JPS61226946A - Cooling device for integrated circuit chip - Google Patents

Cooling device for integrated circuit chip

Info

Publication number
JPS61226946A
JPS61226946A JP6648685A JP6648685A JPS61226946A JP S61226946 A JPS61226946 A JP S61226946A JP 6648685 A JP6648685 A JP 6648685A JP 6648685 A JP6648685 A JP 6648685A JP S61226946 A JPS61226946 A JP S61226946A
Authority
JP
Japan
Prior art keywords
integrated circuit
circuit chip
cooling
bellows
cooling member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6648685A
Other languages
Japanese (ja)
Inventor
Keiichiro Nakanishi
中西 敬一郎
Minoru Yamada
稔 山田
Takahiro Oguro
崇弘 大黒
Noriyuki Ashiwake
芦分 範行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6648685A priority Critical patent/JPS61226946A/en
Publication of JPS61226946A publication Critical patent/JPS61226946A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4332Bellows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To reduce pressure loss by forming the section of a refrigerant supply pipe to a non-circle such as an ellipse and arranging the pipes at both ends of a tabular cooling fin in a cooling member. CONSTITUTION:Thin flexible bellows 10 using a technique such as an electroforming technique for nickel are fixed onto the upper surfaces of cooling members 1 through soldering, etc., and connected to refrigerant flow paths 7 existing in a hat 5 in the upper section of the cooling members. The cooling members 1 are brought into pressure-contact with integrated circuit chips 2 by the resiliency of the bellows, and heat generated in the integrated circuit chips 2 is transmitted over cooling fins 13 and a refrigerant from bottom plates 12 through the pressure-contact surfaces. The sectional areas of the bellows are increased remarkably by forming the shapes of the bellows to an ellipse from a conventional circle at that time, thus reducing the velocity of flow of the refrigerant in the bellows, then lowering pressure loss and preventing corrosion. The elliptic bellows are disposed at both ends of fin rows, thus equalizing the quantity of the refrigerant flowing into each fin.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、集積回路チップの冷却装置に係り、特に電子
計算機等に使用される大消費電力の集積回路チップの発
熱を効果的に取り去る冷却装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a cooling device for integrated circuit chips, and in particular to a cooling device that effectively removes heat generated from large power consuming integrated circuit chips used in electronic computers and the like. It is related to.

〔発明の背景〕[Background of the invention]

電子計算機等では、高速の回路動作を実現するため、大
消費電力の集積回路チップをプリント板あるいはセラミ
ック板等の配線基板上に高密度に実装する方式が広く行
なわれている。この配線基板の発熱は数100ワツトに
なり、この発熱を吸収する強力でコンパクトな冷却系を
実現することが、高速な計算機を実現する鍵となること
は明らかである。
In electronic computers and the like, in order to achieve high-speed circuit operation, it is widely used to mount integrated circuit chips that consume large amounts of power at high density on a wiring board such as a printed board or a ceramic board. The heat generated by this wiring board amounts to several hundred watts, and it is clear that the key to realizing a high-speed computer is to create a powerful and compact cooling system that can absorb this heat.

上述の要求を満足するため、従来より種々の冷却系が提
案されているが、その−例として本出願人は特願昭58
−72896号の提案を行なった。
In order to satisfy the above-mentioned requirements, various cooling systems have been proposed in the past.
-72896 was proposed.

本提案は、集積回路チップ上に固着あるいはバネで圧接
した冷却部材に、柔軟なパイプ部材を用いて冷媒を供給
して該集積回路チップの冷却を行なうものである。この
冷却方式は1crr10の冷却部材を用いた場合、約I
C/Wの低熱抵抗を実現できる強力なものであるが、1
)微小な円形パイプを用いているため冷媒の圧力損失が
大きくなる、111)バネで冷却部材を圧接する場合チ
ップと冷却部材間の圧接界面の熱抵抗が非常に大きくな
る、111)集積回路チップの動作・非動作にかかわら
ず常にバネ荷重が集積回路チップと配線基板間の信号接
続部に加わっている等の制限がおった。
In this proposal, a flexible pipe member is used to supply a coolant to a cooling member that is fixedly attached to the integrated circuit chip or pressed against it by a spring, thereby cooling the integrated circuit chip. This cooling method is approximately I when using a cooling member of 1crr10
It is a powerful product that can realize low thermal resistance of C/W, but 1
111) When a spring is used to press the cooling member, the thermal resistance at the pressure interface between the chip and the cooling member becomes very large. 111) Integrated circuit chip There are limitations such as a spring load being constantly applied to the signal connection between the integrated circuit chip and the wiring board, regardless of whether the integrated circuit chip is in operation or not.

