参照して詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
[0059] 《第 1実施形態〉〉 [0059] << First Embodiment >>
まず、第 1実施形態に係る液冷システムおよび液冷ジャケットについて、図 1から図 8を参照して説明する。図 1は、第 1実施形態に係る液冷システムの構成図である。図 2は、第 1実施形態に係る液冷ジャケットの全体斜視図である。図 3は、第 1実施形態 に係る液冷ジャケットの下方力もの全体斜視図である。図 4は、第 1実施形態に係る 液冷ジャケットの斜視図であり、蓋ユニットを省略した状態を示す。図 5は、第 1実施 形態に係る液冷ジャケットの平面図であり、取込パイプおよび排出ノイブを省略して いる。図 6は、図 2に示す第 1実施形態に係る液冷ジャケットの X—X断面図である。 図 7は、第 1実施形態に係る液冷ジャケットの分解斜視図である。図 8は、第 1実施形 態に係る液冷ジャケットの効果を模式的に示すグラフである。  First, the liquid cooling system and the liquid cooling jacket according to the first embodiment will be described with reference to FIGS. FIG. 1 is a configuration diagram of a liquid cooling system according to the first embodiment. FIG. 2 is an overall perspective view of the liquid cooling jacket according to the first embodiment. FIG. 3 is an overall perspective view of the downward force of the liquid cooling jacket according to the first embodiment. FIG. 4 is a perspective view of the liquid cooling jacket according to the first embodiment, showing a state in which the lid unit is omitted. FIG. 5 is a plan view of the liquid cooling jacket according to the first embodiment, omitting the intake pipe and the discharge noise. 6 is an XX cross-sectional view of the liquid cooling jacket according to the first embodiment shown in FIG. FIG. 7 is an exploded perspective view of the liquid cooling jacket according to the first embodiment. FIG. 8 is a graph schematically showing the effect of the liquid cooling jacket according to the first embodiment.
[0060] 《液冷システムの構成》 [0060] <Configuration of liquid cooling system>
図 1に示すように、第 1実施形態に係る液冷システム S1は、タワー型のパーソナル コンピュータのパーソナルコンピュータ本体 120 (電子機器)に搭載されるシステムで あって、パーソナルコンピュータ本体 120を構成する CPU101 (熱発生体)を冷却す るシステムである。液冷システム S1は、 CPU101が所定位置に取り付けられる液冷 ジャケット J1 (図 3参照)と、冷却水 (熱輸送流体)が輸送する熱を外部に放出するラジ エータ 121 (放熱手段)と、冷却水を循環させるマイクロポンプ 122 (熱輸送流体供給 手段)と、温度変化による冷却水の膨張 Z収縮を吸収するリザーブタンク 123と、これ らを接続するフレキシブルチューブ 124· ··と、熱を輸送する冷却水とを主に備えてい る。冷却水としては、例えば、エチレングリコール系の不凍液が使用される。  As shown in FIG. 1, the liquid cooling system S1 according to the first embodiment is a system mounted on a personal computer main body 120 (electronic device) of a tower-type personal computer, and includes a CPU 101 constituting the personal computer main body 120. This is a system that cools (heat generators). The liquid cooling system S1 includes a liquid cooling jacket J1 (see Fig. 3) where the CPU 101 is installed in place, a radiator 121 (heat dissipating means) that releases heat transported by cooling water (heat transport fluid), and cooling Micropump 122 (heat transport fluid supply means) that circulates water, expansion of cooling water due to temperature change, reserve tank 123 that absorbs Z shrinkage, and flexible tube 124 that connects these, and transports heat Mainly equipped with cooling water. For example, an ethylene glycol antifreeze is used as the cooling water.
そして、マイクロポンプ 122が作動すると、冷却水がこれら機器を循環するようにな つている。  When the micropump 122 is activated, cooling water circulates through these devices.
[0061] 《液冷ジャケットの構成》 [0061] <Structure of liquid cooling jacket>
次に、液冷システム S1を構成する液冷ジャケット J1について、詳細に説明する。 図 2、図 3に示すように、液冷ジャケット J1は、その下方側 (裏面側)の中央 (所定位 置)に、熱拡散シート 102 (ヒートスプレッダ)を介して CPU101が取り付けられている 。このように CPU101が取り付けられた状態で、液冷ジャケット J1内を冷却水が流通 することにより、液冷ジャケット Jlは CPU101が発生する熱を受熱すると共に、内部を 流通する冷却水と熱交換することで、 CPU101から受け入れた熱を冷却水に伝達し 、その結果として、 CPU101が効率的に冷却されるようになっている。なお、熱拡散 シート 102は、 CPU101の熱を、後記するジャケット本体 10の底壁 11に効率的に伝 達させるためのシートであり、例えば銅などの高熱伝導性を有する金属から形成され ている。 Next, the liquid cooling jacket J1 constituting the liquid cooling system S1 will be described in detail. As shown in FIG. 2 and FIG. 3, the liquid cooling jacket J1 has a CPU 101 attached to the center (predetermined position) on the lower side (back side) via a heat diffusion sheet 102 (heat spreader). With the CPU 101 attached in this way, cooling water flows through the liquid cooling jacket J1. As a result, the liquid cooling jacket Jl receives the heat generated by the CPU 101 and also exchanges heat with the cooling water circulating inside, thereby transferring the heat received from the CPU 101 to the cooling water. As a result, the CPU 101 It is designed to be cooled efficiently. The thermal diffusion sheet 102 is a sheet for efficiently transferring the heat of the CPU 101 to the bottom wall 11 of the jacket body 10 described later, and is formed of a metal having high thermal conductivity such as copper, for example. .
[0062] このような液冷ジャケット J1は、図 4から図 7に示すように、ジャケット本体 10と、扁平 管束 20 (管束)と、蓋ユニット 30とを主に備えている。ジャケット本体 10、扁平管束 20 、蓋ユニット 30は、特に記載しない限り、アルミニウムまたはアルミニウム合金力も形 成されている。これにより、液冷ジャケット J1は軽量ィ匕が図られており、取り扱い容易と なっている。  As shown in FIGS. 4 to 7, the liquid cooling jacket J1 mainly includes a jacket body 10, a flat tube bundle 20 (tube bundle), and a lid unit 30. Unless otherwise specified, the jacket body 10, the flat tube bundle 20, and the lid unit 30 are also formed of aluminum or aluminum alloy force. As a result, the liquid cooling jacket J1 is lightweight and easy to handle.
[0063] <ジャケット本体 >  [0063] <Jacket body>
ジャケット本体 10は、上方側(一方側)が開口した浅底の箱体であり(図 7参照)、底 壁 11と、周壁 12とを有しており、その内側に扁平管束 20を収容する収容室を備えて いる(図 7参照)。このようなジャケット本体 10は、例えば、ダイキャスト (ダイカスト)、铸 造、鍛造などによって作製される。また、ジャケット本体 10は、その開口縁の一部に、 後記する蓋本体 31の切欠部 31cに対応した形状の位置合わせ部 14を有している。  The jacket body 10 is a shallow box that opens on the upper side (one side) (see FIG. 7), has a bottom wall 11 and a peripheral wall 12, and accommodates the flat tube bundle 20 inside thereof. It has a storage room (see Fig. 7). Such a jacket body 10 is produced by, for example, die casting (die casting), forging, forging or the like. Further, the jacket main body 10 has an alignment portion 14 having a shape corresponding to a notch 31c of the lid main body 31 described later at a part of the opening edge.
[0064] <扁平管束>  [0064] <Flat tube bundle>
扁平管束 20は、ジャケット本体 10内において、その両端側にスペース 10aおよび スペース 10cを確保しつつ(図 4、図 5参照)、 A1— Si— Zn系などのアルミニウム合金 力もなるロウ材等によって、ジャケット本体 10の底壁 11に熱交換 (熱移動)可能に接 合'固定されている(図 6参照)。スペース 10aは第 1流路 A1として機能しており、スぺ ース 1 Ocは第 3流路 C 1として機能して 、る。  The flat tube bundle 20 has a space 10a and a space 10c on both ends in the jacket body 10 (see FIGS. 4 and 5), and is made of a brazing material such as an A1-Si—Zn-based aluminum alloy. It is fixed to the bottom wall 11 of the jacket body 10 so that heat exchange (heat transfer) is possible (see FIG. 6). The space 10a functions as the first flow path A1, and the space 1 Oc functions as the third flow path C1.
[0065] 扁平管束 20は、所定本数の扁平管 21が、その厚み方向に束ねられ、接合された ものである(図 6、図 7参照)。各扁平管 21は、 1本または複数本 (第 1実施形態では 2 本)の中空部 21aを有している。そして、各中空部 21aは、冷却水が流通する第 2流 路 Blaとして機能している。すなわち、各第 2流路 Blaは、その断面視が矩形であり、 その両側に位置する扁平管 21の周壁 21b、 21bからなる側壁部 (第 2流路構成部)と 、その上下側に位置する周壁 21bまたは仕切壁 21cからなる上壁部(第 2流路構成 部)または下壁部 (第 2流路構成部)と、によって取り囲まれている。したがって、扁平 管束 20は複数の第 2流路 Bla、つまり、複数の第 2流路 Blaからなる第 2流路群 B1 を有している。 The flat tube bundle 20 is obtained by bundling and joining a predetermined number of flat tubes 21 in the thickness direction (see FIGS. 6 and 7). Each flat tube 21 has one or a plurality of (two in the first embodiment) hollow portions 21a. Each hollow portion 21a functions as a second flow path Bla through which cooling water flows. That is, each of the second flow paths Bla has a rectangular cross-sectional view, and side walls (second flow path constituting parts) composed of the peripheral walls 21b and 21b of the flat tube 21 located on both sides thereof. The upper wall portion (second flow path constituting portion) or the lower wall portion (second flow passage constituting portion) composed of the peripheral wall 21b or the partition wall 21c positioned on the upper and lower sides thereof is surrounded. Accordingly, the flat tube bundle 20 has a plurality of second flow paths Bla, that is, a second flow path group B1 composed of a plurality of second flow paths Bla.
[0066] ここで、 CPU101は、前記したように、底壁 11の下側(外側)の略中央位置に取り 付けられている(図 3参照)。これにより、 CPU101の熱は、底壁 11を介して、各扁平 管 21の中空部 21a (第 2流路 Bla)を取り囲む周壁 21bと、隣り合う中空部 21aを仕 切る仕切壁 21cとに伝達するようになっている。そして、周壁 21bおよび仕切壁 21c ( 熱交換部)に伝達した熱力 各第 2流路 Blaを流通する冷却水に伝達するようになつ ている。このようにして、 CPU101は、第 2流路群 B1部分を流通する冷却水と主に熱 交換するようになっている。  [0066] Here, as described above, the CPU 101 is mounted at a substantially central position on the lower side (outside) of the bottom wall 11 (see FIG. 3). As a result, the heat of the CPU 101 is transferred via the bottom wall 11 to the peripheral wall 21b surrounding the hollow portion 21a (second flow path Bla) of each flat tube 21 and the partition wall 21c that cuts the adjacent hollow portion 21a. It is supposed to be. Then, the thermal force transmitted to the peripheral wall 21b and the partition wall 21c (heat exchange part) is transmitted to the cooling water flowing through each second flow path Bla. In this way, the CPU 101 mainly exchanges heat with the cooling water flowing through the second flow path group B1.
また、複数本の扁平管 21を束ねて扁平管束 20を構成したことにより、 CPU101か らの熱が伝達し、かつ、冷却水と直接的に熱交換する周壁 2 lb (熱交換部)が増加す るため、 CPU101と冷却水との間で効率的に熱交換させることができる。これにより、 CPU101を効率的に冷却可能となっている。  In addition, by forming a flat tube bundle 20 by bundling multiple flat tubes 21, the peripheral wall 2 lb (heat exchange part) that transfers heat from the CPU 101 and directly exchanges heat with cooling water increases. Therefore, heat can be efficiently exchanged between the CPU 101 and the cooling water. As a result, the CPU 101 can be efficiently cooled.
[0067] [第 1流路、第 2流路群 (複数の第 2流路)、第 3流路]  [0067] [First flow path, second flow path group (multiple second flow paths), third flow path]
ここで、第 1流路 Al、第 2流路群 B1 (複数の第 2流路 Bla)、第 3流路 C1について 、さらに説明する。  Here, the first flow path Al, the second flow path group B1 (a plurality of second flow paths Bla), and the third flow path C1 will be further described.
第 1流路 A1は、マイクロポンプ 122から冷却水が供給される流路であり、マイクロポ ンプ 122側(第 2流路群 B1よりも上流側)に配置されている。  The first channel A1 is a channel through which cooling water is supplied from the micropump 122, and is arranged on the micropump 122 side (upstream side of the second channel group B1).
第 2流路群 B1は、第 1流路 A1の下流側に配置されており、第 2流路群 B1を構成す る各第 2流路 Blaは、第 1流路 A1から分岐している。これにより、冷却水が、第 1流路 A1から分配されて、各第 2流路 Blaに流れ込むようになって 、る。  The second flow path group B1 is disposed downstream of the first flow path A1, and each second flow path Bla constituting the second flow path group B1 is branched from the first flow path A1. . Thus, the cooling water is distributed from the first flow path A1 and flows into each second flow path Bla.
第 3流路 C1は、第 2流路群 Bl、つまり、複数の第 2流路 Blaの下流側に配置され ており、複数の第 2流路 Blaを集合させている。これにより、各第 2流路 Blaから流れ 出た冷却水は、第 3流路 C1で集合した後、液冷ジャケット J1の外部に排出されるよう になっている。  The third flow path C1 is disposed on the downstream side of the second flow path group Bl, that is, the plurality of second flow paths Bla, and collects the plurality of second flow paths Bla. As a result, the cooling water flowing out from each second flow path Bla is collected in the third flow path C1 and then discharged to the outside of the liquid cooling jacket J1.
[0068] 第 1流路 A1および第 3流路 C1の流路断面積は、各第 2流路 Blaの流路断面積より 大きく設定されている。各第 2流路 Blaの流路長 (各扁平管 21の長さ)は、従来の技 術に係る扁平管束 20に相当する部分の全てを経由して蛇行する 1本の流路に対し て、飛躍的に短くなつている。 [0068] The channel cross-sectional areas of the first channel A1 and the third channel C1 are determined from the channel cross-sectional area of each second channel Bla. It is set large. The flow path length of each second flow path Bla (the length of each flat tube 21) is as follows for one flow path that meanders through all of the portions corresponding to the flat tube bundle 20 according to the conventional technology. , Has become dramatically shorter.
したがって、第 1流路 Al、各第 2流路 Bla、第 3流路 C1の順で流通する冷却水が 受ける圧力損失は、第 1流路 A1および第 3流路 C1では殆んど発生せず、各第 2流 路 Blaでは、前記蛇行する 1本の流路から受ける圧力損失に対して、飛躍的に小さく なる。これにより、液冷ジャケット J1に冷却水を供給するマイクロポンプ 122の定格出 力を下げることができ、マイクロポンプ 122の小型化や、その騒音が低減される。  Therefore, the pressure loss experienced by the cooling water flowing in the order of the first flow path Al, each second flow path Bla, and the third flow path C1 hardly occurs in the first flow path A1 and the third flow path C1. In each second flow path Bla, the pressure loss received from the single meandering flow path is drastically reduced. As a result, the rated output of the micropump 122 that supplies the cooling water to the liquid cooling jacket J1 can be lowered, and the micropump 122 can be reduced in size and noise.
[0069] <蓋ユニット >  [0069] <Lid unit>
蓋ユニット 30は、図 7に示すように、蓋本体 31と、取込パイプ 32と、排出パイプ 33と を主に備えている。  As shown in FIG. 7, the lid unit 30 mainly includes a lid main body 31, an intake pipe 32, and a discharge pipe 33.
[0070] [蓋本体]  [0070] [Cover body]
蓋本体 31は、扁平管束 20を収容したジャケット本体 10に蓋をするように、ジャケッ ト本体 10に接合 '固定されている。蓋本体 31には、第 1流路 A1 (スペース 10a)に連 通する取込口 31aと、第 3流路 C1 (スペース 10c)に連通する排出口 31b力形成され ている(図 7参照)。  The lid body 31 is joined and fixed to the jacket body 10 so as to cover the jacket body 10 containing the flat tube bundle 20. The lid body 31 is formed with the force of the intake port 31a communicating with the first flow path A1 (space 10a) and the discharge port 31b communicating with the third flow path C1 (space 10c) (see FIG. 7). .
また、蓋本体 31は、切り欠かれてなる切欠部 31cを有しており、切欠部 31cの形状 は、ジャケット本体 10の位置合わせ部 14と一致している。これにより、蓋本体 31 (蓋 ユニット 30)は、所定の向きでのみ、ジャケット本体 10と組み合わさるようになっている  Further, the lid body 31 has a cutout portion 31c that is cut out, and the shape of the cutout portion 31c matches the alignment portion 14 of the jacket body 10. Thereby, the lid body 31 (lid unit 30) is combined with the jacket body 10 only in a predetermined direction.
[0071] (取込口、排出口) [0071] (take-in port, discharge port)
取込口 31aおよび排出口 31bは、図 5に示すように、平面視において、 CPU101を 中心として点対称に配置されると共に、相対的に遠ざ力るように配置されている。言 い換えると、取込口 31a、排出口 31b、 CPU101は、平面視が正方形を呈する液冷 ジャケット J1の対角線上に配置されている。さらに説明すると、取込口 31aは、図 5に おける左上側に配置しており、一方、排出口 31bは図 5における右下側に配置して おり、取込口 3 laと排出口 3 lbの略中間位置(正方形を呈する液冷ジャケット J 1の略 中心)に、 CPU101が配置している。 したがって、取込パイプ 32からの冷却水は、取込口 31a、第 1流路 A1を介して、第 2流路群 B1の全体 (複数の第 2流路 Blaの全体)に略均等に供給されるようになって いる。そして、第 2流路群 B1全体を流通する冷却水の全体と、 CPU101との間で、 効率的に熱交換されるようになって!/、る。 As shown in FIG. 5, the intake port 31a and the discharge port 31b are arranged symmetrically with respect to the CPU 101 in plan view, and are arranged so as to be relatively distant from each other. In other words, the intake port 31a, the discharge port 31b, and the CPU 101 are arranged on a diagonal line of the liquid cooling jacket J1 having a square shape in plan view. More specifically, the intake port 31a is disposed on the upper left side in FIG. 5, while the discharge port 31b is disposed on the lower right side in FIG. 5, and the intake port 3 la and the discharge port 3 lb. The CPU 101 is arranged at a substantially middle position (approximately the center of the liquid cooling jacket J 1 having a square shape). Therefore, the cooling water from the intake pipe 32 is supplied approximately uniformly to the entire second flow path group B1 (the entire plurality of second flow paths Bla) via the intake port 31a and the first flow path A1. It is supposed to be done. Then, heat is efficiently exchanged between the entire cooling water flowing through the entire second flow path group B1 and the CPU 101! /.
