JP2008300447A - Heat radiation device - Google Patents

Heat radiation device Download PDF

Info

Publication number
JP2008300447A
JP2008300447A JP2007142464A JP2007142464A JP2008300447A JP 2008300447 A JP2008300447 A JP 2008300447A JP 2007142464 A JP2007142464 A JP 2007142464A JP 2007142464 A JP2007142464 A JP 2007142464A JP 2008300447 A JP2008300447 A JP 2008300447A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
flow path
heat radiating
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007142464A
Other languages
Japanese (ja)
Inventor
Miyo Mochizuki
美代 望月
Kenji Kaneda
謙治 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2007142464A priority Critical patent/JP2008300447A/en
Publication of JP2008300447A publication Critical patent/JP2008300447A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat radiation device capable of improving a heat radiation capacity while suppressing a pressure loss of a cooling medium. <P>SOLUTION: A cut portion is formed nearby the reverse surface 12b of a heat radiation plate 12 of a heat radiation fin 14 disposed on the back side of a heating body 30 where a heating value is large, and then a local flow passage 18 is formed which makes cooling medium flow passages 16 and 26 adjacent communicate with each other across the heat radiation fin 14. A hear radiation wall 20 that the cooling medium flowing in the cooling medium flow passage 16 collides against is stood nearby the local flow passage 18 on the reverse surface 12b of the heat radiation plate 12. The cooling medium having collided against the heat radiation wall 20 flows to the cooling medium flow passage 26 through the local flow passage 18. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、発熱体で発生した熱を放出させるための放熱装置に関する。   The present invention relates to a heat dissipation device for releasing heat generated by a heating element.

発熱体で発生した熱を放出させるための放熱装置の一例として、マイクロチャンネル型放熱装置が知られている(例えば特許文献1及び非特許文献1)。マイクロチャンネル型放熱装置においては、冷却液の流れる微小流路(マイクロチャンネル)を内部に多数形成することで、放熱面積の拡大及び熱伝達率の増加を図っている。特許文献1では、複数のマイクロチャンネルの各々は、重ねられた少なくとも第1及び第2のプレート状積層体によって形成され、第1のプレート状積層体のマイクロチャンネル用流路部分と第2のプレート状積層体のマイクロチャンネル用流路部分とは、冷却液の流通方向にて連続通路を作るように位置をずらして形成されている。これによって、蛇行流路構造を利用して微小渦流を作り、熱交換能力の向上を図っている。   As an example of a heat radiating device for releasing heat generated by a heat generator, a microchannel heat radiating device is known (for example, Patent Document 1 and Non-Patent Document 1). In the microchannel type heat radiating device, a large number of micro flow channels (microchannels) through which a coolant flows are formed inside, thereby increasing the heat radiating area and increasing the heat transfer coefficient. In Patent Document 1, each of the plurality of microchannels is formed by overlapping at least a first and second plate-like laminate, and a microchannel channel portion and a second plate of the first plate-like laminate. The microchannel channel portion of the laminated laminate is formed so as to be shifted in position so as to form a continuous passage in the coolant flow direction. In this way, a micro vortex is created using the meandering channel structure to improve the heat exchange capability.

特開2007−12719号公報JP 2007-12719 A Jurgen J. Brandner他,"A new Enhanced Microstructure Heat Exchanger with Reduced Pressure Drop",4th International Workshop on Micro Chemical Process Technology,Forschungszentrum Karlsruhe,January 26,2006Jurgen J. Brandner et al., "A new Enhanced Microstructure Heat Exchanger with Reduced Pressure Drop", 4th International Workshop on Micro Chemical Process Technology, Forschungszentrum Karlsruhe, January 26,2006

マイクロチャンネル型放熱装置では、マイクロチャンネルを多数形成して放熱面積の拡大及び熱伝達率の増加を図っているが、冷媒の流れる冷媒流路(マイクロチャンネル)の流路面積が小さいため、冷媒の圧力損失が増大する。圧力損失が増大すると、マイクロチャンネルにおける冷媒流量を増やせなくなり、マイクロチャンネルを流れる冷媒の温度上昇量が増加する。その結果、均一に放熱を行うことが困難となり、放熱能力の低下を招くことになる。   In the microchannel heat dissipation device, a large number of microchannels are formed to increase the heat dissipation area and increase the heat transfer coefficient. However, since the flow path area of the refrigerant flow path (microchannel) through which the refrigerant flows is small, Pressure loss increases. When the pressure loss increases, the refrigerant flow rate in the microchannel cannot be increased, and the temperature rise amount of the refrigerant flowing through the microchannel increases. As a result, it is difficult to dissipate heat uniformly, leading to a reduction in heat dissipation capability.