〔発明の目的〕[Purpose of the invention]

本発明の目的は複数の大消費電力の集積回路チップをさ
らに効率良く冷却でき、かつ冷却部材の接触圧力によシ
集積回路チップと配線基板間の信号接続部に生ずるひず
みを軽減できる集積回路チップ冷却装置を提供すること
にある。
An object of the present invention is to provide an integrated circuit chip that can more efficiently cool a plurality of integrated circuit chips that consume large amounts of power, and that can reduce distortion that occurs in the signal connection between the integrated circuit chip and the wiring board due to the contact pressure of the cooling member. The purpose is to provide a cooling device.

〔発明の概要〕[Summary of the invention]

かかる目的を達成するために、本発明では、バネ性(i
l−有する部材で冷媒供給パイプを形成し、このパイプ
のバネ性を用いて内部に板状冷却フィンを有する冷却部
材を集積回路チップに圧接することによシ冷却を行なう
ことを特徴とする。
In order to achieve such an objective, the present invention provides springiness (i
The cooling is performed by forming a refrigerant supply pipe with a member having an inner diameter of 1.5 mm, and using the spring properties of the pipe to press a cooling member having plate-shaped cooling fins therein against the integrated circuit chip.

この場合、冷媒供給パイプの断面を例えば長円形等の非
円形とし、これを冷却部材内の板状冷却フィンの両端に
配置することによシ、円形断面に比べて断面積を増加し
、結果として圧力損失を低減している。
In this case, by making the cross section of the refrigerant supply pipe non-circular, such as an ellipse, and arranging it at both ends of the plate-shaped cooling fins in the cooling member, the cross-sectional area can be increased compared to a circular cross-section. This reduces pressure loss.

さらに、集積回路チップと冷却部材間の圧接面にそれぞ
れ一定高さの溝状凹凸面を形成し、両者を噛合せること
により対向する表面積を増加させ、圧接面の熱抵抗を減
少させる。
Furthermore, a groove-like uneven surface of a certain height is formed on the press-contact surface between the integrated circuit chip and the cooling member, and by engaging the two, the opposing surface area is increased and the thermal resistance of the press-contact surface is reduced.

また、一般に長円形等のベローズでは、長手方向の水平
変位に対するバネ定数は、長手方向と直焚する方向の水
平変位に対するバネ定数に比べて1桁程度太酋い。そこ
で、凹凸面の溝の方向を長円形ベローズの長手方向にと
ることによシ、冷却ブロックはベローズの長手方向の水
平変位に対してチップ上を自由に摺動することが可能と
なパかたいバネによりチップに不必要な荷重が加わるこ
とが防げる。
Further, in general, in the case of an oval bellows, the spring constant for horizontal displacement in the longitudinal direction is about one order of magnitude larger than the spring constant for horizontal displacement in the longitudinal direction and the direct firing direction. Therefore, by arranging the direction of the grooves on the uneven surface in the longitudinal direction of the oval bellows, the cooling block can freely slide on the chip against horizontal displacement in the longitudinal direction of the bellows. The spring prevents unnecessary loads from being applied to the chip.

さらに、冷却装置内部に加圧気体を挿入することによシ
、気体分子の平均自由行路を短縮し、自由分子流による
圧接面の温度差の発生を防止する。
Furthermore, by inserting pressurized gas into the cooling device, the mean free path of the gas molecules is shortened, thereby preventing the generation of temperature differences between the pressurized surfaces due to the flow of free molecules.

また、冷却部材の圧接に冷媒圧力を用いることによシ、
集積回路チップの非動作時において冷却部材と集積回路
チップが非接触となるようにし、信号接続部に不必要な
バネ荷重あるいは水圧荷重の加わる時間を最低限に押さ
えている。
In addition, by using refrigerant pressure to press the cooling member,
The cooling member and the integrated circuit chip are kept out of contact when the integrated circuit chip is not in operation, and the time during which unnecessary spring load or hydraulic pressure load is applied to the signal connection portion is minimized.