次いで、複数の第 2流路 Blaから流出した冷却水は、第 3流路 C1で集合した後、 排出口 31b、排出パイプ 33を介して、液冷ジャケット J1の外部に排出されるようにな つている。  Next, the cooling water flowing out from the plurality of second flow paths Bla is collected in the third flow path C1, and then discharged to the outside of the liquid cooling jacket J1 through the discharge port 31b and the discharge pipe 33. It is.
[0072] [取込パイプ、排出パイプ] [0072] [take-in pipe, discharge pipe]
取込パイプ 32は、蓋本体 31に固定されている。取込パイプ 32には、液冷ジャケット J1の上流側のマイクロポンプ 122 (図 1参照)に通じるフレキシブルチューブ 124が接 続される。そして、マイクロポンプ 122からの冷却水は、取込パイプ 32の中空部およ び取込口 31aを介して、第 1流路 A1に供給されるようになって!/、る。  The intake pipe 32 is fixed to the lid body 31. Connected to the intake pipe 32 is a flexible tube 124 that leads to a micropump 122 (see FIG. 1) upstream of the liquid cooling jacket J1. Then, the cooling water from the micropump 122 is supplied to the first flow path A1 through the hollow portion of the intake pipe 32 and the intake port 31a.
排出ノイブ 33は、蓋本体 31に固定されている。排出パイプ 33には、液冷ジャケット J1の下流側のラジェータ 121 (図 1参照)に通じるフレキシブルチューブ 124が接続さ れる。そして、第 3流路 C1で集合した冷却水は、排出口 31bおよび排出パイプ 33の 中空部を介して、液冷ジャケット J1の外部に排出されるようになっている。  The discharge nove 33 is fixed to the lid body 31. Connected to the discharge pipe 33 is a flexible tube 124 leading to a radiator 121 (see FIG. 1) on the downstream side of the liquid cooling jacket J1. The cooling water collected in the third flow path C1 is discharged to the outside of the liquid cooling jacket J1 through the discharge port 31b and the hollow portion of the discharge pipe 33.
[0073] 取込ノイブ 32および排出パイプ 33は、蓋本体 31の上面側に立設状態で固定され ている。これ〖こより、液冷ジャケット J1の上面側のみから、フレキシブルチューブ 124、 124を取込パイプ 32、排出ノィプ 33に接続可能となっている。すなわち、スペース の限られたパーソナルコンピュータ本体 120内において(図 1参照)、液冷ジャケット J 1に接続するフレキシブルチューブ 124、 124 (図 1参照)の取り回しが容易となって いる。 [0073] The intake noise 32 and the discharge pipe 33 are fixed to the upper surface side of the lid body 31 in a standing state. Accordingly, the flexible tubes 124 and 124 can be connected to the intake pipe 32 and the discharge nozzle 33 only from the upper surface side of the liquid cooling jacket J1. That is, in the personal computer main body 120 with limited space (see FIG. 1), the flexible tubes 124 and 124 (see FIG. 1) connected to the liquid cooling jacket J1 can be easily routed.
[0074] 《液冷ジャケットの作用効果〉〉  [0074] <Effects of liquid cooling jacket>
次に、液冷ジャケット J1の作用効果について説明する。  Next, the function and effect of the liquid cooling jacket J1 will be described.
パーソナルコンピュータ本体 120 (図 1)の電源が ONされると、 CPU101が作動し、 発熱し始める。そして、 CPU101の熱は、熱拡散シート 102を介して、ジャケット本体 10の底壁 11に伝達し、さらに、主として扁平管束 20を構成する各扁平管 21の周壁 21bおよび仕切壁 21cに伝達する。 [0075] 一方、パーソナルコンピュータ本体 120の電源の ONに連動して、マイクロポンプ 1 22が作動し、冷却水が循環する。そうすると、液冷ジャケット J1において、冷却水が、 第 1流路 Al、第 2流路群 B1 (複数の第 2流路 Bla)、第 3流路 C1の順で流通する。 When the personal computer main unit 120 (Fig. 1) is turned on, the CPU 101 operates and begins to generate heat. Then, the heat of the CPU 101 is transmitted to the bottom wall 11 of the jacket body 10 via the thermal diffusion sheet 102, and further transmitted to the peripheral wall 21b and the partition wall 21c of each flat tube 21 that mainly forms the flat tube bundle 20. On the other hand, in conjunction with turning on the power source of the personal computer main body 120, the micropump 122 operates and the cooling water circulates. Then, in the liquid cooling jacket J1, the cooling water flows in the order of the first flow path Al, the second flow path group B1 (a plurality of second flow paths Bla), and the third flow path C1.
[0076] そして、各扁平管 21の周壁 21bおよび仕切壁 21cと各第 2流路 Blaを流通する冷 却水との間で、熱交換され、周壁 21bおよび仕切壁 21cに伝達した CPU101の熱が 、冷却水に伝達 (移動)し、冷却水は受熱する。  [0076] Then, heat is exchanged between the peripheral wall 21b and the partition wall 21c of each flat tube 21 and the cooling water flowing through each second flow path Bla, and the heat of the CPU 101 transferred to the peripheral wall 21b and the partition wall 21c. However, it is transmitted (moved) to the cooling water, and the cooling water receives heat.
次いで、各第 2流路 Blaで受熱した冷却水は、第 3流路 C1で集合した後、排出口 3 lb、排出パイプ 33を経由して、液冷ジャケット J1の外部に排出される。排出された冷 却水は、フレキシブルチューブ 124を通って、ラジェータ 121に供給され、ラジェータ 121において冷却水の熱が放熱される。そして、温度が低下した冷却水は、リザーブ タンク 123、フレキシブルチューブ 124を経由して、マイクロポンプ 122に流れた後、 再び、液冷ジャケット J1に供給される。  Next, the cooling water received in each second flow path Bla is collected in the third flow path C1, and then discharged to the outside of the liquid cooling jacket J1 via the discharge port 3 lb and the discharge pipe 33. The discharged cooling water is supplied to the radiator 121 through the flexible tube 124, and the heat of the cooling water is radiated from the radiator 121. Then, the cooling water whose temperature has decreased flows through the reserve tank 123 and the flexible tube 124 to the micro pump 122, and is then supplied again to the liquid cooling jacket J1.
[0077] このような、(l) CPUlOlから熱拡散シート 102、底壁 11、各扁平管 21の周壁 21b および仕切壁 21cへの熱の伝達と、(2)周壁 21bおよび仕切壁 21cから冷却水への 熱の伝達と、(3)ラジェータ 121における冷却水の放熱とが連続することにより、 CP U101が効率的に冷却される。  [0077] Heat transfer from the CPUlOl to the thermal diffusion sheet 102, the bottom wall 11, the peripheral wall 21b and the partition wall 21c of each flat tube 21, and (2) cooling from the peripheral wall 21b and the partition wall 21c. The heat transfer to the water and (3) the radiation of the cooling water in the radiator 121 are continuously performed, so that the CCU 101 is efficiently cooled.
また、 CPU101の熱力 複数の扁平管 21の周壁 21bおよび仕切壁 21cに分散して 伝達し、この各周壁 21bおよび仕切壁 21cの熱が各第 2流路 Blaを流通する冷却水 に伝達するため、 CPU101を効率的に冷却することができる。  Further, the thermal power of the CPU 101 is distributed and transmitted to the peripheral walls 21b and the partition walls 21c of the plurality of flat tubes 21, and the heat of each of the peripheral walls 21b and the partition walls 21c is transmitted to the cooling water flowing through each second flow path Bla. CPU101 can be cooled efficiently.
[0078] さらに、液冷ジャケット J1に供給された冷却水は、液冷ジャケット J1内において、流 路断面積の大きい第 1流路 A1を介して、流路長が短ぐかつ、主に熱交換する複数 の第 2流路 Bla (第 2流路群 B1)を流通した後、流路断面積の大きい第 3流路 C1で 集合して排出されるため、液冷ジャケット J1において冷却水が受ける圧力損失が小さ くなつている。これにより、マイクロポンプ 122を小型化することができ、液冷システム S 1の適用範囲が広くなる。  [0078] Further, the cooling water supplied to the liquid cooling jacket J1 has a short channel length and mainly heat in the liquid cooling jacket J1 via the first channel A1 having a large channel cross-sectional area. After flowing through the plurality of second flow paths Bla (second flow path group B1) to be exchanged, they are collected and discharged in the third flow path C1 having a large cross-sectional area of the flow path, so that the cooling water flows in the liquid cooling jacket J1. The pressure loss received is getting smaller. Thereby, the micropump 122 can be reduced in size, and the application range of the liquid cooling system S1 is widened.
さらにまた、このような液冷ジャケット J1 (本発明品)によれば、図 8に示すように、 1 本の長い蛇行した第 2流路を有する従来に係る液冷ジャケット (従来品)よりも、低い 圧力損失かつ高い流量で、冷却水を通流させることができる。すなわち、図 8に示す ように、 1つのマイクロポンプの圧力損失一流量曲線と、従来品に係る流量曲線との 交点 Mlに対して、前記圧力損失一流量曲線と本発明品に係る流量曲線との交点 M2は、右下側にシフトしており、液冷ジャケット J1 (本発明品)によれば、圧力損失が 小さぐ流量が高くなることがわかる。 Furthermore, according to such a liquid cooling jacket J1 (invention product), as shown in FIG. 8, compared to the conventional liquid cooling jacket (conventional product) having one long meandering second flow path. Cooling water can be passed with low pressure loss and high flow rate. That is, as shown in Figure 8. Thus, with respect to the intersection Ml of the pressure loss-flow rate curve of one micropump and the flow rate curve according to the conventional product, the intersection point M2 of the pressure loss-flow rate curve and the flow rate curve according to the present invention is It has been shifted to the lower side, and according to the liquid cooling jacket J1 (product of the present invention), it can be seen that the pressure loss is small and the flow rate is high.
[0079] 《液冷ジャケットの作製方法〉〉  [0079] <Method for producing liquid-cooled jacket>
次に、液冷ジャケット J1の作製 (製造)方法について、図 7を主に参照して説明する 。液冷ジャケット J1の作製方法は、扁平管束 20を作製する第 1工程と、扁平管束 20 をジャケット本体 10に接合'固定する第 2工程とを主に含んでいる。  Next, a method for manufacturing (manufacturing) the liquid cooling jacket J1 will be described with reference mainly to FIG. The manufacturing method of the liquid cooling jacket J1 mainly includes a first step of manufacturing the flat tube bundle 20 and a second step of joining and fixing the flat tube bundle 20 to the jacket body 10.
[0080] <第 1工程 >  [0080] <First step>
複数本の扁平管 21を適宜な手段で接合しながら束ねる。次いで、束ねられたもの の両端を、切断'研削して揃え、扁平管束 20を作製する。  A plurality of flat tubes 21 are bundled while being joined by an appropriate means. Next, both ends of the bundle are cut and ground to prepare a flat tube bundle 20.
[0081] <第 2工程 >  [0081] <Second step>
扁平管束 20を、ジャケット本体 10の底壁 11の所定位置に、適宜な手段 (A1— Si— Zn等のロウ材とフラックス)で、熱交換可能に接合 ·固定する。なお、扁平管束 20を ジャケット本体 10に固定する際、扁平管束 20の両端側に、前記したスペース 10a (第 1流路 A1)、スペース 10c (第 3流路 C1)を確保する。 The flat tube bundle 20, at a predetermined position of the bottom wall 11 of the jacket body 10, with suitable means (A1- Si- brazing material and flux of Z n, etc.), heat exchangeably connected and fixed. When the flat tube bundle 20 is fixed to the jacket body 10, the above-described space 10a (first flow path A1) and space 10c (third flow path C1) are secured on both ends of the flat tube bundle 20.
[0082] その後、取込パイプ 32、排出ノィプ 33が所定位置に固定された蓋本体 31を、適 宜な手段によって、ジャケット本体 10に接合 '固定する。このようにして、液冷ジャケッ ト J 1を得ることができる。  [0082] Thereafter, the lid body 31 with the intake pipe 32 and the discharge nozzle 33 fixed in place is joined and fixed to the jacket body 10 by an appropriate means. In this way, the liquid cooling jacket J1 can be obtained.
なお、蓋本体 31をジャケット本体 10に固定した後に、取込パイプ 32、排出パイプ 3 3を蓋本体 31に固定してもよ!/、。  After fixing the lid body 31 to the jacket body 10, the intake pipe 32 and the discharge pipe 33 may be fixed to the lid body 31! /.
[0083] このように、第 1実施形態に係る液冷ジャケット J1の作製方法によれば、複数の扁平 管 21を扁平管束 20として、この扁平管束 20をジャケット本体 10に固定し、蓋本体 31 を固定するという簡易な工程によって、液冷ジャケット J1を得ることができる。  As described above, according to the method for manufacturing the liquid cooling jacket J1 according to the first embodiment, the flat tube bundle 20 is fixed to the jacket main body 10 as a plurality of flat tubes 21 and the lid main body 31 is fixed. The liquid cooling jacket J1 can be obtained by a simple process of fixing.
[0084] 《第 2実施形態〉〉  [0084] <Second Embodiment>
次に、第 2実施形態に係る液冷ジャケットについて、図 9、図 10を参照して説明する 。図 9は、第 2実施形態に係る液冷ジャケットの全体斜視図であり、蓋ユニットを省略 した状態を示す。図 10は、図 9に示す第 2実施形態に係る液冷ジャケットの Y—Y断 面図である。 Next, a liquid cooling jacket according to a second embodiment will be described with reference to FIGS. FIG. 9 is an overall perspective view of the liquid cooling jacket according to the second embodiment, showing a state in which the lid unit is omitted. FIG. 10 shows a YY cut of the liquid cooling jacket according to the second embodiment shown in FIG. FIG.
[0085] 図 9、図 10に示すように、第 2実施形態に係る液冷ジャケット J2は、第 1実施形態に 係る液冷ジャケット J1の扁平管束 20に代えて、扁平管束 23を備えたことを特徴とす る。扁平管束 23は、その外形寸法が第 1実施形態に係る扁平管束 20と同一であるも のの、薄板状の扁平管 24を複数枚(図 9、図 10では 3枚)で重ね束ねられることで構 成されている。各扁平管 24は、その内部に、複数の(図 9、図 10では 12本)の中空 部 24aを有しており、各中空部 24aが第 2流路 B2aとなっている。その結果として、扁 平管束 23は、複数の第 2流路 B2aからなる第 2流路群 B2を有して 、る。  [0085] As shown in FIGS. 9 and 10, the liquid cooling jacket J2 according to the second embodiment includes a flat tube bundle 23 instead of the flat tube bundle 20 of the liquid cooling jacket J1 according to the first embodiment. It is characterized by. Although the flat tube bundle 23 has the same external dimensions as the flat tube bundle 20 according to the first embodiment, a plurality of thin plate-like flat tubes 24 (three in FIGS. 9 and 10) can be bundled together. It consists of Each flat tube 24 has a plurality of (12 in FIG. 9 and FIG. 10) hollow portions 24a therein, and each hollow portion 24a serves as a second flow path B2a. As a result, the flat tube bundle 23 has a second flow path group B2 composed of a plurality of second flow paths B2a.
[0086] ここで、各扁平管 24は薄板状であるため、その内部に形成された中空部 24aの本 数(図 9では 12本)は、第 1実施形態に係る扁平管 21内に形成された中空部 21aの 本数 (2本)よりも多い。これにより、扁平管束 23を構成する扁平管 24の数 (3枚)は、 第 1実施形態に係る扁平管束 20を構成する扁平管 21の数 (図 7参照、 20本)より少 なくなる。すなわち、第 2実施形態に係る扁平管束 23は、第 1実施形態に係る扁平管 束 20に対して、束ねる(重ねる)扁平管 24の数を減らすことができ、手間をかけずに 容易に構成することができる。  Here, since each flat tube 24 has a thin plate shape, the number of hollow portions 24a formed therein (12 in FIG. 9) is formed in the flat tube 21 according to the first embodiment. More than the number (2) of the hollow portions 21a formed. As a result, the number (three) of the flat tubes 24 constituting the flat tube bundle 23 is less than the number of the flat tubes 21 (see FIG. 7, 20) constituting the flat tube bundle 20 according to the first embodiment. That is, the flat tube bundle 23 according to the second embodiment can reduce the number of flat tubes 24 to be bundled (stacked) with respect to the flat tube bundle 20 according to the first embodiment, and can be configured easily without trouble. can do.
[0087] 《第 3実施形態〉〉  [0087] <Third Embodiment>
次に、第 3実施形態に係る液冷ジャケットについて、図 11、図 12を参照して説明す る。図 11は、第 3実施形態に係る液冷ジャケットの全体斜視図である。図 12は、第 3 実施形態に係る液冷ジャケットの平面図である。  Next, a liquid cooling jacket according to a third embodiment will be described with reference to FIGS. FIG. 11 is an overall perspective view of the liquid cooling jacket according to the third embodiment. FIG. 12 is a plan view of a liquid cooling jacket according to the third embodiment.
[0088] 《液冷ジャケットの構成》  [0088] <Structure of liquid cooling jacket>