本発明は、冷媒の圧力損失を抑制しながら放熱能力を向上させることができる放熱装置を提供することを目的とする。   An object of this invention is to provide the thermal radiation apparatus which can improve the thermal radiation capability, suppressing the pressure loss of a refrigerant | coolant.

本発明に係る放熱装置は、上述した目的を達成するために以下の手段を採った。   The heat dissipation device according to the present invention employs the following means in order to achieve the above-described object.

本発明に係る放熱装置は、一主面に発熱体が載置された放熱板と、放熱板の一主面の裏面に互いに間隔をおいて立設された複数の放熱フィンであって、互いに隣接する放熱フィン間に冷媒流路が形成される複数の放熱フィンと、を備える放熱装置であって、発熱体の発熱量が大きい領域の裏側に位置する放熱フィンの、放熱板の前記裏面付近には、当該放熱フィンを挟んで互いに隣接する冷媒流路間を連通させる連通流路が形成されており、放熱板の前記裏面における前記連通流路付近に立設され、前記隣接する冷媒流路の一方を流れる冷媒が突き当たる放熱壁部を備え、前記放熱壁部に突き当たった冷媒が前記連通流路を通って前記隣接する冷媒流路の他方へ流出することを要旨とする。   A heat dissipating device according to the present invention includes a heat dissipating plate having a heating element mounted on one main surface, and a plurality of heat dissipating fins standing on the back surface of one main surface of the heat dissipating plate, spaced apart from each other. A plurality of heat dissipating fins in which refrigerant flow paths are formed between adjacent heat dissipating fins, near the back surface of the heat dissipating plate of the heat dissipating fin located on the back side of the region where the heat generation amount of the heat generating element is large Is formed with a communication channel that communicates between the refrigerant channels adjacent to each other with the heat radiating fin interposed therebetween, and is provided in the vicinity of the communication channel on the back surface of the heat radiating plate. A refrigerant wall that abuts against the refrigerant flowing through one of the refrigerant channels, and the refrigerant that abuts against the heat radiation wall flows out to the other of the adjacent refrigerant channels through the communication channel.

本発明によれば、放熱フィンによる伝熱面積の拡大効果と発熱量の大きい領域での局所的な放熱効果とを併用することで、冷媒の圧力損失を抑制しながら放熱能力を向上させることができる。   According to the present invention, it is possible to improve the heat dissipation capability while suppressing the pressure loss of the refrigerant by using the expansion effect of the heat transfer area by the heat dissipation fin and the local heat dissipation effect in the region where the heat generation amount is large. it can.

本発明の一態様では、前記連通流路の流路面積が前記隣接する冷媒流路の流路面積と同等以下であり、且つ前記連通流路の流路長さが前記隣接する冷媒流路の流路長さより短いことが好適である。この態様によれば、連通流路を流れる冷媒の流速を増大させることができ、熱交換をさらに促進させることができる。   In one aspect of the present invention, the channel area of the communication channel is equal to or less than the channel area of the adjacent refrigerant channel, and the channel length of the communication channel is the It is preferable that the length is shorter than the channel length. According to this aspect, the flow rate of the refrigerant flowing through the communication channel can be increased, and heat exchange can be further promoted.