〔発明の実施例〕[Embodiments of the invention]

以下図面により本発明を説明する。 The present invention will be explained below with reference to the drawings.

第10は本発明の一実施例を示す断面図である。10 is a sectional view showing an embodiment of the present invention.

集積回路チップ冷却装置100は、多数の集積回路チッ
プ2を封入し、かつ冷却する手段を与えるものである。
Integrated circuit chip cooling apparatus 100 provides a means for encapsulating and cooling a large number of integrated circuit chips 2.

封止は、配線基板3とハツト5をハンダ6により接合す
ることによシ行なわれる。配線基板3上には多数の集積
回路チップ2がハンダ端子4を介して電気的に相互接続
されており、基板下面には、冷却装置を回路カード又は
回路ボードに接続するための多数の入出力ピン9が存在
する。
Sealing is performed by joining the wiring board 3 and the hat 5 with solder 6. On the wiring board 3, a number of integrated circuit chips 2 are electrically interconnected via solder terminals 4, and on the bottom side of the board there are a number of inputs and outputs for connecting the cooling device to a circuit card or circuit board. Pin 9 is present.

集積回路チップ2により発生した熱は、各集積回路チッ
プ上に搭載された冷却部材1に伝達され、冷却部材内部
を循環する冷媒により冷却される。
Heat generated by the integrated circuit chips 2 is transferred to the cooling member 1 mounted on each integrated circuit chip, and is cooled by a coolant circulating inside the cooling member.

冷媒は、ノズル8aを通して冷却装置外部から流入し、
ベローズ形状の柔軟なパイプ10を介して各冷却部材内
を循環し、ノズル8bを通して冷却装置外部へ排出され
る。
The refrigerant flows from outside the cooling device through the nozzle 8a,
It circulates within each cooling member via the bellows-shaped flexible pipe 10 and is discharged to the outside of the cooling device through the nozzle 8b.

第2図は、冷却部材を示す斜視図である。冷却部材1は
、冷却フィン13を一体成形した底板12とギャップ1
1から成る。冷却フィン13の材質としては、熱伝導率
が良好な材料、例えば銅、アルミ又は高熱伝導性の炭化
ケイ素セラミックス等が使用できる。またキャップ11
との接続には、ハンダ付等を用いればよい。冷却部材1
の上面には、例えばニッケルのN、鋳抜術を用いた薄く
て柔軟なベローズ10がハンダ付等により固着してめシ
、冷却部材上部のハツト5内に存在する冷媒流路7との
接続を行なう。冷却部材1はベローズのバネ性によシ集
積回路チップ2に圧接されておシ、集積回路チップ2に
おいて発生した熱は、この圧接面を介して底板12から
冷却フィン13、冷媒へと伝達される。冷媒としては、
例えば水又はフロリナート等が使用できる。
FIG. 2 is a perspective view of the cooling member. The cooling member 1 has a bottom plate 12 integrally formed with cooling fins 13 and a gap 1.
Consists of 1. As the material for the cooling fins 13, a material with good thermal conductivity, such as copper, aluminum, or highly thermally conductive silicon carbide ceramics, can be used. Also cap 11
For connection, soldering or the like may be used. Cooling member 1
On the upper surface, a thin and flexible bellows 10 made of nickel N, for example, is fixed by soldering or the like, and is connected to the refrigerant channel 7 present in the hat 5 at the top of the cooling member. Do the following. The cooling member 1 is pressed against the integrated circuit chip 2 by the spring properties of the bellows, and the heat generated in the integrated circuit chip 2 is transferred from the bottom plate 12 to the cooling fins 13 and the refrigerant via this pressure contact surface. Ru. As a refrigerant,
For example, water or Fluorinert can be used.

この場合、ベローズの形状を従来の円形から第2図に示
すような例えば長円形にすることによシ、ベローズ断面
積を飛躍的に増加させ、結果としてベローズ内の冷媒流
速が減少し、圧力損失の低減、腐食の防止を図ることが
できる。また 第2図の゛  ようにフィン列の両端に
長円形ベローズを配置することにより、各フィンへの冷
媒流入量を均一にすることができる。
In this case, by changing the shape of the bellows from the conventional circular shape to, for example, an oval shape as shown in Figure 2, the cross-sectional area of the bellows can be dramatically increased, resulting in a decrease in the refrigerant flow rate within the bellows and a reduction in pressure. Loss can be reduced and corrosion can be prevented. Further, by arranging oval bellows at both ends of the fin row as shown in FIG. 2, the amount of refrigerant flowing into each fin can be made uniform.