図 11、図 12に示すように、第 3実施形態に係る液冷ジャケット J3は、第 1実施形態 に係る液冷ジャケット J1と比較して、取込口 34aと排出口 34bが異なる位置に形成さ れた蓋本体 34を備えて 、る。  As shown in FIGS. 11 and 12, the liquid cooling jacket J3 according to the third embodiment is formed at a position where the intake port 34a and the discharge port 34b are different from the liquid cooling jacket J1 according to the first embodiment. A lid body 34 is provided.
取込口 34aは、スペース 10a (第 1流路 A1)の略中央位置に連通しており、冷却水 がスペース 10aの略中央位置に供給されるようになっている。排出口 34bは、スぺー ス 10c (第 3流路)の略中央位置に連通しており、この略中央位置力も冷却水が排出 されるようになつている。取込口 34aと排出口 34bは、平面視において、 CPU101と 中心として対称に配置されると共に、 CPU101に近づく位置に配置されている。 なお、蓋本体 34も、第 1実施形態に係る蓋本体 31と同様に、ジャケット本体 10の位 置合わせ部 14に対応した形状の切欠部 34cを有している。 The intake port 34a communicates with a substantially central position of the space 10a (first flow path A1), and cooling water is supplied to a substantially central position of the space 10a. The discharge port 34b communicates with a substantially central position of the space 10c (third flow path), and this substantially central position force also discharges the cooling water. The intake port 34a and the discharge port 34b are arranged symmetrically with respect to the CPU 101 in a plan view, and are arranged at positions approaching the CPU 101. The lid body 34 also has a cutout 34c having a shape corresponding to the alignment portion 14 of the jacket body 10 in the same manner as the lid body 31 according to the first embodiment.
[0089] 《液冷ジャケットの作用効果〉〉 [0089] <Operation and effect of liquid cooling jacket>
次に、液冷ジャケット J3の作用効果について簡単に説明する。  Next, the effect of the liquid cooling jacket J3 will be briefly described.
取込口 34aと排出口 34bが、 CPU101に近づく位置に配置された構成としたことに より、取込口 34aから第 1流路 A1 (スペース 10a)に供給された冷却水力 CPU101 の近傍の第 2流路 Blaに優先的に流通しやすくなる。これにより、冷却水と CPU101 との間で、好適に熱交換することができ、 CPU101を効率的に冷却することができる  By adopting a configuration in which the intake port 34a and the exhaust port 34b are arranged at positions close to the CPU 101, the cooling water power supplied from the intake port 34a to the first flow path A1 (space 10a) near the cooling hydraulic power CPU101. It becomes easy to distribute preferentially to 2 flow paths Bla. As a result, heat exchange can be suitably performed between the cooling water and the CPU 101, and the CPU 101 can be efficiently cooled.
[0090] 《第 4実施形態〉〉 [0090] <Fourth embodiment>
次に、第 4実施形態に係る液冷ジャケットについて、図 13から図 20を参照して説明 する。図 13は、第 4実施形態に係る液冷ジャケットの全体斜視図であり、蓋ユニットを 省略した状態を示す。図 14は、図 13に示す第 4実施形態に係る液冷ジャケットの Z —Z断面図である。図 15は、図 14に示す Z—Z断面図の拡大図である。図 16は、第 4実施形態に係る液冷ジャケットのフィン部材の第 1作製方法を示す斜視図であり、 ( a)は切断前、(b)は切断後を示す。図 17は、第 4実施形態に係る液冷ジャケットのフ イン部材の第 2作製方法を示す斜視図であり、(a)は切削前、(b)は切削後を示す。 図 18は、第 4実施形態に係る摩擦攪拌接合を示す斜視図である。図 19は、第 4実施 形態に係る摩擦攪拌接合を示す断面図である。図 20は、第 4実施形態に係る摩擦 攪拌接合におけるツールの動きを示す平面図である。  Next, a liquid cooling jacket according to a fourth embodiment will be described with reference to FIGS. FIG. 13 is an overall perspective view of the liquid cooling jacket according to the fourth embodiment, showing a state in which the lid unit is omitted. FIG. 14 is a Z-Z sectional view of the liquid cooling jacket according to the fourth embodiment shown in FIG. FIG. 15 is an enlarged view of the Z-Z sectional view shown in FIG. FIG. 16 is a perspective view showing a first method for producing a fin member of a liquid cooling jacket according to the fourth embodiment, where (a) shows before cutting and (b) shows after cutting. FIG. 17 is a perspective view showing a second method for producing the fin member of the liquid cooling jacket according to the fourth embodiment, where (a) shows before cutting and (b) shows after cutting. FIG. 18 is a perspective view showing friction stir welding according to the fourth embodiment. FIG. 19 is a cross-sectional view showing friction stir welding according to the fourth embodiment. FIG. 20 is a plan view showing the movement of the tool in the friction stir welding according to the fourth embodiment.
[0091] 《液冷ジャケットの構成》 [0091] <Structure of liquid cooling jacket>
図 13、図 14に示すように、第 4実施形態に係る液冷ジャケット J4は、第 1実施形態 に係る液冷ジャケット J1の扁平管束 20に代えて、アルミニウムまたはアルミニウム合 金製のフィン部材 25を備えたことを特徴とする。  As shown in FIGS. 13 and 14, the liquid cooling jacket J4 according to the fourth embodiment is replaced by a fin member 25 made of aluminum or aluminum alloy instead of the flat tube bundle 20 of the liquid cooling jacket J1 according to the first embodiment. It is provided with.
なお、第 4実施形態に係るジャケット本体 10は、その内側にフィン部材 25を収容す るフィン収容室を備えており、このフィン収容室は周壁 12に取り囲まれている。そして 、フィン部材 25は底壁 11にロウ付け固定されると共に、フィン収容室に収容されてお り、蓋本体 31 (封止体)がジャケット本体 10の開口に蓋をすることで、フィン収容室は 封止されている(図 14参照)。 Note that the jacket body 10 according to the fourth embodiment includes a fin housing chamber that houses the fin member 25 on the inner side thereof, and the fin housing chamber is surrounded by the peripheral wall 12. The fin member 25 is fixed to the bottom wall 11 by brazing and is accommodated in the fin housing chamber, and the lid main body 31 (sealing body) covers the opening of the jacket main body 10 so as to accommodate the fin. Room Sealed (see Figure 14).
[0092] くフィン部材〉  [0092] Ku fin member>
フィン部材 25は、図 14に示すように、ベース板 25aと、これに立設した複数のフィン 25bとを備えている。ベース板 25aは、ジャケット本体 10の底壁 11に熱交換可能に 接合'固定されている。したがって、 CPU101の熱力 熱拡散シート 102、底壁 11を 介して、各フィン 25bに伝達するようになっている。また、各フィン 25bの上側先端は、 蓋本体 31の裏面に当接している。なお、ベース板 25aとジャケット本体 10とは、 A1— Si— Zn系などのアルミニウム合金力もなるロウ材によって、確実に熱交換可能に接 合されることが好ましい。  As shown in FIG. 14, the fin member 25 includes a base plate 25a and a plurality of fins 25b erected on the base plate 25a. The base plate 25a is joined and fixed to the bottom wall 11 of the jacket body 10 so as to allow heat exchange. Therefore, the heat is transmitted to the fins 25b via the heat and heat diffusion sheet 102 and the bottom wall 11 of the CPU 101. Further, the upper ends of the fins 25b are in contact with the back surface of the lid body 31. The base plate 25a and the jacket main body 10 are preferably joined to each other by a brazing material having an aluminum alloying force such as A1-Si—Zn so that heat exchange can be ensured.
そして、隣り合うフィン 25b、 25bの間が、それぞれ第 2流路 B3aとなっている。すな わち、フィン部材 25は、複数の第 2流路 B3a、つまり、複数の第 2流路 B3aからなる第 2流路群 B3を有している。  A space between adjacent fins 25b and 25b is a second flow path B3a. In other words, the fin member 25 has a plurality of second flow paths B3a, that is, a second flow path group B3 including a plurality of second flow paths B3a.
[0093] 図 15〖こ示すよう〖こ、隣り合うフィン 25b、 25bの距離、つまり、第 2流路 B3aの幅であ る溝幅 W1は、 0. 2-1. 1mmに設計されている。これ〖こより、液冷ジャケット J4の熱 抵抗と、その内部を通る冷却水が受ける圧力損失とを、後記する実施例で説明する ように、良好な範囲とすることができる。  [0093] As shown in FIG. 15, the distance between adjacent fins 25b and 25b, that is, the groove width W1 that is the width of the second flow path B3a is designed to be 0.2-1. . As a result, the thermal resistance of the liquid cooling jacket J4 and the pressure loss experienced by the cooling water passing through the liquid cooling jacket J4 can be in a favorable range as will be described in the examples described later.
[0094] また、溝幅 W1と、フィン 25bの厚さ Tl、つまり、隣り合う第 2流路 B3a、 B3aの間の フィン 25bの厚さ T1とは、次の式(1)の関係を満たしている。これにより、液冷ジャケ ット J4の熱抵抗が小さくなり、 CPU101と冷却水との間で、良好に熱交換することが できる。  [0094] Further, the groove width W1 and the thickness Tl of the fin 25b, that is, the thickness T1 of the fin 25b between the adjacent second flow paths B3a and B3a satisfy the relationship of the following equation (1). ing. As a result, the thermal resistance of the liquid cooling jacket J4 is reduced, and heat can be exchanged favorably between the CPU 101 and the cooling water.
-0. 375 XW1 + 0. 875≤T1/W1≤- 1. 875 XW1 + 3. 275 · · · (1)  -0. 375 XW1 + 0. 875≤T1 / W1≤- 1. 875 XW1 + 3.275 (1)
[0095] さらに、溝幅 W1と、深さ D1 (第 2流路 B3aの深さ)とは、次の式(2)の関係を満たし ている。これにより、液冷ジャケット J4の熱抵抗を最適とすることができる。 [0095] Furthermore, the groove width W1 and the depth D1 (depth of the second flow path B3a) satisfy the relationship of the following equation (2). Thereby, the thermal resistance of the liquid cooling jacket J4 can be optimized.
5 XW1 + 1≤D1≤16. 25 XW1 + 2. 75 · · · (2)  5 XW1 + 1≤D1≤16. 25 XW1 + 2. 75 (2)
[0096] 《液冷ジャケットの作用効果〉〉 [0096] << Effects of liquid cooling jacket >>
次に、液冷ジャケット J4の作用効果について簡単に説明する。  Next, the function and effect of the liquid cooling jacket J4 will be briefly described.
冷却水が、第 1流路 Al、第 2流路群 B3 (複数の第 2流路 B3a)、第 3流路 C1の順に 流通する。そして、第 2流路群 B3を流通する冷却水と、複数のフィン 25bとの間で主 に熱交換される。その結果として、 CPU101を効率的に冷却することができる。 The cooling water flows in the order of the first flow path Al, the second flow path group B3 (a plurality of second flow paths B3a), and the third flow path C1. Then, between the cooling water flowing through the second flow path group B3 and the plurality of fins 25b, Heat exchanged. As a result, the CPU 101 can be efficiently cooled.
[0097] <液冷ジャケットのフィン部材の作製方法》 <Method for Producing Fin Member of Liquid Cooling Jacket>
次に、液冷ジャケット J4のフィン部材 25の作製 (製造)方法につ、、て例示する。  Next, a method for producing (manufacturing) the fin member 25 of the liquid cooling jacket J4 will be exemplified.
[0098] <フィン部材の第 1作製方法 > [0098] <First production method of fin member>
まず、フィン部材 25の第 1作製方法について、図 16を参照して説明する。 図 16 (a)に示すように、所定の金型を使用して、底板 42と、底板 42に立設した複 数の条 43とを有する金属製の押し出し型材 41を作製する。そして、押し出し型材 41 を所定の切断面で切断することによって、ベース板 25a (底板 42の一部)と、複数の フィン 25b (複数の条 43の一部)とを備えるフィン部材 25を作製することができる(図 1 6 (b)参照)。  First, a first manufacturing method of the fin member 25 will be described with reference to FIG. As shown in FIG. 16 (a), a metal extrusion die 41 having a bottom plate 42 and a plurality of strips 43 standing on the bottom plate 42 is produced using a predetermined mold. And the fin member 25 provided with the base plate 25a (a part of the bottom plate 42) and a plurality of fins 25b (a part of the plurality of strips 43) is produced by cutting the extruded die 41 at a predetermined cut surface. (See Figure 16 (b)).
[0099] <フィン部材の第 2作製方法 > [0099] <Second production method of fin member>
次に、フィン部材 25の第 2作製方法について、図 17を参照して説明する。 図 17 (a)に示すように、フィン部材 25の外形に対応した大きさの金属製のブロック 4 4に、適宜な切削工具を使用して、複数の溝 44aを形成する。そうすると、ベース板 2 5aと、複数のフィン 25bとを備えるフィン部材 25を作製することができる(図 17 (b)参 照)。  Next, a second manufacturing method of the fin member 25 will be described with reference to FIG. As shown in FIG. 17 (a), a plurality of grooves 44a are formed in a metal block 44 having a size corresponding to the outer shape of the fin member 25 using an appropriate cutting tool. Then, the fin member 25 including the base plate 25a and the plurality of fins 25b can be manufactured (see FIG. 17B).
[0100] 《液冷ジャケットの組み付け》  [0100] <Assembly of liquid cooling jacket>
次に、液冷ジャケット J4の組み付けにおいて、フィン部材 25が固定されたジャケット 本体 10と、蓋ユニット 30との摩擦攪拌接合について、図 18から図 20を主に参照して 説明する。  Next, in the assembly of the liquid cooling jacket J4, friction stir welding between the jacket main body 10 to which the fin member 25 is fixed and the lid unit 30 will be described with reference mainly to FIGS.
図 18に示すように、フィン部材 25がロウ付け固定されたジャケット本体 10に、切欠 部 31cと位置合わせ部 14とを合わせながら、蓋ユニット 30を被せる。なお、図 19に示 すように、ジャケット本体 10の開口縁は段違いとなっており、一段下がった段差部 15 の上に、蓋本体 31が載せられる。段差部 15の幅 W11は、冷却水が流れる第 1流路 A1及び第 3流路 C1等の容積を確保するため、なるべく小さぐ具体的には 0. 1〜0 . 5mm程度に設定することが好ましい。  As shown in FIG. 18, the cover unit 30 is put on the jacket body 10 to which the fin member 25 is fixed by brazing, while aligning the notch portion 31c and the alignment portion 14. As shown in FIG. 19, the opening edge of the jacket body 10 is stepped, and the lid body 31 is placed on the stepped portion 15 that is lowered by one step. The width W11 of the stepped portion 15 is set to be as small as possible, specifically about 0.1 to 0.5 mm, in order to secure the volume of the first flow path A1 and the third flow path C1 through which the cooling water flows. Is preferred.
[0101] そして、周壁 12と蓋本体 31との合わせ部 P1を、摩擦攪拌接合用のツール 200を 使用して、摩擦攪拌接合する。そうすると、ツール 200の後方に、摩擦攪拌接合部 K (図 15参照)が形成され、周壁 12と蓋本体 31とが接合される。ここで、ツール 200の ピン 201の長さ L5は、被接合部材である蓋本体 31の厚さ T2の 60%以下とすること が好ましい。このように 60%以下とすることで、蓋本体 31の材質にもよる力 前記した 段差部 15の幅 W11が小さくても、ツール 200の押圧力により、合わせ部 P1がジャケ ット本体 10の内側に変形しにくくなる。 [0101] Then, the joint P1 between the peripheral wall 12 and the lid body 31 is friction stir welded using the tool 200 for friction stir welding. Then, the friction stir weld K (See FIG. 15) is formed, and the peripheral wall 12 and the lid body 31 are joined. Here, the length L5 of the pin 201 of the tool 200 is preferably 60% or less of the thickness T2 of the lid body 31 that is the member to be joined. In this way, the force due to the material of the lid main body 31 allows the mating portion P1 of the jacket main body 10 to be adjusted by the pressing force of the tool 200 even if the width W11 of the stepped portion 15 is small. It becomes difficult to deform inside.
なお、ツール 200は、 NC等の工作機械(図示しない)によって制御され、自転され ると共に、合わせ部 P1に沿って動力される(図 18参照)。  The tool 200 is controlled and rotated by a machine tool (not shown) such as an NC and is driven along the mating portion P1 (see FIG. 18).
[0102] また、摩擦攪拌接合する際、ジャケット本体 10の周壁 12の周面に、適宜な治具 21 0を当てる。これにより、周壁 12力 S薄く、ツーノレ 200のショノレダー 202の外周面と、周 壁 12の外周面との距離 L6 (隙間)が、例えば、 2. Omm以下であっても、ツール 200 の押圧力によって周壁 12が外側に変形しにくくなる。 In addition, when performing friction stir welding, an appropriate jig 210 is applied to the peripheral surface of the peripheral wall 12 of the jacket body 10. As a result, even if the distance L6 (gap) between the outer peripheral surface of the shono-redder 202 of the TUNORE 200 and the outer peripheral surface of the peripheral wall 12 is 2. Omm or less, for example, the pressing force of the tool 200 is thin. This makes it difficult for the peripheral wall 12 to be deformed outward.
これにカ卩えて、このように周壁 12が薄い場合、ツール 200と治具 210との接触を避 けるため、治具 210の表面を、合わせ部 P1の表面に対して、 1. 0〜2. Omm程度下 げておくことが好ましい。  In addition to this, when the peripheral wall 12 is thin like this, in order to avoid contact between the tool 200 and the jig 210, the surface of the jig 210 is 1.0-2 with respect to the surface of the mating part P1. It is preferable to lower it by about Omm.
[0103] さらに、図 20に示すように、摩擦攪拌接合における始端と終端とがオーバーラップ( 符号 Q参照)するように、ツール 200を動かす。これにより、ジャケット本体 10と蓋本体 31とは隙間なく接合され、冷却水が外部に漏れに《なる。次いで、ツール 200を合 わせ部 P1から外して、ピン 201を抜く。これにより、ピン 201の抜き跡力 合わせ部 P 1に形成されない。 Further, as shown in FIG. 20, the tool 200 is moved so that the start end and the end end in the friction stir welding overlap (see symbol Q). Thereby, the jacket main body 10 and the lid main body 31 are joined without a gap, and the cooling water leaks to the outside. Next, the tool 200 is removed from the mating part P1, and the pin 201 is removed. As a result, it is not formed in the extraction force matching portion P1 of the pin 201.
[0104] 《第 5実施形態〉〉 <Fifth Embodiment>