本発明の一態様では、前記放熱壁部には、前記隣接する冷媒流路の一方を流れる冷媒を前記連通流路へ導くための衝突面が形成されていることが好適である。この態様によれば、放熱壁部の衝突面に衝突する冷媒を連通流路に効率よく導くことができる。さらに、前記隣接する冷媒流路の一方を流れる冷媒が放熱壁部の衝突面に衝突することで、放熱壁部と冷媒との間の熱交換を促進させることができる。   In one aspect of the present invention, it is preferable that a collision surface for guiding the refrigerant flowing in one of the adjacent refrigerant flow paths to the communication flow path is formed in the heat radiating wall portion. According to this aspect, the refrigerant that collides with the collision surface of the heat radiating wall can be efficiently guided to the communication channel. Furthermore, the heat exchange between the heat radiation wall portion and the refrigerant can be promoted by the refrigerant flowing through one of the adjacent refrigerant flow paths colliding with the collision surface of the heat radiation wall portion.

本発明の一態様では、前記連通流路が形成された放熱フィンにおいて、該連通流路が形成された部分の厚さが他の部分の厚さより薄いことが好適である。この態様によれば、連通流路の長さを減少させることができ、冷媒の圧力損失を減らすことができる。   In one aspect of the present invention, in the radiating fin in which the communication channel is formed, it is preferable that the thickness of the portion where the communication channel is formed is thinner than the thickness of the other portion. According to this aspect, the length of the communication channel can be reduced, and the pressure loss of the refrigerant can be reduced.

本発明の一態様では、前記連通流路が形成された放熱フィンには、該連通流路に面し、前記隣接する冷媒流路の一方から他方へ向かうにつれて放熱板の前記裏面との距離が徐々に減少する傾斜面が形成されていることが好適である。この態様によれば、連通流路に流入した冷媒を放熱板の裏面に効率よく導くことができ、熱交換をさらに促進させることができる。   In one aspect of the present invention, the heat dissipating fin in which the communication flow path is formed faces the communication flow path, and the distance from the back surface of the heat dissipation plate increases from one of the adjacent refrigerant flow paths to the other. It is preferable that an inclined surface that gradually decreases is formed. According to this aspect, the refrigerant flowing into the communication channel can be efficiently guided to the back surface of the heat radiating plate, and heat exchange can be further promoted.

本発明の一態様では、前記隣接する冷媒流路において、冷媒の流れる方向が互いに逆方向であることが好適である。この態様によれば、発熱体下部の領域での冷媒の温度分布を低減することが可能となり、発熱体を均一に冷却することができる。   In one aspect of the present invention, it is preferable that the refrigerant flow directions are opposite to each other in the adjacent refrigerant flow paths. According to this aspect, it becomes possible to reduce the temperature distribution of the refrigerant in the region below the heating element, and the heating element can be cooled uniformly.

以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1〜7は、本発明の実施形態に係る放熱装置10の概略構成を示す図である。図1は上面側から見た内部の概略構成を示し、図2,3は側面側から見た内部の概略構成を示し、図4は下面側から見た概略構成を示し、図5〜7は内部の概略構成の斜視図を示す。放熱板12の表面(一主面)12a上には発熱体30が載置されている。放熱板12の表面積(表面12aの面積)は、発熱体30の面積より大きく設定されている。放熱板12の裏面(一主面の裏面)12bには、複数の放熱フィン14がその厚さ方向(図1の上下方向)に関して互いに間隔をおいて立設されている。各放熱フィン14の立設方向(図2,3の上下方向)は、放熱板12の裏面12bと垂直方向であり、各放熱フィン14の長手方向(図1の左右方向)は、各放熱フィン14の立設方向及び厚さ方向と垂直方向である。各放熱フィン14の先端部には底板22が接合されており、底板22は放熱フィン14を挟んで放熱板12(裏面12b)と対向している。厚さ方向に互いに隣接する放熱フィン14間には、冷媒の流れる冷媒流路16,26が形成されている。なお、ここでの発熱体30の具体例としては、例えばIGBTやパワーMOSFET等の半導体素子(パワーデバイス)を挙げることができるが、他の電子部品であってもよい。また、ここでの冷媒の具体例としては、例えば水やフロン等の液体冷媒を挙げることができる。   1-7 is a figure which shows schematic structure of the thermal radiation apparatus 10 which concerns on embodiment of this invention. 1 shows an internal schematic configuration viewed from the upper surface side, FIGS. 2 and 3 show an internal schematic configuration viewed from the side surface side, FIG. 4 shows an approximate configuration viewed from the lower surface side, and FIGS. The perspective view of an internal schematic structure is shown. A heating element 30 is placed on the surface (one main surface) 12 a of the heat radiating plate 12. The surface area of the heat radiating plate 12 (the area of the surface 12a) is set larger than the area of the heating element 30. On the back surface (back surface of one main surface) 12b of the heat radiating plate 12, a plurality of heat radiating fins 14 are erected at intervals with respect to the thickness direction (vertical direction in FIG. 1). The standing direction of each radiating fin 14 (vertical direction in FIGS. 2 and 3) is perpendicular to the back surface 12b of the radiating plate 12, and the longitudinal direction of each radiating fin 14 (left and right direction in FIG. 1) is each radiating fin. 14 is a direction perpendicular to the standing direction and the thickness direction. A bottom plate 22 is joined to the tip of each radiating fin 14, and the bottom plate 22 faces the radiating plate 12 (back surface 12 b) with the radiating fin 14 interposed therebetween. Between the heat radiation fins 14 adjacent to each other in the thickness direction, refrigerant flow paths 16 and 26 through which the refrigerant flows are formed. In addition, as a specific example of the heat generating body 30 here, for example, a semiconductor element (power device) such as an IGBT or a power MOSFET can be cited, but other electronic components may be used. Moreover, as a specific example of a refrigerant | coolant here, liquid refrigerants, such as water and a fluorocarbon, can be mentioned, for example.