第3図は本発明の第2の実施例を示す側面図である。前
述の実施例では、冷却部材1及び集積回路チップ2との
圧接面は平面としたが、本実施例では、第3図(a)に
示すように、底板12と集積回路チップとの圧接面にそ
れぞれ溝状の微小な凹凸を設け、両者を噛合せることに
より、実効的に圧接面の表面積を増加している。同図に
示す白ヌキの矢印は噛合せの方向を示すものである。一
般に、表面m’e増加すればする程、圧接面の熱抵抗は
減少する傾向にあシ、本実施例を採用することによυ十
分低い熱抵抗を実現することができる。第3図(b)は
、第3図(a)とは異なった凹凸面の形状を示したもの
である。本形状では、凸部の先端が錐状を成しているた
め、第3図(a)に比べて表面積の増加率は少ないが、
冷却部材と集積回路チップとの間に少々の位置ずれがあ
っても、両者の噛合せは容易となる。
FIG. 3 is a side view showing a second embodiment of the invention. In the embodiment described above, the pressure contact surface between the cooling member 1 and the integrated circuit chip 2 was a flat surface, but in this embodiment, as shown in FIG. 3(a), the pressure contact surface between the bottom plate 12 and the integrated circuit chip By providing minute groove-like unevenness on each side and engaging the two, the surface area of the press contact surface is effectively increased. The white arrow shown in the figure indicates the direction of engagement. Generally, as the surface m'e increases, the thermal resistance of the press contact surface tends to decrease, and by employing this embodiment, a sufficiently low thermal resistance υ can be realized. FIG. 3(b) shows the shape of the uneven surface different from that in FIG. 3(a). In this shape, since the tip of the convex part is conical, the rate of increase in surface area is smaller than in Fig. 3(a), but
Even if there is a slight misalignment between the cooling member and the integrated circuit chip, the two can be easily engaged.

以上に示した溝状凹凸面の加工方法としては、ダイアモ
ンドブレード等を用いた切削加工によるものが一般的で
あるが、特にシリコンチップの場合には異方性エツチン
グを用いることもできる。
As a method for processing the above-mentioned groove-like uneven surface, cutting using a diamond blade or the like is generally used, but anisotropic etching can also be used especially in the case of a silicon chip.

尚、第2の実施例では、第3図(a)、 (b)のいず
れも底板12及び集積回路チップに直接凹凸面を形成す
る場合について述べたが、第1の実施例に示したような
平担な圧接面に、別途作製した凹凸面を有する板をハン
ダ等により固着したとしても、何ら上述の効果を妨げる
ものではない。これは、以下に述べる実施例についても
同じである。
In the second embodiment, the case where the uneven surface is directly formed on the bottom plate 12 and the integrated circuit chip in both FIGS. 3(a) and 3(b) has been described, but as shown in the first embodiment, Even if a separately manufactured plate having an uneven surface is fixed to the flat press-contact surface with solder or the like, the above-mentioned effect will not be hindered in any way. This also applies to the embodiments described below.

第4図は本発明の第3の実施例を示す斜視図である。一
般に第4図に示すような長円形のベローズ10では、長
手方向の水平変位に対するバネ定数は、長手方向と直交
する方向の水平変位に対するバネ定数に比べてはるかに
太きい。ここで、本実施例では、底板12及び集積回路
チップ2に設けた凹凸面の溝の方向をベローズの長手方
向に対して平行に形成しているため、長手方向に加わる
水平変位に対して冷却部材1は集積回路チップ上を自由
に摺動することができる。従って、ノ・ンダ端子4に加
わる水平荷重はベローズの長手方向に直交する方向の比
較的小さい値のみとなシ、ノ・ンダ端子の破壊寿命を考
えるうえで非常に有利となる。
FIG. 4 is a perspective view showing a third embodiment of the present invention. Generally, in an oval bellows 10 as shown in FIG. 4, the spring constant for horizontal displacement in the longitudinal direction is much thicker than the spring constant for horizontal displacement in a direction perpendicular to the longitudinal direction. Here, in this embodiment, since the direction of the grooves on the uneven surface provided on the bottom plate 12 and the integrated circuit chip 2 is formed parallel to the longitudinal direction of the bellows, cooling is prevented against horizontal displacement applied in the longitudinal direction. The member 1 can slide freely over the integrated circuit chip. Therefore, the horizontal load applied to the terminal 4 is only a relatively small value in the direction perpendicular to the longitudinal direction of the bellows, which is very advantageous in considering the destructive life of the terminal.