次に、第 5実施形態に係る液冷ジャケットについて、図 21から図 25を参照して説明 する。図 21は、第 5実施形態に係る液冷ジャケットの断面図である。図 22は、図 21に 示す断面図の拡大図である。図 23は、第 5実施形態に係る液冷ジャケットのフィン部 材の作製方法を示す図であり、(a)はスカイブ加工中、(b)はスカイブ加工後を示す 。図 24は、第 5実施形態に係る液冷ジャケットのフィン部材の作製方法を示す図であ り、図 23 (b)に示すスカイブフィンの一部を取り除いた後を示す。図 25は、第 5実施 形態に係る摩擦攪拌接合を示す断面図である。  Next, a liquid cooling jacket according to a fifth embodiment will be described with reference to FIGS. FIG. 21 is a cross-sectional view of the liquid cooling jacket according to the fifth embodiment. FIG. 22 is an enlarged view of the cross-sectional view shown in FIG. FIG. 23 is a view showing a method for producing the fin member of the liquid cooling jacket according to the fifth embodiment, where (a) shows a state during skive processing and (b) shows a state after skive processing. FIG. 24 is a view showing a method for producing the fin member of the liquid cooling jacket according to the fifth embodiment, and shows a state after removing a part of the skive fin shown in FIG. 23 (b). FIG. 25 is a cross-sectional view showing friction stir welding according to the fifth embodiment.
なお、第 4実施形態に係る液冷ジャケット J4に対して、異なる部分を説明する。 [0105] 《液冷ジャケットの構成》 Note that different parts from the liquid cooling jacket J4 according to the fourth embodiment will be described. [0105] <Structure of liquid cooling jacket>
図 21に示すように、第 5実施形態に係る液冷ジャケット J5は、ジャケット本体 10Cと 、アルミニウムまたはアルミニウム合金製のフィン部材 29とを主に備えており、 CPU1 01がフィン部材 29の底壁 29a (封止体)に取り付けられる構成となっている。  As shown in FIG. 21, the liquid cooling jacket J5 according to the fifth embodiment mainly includes a jacket body 10C and a fin member 29 made of aluminum or aluminum alloy, and the CPU 101 is a bottom wall of the fin member 29. It is configured to be attached to 29a (sealing body).
[0106] ジャケット本体 10Cは、図 21の下側に開口しており、内部にフィン収容室を有する 薄型の箱体である。  [0106] The jacket body 10C is a thin box having an opening on the lower side of FIG. 21 and having a fin housing chamber therein.
フィン部材 29は、後記するように、 1枚のプレート 61をスカイブカ卩ェしたものであつ て(図 23 (a)参照)、底壁 29aと、複数の金属製のフィン 29bとを備えている。複数の フィン 29bは、底壁 29aの上に立設しており、底壁 29aと一体に構成されている。これ により、底壁 29aとフィン 29bとの間において、熱が良好に伝達するようになっている。  As will be described later, the fin member 29 is obtained by skiving one plate 61 (see FIG. 23 (a)), and includes a bottom wall 29a and a plurality of metal fins 29b. . The plurality of fins 29b are erected on the bottom wall 29a, and are configured integrally with the bottom wall 29a. As a result, heat is transferred favorably between the bottom wall 29a and the fins 29b.
[0107] また、底壁 29aは、前記したフィン収容室を封止する封止体として機能して 、る。さ らに、隣り合うフィン 29b、 29bの間が第 2流路 B4aとして機能している(図 22参照)。 そして、液冷ジャケット J5は、複数の第 2流路 B4aによって構成された第 2流路群 B4 を有している。なお、フィン部材 29がジャケット本体 10Cに取り付けられた状態にお いて、第 4実施形態と同様に、液冷ジャケット J5内には、第 1流路 A1及び第 3流路 C 1が形成されるようになって 、る(図 13参照)。 [0107] Further, the bottom wall 29a functions as a sealing body for sealing the fin housing chamber. Further, the space between the adjacent fins 29b and 29b functions as the second flow path B4a (see FIG. 22). The liquid cooling jacket J5 has a second flow path group B4 configured by a plurality of second flow paths B4a. In the state where the fin member 29 is attached to the jacket main body 10C, the first flow path A1 and the third flow path C1 are formed in the liquid cooling jacket J5 as in the fourth embodiment. (See Fig. 13).
[0108] 《液冷ジャケットの作用効果〉〉 [0108] <Effects of liquid cooling jacket >>
次に、液冷ジャケット J5の作用効果について簡単に説明する。  Next, the effect of the liquid cooling jacket J5 will be briefly described.
冷却水が、第 1流路 A1 (図 13参照)、第 2流路群 B4 (複数の第 2流路 B4a)、第 3流 路 C1 (図 13参照)の順に流通する。そして、第 2流路群 B4を流通する冷却水と、複 数のフィン 25bとの間で主に熱交換され、 CPU101を効率的に冷却することができる 。ここで、底壁 29aとフィン 29bとは、一体に構成されているので、 CPU101の熱が複 数のフィン 29bに良好に伝達し、その結果として、良好に放熱することができる。  The cooling water flows in the order of the first flow path A1 (see FIG. 13), the second flow path group B4 (a plurality of second flow paths B4a), and the third flow path C1 (see FIG. 13). Then, heat is mainly exchanged between the cooling water flowing through the second flow path group B4 and the plurality of fins 25b, and the CPU 101 can be efficiently cooled. Here, since the bottom wall 29a and the fins 29b are integrally formed, the heat of the CPU 101 can be transferred well to the plurality of fins 29b, and as a result, heat can be dissipated well.
[0109] 《液冷ジャケットのフィン部材の作製方法》 [0109] <Method for producing fin member of liquid cooling jacket>
次に、スカイブ加工を利用した、液冷ジャケット J5のフィン部材 29の作製 (製造)方 法について、図 23及び図 24を参照して説明する。  Next, a method of manufacturing (manufacturing) the fin member 29 of the liquid cooling jacket J5 using skive processing will be described with reference to FIGS.
図 23 (a)に示すように、板状のプレート 61を、特開 2001— 326308号公報、特開 2001— 352020号公報等に記載されるスカイブカ卩ェする。詳細には、プレート 61に 切削工具 62を鋭角に切り込んで、プレート 61の一部を切り起こし、複数のスカイブフ イン 63を形成する。これを複数回繰り返し、複数のスカイブフィン 63を有するスカイブ 中間体 64を作製する(図 23 (b)参照)。因みに、切り起こされないプレート 61の部分 は、フィン部材 29の底壁 29a (封止体)となる。 As shown in FIG. 23 (a), a plate-like plate 61 is skived as described in JP-A-2001-326308, JP-A-2001-352020, and the like. For details, see plate 61 The cutting tool 62 is cut at an acute angle to cut and raise a part of the plate 61 to form a plurality of skive fins 63. This is repeated a plurality of times to produce a skive intermediate 64 having a plurality of skive fins 63 (see FIG. 23 (b)). Incidentally, the portion of the plate 61 that is not cut and raised serves as the bottom wall 29a (sealing body) of the fin member 29.
[0110] 続、て、ジャケット本体 10Cと組み付けて液冷ジャケット J5を構成した際に、液冷ジ ャケット J5内に第 1流路 A1及び第 3流路 C1が形成されるように、複数のスカイブフィ ン 63の外周側部分を、切削工具で取り除く。そうすると、図 24に示すように、底壁 29 aと、これに一体に立設した複数のフィン 29bとを備えるフィン部材 29を得ることがで きる。 [0110] Subsequently, when the liquid cooling jacket J5 is configured by being assembled with the jacket body 10C, a plurality of first flow paths A1 and third flow paths C1 are formed in the liquid cooling jacket J5. Remove the outer periphery of skive fin 63 with a cutting tool. Then, as shown in FIG. 24, a fin member 29 including a bottom wall 29a and a plurality of fins 29b standing integrally therewith can be obtained.
[0111] ただし、フィン部材 29の制作方法はこれに限定されず、第 4実施形態に係る押し出 し型材 41を切断した後のフィン部材 25 (図 16参照)、または、溝加工によって形成し たフィン部材 25 (図 17参照)における、フィン 25bの一部を取り除くことによって構成 してちよい。  [0111] However, the production method of the fin member 29 is not limited to this, and the fin member 25 (see Fig. 16) after cutting the extruded die 41 according to the fourth embodiment or formed by grooving. The fin member 25 (see FIG. 17) may be configured by removing a part of the fin 25b.
[0112] 《液冷ジャケットの組み付け》  [0112] <Assembly of liquid cooling jacket>
そして、図 25に示すように、ジャケット本体 10Cと、フィン部材 29とを組み合わせ、 第 4実施形態と同様にして、治具 210を当てながら、その合わせ部 P2を摩擦攪拌接 合する。なお、ツール 200のピン 201の長さ L5は、被接合部材であるフィン部材 29 の底壁 29a (封止体)の厚さ T3の 60%以下とすることが好ま U、。  Then, as shown in FIG. 25, the jacket main body 10C and the fin member 29 are combined, and the mating portion P2 is friction stir welded while applying the jig 210 in the same manner as in the fourth embodiment. It should be noted that the length L5 of the pin 201 of the tool 200 is preferably 60% or less of the thickness T3 of the bottom wall 29a (sealing body) of the fin member 29 which is a member to be joined.
[0113] 《第 6実施形態〉〉  [0113] <Sixth Embodiment>
次に、第 6実施形態に係る液冷ジャケットについて、図 26を参照して説明する。図 2 6は、第 6実施形態に係る液冷ジャケットの断面図であり、(a)は組み付け後の完成状 態、(b)は組み付け前を示す。  Next, a liquid cooling jacket according to a sixth embodiment will be described with reference to FIG. FIG. 26 is a cross-sectional view of the liquid cooling jacket according to the sixth embodiment, where (a) shows a completed state after assembly, and (b) shows before assembly.
[0114] 《液冷ジャケットの構成》  [0114] <Structure of liquid cooling jacket>
図 26 (a)に示すように、第 6実施形態に係る液冷ジャケット J6は、第 1実施形態に係 る液冷ジャケット J1と比較して、ジャケット本体 10A (第 1フィン部材)と、蓋ユニット 35 ( 第 2フィン部材)とを備えたことを特徴とする。ジャケット本体 10Aは、底壁 11 (第 1ベ ース板)と、底壁 11に所定間隔を隔てて立設された複数のフィン 13とを備えている。 一方、蓋ユニット 35は、蓋本体 36 (第 2ベース板)と、蓋本体 36に所定間隔を隔てて 立設した複数のフィン 37とを備えて 、る。 As shown in FIG. 26 (a), the liquid cooling jacket J6 according to the sixth embodiment includes a jacket body 10A (first fin member), a lid, and a liquid cooling jacket J1 according to the first embodiment. A unit 35 (second fin member) is provided. The jacket main body 10A includes a bottom wall 11 (first base plate) and a plurality of fins 13 erected on the bottom wall 11 at a predetermined interval. On the other hand, the lid unit 35 is separated from the lid body 36 (second base plate) and the lid body 36 by a predetermined distance. It is provided with a plurality of standing fins 37.
[0115] ジャケット本体 10Aと蓋ユニット 35とは、複数のフィン 13と複数のフィン 37とが嚙み 合わさるようにして、組み合わされており、蓋本体 36は、ジャケット本体 10Aに接合- 固定されている。液冷ジャケット J6のフィン全体は、嚙み合わさった複数のフィン 13と 複数のフィン 37と力も構成されている。そして、隣り合うフィン 13とフィン 37との間が 第 2流路 B5aとなっており、液冷ジャケット J6は複数の第 2流路 B5aからなる第 2流路 群 B5を有している。 [0115] The jacket body 10A and the lid unit 35 are combined so that the plurality of fins 13 and the plurality of fins 37 are held together, and the lid body 36 is joined and fixed to the jacket body 10A. Yes. The entire fin of the liquid cooling jacket J6 is composed of a plurality of fins 13 and a plurality of fins 37 which are entangled. The space between adjacent fins 13 and fins 37 is a second flow path B5a, and the liquid cooling jacket J6 has a second flow path group B5 including a plurality of second flow paths B5a.
[0116] このように、複数のフィン 13と複数のフィン 37とを嚙み合わせて、フィン全体を構成 することにより、複数のフィン 13の間隔 dlと、複数のフィン 37の間隔 d2とを、それぞ れ広くすることができ、切削工具などによる溝力卩ェが容易となる。  [0116] In this way, by combining the plurality of fins 13 and the plurality of fins 37 to form the entire fin, the interval dl between the plurality of fins 13 and the interval d2 between the plurality of fins 37 are obtained. Each can be widened, and the groove force by a cutting tool or the like can be easily obtained.
[0117] 複数のフィン 13の底壁 11からの突出長さ L1は、図 26 (b)に示すように、複数のフ イン 37の蓋本体 36からの突出長さ L2と同一または短く設定されている。そして、複 数のフィン 37と、底壁 11とは、適宜な手段によって、熱交換可能に接合'固定されて おり、熱的に接続している。これにより、ジャケット本体 10A側(第 1ベース板側)の CP U101の熱力 複数のフィン 13だけでなぐ複数のフィン 37にも伝達するようになって いる。  [0117] The protruding length L1 of the plurality of fins 13 from the bottom wall 11 is set to be the same as or shorter than the protruding length L2 of the plurality of fins 37 from the lid body 36, as shown in Fig. 26 (b). ing. The plurality of fins 37 and the bottom wall 11 are joined and fixed so as to be capable of heat exchange by an appropriate means, and are thermally connected. As a result, the thermal power of the CCU 101 on the jacket body 10A side (first base plate side) is also transmitted to the plurality of fins 37 connected by the plurality of fins 13 alone.
すなわち、複数のフィン 13の突出長さ L1を、複数のフィン 37の突出長さ L2と同一 または短く設定したことにより、ジャケット本体 10Aと蓋ユニット 35とを組み付けた際に 、複数のフィン 37の先端 (頂部)がジャケット本体 10Aの底壁 11に確実に当接し、複 数のフィン 37と底壁 11とを確実に熱的に接続することができる。  That is, by setting the protruding length L1 of the plurality of fins 13 to be the same as or shorter than the protruding length L2 of the plurality of fins 37, when the jacket body 10A and the lid unit 35 are assembled, the plurality of fins 37 The tip (top) reliably contacts the bottom wall 11 of the jacket body 10A, and the plurality of fins 37 and the bottom wall 11 can be reliably thermally connected.
[0118] 《液冷ジャケットの作用効果〉〉 [0118] <Effects of liquid cooling jacket >>
次に、液冷ジャケット J6の作用効果について簡単に説明する。  Next, the effect of the liquid cooling jacket J6 will be briefly described.
このような液冷ジャケット J6によれば、第 2流路群 B5に冷却水が流通すると、複数の フィン 13および複数のフィン 37に伝達した CPU101の熱力 流通する冷却水に伝 達し、 CPU101が効率的に冷却される。  According to such a liquid cooling jacket J6, when the cooling water flows through the second flow path group B5, it is transmitted to the cooling water circulating through the thermal power of the CPU 101 transmitted to the plurality of fins 13 and the plurality of fins 37. Cooled.
[0119] 《第 7実施形態〉〉 [Seventh Embodiment]>
次に、第 7実施形態に係る液冷ジャケットについて、図 27を参照して説明する。図 2 7は、第 7実施形態に係る液冷ジャケットの断面図であり、(a)は組み付け後の完成状 態、(b)は組み付け前を示す。 Next, a liquid cooling jacket according to a seventh embodiment will be described with reference to FIG. FIG. 27 is a cross-sectional view of the liquid cooling jacket according to the seventh embodiment. (A) is a completed state after assembly. The state, (b) shows before assembly.
[0120] 《液冷ジャケットの構成》  [0120] <Structure of liquid cooling jacket>
図 27 (a)、図 27 (b)に示すように、第 7実施形態に係る液冷ジャケット J7は、第 1実 施形態に係る液冷ジャケット J 1の扁平管束 20に代えて、複数の細孔 26aを有する金 属製のハ-カム体 26を備えたことを特徴とする。  As shown in FIGS. 27 (a) and 27 (b), the liquid cooling jacket J7 according to the seventh embodiment is replaced with a plurality of flat tube bundles 20 of the liquid cooling jacket J1 according to the first embodiment. A metal Hercam body 26 having a pore 26a is provided.
[0121] くハ-カム体 > [0121] Kuha cam body>
ノ、二カム体 26は、ジャケット本体 10の底壁 11に、適宜な手段によって、熱交換可 能に接合'固定されている。したがって、 CPU101の熱は、細孔 26aを取り囲む周壁 26bに伝達するようになっている。各細孔 26aは、冷却水が流通する第 2流路 B6aと して機能している。すなわち、ノ、二カム体 26は、複数の第 2流路 B6aからなる第 2流 路群 B6を有している。なお、ここでは図 27に示すように、断面視が矩形を呈する細 孔 26aを有するハ-カム体 26を例示した力 細孔 26aの形状はこれに限定されず、 その他に六角形などであってもよい。また、ハ-カム体 26とジャケット本体 10の底壁 11とは、ロウ材によって、確実に熱交換可能に接合されることが好ましい。  The two-cam body 26 is joined and fixed to the bottom wall 11 of the jacket body 10 by an appropriate means so that heat exchange is possible. Therefore, the heat of the CPU 101 is transmitted to the peripheral wall 26b surrounding the pore 26a. Each pore 26a functions as a second flow path B6a through which cooling water flows. That is, the two-cam body 26 has a second flow path group B6 including a plurality of second flow paths B6a. Here, as shown in FIG. 27, the shape of the force hole 26a exemplifying the hermetic body 26 having the narrow hole 26a having a rectangular cross-sectional view is not limited to this, and may be a hexagon or the like. May be. Further, it is preferable that the her cam body 26 and the bottom wall 11 of the jacket main body 10 are joined to each other by a brazing material so that heat exchange can be surely performed.
[0122] 《液冷ジャケットの作用効果〉〉 [0122] <Effects of liquid cooling jacket>
次に、液冷ジャケット J7の作用効果について簡単に説明する。  Next, the effect of the liquid cooling jacket J7 will be briefly described.
冷却水が、第 1流路 Al、第 2流路群 B6 (複数の第 2流路 B6a)、第 3流路 C1の順で 流通する。そして、ハニカム体 26の周壁 26bと、第 2流路 B5aを流通する冷却水との 間で主に熱交換され、周壁 26bの熱が冷却水に伝達するようになっている。その結 果として、 CPU101が効率的に冷却されるようになっている。  The cooling water flows in the order of the first channel Al, the second channel group B6 (a plurality of second channels B6a), and the third channel C1. Then, heat is mainly exchanged between the peripheral wall 26b of the honeycomb body 26 and the cooling water flowing through the second flow path B5a, so that the heat of the peripheral wall 26b is transferred to the cooling water. As a result, the CPU 101 is efficiently cooled.