本実施形態では、発熱体30の発熱量が大きい領域の裏側に位置する放熱フィン14の、放熱板12の裏面12b付近には、切り欠き部が形成されていることで、この放熱フィン14を挟んで互いに隣接する冷媒流路16,26間を連通させる局所流路(連通流路)18が形成されている。ここでの局所流路18は、放熱板12(裏面12b)に面しており、その断面積が冷媒流路16,26の断面積と同等以下に設定されている。つまり、局所流路18の流路面積は、それが形成された放熱フィン14を挟んで隣接する冷媒流路16,26の流路面積と同等以下に設定されている。そして、局所流路18の流路長さ(放熱フィン厚さ方向の長さ)は、冷媒流路16,26の流路長さ(放熱フィン長手方向の長さ)より短く設定されている。さらに、放熱板12の裏面12bにおける局所流路18付近には、放熱壁部20が立設されている。放熱壁部20の立設方向(図2,3の上下方向)は、放熱板12の裏面12bと垂直方向であり、放熱壁部20の長手方向(図1の上下方向)は、放熱壁部20の立設方向及び各放熱フィン14の長手方向と垂直方向である。放熱壁部20の先端部は底板22と接合されている。   In the present embodiment, a notch portion is formed in the vicinity of the back surface 12b of the heat radiating plate 12 of the heat radiating fin 14 located on the back side of the region where the heat generation amount of the heat generating element 30 is large. A local flow path (communication flow path) 18 is formed which communicates between the refrigerant flow paths 16 and 26 adjacent to each other with the sandwich. The local flow path 18 here faces the heat radiating plate 12 (back surface 12b), and the cross-sectional area thereof is set to be equal to or smaller than the cross-sectional areas of the refrigerant flow paths 16 and 26. That is, the flow channel area of the local flow channel 18 is set to be equal to or smaller than the flow channel area of the refrigerant flow channels 16 and 26 adjacent to each other with the heat radiation fin 14 on which the local flow channel 18 is formed. The flow path length of the local flow path 18 (the length in the heat radiation fin thickness direction) is set shorter than the flow path length of the refrigerant flow paths 16 and 26 (the length in the heat radiation fin longitudinal direction). Further, a heat radiating wall portion 20 is erected in the vicinity of the local flow path 18 on the back surface 12 b of the heat radiating plate 12. The standing direction of the heat radiating wall portion 20 (vertical direction in FIGS. 2 and 3) is perpendicular to the back surface 12b of the heat radiating plate 12, and the longitudinal direction of the heat radiating wall portion 20 (vertical direction in FIG. 1) is the heat radiating wall portion. The vertical direction of 20 and the longitudinal direction of each radiating fin 14. The front end of the heat radiating wall 20 is joined to the bottom plate 22.