第5図は本発明の第4の実施例を示す斜視図である。本
実施例では、凹凸面の溝の方向が表面及び裏面で互いに
直交するような中間板14を冷却部材1及び集積回路チ
ップ2の間に挿入している。
FIG. 5 is a perspective view showing a fourth embodiment of the present invention. In this embodiment, an intermediate plate 14 is inserted between the cooling member 1 and the integrated circuit chip 2 so that the directions of the grooves on the uneven surface are perpendicular to each other on the front and back surfaces.

本構造では、圧接による伝熱面が2箇所となるので、熱
抵抗的には第2及び第3の実施例に比べて不利となるが
、中間板の両面の凹凸面によりベローズの長手方向及び
それに直焚する方向に対する冷却ブロックの自由な摺動
が可能となる。従って、水平方向360° の変位に対
して、ハンダ端子4の受ける荷重はほぼゼロとなり、そ
の寿命を著しく改善することができる。
In this structure, there are two heat transfer surfaces due to pressure welding, so it is disadvantageous in terms of thermal resistance compared to the second and third embodiments, but due to the uneven surfaces on both sides of the intermediate plate, In addition, the cooling block can freely slide in the direction of direct firing. Therefore, the load applied to the solder terminal 4 becomes almost zero even if the solder terminal 4 is displaced by 360 degrees in the horizontal direction, and its life can be significantly improved.

尚、以上の第1から第4の実施例において、圧接面の熱
抵抗をさらに低減するためは、圧接面の平均間隔を減少
すればよい。しかし、この場合、平均間隔が圧接面内の
気体分子の平均自由行路を下まわると、いわゆる希薄気
体の熱伝達状態が生ずる。このような熱伝達に関しては
、甲藤好部著「伝熱概論」 (養賢堂)第10章に詳し
く述べられているが、それによると希薄気体では、気体
分子相互の衝突による熱伝達が不可能となるため、壁面
に接する気体と壁面との間に温度差が生ずる。
In the first to fourth embodiments described above, in order to further reduce the thermal resistance of the press-contact surfaces, it is sufficient to reduce the average distance between the press-contact surfaces. However, in this case, if the average spacing falls below the mean free path of the gas molecules in the pressure contact surface, a so-called dilute gas heat transfer condition occurs. This type of heat transfer is described in detail in Chapter 10 of ``Introduction to Heat Transfer'' by Yoshibu Kato (Yokendo), which states that in dilute gases, heat transfer due to mutual collisions of gas molecules is not possible. As a result, a temperature difference occurs between the gas in contact with the wall and the wall.

この値は、圧接面の平均間隔を気体の平均自由行路以下
にいくら小さくしても一定値を保ち、ゼロとすることは
で籾ない。この温度差による熱抵抗を低減するためには
、平均自由行路を減少すること、すなわち封入気体の圧
力を増加することが有効であり、例えば封入気体をヘリ
ウムとした場合、第1の実施例において平均間隔0.5
μm1封入圧力3気圧で圧接面の熱抵抗0.1 cm”
  ・K/Wを実現できる。
This value remains constant no matter how much the average distance between the pressure contact surfaces is reduced below the mean free path of the gas, and cannot be set to zero. In order to reduce the thermal resistance due to this temperature difference, it is effective to reduce the mean free path, that is, to increase the pressure of the sealed gas. For example, when the sealed gas is helium, in the first embodiment, Average interval 0.5
Thermal resistance of the pressure contact surface is 0.1 cm at μm1 sealing pressure of 3 atm.”
・K/W can be achieved.