[0123] 《第 8実施形態〉〉 <Eighth Embodiment>
次に、第 8実施形態に係る液冷ジャケットについて、図 28を参照して説明する。図 2 8は、第 8実施形態に係る液冷ジャケットの断面図であり、(a)は組み付け後の完成状 態、(b)は組み付け前を示す。  Next, a liquid cooling jacket according to an eighth embodiment will be described with reference to FIG. FIG. 28 is a cross-sectional view of the liquid cooling jacket according to the eighth embodiment, where (a) shows a completed state after assembly, and (b) shows before assembly.
[0124] 《液冷ジャケットの構成》 [0124] <Structure of liquid cooling jacket>
図 28 (a)、図 28 (b)に示すように、第 8実施形態に係る液冷ジャケット J8は、第 1実 施形態に係る液冷ジャケット J 1の扁平管束 20に代えて、断面が波状の金属製の熱 交換シート 27 (ブレージングシート)を備えたことを特徴とする。 [0125] <熱交換シート > As shown in FIGS. 28 (a) and 28 (b), the liquid cooling jacket J8 according to the eighth embodiment has a cross-section instead of the flat tube bundle 20 of the liquid cooling jacket J1 according to the first embodiment. It is equipped with a corrugated metal heat exchange sheet 27 (brazing sheet). [0125] <Heat exchange sheet>
熱交換シート 27は、 Al—Mn系、 Al—Fe— Mn系などのアルミニウム合金から形成 されたシート本体 27aと、この下面側に A1— Si— Zn系などのアルミニウム合金から形 成されたロウ材層 27bとを備えている。そして、熱交換シート 27は、ロウ材層 27bが部 分的に溶融、硬化されることで、ジャケット本体 10の底壁 11に、熱交換可能に接合' 固定されている。したがって、 CPU101の熱は、底壁 11を介して、熱交換シート 27 に伝達するようになって 、る。  The heat exchange sheet 27 is composed of a sheet body 27a formed of an aluminum alloy such as Al-Mn or Al-Fe-Mn, and a solder formed from an aluminum alloy such as A1-Si-Zn on the lower surface side. Material layer 27b. The heat exchange sheet 27 is bonded and fixed to the bottom wall 11 of the jacket main body 10 so as to allow heat exchange by partially melting and hardening the brazing material layer 27b. Therefore, the heat of the CPU 101 is transferred to the heat exchange sheet 27 through the bottom wall 11.
[0126] そして、熱交換シート 27と、ジャケット本体 10または蓋本体 31との間に、複数の第 2 流路 B7aが形成されている。すなわち、液冷ジャケット J8は、複数の第 2流路 B7aから なる第 2流路群 B7を有して 、る。  [0126] A plurality of second flow paths B7a are formed between the heat exchange sheet 27 and the jacket body 10 or the lid body 31. That is, the liquid cooling jacket J8 has a second channel group B7 including a plurality of second channels B7a.
[0127] 《液冷ジャケットの作用効果〉〉  [0127] <Effects of liquid cooling jacket >>
次に、液冷ジャケット J8の作用効果について簡単に説明する。  Next, the function and effect of the liquid cooling jacket J8 will be briefly described.
冷却水が、第 1流路 Al、第 2流路群 B7 (複数の第 2流路 B7a)、第 3流路 C1の順で 流通する。そして、熱交換シート 27と、第 2流路 B7aを流通する冷却水との間で熱交 換され、熱交換シート 27の熱が冷却水に伝達するようになっている。その結果として 、 CPU101が効率的に冷却されるようになっている。  The cooling water flows in the order of the first flow path Al, the second flow path group B7 (a plurality of second flow paths B7a), and the third flow path C1. Then, heat is exchanged between the heat exchange sheet 27 and the cooling water flowing through the second flow path B7a, so that the heat of the heat exchange sheet 27 is transferred to the cooling water. As a result, the CPU 101 is efficiently cooled.
[0128] 《第 9実施形態〉〉  [Ninth Embodiment] >>
次に、第 9実施形態に係る液冷ジャケットについて、図 29を参照して説明する。図 2 9は、第 9実施形態に係る液冷ジャケットの平面図である。なお、図 29では、分かりや すくするために、蓋本体を外した状態を描いている。  Next, a liquid cooling jacket according to a ninth embodiment will be described with reference to FIG. FIG. 29 is a plan view of the liquid cooling jacket according to the ninth embodiment. In FIG. 29, the lid body is removed for easy understanding.
[0129] 《液冷ジャケットの構成》  [0129] <Structure of liquid cooling jacket>
図 29に示すように、第 9実施形態に係る液冷ジャケット J9は、第 1実施形態に係る 液冷ジャケット J1は扁平管束 20を 1つ備えたが、 3つの扁平管束 20を備えている。そ して、 3つの扁平管束 20は、ジャケット本体 10B内に各扁平管束 20の中空部 21a ( 第 2流路 Bla)が同一方向となるように、一列状で配置されている。また、 3つの扁平 管束 20は、ジャケット本体 10B内に、上流の扁平管束 20と中流の扁平管束 20との 間にスペース 10dが、中流の扁平管束 20と下流の扁平管束 20との間にスペース 10 dが、それぞれ設けられた状態で、ジャケット本体 10Bの底壁 11に熱交換可能に接 合-固定されている。 As shown in FIG. 29, the liquid cooling jacket J9 according to the ninth embodiment includes one flat tube bundle 20 but includes three flat tube bundles 20 in the liquid cooling jacket J1 according to the first embodiment. The three flat tube bundles 20 are arranged in a line in the jacket body 10B so that the hollow portions 21a (second flow paths Bla) of the flat tube bundles 20 are in the same direction. Further, the three flat tube bundles 20 have a space 10d between the upstream flat tube bundle 20 and the midstream flat tube bundle 20 in the jacket main body 10B, and between the midstream flat tube bundle 20 and the downstream flat tube bundle 20. With 10 d installed, they can contact the bottom wall 11 of the jacket body 10B so that they can exchange heat. Go-Fixed.
[0130] スペース 10d、 10dは、扁平管束 20の第 2流路群 B1を直列に連通させる第 4流路 El、 El (連結流路)として機能している。第 4流路 E1の流路断面積は、各第 2流路 群 B1を構成する第 2流路 Blaの流路断面積より大きく設定されている。すなわち、液 冷ジャケット J9は、直列に配置された 3つの第 2流路群 Bl、 Bl、 B1 (第 2流路群部) を有している。  [0130] The spaces 10d and 10d function as fourth flow paths El and El (connection flow paths) that connect the second flow path group B1 of the flat tube bundle 20 in series. The channel cross-sectional area of the fourth channel E1 is set larger than the channel cross-sectional area of the second channel Bla constituting each second channel group B1. That is, the liquid cooling jacket J9 has three second flow path groups Bl, Bl, B1 (second flow path group portions) arranged in series.
[0131] 《液冷ジャケットの作用効果〉〉  [0131] <Effects of liquid cooling jacket>
次に、液冷ジャケット J9の作用効果について簡単に説明する。  Next, the effect of the liquid cooling jacket J9 will be briefly described.
冷却水が、第 1流路 Al、上流の第 2流路群 Bl、第 4流路 El、中流の第 2流路群 B 1、第 4流路 El、下流の第 2流路群 Bl、第 3流路 C1の順で流通する。すなわち、冷 却水は、 3つの第 2流路群 Bl、 Bl、 B1を直列的に流通する。ここで、冷却水が、隣り 合う第 2流路群 Bl、 B1の間で、第 4流路 E1を経由することにより、第 4流路 E1にお いて、冷却水が受ける圧力損失が低くなる。すなわち、第 2流路群 Bl、 B1間に、流 路断面積の大きい第 4流路 E1を介在させたことにより、第 4流路 E1を介在しない流 路長の長い第 2流路群とした場合に比較して、マイクロポンプ 122に作用する負荷を /J、さくすることができる。  Cooling water is the first channel Al, the second channel group Bl upstream, the fourth channel El, the second channel group B 1 in the middle stream, the fourth channel El, the second channel group Bl downstream, Circulates in the order of the third flow path C1. That is, the cooling water flows in series through the three second flow path groups Bl, Bl, B1. Here, since the cooling water passes through the fourth flow path E1 between the adjacent second flow path groups Bl and B1, the pressure loss received by the cooling water in the fourth flow path E1 is reduced. . That is, by interposing the fourth flow path E1 having a large flow cross-sectional area between the second flow path groups Bl and B1, the second flow path group having a long flow path length not including the fourth flow path E1 Compared with the case, the load acting on the micropump 122 can be reduced by / J.
[0132] 《第 10実施形態〉〉  [0132] <Tenth embodiment>
次に、第 10実施形態に係る液冷ジャケットについて、図 30、図 31を参照して説明 する。図 30は、第 10実施形態に係る液冷ジャケットの平面図である。図 31は、折り返 し数と熱抵抗との関係を示すグラフである。  Next, a liquid cooling jacket according to a tenth embodiment will be described with reference to FIGS. 30 and 31. FIG. FIG. 30 is a plan view of a liquid cooling jacket according to the tenth embodiment. FIG. 31 is a graph showing the relationship between the number of turns and the thermal resistance.
[0133] 図 30に示すように、第 10実施形態に係る液冷ジャケット J10は、第 9実施形態に係 る液冷ジャケット J9と同様に、直列に接続された 3つの第 2流路群 Bl、 Bl、 B1 (第 2 流路群部)を有しており、冷却水の流通方向において、隣り合う第 2流路群 Bl、 B1は 、第 4流路 E1 (連結流路)を介して直列で接続されている。  As shown in FIG. 30, the liquid cooling jacket J10 according to the tenth embodiment is similar to the liquid cooling jacket J9 according to the ninth embodiment. , Bl, B1 (second flow path group), and the second flow path groups Bl, B1 adjacent to each other in the flow direction of the cooling water pass through the fourth flow path E1 (connection flow path). Connected in series.
[0134] ただし、液冷ジャケット J10では、隣り合う第 2流路群 Bl、 B1が並設されると共に、 隣り合う第 2流路群 B1のうち、上流側のものの下流端と、下流側のものの上流端とは 、同一側に配置されており、前記下流端と上流端とが、第 4流路 E1を介して、直列で 接続されている。具体的には、図 30に示すように、上流位置の第 2流路群 B1と、中 流位置の第 2流路群 Blとは、冷却水の流通方向において隣り合つていると共に、図 30の横方向において並設されている。そして、例えば、上流位置の第 2流路群 B1の 下流端と、中流位置の第 2流路群 B1の上流端とは、同一側である、図 30における下 側を向いている。 [0134] However, in the liquid cooling jacket J10, the adjacent second flow path groups Bl and B1 are arranged side by side, and among the adjacent second flow path groups B1, the downstream end of the upstream one and the downstream side The upstream end of the one is disposed on the same side, and the downstream end and the upstream end are connected in series via the fourth flow path E1. Specifically, as shown in FIG. 30, the second flow path group B1 at the upstream position and the middle The second flow path group Bl at the flow position is adjacent in the flow direction of the cooling water and is juxtaposed in the horizontal direction of FIG. For example, the downstream end of the second flow path group B1 at the upstream position and the upstream end of the second flow path group B1 at the midstream position face the lower side in FIG. 30, which is the same side.
ここで、本明細書では、このように隣り合う第 2流路群 Bl、 Blが並んで配置されて いる状態を、第 9実施形態に対して、「折り返されている」と表現する。  Here, in this specification, the state in which the adjacent second flow path groups Bl and Bl are arranged side by side is expressed as “folded” with respect to the ninth embodiment.
[0135] したがって、このような液冷ジャケット J10によれば、冷却水が蛇行して、その内部を 流れる。そうすると、液冷ジャケット J10の熱抵抗は、折り返されていない液冷ジャケッ I、J9よりち/ J、さくなる。 Therefore, according to such a liquid cooling jacket J10, the cooling water meanders and flows through the inside thereof. Then, the thermal resistance of the liquid cooling jacket J10 is less than the uncooled liquid cooling jacket I, J9 / J.
[0136] さらに説明すると、平面視における液冷ジャケットの大きさを一定とした場合、各第 2 流路群 B1を構成する第 2流路の本数を変えずに、折り返し数を増加させて、第 2流 路群 B1の数を多くすれば、各第 2流路群 B1を構成する各第 2流路の流路断面積が 小さくなる。よって、液冷ジャケットを流通する冷却水の流量が一定とした場合、第 2 流路群 B1の数が多くなれば、各第 2流路を通る冷却水の流速が大きくなる。ゆえに、 液冷ジャケットから冷却水に、熱が効率的に伝達し、液冷ジャケットの熱抵抗が下が る。  [0136] To explain further, when the size of the liquid cooling jacket in a plan view is constant, the number of folds is increased without changing the number of second flow paths constituting each second flow path group B1, If the number of second flow path groups B1 is increased, the cross-sectional area of each second flow path constituting each second flow path group B1 is reduced. Therefore, when the flow rate of the cooling water flowing through the liquid cooling jacket is constant, the flow rate of the cooling water passing through each second flow path increases as the number of second flow path groups B1 increases. Therefore, heat is efficiently transferred from the liquid cooling jacket to the cooling water, and the thermal resistance of the liquid cooling jacket is reduced.
[0137] 以上、本発明の好適な実施形態について一例を説明したが、本発明は前記各実 施形態に限定されず、本発明の趣旨を逸脱しない範囲で、各種実施形態を適宜に 組み合わせてもよ!/、し、例えば以下のように変形することもできる。  [0137] Although an example of the preferred embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiments, and various embodiments may be appropriately combined without departing from the spirit of the present invention. Moyo! /, And can be modified as follows, for example.
[0138] 前記した各実施形態では、熱発生体を CPU101とした場合について説明したが、 熱発生体の種類はこれに限定されず、例えば、パワーモジュール、 LEDランプなど であってもよい。  In each of the embodiments described above, the case where the heat generating body is the CPU 101 has been described, but the type of the heat generating body is not limited to this, and may be, for example, a power module, an LED lamp, or the like.
[0139] 前記した第 1実施形態では、扁平管束 20は、複数の扁平管 21がその厚さ方向に 束ねられて構成されたとしたが、さらに幅方向に束ねられて構成されてもよい。  In the first embodiment described above, the flat tube bundle 20 is configured by bundling a plurality of flat tubes 21 in the thickness direction, but may be configured by further bundling in the width direction.
[0140] 前記した第 1実施形態に係る液冷ジャケット J 1は、扁平管 21が複数本で束ねられ て扁平管束 20を備えた場合について説明したが(図 6参照)、その他に例えば、図 3 2に示すように、扁平管束 20に代えて、複数の仕切壁で仕切られた複数の中空部 2 8aを有する扁平管 28を備えた液冷ジャケット J11であってもよい。この場合、各中空 部 28aが第 2流路 B8aとして機能しており、扁平管 28は、複数の第 2流路 B8aからな る第 2流路群 B8を有して 、る。 [0140] The liquid cooling jacket J1 according to the first embodiment has been described with respect to the case where the flat tube bundle 20 is provided by bundling a plurality of flat tubes 21 (see Fig. 6). As shown in 32, instead of the flat tube bundle 20, a liquid cooling jacket J11 provided with a flat tube 28 having a plurality of hollow portions 28a partitioned by a plurality of partition walls may be used. In this case, each hollow The portion 28a functions as the second flow path B8a, and the flat tube 28 has a second flow path group B8 including a plurality of second flow paths B8a.
[0141] 前記した第 1実施形態に係る液冷ジャケット J1では、取込口 31aおよび排出口 31b が蓋本体 31に形成された場合について説明した力 取込口 31aおよび排出口 31b の位置はこれに限定されず、例えば、ジャケット本体 10の周壁 12に形成された場合 であってもよい。これに付随して、取込パイプ 32および排出パイプ 33の位置も、液冷 ジャケット J1の上面側に限定されず、側面側に位置してもよ 、。  [0141] In the liquid cooling jacket J1 according to the first embodiment described above, the positions of the force intake port 31a and the discharge port 31b described in the case where the intake port 31a and the discharge port 31b are formed in the lid body 31 are as follows. For example, it may be formed on the peripheral wall 12 of the jacket body 10. Along with this, the positions of the intake pipe 32 and the discharge pipe 33 are not limited to the upper surface side of the liquid cooling jacket J1, but may be positioned on the side surface side.
[0142] 前記した第 6実施形態に係る液冷ジャケット J6では、フィン 13がジャケット本体 10A に、フィン 37が蓋本体 36に、それぞれ立設された構成としたが(図 26参照)、図 33 ( a)、図 33 (b)に示すように、第 1ベース板 51と、第 1ベース板 51に立設された複数の 第 1フィン 52とを具える第 1フィン部材 50と、第 2ベース板 56と、第 2ベース板 56に立 設された複数の第 2フィン 57とを具える第 2フィン部材 55と、を備えた液冷ジャケット J 12であってもよい。  [0142] In the liquid cooling jacket J6 according to the sixth embodiment described above, the fin 13 is erected on the jacket main body 10A and the fin 37 is erected on the lid main body 36 (see FIG. 26). (a) As shown in FIG. 33 (b), a first fin member 50 including a first base plate 51 and a plurality of first fins 52 erected on the first base plate 51, and a second The liquid cooling jacket J12 may include a base plate 56 and a second fin member 55 including a plurality of second fins 57 provided on the second base plate 56.