図8に示す発熱体30の発熱量分布の例では、放熱板12の表面12aの中心部にて発熱体30の発熱量が大きくなる。その場合は、放熱板12の裏面12bにおける少なくとも中心部及びその付近に位置する放熱フィン14に、局所流路18(切り欠き部)を形成する。さらに、図1は、放熱フィン長手方向に関する中央部に、複数の局所流路18を放熱フィン厚さ方向に間隔をおいて形成するとともに、これら複数の局所流路18付近に、放熱壁部20を放熱フィン厚さ方向に関する一端部から他端部にかけて配設した例を示している。図1に示す例では、冷媒流路16,26が放熱壁部20により仕切られており、冷媒流路16,26及び局所流路18の形状は放熱壁部20を挟んで対称となる。   In the example of the calorific value distribution of the heating element 30 shown in FIG. 8, the calorific value of the heating element 30 increases at the center of the surface 12 a of the heat radiating plate 12. In that case, the local flow path 18 (notch part) is formed in the radiation fin 14 located in the at least center part in the back surface 12b of the heat sink 12, and its vicinity. Further, FIG. 1 shows that a plurality of local flow paths 18 are formed at intervals in the direction of the thickness of the heat radiating fins at the central part in the longitudinal direction of the heat radiating fins, and a heat radiating wall 20 is provided in the vicinity of the plurality of local flow paths 18. The example which has arrange | positioned from one end part to the other end part regarding the radiation fin thickness direction is shown. In the example shown in FIG. 1, the refrigerant flow paths 16 and 26 are partitioned by the heat radiating wall 20, and the shapes of the refrigerant flow paths 16 and 26 and the local flow path 18 are symmetrical with respect to the heat radiating wall 20.

ここでの放熱フィン14については、例えば図9に示すように放熱板12と一体で形成することもできるし、例えば図10に示すように放熱板12と別体で形成して接合することもできる。そして、放熱壁部20については、例えば図9に示すように放熱板12や放熱フィン14と一体で形成することもできるし、例えば図10に示すように放熱板12や放熱フィン14と別体で形成して接合することもできる。また、局所流路18(切り欠き部)が形成された放熱フィン14については、例えば図9に示すように局所流路18が形成された部分14aとそれ以外の部分14bとを一体で形成することもできるし、例えば図10に示すようにこれらの部分14a,14bを別体で形成して接合することもできる。なお、図9は、放熱板12、放熱フィン14(部分14a,14b)、及び放熱壁部20を一体で形成した例を示し、図10は、放熱板12、放熱フィン14(部分14a,14b)、及び放熱壁部20をそれぞれ別体で形成して接合した例を示している。   The radiating fins 14 here can be formed integrally with the radiating plate 12 as shown in FIG. 9, for example, or can be formed and joined separately from the radiating plate 12 as shown in FIG. it can. The heat radiating wall portion 20 can be formed integrally with the heat radiating plate 12 and the heat radiating fins 14 as shown in FIG. 9, for example, or separately from the heat radiating plate 12 and the heat radiating fins 14 as shown in FIG. It can also be formed and joined. For the heat radiation fin 14 in which the local flow path 18 (notch portion) is formed, for example, as shown in FIG. 9, a portion 14a in which the local flow path 18 is formed and the other portion 14b are integrally formed. Alternatively, for example, as shown in FIG. 10, these portions 14a and 14b can be formed separately and joined. 9 shows an example in which the heat radiating plate 12, the heat radiating fins 14 (parts 14a and 14b), and the heat radiating wall portion 20 are integrally formed. FIG. 10 shows the heat radiating plate 12 and the heat radiating fins 14 (parts 14a and 14b). ) And the heat radiating wall portion 20 are separately formed and joined.