第6図は本発明の第5の実施例を示す側面図である。本
実施例では、第6図(a)に示すように、集積回路チッ
プ2の非動作時において全ての冷却部材1は集積回路チ
ップに接触しておらず、この状態でハンダ端子4に不必
要な荷重がかかることはない。第6図(b)に示すよう
に、集積回路チップの動作時では冷却部材の内部に冷媒
が循環し、冷媒圧によシ冷却部材1は集積回路チップ2
に接触し冷却が行なわれる。本実施例では、ベローズ1
0が水圧によシ伸長されるので、これに必要な荷重分だ
け集積回路チップに加わる冷媒圧か低減でき、冷却装置
の圧力損失が大きく高い圧力で冷媒を供給しなければな
らない場合等に特に有効である。
FIG. 6 is a side view showing a fifth embodiment of the present invention. In this embodiment, as shown in FIG. 6(a), when the integrated circuit chip 2 is not in operation, all the cooling members 1 are not in contact with the integrated circuit chip, and in this state, the solder terminals 4 are No heavy loads will be applied. As shown in FIG. 6(b), when the integrated circuit chip is in operation, the refrigerant circulates inside the cooling member, and the cooling member 1 is moved between the integrated circuit chips 1 and 2 by the refrigerant pressure.
cooling occurs. In this embodiment, the bellows 1
0 is expanded by water pressure, the refrigerant pressure applied to the integrated circuit chip can be reduced by the load required for this, especially when the cooling device has a large pressure loss and must supply refrigerant at high pressure. It is valid.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明によれば、集積回路チップと冷媒間の
熱伝導径路が短く、かつ太れな変位吸収能力のある強力
な冷却装置を実現することができ、その結果として、集
積回路チップの信頼性の向上及び高@贋実装が可能とな
As described above, according to the present invention, it is possible to realize a powerful cooling device in which the heat conduction path between the integrated circuit chip and the coolant is short and has a large displacement absorption ability. Enables improved reliability and high @fake implementation

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図はその
冷却部材を示す斜視図、第3図は本発明の第2の実施例
を示ず測面図、第4図は本発明の第3の実施例を示す斜
視図、第5図は本発明の第4の実施例を示す斜視図、第
6図は本発明の第5の実施例を示す側面図である。 1・・・冷却部材、2・・・業績回路チップ、3・・・
配線基板、4・・・ハンダ端子、5・・・ハツト、8・
・・ノズル、9・・・入出力ピン、10・・・べ「I−
ス、11・・・キャップ、12・・・底板、13・・・
フィン、14・・・中間板、100・・・集積回路チッ
プ冷却装置。
Fig. 1 is a sectional view showing one embodiment of the present invention, Fig. 2 is a perspective view showing the cooling member thereof, Fig. 3 is a surface diagram showing the second embodiment of the invention, and Fig. 4 is a surface view showing the second embodiment of the invention. FIG. 5 is a perspective view showing a third embodiment of the invention, FIG. 5 is a perspective view showing a fourth embodiment of the invention, and FIG. 6 is a side view showing a fifth embodiment of the invention. 1... Cooling member, 2... Performance circuit chip, 3...
Wiring board, 4... Solder terminal, 5... Hat, 8...
... Nozzle, 9... Input/output pin, 10... Be "I-"
11...cap, 12...bottom plate, 13...
Fin, 14... Intermediate plate, 100... Integrated circuit chip cooling device.

Claims (1)