[0143] 図 33に示す液冷ジャケット J12について、さらに説明すると、第 1フィン部材 50と第 2フィン部材 55とは、複数の第 1フィン 52と複数の第 2フィン 57とが嚙み合わさるよう にして、組み合わされており、液冷ジャケット J12における金属製の複数のフィン全体 は、複数の第 1フィン 52と複数の第 2フィン 57とで構成されており、隣り合う第 1フィン 52と第 2フィン 57との間に第 2流路 B9aが形成されている。なお、第 1フィン部材 50 は、 CPU101側に位置しており、その第 1ベース板 51は、ジャケット本体 10の底壁 1 1に熱交換可能に固定されて 、る。  [0143] The liquid cooling jacket J12 shown in Fig. 33 will be further described. The first fin member 50 and the second fin member 55 are configured such that the plurality of first fins 52 and the plurality of second fins 57 are intermingled. The whole of the plurality of metal fins in the liquid cooling jacket J12 is composed of a plurality of first fins 52 and a plurality of second fins 57. A second flow path B9a is formed between the two fins 57. The first fin member 50 is located on the CPU 101 side, and the first base plate 51 is fixed to the bottom wall 11 of the jacket body 10 so as to allow heat exchange.
[0144] そして、液冷ジャケット J12は、複数の第 2流路 B9aからなる第 2流路群 B9を有して いる。また、複数の第 1フィン 52の第 1ベース板 51からの突出長さ L3は、複数の第 2 フィン 57の第 2ベース板 56からの突出長さ L4と同一または短く設定されている。そし て、複数の第 2フィン 57と、第 1ベース板 51とは、適宜な手段によって、熱交換可能 に接合'固定されており、熱的に接続している。  [0144] The liquid cooling jacket J12 has a second flow path group B9 including a plurality of second flow paths B9a. The protruding length L3 of the plurality of first fins 52 from the first base plate 51 is set to be the same as or shorter than the protruding length L4 of the plurality of second fins 57 from the second base plate 56. The plurality of second fins 57 and the first base plate 51 are joined and fixed so as to be capable of heat exchange by an appropriate means, and are thermally connected.
[0145] 前記した第 1実施形態では、ジャケット本体 10と、扁平管束 20との間にスペース 10 a、 10cを設けることで、第 1流路 Al、第 3流路 C1をそれぞれ形成したが(図 5参照)、 その他に例えば、スペース 10a、 10cを設けず、ジャケット本体 10の外側であって、そ の上流側には分岐管を設け、その中空部を第 1流路とし、下流側には集合管を設け て、その中空部を第 3流路としてもよい。 [0145] In the first embodiment described above, the first flow path Al and the third flow path C1 are formed by providing the spaces 10a and 10c between the jacket body 10 and the flat tube bundle 20, respectively ( (Refer to Fig. 5) Other than that, for example, the spaces 10a and 10c are not provided, but outside the jacket body 10 A branch pipe may be provided on the upstream side of this, the hollow part may be used as the first flow path, and the collecting pipe may be provided on the downstream side, and the hollow part may be used as the third flow path.
[0146] 前記した第 4実施形態に係る液冷ジャケット J4 (図 14参照)では、フィン部材 25はジ ャケット本体 10に固定された構成であつたが、図 34に示すように、蓋本体 31のジャ ケット本体 10側面にフィン部材 25が固定された液冷ジャケット J13であってもよい。ま た、図 34に示すように、 CPU101が蓋本体 31に取り付けられる構成であってもよい。 さらに、液冷ジャケット J13内への冷却水の取り込み口となる取込パイプ 32と、排出口 となる排出パイプ 33と力 ジャケット本体 10に取り付けられた構成であってもよい。そ の他、蓋本体 31のジャケット本体 10側面に一体にフィンが形成された構成であって ちょい。 In the liquid cooling jacket J4 (see FIG. 14) according to the fourth embodiment described above, the fin member 25 is fixed to the jacket body 10. However, as shown in FIG. A liquid cooling jacket J13 in which the fin member 25 is fixed to the side surface of the jacket body 10 may be used. Further, as shown in FIG. 34, the CPU 101 may be attached to the lid body 31. Furthermore, a configuration may be adopted in which the intake pipe 32 serving as the cooling water intake port into the liquid cooling jacket J13, the discharge pipe 33 serving as the discharge port, and the force jacket body 10 are attached. In addition, the fin body is integrally formed on the side surface of the jacket body 10 of the lid body 31.
[0147] さらにまた、図 35に示すように、ジャケット本体 10は揷通孔 16aを有する脚部 16を 4つ備え、各揷通孔 16aにビス 125が揷通され、液冷ジャケット J 13がパーソナルコン ピュータ本体 120 (図 1参照)の筐体 126に取り付けられる場合、ツール 200の抜き位 置は、揷通孔 16aに相当する部分であることが好ましい。そして、このような位置でッ ール 200を抜いた後、その抜け跡部分に揷通孔 16aを形成することによって、ツール 200の抜け跡を隠すことができる。  Furthermore, as shown in FIG. 35, the jacket body 10 is provided with four legs 16 having through holes 16a, and screws 125 are passed through the through holes 16a. When attached to the housing 126 of the personal computer main body 120 (see FIG. 1), the removal position of the tool 200 is preferably a portion corresponding to the through hole 16a. Then, after pulling out the tool 200 at such a position, the trace of the tool 200 can be hidden by forming the through hole 16a in the trace part.
なお、図 34は、図 35の XI— XI断面である。  34 is a cross-sectional view taken along line XI-XI in FIG.
実施例  Example
[0148] 以下、実施例に基づいて、本発明をさらに具体的に説明する。  [0148] Hereinafter, the present invention will be described more specifically based on examples.
[0149] (1)実施例 1、第 2流路 B3aの溝幅 W1の検討 [0149] (1) Example 1, Examination of groove width W1 of second flow path B3a
第 4実施形態に係る液冷ジャケット J4 (図 13等参照)について、第 2流路 B3aの溝 幅 W1 (図 15参照)を、 0. 2mm、 0. 5mm、 1. Ommとしたアルミニウム合金製のもの を作製した。表 1に作製した液冷ジャケット J4の仕様を示す。  For the liquid cooling jacket J4 (see Fig. 13 etc.) according to the fourth embodiment, the groove width W1 (see Fig. 15) of the second flow path B3a is 0.2mm, 0.5mm, 1. Omm. Was made. Table 1 shows the specifications of the liquid cooling jacket J4.
なお、表 1において、全体流路幅 W0は、第 1流路 A1および第 3流路 C1の幅である 。また、全体流路長 L0は、第 1流路 A1の長さと、第 2流路 B3aの長さと、第 3流路 C1 長さとの和である(図 13、図 14参照)。  In Table 1, the overall channel width W0 is the width of the first channel A1 and the third channel C1. The overall flow path length L0 is the sum of the length of the first flow path A1, the length of the second flow path B3a, and the length of the third flow path C1 (see FIGS. 13 and 14).
[0150] [表 1] アルミ^ム合金の熱伝導率 (W/mk) 200 [0150] [Table 1] Thermal conductivity of aluminum alloy (W / mk) 200
全体流路幅 WO (mm) 100  Overall channel width WO (mm) 100
全体流路長 L0 (mm) 100  Overall channel length L0 (mm) 100
第 2流路 B3aの溝幅 Wl (mm) 0. 2, 0. 5, 1. 0  Second channel B3a groove width Wl (mm) 0, 2, 0. 5, 1. 0
第 2流路 B3aの深さ Dl (mm) 10  Second channel B3a depth Dl (mm) 10
[0151] そして、冷却水として水を使用し、この水が 5 (LZmin)で流れるように、マイクロポ ンプ 122 (図 1参照)を稼動させ (表 2参照)、第 2流路 B3aの溝幅 W1と、液冷ジャケッ ト J4の熱抵抗および圧力損失との関係について検討した。熱抵抗および圧力損失は 、適宜な方法で測定した。また、この仕様の液冷ジャケット J4では、目標とする熱抵抗 を 0. 008 (°CZW)以下とした。 [0151] Then, using water as cooling water, the micropump 122 (see Fig. 1) is operated so that this water flows at 5 (LZmin) (see Table 2), and the groove width of the second flow path B3a The relationship between W1 and the thermal resistance and pressure loss of liquid-cooled jacket J4 was examined. Thermal resistance and pressure loss were measured by appropriate methods. In the liquid cooling jacket J4 with this specification, the target thermal resistance was set to 0.008 (° CZW) or less.
[0152] [表 2]
Figure imgf000035_0001
[0152] [Table 2]
Figure imgf000035_0001
[0153] 図 36に示すように、第 2流路 B3aの溝幅 W1が小さくなるにつれて、液冷ジャケット J 4と冷却水との接触面積が大きくなるため、液冷ジャケット J4の熱抵抗が小さくなつた 。一方、第 2流路 B3aの溝幅 W1が 1. 1mmより大きくなると、熱抵抗が目標である 0. 008 (°CZW)よりも大きくなることが確認された。 [0153] As shown in FIG. 36, as the groove width W1 of the second flow path B3a decreases, the contact area between the liquid cooling jacket J4 and the cooling water increases, so the thermal resistance of the liquid cooling jacket J4 decreases. Natsuta. On the other hand, it was confirmed that when the groove width W1 of the second flow path B3a is larger than 1.1 mm, the thermal resistance is larger than the target of 0.008 (° CZW).
また、冷却水が液冷ジャケット J4により受ける圧力損失は、第 2流路 B3aの溝幅 W1 が 0. 2mmより小さくなると、 0. 01 (°CZW)よりも大きくなることが確認された。  In addition, it was confirmed that the pressure loss that the cooling water receives by the liquid cooling jacket J4 is larger than 0.01 (° CZW) when the groove width W1 of the second flow path B3a is smaller than 0.2 mm.
したがって、第 2流路 B3aの溝幅 W1は、 0. 2〜1. 1mmであることが好ましいと考 えられる。  Therefore, it is considered that the groove width W1 of the second flow path B3a is preferably 0.2 to 1.1 mm.
[0154] (2)実施例 2、フィン 25bの厚さ T1と第 2流路 B3aの溝幅 W1との関係の検討  [0154] (2) Example 2, Investigation of the relationship between the thickness T1 of the fin 25b and the groove width W1 of the second flow path B3a
次に、実施例 1と同様に、第 2流路 B3aの溝幅 W1を 0. 2mm、 0. 5mm、 1. Omm の 3種類に設定し (表 1参照)、各第 2流路 B3aの溝幅 Wlに対して、フィン 25bの厚さ Next, as in Example 1, the groove width W1 of the second flow path B3a is set to three types of 0.2 mm, 0.5 mm, and 1. Omm (see Table 1). Thickness of fin 25b against groove width Wl
T1を適宜に変化させて、「フィン 25bの厚さ T1と溝幅 W1との比率 (T1ZW1)」と、「 熱抵抗」との関係について検討した。 By changing T1 appropriately, the relationship between “ratio of fin 25b thickness T1 and groove width W1 (T1ZW1)” and “thermal resistance” was examined.
[0155] 図 37に示すように、各溝幅 W1において、熱抵抗が小さくなる「T1ZW1」の範囲が あった。この範囲は、各溝幅 W1おける最小熱抵抗の 5%増しの値以下となる範囲と した。 具体的には、第 2流路 B3aの溝幅 Wlが 1. Ommの場合、最小熱抵抗は 0. 0073 ( °C/W)であるので、その 5%増しの値は、 0. 0073 X 1. 05 = 0. 0076 (°C/W)と なる。そして、 0. 0076 (°CZW)以下となる範囲力 0. 5≤T1/W1≤1. 4となる。 これと同様にして、第 2流路 B3aの溝幅 W1が 0. 5mmでは、前記範囲は、 0. 7≤T 1/W1≤2. 1となる。そして、第 2流路 B3aの溝幅 Wlが 0. 2mmでは、 0. 8≤T1/ Wl≤2. 9となる。 [0155] As shown in FIG. 37, in each groove width W1, there was a range of “T1ZW1” in which the thermal resistance was small. This range was set to a value that was 5% or less of the minimum thermal resistance at each groove width W1. Specifically, when the groove width Wl of the second flow path B3a is 1. Omm, the minimum thermal resistance is 0.0073 (° C / W), so the value increased by 5% is 0.007 X 1. 05 = 0. 0076 (° C / W). Then, the range force becomes 0.5 ≦ T1 / W1 ≦ 1.4, which is less than or equal to 0.0076 (° CZW). Similarly, when the groove width W1 of the second flow path B3a is 0.5 mm, the range is 0.7≤T 1 / W1≤2.1. When the groove width Wl of the second flow path B3a is 0.2 mm, 0.8 ≦ T1 / Wl ≦ 2.9.
[0156] そして、これに基づいて、 X軸を「溝幅 Wl」、 Y軸を「フィン厚さ T1Z溝幅 Wl」とし て書き換えると、図 38に示すグラフが得られた。図 38に示すように、「溝幅 Wl」と、「 フィン厚さ T1Z溝幅 Wl」とは、次の式(1)を満たすことが好ましいと確認された。  Then, based on this, the graph shown in FIG. 38 was obtained by rewriting the X axis as “groove width Wl” and the Y axis as “fin thickness T1Z groove width Wl”. As shown in FIG. 38, it was confirmed that “groove width Wl” and “fin thickness T1Z groove width Wl” preferably satisfy the following formula (1).
-0. 375 XW1 + 0. 875≤T1/W1≤- 1. 875 XW1 + 3. 275 · · · (1) [0157] (3)第 3実施例、第 2流路 B3aの溝幅 W1と深さ D1との関係の検討  -0. 375 XW1 + 0. 875≤T1 / W1≤- 1. 875 XW1 + 3. 275 (1) [0157] (3) Third embodiment, groove width W1 of second flow path B3a Examination of relationship with depth D1
次に、第 4実施形態に係る液冷ジャケット J4において、第 2流路 B3aの溝幅 W1を 0 . 2mm、 0. 5mm、 1. Ommの 3種類に設定し(表 1参照)、各第 2流路 B3aの溝幅 W 1に対して、その深さ D1を適宜に変化させて、「深さ Dl」と「熱抵抗」との関係につい て検討した。  Next, in the liquid cooling jacket J4 according to the fourth embodiment, the groove width W1 of the second flow path B3a is set to three types of 0.2 mm, 0.5 mm, and 1. Omm (see Table 1). The depth D1 was appropriately changed with respect to the groove width W1 of the two flow paths B3a, and the relationship between “depth Dl” and “thermal resistance” was examined.
[0158] 図 39に示すように、実施例 2と同様に、各溝幅 W1において、熱抵抗が小さくなる溝 深さ D1の範囲があることが確認された。そして、実施例 2と同様にして、この範囲を求 めると、溝幅 W1が 0. 2mmでは 2≤D1≤6、溝幅 W1が 0. 5mmでは 4≤D2≤ 11、 溝幅 Wlが 1. Ommでは 6≤D1≤ 18となった。  As shown in FIG. 39, as in Example 2, it was confirmed that each groove width W1 had a range of groove depth D1 in which the thermal resistance was reduced. Then, in the same manner as in Example 2, when this range is obtained, 2≤D1≤6 when the groove width W1 is 0.2 mm, 4≤D2≤11 when the groove width W1 is 0.5 mm, and the groove width Wl is 1. For Omm, 6≤D1≤18.
[0159] そして、これに基づいて、 X軸を「溝幅 Wl」、 Y軸を「溝深さ Dl」として書き換えると 、図 40に示すグラフが得られた。図 40に示すように、「溝幅 Wl」と「溝深さ Dl」とは、 次の式(2)を満たすことが好ま Uヽと確認された。  [0159] Based on this, when the X-axis is rewritten as "groove width Wl" and the Y-axis is rewritten as "groove depth Dl", the graph shown in FIG. 40 is obtained. As shown in FIG. 40, it was confirmed that “groove width Wl” and “groove depth Dl” preferably satisfy the following formula (2):
5 XW+ 1≤D≤16. 25 XW+ 2. 75 · · · (2)  5 XW + 1≤D≤16. 25 XW + 2. 75 (2)
[0160] (4)実施例 4、治具の有効性の検討  [0160] (4) Example 4, examination of the effectiveness of the jig
次に、第 4実施形態におけるジャケット本体 10と蓋本体 31との摩擦攪拌接合にお いて、ジャケット本体 10の周壁 12に治具 210を当てることの有効性について検討し た。なお、この検討では、表 3に示す 2種類のツール 200を使用した。そして、表 4に 示すように、 Aツールまたは Bツールにおけるショルダー 202の外周面と、ジャケット 本体 10の周壁 12の外周面との距離 L6を変化させると共に(図 19参照)、治具 210 の有り Z無しを変えて、周壁 12と蓋本体 31とを摩擦攪拌接合した。そして、接合部 の品質を目視により評価した。〇は良好を、 Xは接合不良を示す。 Next, the effectiveness of applying the jig 210 to the peripheral wall 12 of the jacket body 10 in the friction stir welding between the jacket body 10 and the lid body 31 in the fourth embodiment was examined. In this study, two types of tools 200 shown in Table 3 were used. Then, as shown in Table 4, the outer peripheral surface of the shoulder 202 in the A tool or B tool, and the jacket The distance L6 from the outer peripheral surface of the peripheral wall 12 of the main body 10 was changed (see FIG. 19), and the peripheral wall 12 and the lid main body 31 were subjected to friction stir welding by changing the presence of the jig 210 and the absence of Z. The quality of the joint was evaluated visually. ○ indicates good, X indicates poor bonding.
なお、ツール 200の回転数は 6000rpm、接合速度は 200mmZminとした。また、 周壁 12の厚さ T11 (図 19参照)は 4mmとした。  The rotation speed of the tool 200 was 6000 rpm, and the joining speed was 200 mmZmin. The thickness T11 of the peripheral wall 12 (see Fig. 19) was 4 mm.
[0161] [表 3]
Figure imgf000037_0001
[0161] [Table 3]
Figure imgf000037_0001
[0162] [表 4]  [0162] [Table 4]
Figure imgf000037_0002
Figure imgf000037_0002
[0163] 表 4より明らかなように、治具 210を使用した場合、周壁 12が薄ぐ距離 L6が 0. 5m mでも、周壁 12を変形させずに、蓋本体 31を良好に接合できることが確認された。  [0163] As can be seen from Table 4, when the jig 210 is used, the lid body 31 can be satisfactorily bonded without deforming the peripheral wall 12 even when the distance L6 where the peripheral wall 12 is thin is 0.5 mm. confirmed.
[0164] (5)実施例 5、ピンの長さ L5と蓋本体 31の厚さ T2との関係  [0164] (5) Example 5, relationship between pin length L5 and lid body 31 thickness T2
次に、ツール 200のピン 201の長さ L5と、蓋本体 31の厚さ T2との関係について検 討した(図 19参照)。この検討においては、表 5に示すように、ピン 201の長さ L5を 2 . Ommに固定し、蓋本体 31の厚さ T2を変化させ、接合部品質を目視により評価した  Next, the relationship between the length L5 of the pin 201 of the tool 200 and the thickness T2 of the lid body 31 was examined (see FIG. 19). In this examination, as shown in Table 5, the length L5 of the pin 201 was fixed to 2. Omm, the thickness T2 of the lid body 31 was changed, and the joint quality was visually evaluated.
[0165] [表 5] [0165] [Table 5]
Figure imgf000037_0003
Figure imgf000037_0003
[0166] 表 5に示すように、ピン 201の長さ L5が、被接合部材である蓋本体 31の厚さ T2の 6 0. 0%以下の範囲では、周壁 12と蓋本体 31とを良好に接合できることが確認された [0166] As shown in Table 5, the length L5 of the pin 201 is 6 of the thickness T2 of the lid body 31 that is the member to be joined. In the range of 0.0% or less, it was confirmed that the peripheral wall 12 and the lid body 31 can be joined well.