放熱板12の表面積の一例は、放熱板12での熱の拡散のしやすさ、具体的には放熱板12の厚みや熱伝導率や冷媒流路16,26側の熱伝達率により異なるが、発熱体30の面積のおおよそ1.0〜1.5倍程度の値である。各放熱フィン14の厚さの一例は0.5mm程度の値であり、放熱壁部20の厚さの一例は1mm程度の値である。また、図11に示すように、冷媒流路16,26の高さ(放熱フィン立設方向の長さ)の一例は5mm程度の値であり、冷媒流路16,26の幅(放熱フィン厚さ方向の長さ)の一例は1mm程度の値である。そして、図12に示すように、局所流路18の高さ(放熱フィン立設方向の長さ)の一例は1mm程度の値であり、局所流路18の幅(放熱フィン長手方向の長さ)の一例は4mm程度の値であり、局所流路18の流路長さ(放熱フィン厚さ方向の長さ)の一例は0.5mm程度の値(放熱フィン14の厚さと同じ)である。つまり、冷媒流路16,26の断面積(流路面積)の一例は5mm程度の値であり、局所流路18の断面積(流路面積)の一例は4mm程度の値である。そのため、本実施形態では、冷媒流路16,26の流路面積がマイクロチャンネル型放熱装置と比較して十分大きく設定される。ただし、放熱板12、放熱フィン14、放熱壁部20、冷媒流路16,26、及び局所流路18の構造は、上記に示した数値に限定されるものではない。 An example of the surface area of the heat radiating plate 12 varies depending on the ease of heat diffusion in the heat radiating plate 12, specifically, the thickness and heat conductivity of the heat radiating plate 12, and the heat transfer coefficient on the refrigerant flow paths 16 and 26 side. The value is approximately 1.0 to 1.5 times the area of the heating element 30. An example of the thickness of each radiating fin 14 has a value of about 0.5 mm, and an example of the thickness of the radiating wall portion 20 has a value of about 1 mm. Further, as shown in FIG. 11, an example of the height of the refrigerant flow paths 16 and 26 (the length in the direction in which the radiating fins are erected) is about 5 mm, and the width of the refrigerant flow paths 16 and 26 (the thickness of the radiating fins). An example of the length in the vertical direction is a value of about 1 mm. As shown in FIG. 12, an example of the height of the local flow path 18 (the length in the radiating fin standing direction) is a value of about 1 mm, and the width of the local flow path 18 (the length in the radiating fin longitudinal direction). ) Is a value of about 4 mm, and an example of the length of the local flow path 18 (the length in the direction of the thickness of the radiating fin) is about 0.5 mm (the same as the thickness of the radiating fin 14). . That is, an example of the cross-sectional area (flow area) of the refrigerant flow paths 16 and 26 is a value of about 5 mm 2 , and an example of the cross-sectional area (flow area) of the local flow path 18 is a value of about 4 mm 2 . For this reason, in the present embodiment, the flow passage areas of the refrigerant flow passages 16 and 26 are set to be sufficiently larger than those of the microchannel heat dissipation device. However, the structure of the heat radiating plate 12, the heat radiating fin 14, the heat radiating wall portion 20, the refrigerant flow paths 16, 26, and the local flow path 18 is not limited to the numerical values shown above.