【特許請求の範囲】 1、バネ性を有する冷媒供給パイプを接続した内部に板
状の冷却フィンを有する冷却部材を、該パイプのバネ性
を用いて集積回路チップに圧接することにより、該集積
回路チップの冷却を行なう集積回路チップ冷却装置にお
いて、該パイプの断面を非円形とするとともに、2本の
該非円形パイプの長手方向が互いに平行となるよう該フ
ィンの両端部に配置したことを特徴とする集積回路チッ
プ冷却装置。 2、上記集積回路チップ及び冷却部材の圧接面がそれぞ
れ一定高さの溝状の凹凸を有し、両者の凹凸面を噛合せ
ることにより該集積回路チップから該冷却部材への伝熱
を行なうことを特徴とする特許請求の範囲第1項記載の
集積回路チップ冷却装置。 3、上記凹凸面の溝の方向が該非円形パイプの長手方向
に対して平行であり、噛合せ時において該冷却部材が該
長手方向に摺動可能であることを特徴とする特許請求の
範囲第1項又は第2項記載の集積回路チップ冷却装置。 4、上記冷却部材及び集積回路チップの凹凸面の溝の方
向が互いに直交するとともに、該冷却部材及び集積回路
チップの凹凸面にそれぞれ噛合せ可能な凹凸面を上面及
び下面に有する中間板を、該冷却部材及び集積回路チッ
プ間に挿入することにより、該冷却部材が互いに直交す
る2つの方向にそれぞれ摺動可能なことを特徴とする特
許請求の範囲第1項又は第2項記載の集積回路チップ冷
却装置。 5、上記集積回路チップ冷却装置の内部に、大気圧以上
の圧力で高熱伝導性の気体を封入したことを特徴とする
特許請求の範囲第1項、第2項、第3項又は第4項記載
の集積回路チップ冷却装置。 6、上記集積回路チップの非動作時において、該集積回
路チップと該冷却部材が非接触であることを特徴とする
特許請求の範囲第1項、第2項、第3項、第4項又は第
5項記載の集積回路チップ冷却装置。
[Claims] 1. A cooling member having plate-shaped cooling fins inside which is connected to a refrigerant supply pipe having a spring property is pressed against the integrated circuit chip using the spring property of the pipe. An integrated circuit chip cooling device for cooling a circuit chip, characterized in that the cross section of the pipe is non-circular, and the two non-circular pipes are arranged at both ends of the fin so that their longitudinal directions are parallel to each other. Integrated circuit chip cooling equipment. 2. The press-contact surfaces of the integrated circuit chip and the cooling member each have groove-like unevenness of a certain height, and heat is transferred from the integrated circuit chip to the cooling member by engaging the uneven surfaces of both. An integrated circuit chip cooling device according to claim 1, characterized in that: 3. The direction of the grooves on the uneven surface is parallel to the longitudinal direction of the non-circular pipe, and the cooling member is slidable in the longitudinal direction when engaged. The integrated circuit chip cooling device according to item 1 or 2. 4. An intermediate plate having grooves on the concave and convex surfaces of the cooling member and the integrated circuit chip whose groove directions are perpendicular to each other and having concave and convex surfaces on the upper and lower surfaces that can be engaged with the concave and convex surfaces of the cooling member and the integrated circuit chip, respectively; The integrated circuit according to claim 1 or 2, wherein the cooling member is slidable in two mutually orthogonal directions by being inserted between the cooling member and the integrated circuit chip. Chip cooling device. 5. Claims 1, 2, 3, or 4, characterized in that a highly thermally conductive gas is sealed inside the integrated circuit chip cooling device at a pressure higher than atmospheric pressure. The integrated circuit chip cooling device described. 6. Claims 1, 2, 3, 4 or 6, characterized in that when the integrated circuit chip is not in operation, the integrated circuit chip and the cooling member are not in contact with each other. 6. The integrated circuit chip cooling device according to claim 5.
JP6648685A 1985-04-01 1985-04-01 Cooling device for integrated circuit chip Pending JPS61226946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6648685A JPS61226946A (en) 1985-04-01 1985-04-01 Cooling device for integrated circuit chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6648685A JPS61226946A (en) 1985-04-01 1985-04-01 Cooling device for integrated circuit chip

Publications (1)

Publication Number Publication Date
JPS61226946A true JPS61226946A (en) 1986-10-08

Family

ID=13317167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6648685A Pending JPS61226946A (en) 1985-04-01 1985-04-01 Cooling device for integrated circuit chip

Country Status (1)