Claims

請求の範囲 The scope of the claims
[1] 熱発生体が所定位置に取り付けられ、当該熱発生体が発生する熱を、外部の熱輸 送流体供給手段から供給され、内部を流通する熱輸送流体に伝達させる液冷ジャケ ットであって、  [1] A liquid-cooled jacket in which a heat generating body is attached at a predetermined position, and heat generated by the heat generating body is supplied from an external heat transport fluid supply means and transmitted to a heat transport fluid flowing through the inside. Because
前記熱輸送流体供給手段側の第 1流路と、  A first flow path on the heat transport fluid supply means side;
前記第 1流通路から分岐した複数の第 2流路からなる第 2流路群と、  A second flow path group consisting of a plurality of second flow paths branched from the first flow path;
前記複数の第 2流路の下流側で、当該複数の第 2流路を集合させる第 3流路と、 を有し、  A third flow path for collecting the plurality of second flow paths on the downstream side of the plurality of second flow paths, and
前記熱発生体は前記第 2流路群で主に熱交換することを特徴する液冷ジャケット。  The liquid cooling jacket, wherein the heat generating body mainly performs heat exchange in the second flow path group.
[2] 熱発生体が所定位置に取り付けられ、当該熱発生体が発生する熱を、外部の熱輸 送流体供給手段から供給され、内部を流通する熱輸送流体に伝達させる液冷ジャケ ットであって、 [2] A liquid-cooled jacket in which a heat generating body is mounted at a predetermined position and heat generated by the heat generating body is supplied from an external heat transport fluid supply means and transmitted to a heat transport fluid flowing through the inside. Because
下流側に向かって、第 1流路と、複数の第 2流路からなる第 2流路群を複数と、第 3 流路と、を有し、前記熱発生体は前記第 2流路群で主に熱交換する液冷ジャケットで あって、  Toward the downstream side, the first flow path, a plurality of second flow path groups including a plurality of second flow paths, and a third flow path, the heat generating body being the second flow path group It is a liquid cooling jacket that mainly exchanges heat,
隣り合う前記第 2流路群は、連結流路を介して直列で接続されて!ヽることを特徴と する液冷ジャケット。  The liquid cooling jacket, wherein the adjacent second flow path groups are connected in series via a connection flow path.
[3] 隣り合う前記第 2流路群は並設されて 、ると共に、その一方の下流端と他方の上流 端とは同一側であることを特徴とする請求の範囲第 2項に記載の液冷ジャケット。  [3] The adjacent second flow path groups are arranged side by side, and one downstream end thereof and the other upstream end thereof are on the same side. Liquid cooling jacket.
[4] 複数の金属製の管が束ねられてなる管束を備え、 [4] A tube bundle formed by bundling a plurality of metal tubes,
各管の中空部が前記第 2流路であることを特徴とする請求の範囲第 1項から請求の 範囲第 3項のいずれか 1項に記載の液冷ジャケット。  4. The liquid cooling jacket according to any one of claims 1 to 3, wherein a hollow portion of each tube is the second flow path.
[5] 複数の中空部を有する金属製の管を備え、 [5] comprising a metal tube having a plurality of hollow portions,
前記各中空部が前記第 2流路であることを特徴とする請求の範囲第 1項から請求の 範囲第 3項のいずれか 1項に記載の液冷ジャケット。  The liquid cooling jacket according to any one of claims 1 to 3, wherein each of the hollow portions is the second flow path.
[6] 所定間隔で配列した複数の金属製のフィンを備え、 [6] Provided with a plurality of metal fins arranged at predetermined intervals,
隣り合うフィンの間が前記第 2流路であることを特徴とする請求の範囲第 1項力 請 求の範囲第 3項のいずれか 1項に記載の液冷ジャケット。 4. The liquid cooling jacket according to claim 1, wherein the second flow path is between adjacent fins.
[7] 前記第 2流路の幅 Wは 0. 2〜1. 1mmであることを特徴とする請求の範囲第 6項に 記載の液冷ジャケット。 [7] The liquid cooling jacket according to claim 6, wherein the width W of the second flow path is 0.2 to 1.1 mm.
[8] 前記第 2流路の幅 Wと、隣り合う前記第 2流路の間のフィンの厚さ Tとは、次の式(1 )を満たすことを特徴とする請求の範囲第 6項に記載の液冷ジャケット。  [8] The width W of the second flow path and the thickness T of the fin between the adjacent second flow paths satisfy the following expression (1): The liquid cooling jacket described in 1.
-0. 375 XW+0. 875≤T/W≤- 1. 875 XW+ 3. 275 · · · (1)  -0. 375 XW + 0. 875≤T / W≤- 1. 875 XW + 3.275 (1)
[9] 前記第 2流路の深さ Dと、幅 Wとは、次の式(2)を満たすことを特徴とする請求の範 囲第 6項に記載の液冷ジャケット。 [9] The liquid cooling jacket according to claim 6, wherein the depth D and the width W of the second flow path satisfy the following expression (2).
5 XW+ 1≤D≤16. 25 XW+ 2. 75 · · · (2)  5 XW + 1≤D≤16. 25 XW + 2. 75 (2)
[10] 前記複数の金属製のフィンと、当該複数の金属製のフィンが立設されたベース板と を含んで構成されたフィン部材と、 [10] A fin member configured to include the plurality of metal fins and a base plate on which the plurality of metal fins are erected,
当該フィン部材を収容するジャケット本体と、  A jacket body that houses the fin member;
を備え、  With
前記ベース板が前記ジャケット本体に熱交換可能に固定されていることを特徴とす る請求の範囲第 6項に記載の液冷ジャケット。  7. The liquid cooling jacket according to claim 6, wherein the base plate is fixed to the jacket main body so as to allow heat exchange.
[11] 第 1ベース板と、当該第 1ベース板に立設された複数の第 1フィンとを具える第 1フィ ン部材と、 [11] a first fin member comprising a first base plate and a plurality of first fins erected on the first base plate;
第 2ベース板と、当該第 2ベース板に立設された複数の第 2フィンとを具える第 2フィ ン部材と、  A second fin member comprising a second base plate and a plurality of second fins erected on the second base plate;
を備え、  With
前記第 1フィン部材と前記第 2フィン部材とは、前記複数の第 1フィンと前記複数の 第 2フィンとが嚙み合わさるようにして、組み合わされており、  The first fin member and the second fin member are combined so that the plurality of first fins and the plurality of second fins are squeezed together,
前記金属製の複数のフィンは、前記第 1フィンと前記第 2フィンとで構成されており、 隣り合う前記第 1フィンと前記第 2フィンとの間に前記第 2流路が形成されていること を特徴とする請求の範囲第 6項に記載の液冷ジャケット。  The plurality of metal fins includes the first fin and the second fin, and the second flow path is formed between the adjacent first fin and the second fin. The liquid cooling jacket according to claim 6, wherein:
[12] 前記熱発生体は前記第 1ベース板側に取り付けられ、 [12] The heat generating body is attached to the first base plate side,
前記第 1フィンの突出長さは、前記第 2フィンの突出長さと同一または短く設定され ており、  The protruding length of the first fin is set to be the same as or shorter than the protruding length of the second fin,
前記複数の第 2フィンと前記第 1ベース板とは熱的に接続していることを特徴とする 請求の範囲第 11項に記載の液冷ジャケット。 The plurality of second fins and the first base plate are thermally connected to each other. The liquid cooling jacket according to claim 11.
[13] 前記複数の金属製のフィンを収容するフィン収容室を有するジャケット本体と、 前記フィン収容室を封止する封止体と、 [13] A jacket body having a fin housing chamber for housing the plurality of metal fins, a sealing body for sealing the fin housing chamber,
を備え、  With
前記フィン収容室を取り囲む前記ジャケット本体の周壁と前記封止体との合わせ部 が摩擦攪拌接合されて ヽると共に、  While the peripheral wall of the jacket body surrounding the fin housing chamber and the sealing member are joined by friction stir welding,
当該摩擦攪拌接合における始端と終端とがオーバーラップしていることを特徴とす る請求の範囲第 6項に記載の液冷ジャケット。  7. The liquid cooling jacket according to claim 6, wherein a start end and an end of the friction stir welding overlap each other.
[14] 前記複数の金属製のフィンは、前記封止体に立設しており、当該封止体と一体で あることを特徴とする請求の範囲第 13項に記載の液冷ジャケット。 14. The liquid cooling jacket according to claim 13, wherein the plurality of metal fins are erected on the sealing body and are integral with the sealing body.
[15] 前記周壁が外側に変形しないように前記周壁に治具を当てながら前記摩擦攪拌接 合されたことを特徴とする請求の範囲第 13項に記載の液冷ジャケット。 15. The liquid cooling jacket according to claim 13, wherein the friction stir welding is performed while applying a jig to the peripheral wall so that the peripheral wall does not deform outward.
[16] 前記摩擦攪拌接合において使用するツールのピンの長さは、前記封止体の厚さの[16] The length of the pin of the tool used in the friction stir welding is the thickness of the sealing body.
60%以下であることを特徴とする請求の範囲第 13項に記載の液冷ジャケット。 14. The liquid cooling jacket according to claim 13, wherein the liquid cooling jacket is 60% or less.
[17] 前記摩擦攪拌接合にお!、て、前記ツールの抜き位置は、前記合わせ部から外され ていることを特徴とする請求の範囲第 13項に記載の液冷ジャケット。 17. The liquid cooling jacket according to claim 13, wherein the tool extraction position is removed from the mating part in the friction stir welding.
[18] 複数の細孔を有する金属製のハニカム体を備え、 [18] comprising a metal honeycomb body having a plurality of pores,
前記細孔が前記第 2流路であることを特徴とする請求の範囲第 1項から請求の範囲 第 3項の 、ずれか 1項に記載の液冷ジャケット。  The liquid cooling jacket according to any one of claims 1 to 3, wherein the pores are the second flow paths.
[19] 断面が波状の金属製の熱交換シートと、当該熱交換シートが熱交換可能に固定さ れた金属製のジャケット本体と、 [19] A metal heat exchange sheet having a corrugated cross section, a metal jacket body to which the heat exchange sheet is fixed so that heat exchange is possible,
を備え、  With
前記熱交換シートと前記ジャケット本体の間に、前記第 2流路が形成されていること を特徴とする請求の範囲第 1項力 請求の範囲第 3項のいずれか 1項に記載の液冷 ンャケット。  The liquid cooling according to any one of claims 1 to 3, wherein the second flow path is formed between the heat exchange sheet and the jacket body. Nacket.
[20] 前記金属はアルミニウムまたはアルミニウム合金であることを特徴とする請求の範囲 第 6項に記載の液冷ジャケット。  20. The liquid cooling jacket according to claim 6, wherein the metal is aluminum or an aluminum alloy.
[21] 前記第 1流路に連通する熱輸送流体の取込口と、前記第 3流路に連通する熱輸送 流体の排出口とは、前記熱発生体を中心として、対称に配置されていることを特徴と する請求の範囲第 1項力 請求の範囲第 3項のいずれか 1項に記載の液冷ジャケット [21] A heat transport fluid intake port that communicates with the first flow path, and a heat transport that communicates with the third flow path The liquid cooling jacket according to any one of claims 1 to 3, wherein the fluid discharge port is arranged symmetrically with the heat generating body as a center.
[22] 前記取込口と前記排出口とは、相対的に遠ざ力るように配置されていることを特徴 とする請求の範囲第 21項に記載の液冷ジャケット。 22. The liquid cooling jacket according to claim 21, wherein the intake port and the discharge port are disposed so as to relatively move away from each other.
[23] 前記取込口と前記排出口とは、前記熱発生体に近づくように配置されて 、ることを 特徴とする請求の範囲第 21項に記載の液冷ジャケット。 23. The liquid cooling jacket according to claim 21, wherein the intake port and the discharge port are disposed so as to approach the heat generating body.
[24] 前記熱発生体は CPUであることを特徴とする請求の範囲第 1項力 請求の範囲第[24] The first aspect of the present invention is characterized in that the heat generating body is a CPU.
3項の!/、ずれか 1項に記載の液冷ジャケット。 3. Liquid cooling jacket according to item 1 or!
PCT/JP2006/307846 2005-04-21 2006-04-13 Liquid-cooled jacket WO2006115073A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/918,876 US20090065178A1 (en) 2005-04-21 2006-04-13 Liquid cooling jacket

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005123403 2005-04-21
JP2005-123403 2005-04-21

Publications (1)

Publication Number Publication Date
WO2006115073A1 true WO2006115073A1 (en) 2006-11-02

Family

ID=37214696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307846 WO2006115073A1 (en) 2005-04-21 2006-04-13 Liquid-cooled jacket

Country Status (5)

Country Link
US (1) US20090065178A1 (en)
JP (2) JP5423637B2 (en)
CN (1) CN100543975C (en)
TW (3) TW200644199A (en)
WO (1) WO2006115073A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067258A (en) * 2005-09-01 2007-03-15 Mitsubishi Materials Corp Cooler and power module
US20100181054A1 (en) * 2009-01-21 2010-07-22 Lockheed Martin Corporation Plate-Frame Graphite-Foam Heat Exchanger
WO2014045766A1 (en) * 2012-09-19 2014-03-27 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
EP2040293A4 (en) * 2007-05-21 2016-05-04 Toyota Motor Co Ltd Cooler for power module and power module
US9388798B2 (en) 2010-10-01 2016-07-12 Lockheed Martin Corporation Modular heat-exchange apparatus
US9541331B2 (en) 2009-07-16 2017-01-10 Lockheed Martin Corporation Helical tube bundle arrangements for heat exchangers
US9670911B2 (en) 2010-10-01 2017-06-06 Lockheed Martin Corporation Manifolding arrangement for a modular heat-exchange apparatus
CN107104252A (en) * 2017-05-02 2017-08-29 安徽江淮松芝空调有限公司 A kind of battery water cooling plant for electric car
US9777971B2 (en) 2009-10-06 2017-10-03 Lockheed Martin Corporation Modular heat exchanger
US10209015B2 (en) 2009-07-17 2019-02-19 Lockheed Martin Corporation Heat exchanger and method for making
JP2020092250A (en) * 2018-11-22 2020-06-11 富士電機株式会社 Semiconductor module, vehicle and manufacturing method

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8081462B2 (en) * 2007-09-13 2011-12-20 Rockwell Automation Technologies, Inc. Modular liquid cooling system
JP5002522B2 (en) * 2008-04-24 2012-08-15 株式会社日立製作所 Cooling device for electronic equipment and electronic equipment provided with the same
US8079508B2 (en) * 2008-05-30 2011-12-20 Foust Harry D Spaced plate heat exchanger
JP2010022711A (en) * 2008-07-23 2010-02-04 Fujitsu Ltd Water pillow for heat radiation
JP5061065B2 (en) * 2008-08-26 2012-10-31 株式会社豊田自動織機 Liquid cooling system
JP5023020B2 (en) * 2008-08-26 2012-09-12 株式会社豊田自動織機 Liquid cooling system
JP5531573B2 (en) * 2008-12-09 2014-06-25 日本軽金属株式会社 Method for joining resin member and metal member, method for manufacturing liquid cooling jacket, and liquid cooling jacket
JP5262822B2 (en) 2009-02-23 2013-08-14 日本軽金属株式会社 Manufacturing method of liquid cooling jacket
US20110127022A1 (en) * 2009-12-01 2011-06-02 Lockheed Martin Corporation Heat Exchanger Comprising Wave-shaped Fins
CN102714930B (en) * 2010-01-12 2015-04-22 日本轻金属株式会社 Liquid-cooled integrated substrate and method for manufacturing liquid-cooled integrated substrate
JP5533215B2 (en) * 2010-05-10 2014-06-25 富士通株式会社 Cooling jacket and electronic device having the same
JP5813300B2 (en) 2010-08-23 2015-11-17 三桜工業株式会社 Cooling system
US20120080170A1 (en) * 2010-10-04 2012-04-05 Hsiu-Wei Yang Plate-type heat pipe sealing structure and manufacturing method thereof
DE102012201710A1 (en) * 2011-02-14 2012-08-16 Denso Corporation heat exchangers
CN102116464B (en) * 2011-04-21 2012-10-10 无锡马山永红换热器有限公司 High-power light-emitting diode (LED) street lamp radiator
JP5692368B2 (en) * 2011-04-26 2015-04-01 富士電機株式会社 Semiconductor module cooler and semiconductor module
JP5716825B2 (en) * 2011-05-12 2015-05-13 トヨタ自動車株式会社 Cooler and method for manufacturing cooler
CN102856275A (en) * 2011-06-29 2013-01-02 鸿富锦精密工业(深圳)有限公司 Cooling system
JP5953206B2 (en) * 2011-11-11 2016-07-20 昭和電工株式会社 Liquid cooling type cooling device and manufacturing method thereof
US10123464B2 (en) 2012-02-09 2018-11-06 Hewlett Packard Enterprise Development Lp Heat dissipating system
WO2013137847A1 (en) 2012-03-12 2013-09-19 Hewlett-Packard Development Company, L.P. Liquid temperature control cooling
JP5496279B2 (en) * 2012-07-25 2014-05-21 株式会社放熱器のオーエス Heat exchanger and manufacturing method thereof
CN102790027B (en) * 2012-08-27 2016-03-30 无锡市福曼科技有限公司 The multiple flow passages water cooling plant of computer CPU
CN102790025B (en) * 2012-08-27 2016-03-30 无锡市福曼科技有限公司 The multiple flow passages water-cooling structure of computer CPU
WO2014051604A1 (en) 2012-09-28 2014-04-03 Hewlett-Packard Development Company, L.P. Cooling assembly
EP2824703B1 (en) * 2012-10-29 2022-06-29 Fuji Electric Co., Ltd. Semiconductor device
CN104756618B (en) 2012-10-31 2017-07-21 慧与发展有限责任合伙企业 Modular rack system
CN104919914B (en) * 2013-01-31 2017-10-27 慧与发展有限责任合伙企业 Component, system and the method for removing heat for providing liquid cooling
JP6150195B2 (en) * 2013-02-13 2017-06-21 アクア株式会社 Electrical equipment and filters
CN105210185A (en) * 2013-05-17 2015-12-30 富士通株式会社 Semiconductor device, semiconductor device manufacturing method, and electronic apparatus
CN103365385A (en) * 2013-07-10 2013-10-23 北京百度网讯科技有限公司 Server component for complete cabinet and complete cabinet employing same
CN103402344A (en) * 2013-08-08 2013-11-20 安徽巨一自动化装备有限公司 Water channel structure of water-cooled heat sink of high-power electronic component
US20150068707A1 (en) * 2013-09-09 2015-03-12 Nec Corporation Electronic component cooling apparatus
DE102013110815B3 (en) 2013-09-30 2014-10-30 Semikron Elektronik Gmbh & Co. Kg Power semiconductor device and method for producing a power semiconductor device
EP2879278B1 (en) * 2013-11-27 2017-06-28 Skf Magnetic Mechatronics Versatile cooling housing for an electrical motor
WO2015079643A1 (en) * 2013-11-28 2015-06-04 富士電機株式会社 Method of manufacturing cooler for semiconductor module, cooler for semiconductor module, semiconductor module, and electrically driven vehicle
CN103796492B (en) * 2014-01-25 2017-01-18 清华大学 Heat collecting end using lotus root-shaped cellular material microchannel module
JP2015175542A (en) * 2014-03-14 2015-10-05 パナソニックIpマネジメント株式会社 Cooling device
JP6238800B2 (en) * 2014-03-17 2017-11-29 株式会社フジクラ Cooling structure
CN105814685B (en) * 2014-05-20 2018-07-13 富士电机株式会社 Semiconductor module cooler and its manufacturing method
JP6286039B2 (en) 2014-06-26 2018-02-28 日立オートモティブシステムズ株式会社 Power semiconductor module and method of manufacturing power semiconductor module
WO2016013072A1 (en) * 2014-07-23 2016-01-28 日本軽金属株式会社 Radiator
JP6378960B2 (en) * 2014-07-29 2018-08-22 株式会社キーレックス Press machine
WO2016021565A1 (en) * 2014-08-06 2016-02-11 富士電機株式会社 Semiconductor device
CN105636402B (en) * 2014-10-28 2018-01-09 奇瑞新能源汽车技术有限公司 A kind of water-cooling radiating structure of motor and electric machine controller
US10471557B2 (en) 2014-11-05 2019-11-12 Nippon Light Metal Company, Ltd. Method of manufacturing liquid-cooled jacket and liquid-cooled jacket
JP6489219B2 (en) 2015-08-26 2019-03-27 日本軽金属株式会社 Joining method, liquid cooling jacket manufacturing method, and liquid cooling jacket
JP6372515B2 (en) * 2015-08-26 2018-08-15 日本軽金属株式会社 Liquid cooling jacket manufacturing method and liquid cooling jacket
EP3405735B1 (en) * 2016-01-21 2022-11-16 Etalim Inc. Apparatus and system for exchanging heat with a fluid
JP2017195226A (en) * 2016-04-18 2017-10-26 昭和電工株式会社 Liquid-cooled type cooling device
CN107768333B (en) * 2016-08-23 2019-11-29 湖南中车时代电动汽车股份有限公司 Electric machine controller radiator
EP3290822B1 (en) * 2016-08-30 2019-11-20 Alfa Laval Corporate AB Plate heat exchanger for solar heating
TWI635248B (en) 2016-09-02 2018-09-11 宏碁股份有限公司 Evaporator and manufacturing method thereof
CN107801351B (en) * 2016-09-05 2023-08-01 宏碁股份有限公司 Evaporator and manufacturing method thereof
CN206089440U (en) * 2016-09-14 2017-04-12 深圳市力沣实业有限公司 Heat radiation structure and have this heat radiation structure's three -dimensional forming and hot -pressing system of glass
US10139168B2 (en) 2016-09-26 2018-11-27 International Business Machines Corporation Cold plate with radial expanding channels for two-phase cooling
CN106840562B (en) * 2017-01-09 2018-12-04 北京航空航天大学 With the split type shielding fixture and method in tenon blade high-temperature vibrating fatigue test in a kind of turbomachine
WO2019016824A1 (en) * 2017-07-19 2019-01-24 Shiv Nadar University A method for modifying surface grain structure of the material and apparatus thereof
DE102017217537B4 (en) * 2017-10-02 2021-10-21 Danfoss Silicon Power Gmbh Power module with integrated cooling device
JP6939481B2 (en) * 2017-11-30 2021-09-22 富士通株式会社 Cooling jackets and electronics
CN110543069A (en) * 2018-05-28 2019-12-06 中强光电股份有限公司 Liquid cooling type radiator
WO2019239663A1 (en) * 2018-06-14 2019-12-19 日本軽金属株式会社 Method for manufacturing composite slab
US11794271B2 (en) * 2018-07-19 2023-10-24 Nippon Light Metal Company, Ltd. Method for manufacturing liquid-cooled jacket
JP2020075255A (en) * 2018-11-05 2020-05-21 日本軽金属株式会社 Production method of liquid cooling jacket and friction stir welding method
JP7243262B2 (en) * 2019-02-15 2023-03-22 富士電機株式会社 Semiconductor module, vehicle and manufacturing method
FR3092901B1 (en) * 2019-02-20 2022-07-22 Rouge Eng Designs Heat sink for lighting system
DK3742097T3 (en) * 2019-05-23 2023-10-09 Ovh WATER BLOCK DEVICE
US11984383B2 (en) * 2019-05-30 2024-05-14 Mitsubishi Electric Corporation Semiconductor device
JP7312093B2 (en) * 2019-11-21 2023-07-20 株式会社Soken power converter
KR102094009B1 (en) * 2020-01-13 2020-03-26 방민철 Temperature control apparatus for chemical liquid for manufacturing semiconductor
JP7347235B2 (en) * 2020-01-24 2023-09-20 日本軽金属株式会社 Liquid cooling jacket manufacturing method and friction stir welding method
JP7347234B2 (en) * 2020-01-24 2023-09-20 日本軽金属株式会社 Liquid cooling jacket manufacturing method and friction stir welding method
US11157050B1 (en) 2020-04-28 2021-10-26 Hewlett Packard Enterprise Development Lp Compute node tray cooling
US20210358833A1 (en) * 2020-05-14 2021-11-18 Lite-On Semiconductor Corporation Direct cooling power semiconductor package
US20220084740A1 (en) * 2020-09-14 2022-03-17 Intel Corporation Embedded cooling channel in magnetics
US11175102B1 (en) * 2021-04-15 2021-11-16 Chilldyne, Inc. Liquid-cooled cold plate
CN113311929A (en) * 2021-06-25 2021-08-27 郑州轻工业大学 Air-cooling and liquid-cooling integrated CPU radiator and radiating method
JPWO2023162413A1 (en) * 2022-02-25 2023-08-31
US20230292469A1 (en) * 2022-03-08 2023-09-14 Amulaire Thermal Technology, Inc. Liquid-cooling heat-dissipation structure
US20240023288A1 (en) * 2022-07-12 2024-01-18 Dell Products L.P. Radiator with top layer coolant tank

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226946A (en) * 1985-04-01 1986-10-08 Hitachi Ltd Cooling device for integrated circuit chip
WO2000016397A1 (en) * 1998-09-16 2000-03-23 Hitachi, Ltd. Electronic device
JP2001035981A (en) * 1999-07-16 2001-02-09 Toshiba Corp Cooler for semiconductor element and power-converting device using it
JP2001313357A (en) * 2000-04-27 2001-11-09 Hitachi Ltd Method for manufacturing heat sink plate, and heat sink structure
JP2002098454A (en) * 2000-07-21 2002-04-05 Mitsubishi Materials Corp Liquid-cooled heat sink and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667949A (en) * 1979-11-07 1981-06-08 Hitachi Ltd Cooling body of electrical parts
JP2558578B2 (en) * 1992-09-30 1996-11-27 住友軽金属工業株式会社 Heat dissipation device for heating element
JP3010080U (en) * 1994-10-12 1995-04-18 東洋ラジエーター株式会社 Electronic component cooler
JP3077903U (en) * 2000-11-24 2001-06-12 能超 張 Micro thin plate type water cooling device usable for computer CPU
JP2005077052A (en) * 2003-09-03 2005-03-24 Hitachi Metals Ltd Flat heat pipe
TWM258569U (en) * 2004-05-18 2005-03-01 Cooler Master Co Ltd Liquid flow-path plate of water cooling heat sink

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226946A (en) * 1985-04-01 1986-10-08 Hitachi Ltd Cooling device for integrated circuit chip
WO2000016397A1 (en) * 1998-09-16 2000-03-23 Hitachi, Ltd. Electronic device
JP2001035981A (en) * 1999-07-16 2001-02-09 Toshiba Corp Cooler for semiconductor element and power-converting device using it
JP2001313357A (en) * 2000-04-27 2001-11-09 Hitachi Ltd Method for manufacturing heat sink plate, and heat sink structure
JP2002098454A (en) * 2000-07-21 2002-04-05 Mitsubishi Materials Corp Liquid-cooled heat sink and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067258A (en) * 2005-09-01 2007-03-15 Mitsubishi Materials Corp Cooler and power module
EP2040293A4 (en) * 2007-05-21 2016-05-04 Toyota Motor Co Ltd Cooler for power module and power module
US20100181054A1 (en) * 2009-01-21 2010-07-22 Lockheed Martin Corporation Plate-Frame Graphite-Foam Heat Exchanger
US9541331B2 (en) 2009-07-16 2017-01-10 Lockheed Martin Corporation Helical tube bundle arrangements for heat exchangers
US10209015B2 (en) 2009-07-17 2019-02-19 Lockheed Martin Corporation Heat exchanger and method for making
US9777971B2 (en) 2009-10-06 2017-10-03 Lockheed Martin Corporation Modular heat exchanger
US9388798B2 (en) 2010-10-01 2016-07-12 Lockheed Martin Corporation Modular heat-exchange apparatus
US9670911B2 (en) 2010-10-01 2017-06-06 Lockheed Martin Corporation Manifolding arrangement for a modular heat-exchange apparatus
JPWO2014045766A1 (en) * 2012-09-19 2016-08-18 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
WO2014045766A1 (en) * 2012-09-19 2014-03-27 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
CN107104252A (en) * 2017-05-02 2017-08-29 安徽江淮松芝空调有限公司 A kind of battery water cooling plant for electric car
JP2020092250A (en) * 2018-11-22 2020-06-11 富士電機株式会社 Semiconductor module, vehicle and manufacturing method
JP7367394B2 (en) 2018-11-22 2023-10-24 富士電機株式会社 Semiconductor module, vehicle and manufacturing method

Also Published As

Publication number Publication date
JP2011040778A (en) 2011-02-24
JP5423638B2 (en) 2014-02-19
TWI370527B (en) 2012-08-11
TW200644199A (en) 2006-12-16
JP2011018940A (en) 2011-01-27
US20090065178A1 (en) 2009-03-12
TW201113988A (en) 2011-04-16
TW201113989A (en) 2011-04-16
CN100543975C (en) 2009-09-23
TWI355049B (en) 2011-12-21
JP5423637B2 (en) 2014-02-19
CN101167184A (en) 2008-04-23

Similar Documents

Publication Publication Date Title
WO2006115073A1 (en) Liquid-cooled jacket
JP4687541B2 (en) Liquid cooling jacket
JP4687706B2 (en) Liquid cooling jacket
US7017655B2 (en) Forced fluid heat sink
US9472489B2 (en) Heat exchanger
US8199505B2 (en) Jet impingement heat exchanger apparatuses and power electronics modules
TWI476357B (en) Radiator and electronic device having the same
KR100618482B1 (en) Liquid-cooling system and electronic device
EP1538884A2 (en) Liquid cooling system for use in an electronic apparatus
US7826225B2 (en) Expansion tank device, process for fabricating expansion tank device, and liquid cooling radiator
JP2013254787A (en) Heat exchanger and manufacturing method of the same
US20210404750A1 (en) Integrated hybrid compact fluid heat exchanger
TWI605236B (en) Liquid cooling jacket and manufacturing method of liquid cooling jacket
JP2015530552A (en) Small aluminum heat exchanger with welded tube for power electronics and battery cooling
JP4867411B2 (en) Cooling device for electronic equipment
TWI607533B (en) Water-cooling radiator structure
US10219408B2 (en) Water-cooling radiator structure
JP2007027340A (en) Cooling device for electronic equipment
JP7431719B2 (en) Cooler for power devices
JP2013219125A (en) Heat exchanger
JP2018066546A (en) Information processing apparatus and heat exchanger
JP7045912B2 (en) Semiconductor devices and their manufacturing methods
JP2022090834A (en) Wave-type heat transfer fin
CN116560473A (en) Heat abstractor and server
TWM538688U (en) Water-cooled heat sink

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680013267.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11918876

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731782

Country of ref document: EP

Kind code of ref document: A1