Country Link
JP (1) JPS61226946A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945980A (en) * 1988-09-09 1990-08-07 Nec Corporation Cooling unit
US4975766A (en) * 1988-08-26 1990-12-04 Nec Corporation Structure for temperature detection in a package
US5014777A (en) * 1988-09-20 1991-05-14 Nec Corporation Cooling structure
US5023695A (en) * 1988-05-09 1991-06-11 Nec Corporation Flat cooling structure of integrated circuit
US5036384A (en) * 1987-12-07 1991-07-30 Nec Corporation Cooling system for IC package
US5329419A (en) * 1991-10-21 1994-07-12 Nec Corporation Integrated circuit package having a cooling mechanism
JP2001308245A (en) * 2000-04-25 2001-11-02 Denso Corp Refrigerant cooling type both-face cooling semiconductor device
WO2006115073A1 (en) * 2005-04-21 2006-11-02 Nippon Light Metal Company, Ltd. Liquid-cooled jacket
JP2006324647A (en) * 2005-04-21 2006-11-30 Nippon Light Metal Co Ltd Liquid-cooled jacket
JP2007214231A (en) * 2006-02-08 2007-08-23 T Rad Co Ltd Heat sink
JP2011155118A (en) * 2010-01-27 2011-08-11 Hitachi Ltd Heat sink mount, and heat sink mounting method
JP2011222564A (en) * 2010-04-02 2011-11-04 Nec Personal Products Co Ltd Heat sink, heat dissipation member, and electronic device
WO2013151605A1 (en) * 2012-04-02 2013-10-10 Raytheon Company Semiconductor cooling apparatus
WO2013151606A1 (en) * 2012-04-02 2013-10-10 Raytheon Company Semiconductor cooling apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5036384A (en) * 1987-12-07 1991-07-30 Nec Corporation Cooling system for IC package
US5023695A (en) * 1988-05-09 1991-06-11 Nec Corporation Flat cooling structure of integrated circuit
US4975766A (en) * 1988-08-26 1990-12-04 Nec Corporation Structure for temperature detection in a package
US4945980A (en) * 1988-09-09 1990-08-07 Nec Corporation Cooling unit
US5014777A (en) * 1988-09-20 1991-05-14 Nec Corporation Cooling structure
US5329419A (en) * 1991-10-21 1994-07-12 Nec Corporation Integrated circuit package having a cooling mechanism
JP2001308245A (en) * 2000-04-25 2001-11-02 Denso Corp Refrigerant cooling type both-face cooling semiconductor device
JP2006324647A (en) * 2005-04-21 2006-11-30 Nippon Light Metal Co Ltd Liquid-cooled jacket
WO2006115073A1 (en) * 2005-04-21 2006-11-02 Nippon Light Metal Company, Ltd. Liquid-cooled jacket
JP4687541B2 (en) * 2005-04-21 2011-05-25 日本軽金属株式会社 Liquid cooling jacket
JP2007214231A (en) * 2006-02-08 2007-08-23 T Rad Co Ltd Heat sink
JP2011155118A (en) * 2010-01-27 2011-08-11 Hitachi Ltd Heat sink mount, and heat sink mounting method
JP2011222564A (en) * 2010-04-02 2011-11-04 Nec Personal Products Co Ltd Heat sink, heat dissipation member, and electronic device
WO2013151605A1 (en) * 2012-04-02 2013-10-10 Raytheon Company Semiconductor cooling apparatus
WO2013151606A1 (en) * 2012-04-02 2013-10-10 Raytheon Company Semiconductor cooling apparatus
US9472487B2 (en) 2012-04-02 2016-10-18 Raytheon Company Flexible electronic package integrated heat exchanger with cold plate and risers
US9553038B2 (en) 2012-04-02 2017-01-24 Raytheon Company Semiconductor cooling apparatus

Similar Documents

Publication Publication Date Title
US5050037A (en) Liquid-cooling module system for electronic circuit components
US5001548A (en) Multi-chip module cooling
US5751062A (en) Cooling device of multi-chip module
US10215504B2 (en) Flexible cold plate with enhanced flexibility
US4729060A (en) Cooling system for electronic circuit device
JPS61226946A (en) Cooling device for integrated circuit chip
KR930005491B1 (en) Device for cooling integrated circuit chip
US4750086A (en) Apparatus for cooling integrated circuit chips with forced coolant jet
US4235283A (en) Multi-stud thermal conduction module
US5699853A (en) Combined heat sink and sink plate
EP0288183B1 (en) Cooling apparatus and semiconductor device employing the same
US5177667A (en) Thermal conduction module with integral impingement cooling
US4283754A (en) Cooling system for multiwafer high density circuit
US20040150956A1 (en) Pin fin heat sink for power electronic applications
JPS60126853A (en) Cooling device for semiconductor chip
JPH0334229B2 (en)
US4450505A (en) Apparatus for cooling integrated circuit chips
US7992625B1 (en) Fluid-operated heat transfer device
JPS5832504B2 (en) Semiconductor chip heat transfer device
JPH08316388A (en) Heat sink excellent in heat dissipation characteristics
US11232995B2 (en) Semiconductor device
US6807058B2 (en) Heat sink and combinations
JP2001284513A (en) Power semiconductor device
US20210247151A1 (en) Fluid-based cooling device for cooling at least two distinct first heat-generating elements of a heat source assembly
US6281575B1 (en) Multi-chip module