放熱板12、放熱フィン14、放熱壁部20、及び底板22は、箱型の器24に収容されており、放熱板12の周囲部及び各放熱フィン14の長手方向の両端部が器24の側板24aに接合されている。放熱フィン長手方向に関する放熱装置10の両端部には、冷媒流路16と連通する冷媒流入口36が設けられており、冷媒(液体冷媒)は、冷媒流入口36から冷媒流路16に供給される。さらに、放熱フィン長手方向に関する放熱装置10の両端部には、冷媒流路26と連通する冷媒流出口46が設けられており、冷媒流路26を流れる冷媒は冷媒流出口46から流出する。さらに、底板22と器24の底板24bとの間(冷媒流路16,26の下側)には、冷媒流出口46と連通する冷媒排出流路28が形成されており、器24の底板24bには、冷媒排出流路28と連通する冷媒排出口24cが形成されている。冷媒流出口46から流出した冷媒は、冷媒排出流路28を通って冷媒排出口24cから外部へ排出される。図4は、冷媒排出口24cを底板24bの中心部に形成した例を示しているが、冷媒排出口24cを底板24bの中心部からずらして形成することもできる。また、図1では、説明の便宜上、器24の図示を省略している。   The heat radiating plate 12, the heat radiating fins 14, the heat radiating wall portions 20, and the bottom plate 22 are accommodated in a box-shaped container 24. It is joined to the side plate 24a. A refrigerant inlet 36 communicating with the refrigerant flow path 16 is provided at both ends of the heat radiating device 10 in the longitudinal direction of the heat radiating fins, and the refrigerant (liquid refrigerant) is supplied from the refrigerant inlet 36 to the refrigerant flow path 16. The Furthermore, the refrigerant | coolant outflow port 46 connected with the refrigerant | coolant flow path 26 is provided in the both ends of the heat radiating device 10 regarding a radiation fin longitudinal direction, and the refrigerant | coolant which flows through the refrigerant | coolant flow path 26 flows out out of the refrigerant | coolant outflow port 46. Further, a refrigerant discharge passage 28 communicating with the refrigerant outlet 46 is formed between the bottom plate 22 and the bottom plate 24b of the vessel 24 (below the refrigerant passages 16 and 26). Is formed with a refrigerant discharge port 24 c communicating with the refrigerant discharge passage 28. The refrigerant that has flowed out of the refrigerant outlet 46 passes through the refrigerant discharge passage 28 and is discharged to the outside from the refrigerant outlet 24c. FIG. 4 shows an example in which the refrigerant discharge port 24c is formed at the center of the bottom plate 24b. However, the refrigerant discharge port 24c can be formed to be shifted from the center of the bottom plate 24b. In FIG. 1, the illustration of the container 24 is omitted for convenience of explanation.

発熱体30で発生した熱は、放熱板12に伝えられ、さらに、放熱フィン14及び放熱壁部20に伝えられる。冷媒流入口36から冷媒流路16(局所流路18が形成された放熱フィン14を挟んで隣接する冷媒流路の一方)に供給された冷媒(液体冷媒)は、この冷媒流路16を形成する放熱フィン14との間で熱交換を行うことで、発熱体30の放熱が行われる。そして、冷媒流路16を放熱壁部20へ向かって流れる冷媒は、図7に示すように、放熱壁部20に衝突する(突き当たる)ことで、放熱壁部20との間で熱交換を行う。この熱交換によっても、発熱体30の放熱が行われる。冷媒は、放熱壁部20に衝突した後、局所流路18に流入する。局所流路18を通る冷媒は、図13,14に示すように、放熱板12の裏面12b(発熱体30の直下)に衝突する(突き当たる)ことで、放熱板12との間で熱交換を行う。この熱交換によっても、発熱体30の放熱が行われる。ここでは、局所流路18を通る冷媒を放熱板12の裏面12bに衝突させるために、局所流路18の高さ(図13の寸法Bで示す)を放熱フィン14の高さより十分小さくすることが好ましい。放熱板12の裏面12bに衝突した(局所流路18を通った)冷媒は、冷媒流路26(局所流路18が形成された放熱フィン14を挟んで隣接する冷媒流路の他方)へ流出する。冷媒流路26を流れる冷媒は、この冷媒流路26を形成する放熱フィン14との間で熱交換を行うことで、発熱体30の放熱が行われる。図1,6に示すように、冷媒流路26を流れる冷媒の方向は、放熱フィン14を挟んで隣接する(局所流路18を介して連通する)冷媒流路16を流れる冷媒の方向と逆方向である。冷媒流路26を通った冷媒は、図3に示すように、冷媒流出口46から流出し、さらに、冷媒排出流路28を通って冷媒排出口24cから排出される。なお、図1に示す例では、冷媒流路16,26及び局所流路18が放熱壁部20を挟んで対称に配置されており、冷媒の流れは放熱壁部20を挟んで対称となる。   The heat generated in the heating element 30 is transmitted to the heat radiating plate 12 and further transmitted to the heat radiating fins 14 and the heat radiating wall portion 20. The refrigerant (liquid refrigerant) supplied from the refrigerant inlet 36 to the refrigerant flow path 16 (one of the refrigerant flow paths adjacent to each other with the heat radiation fin 14 having the local flow path 18 interposed therebetween) forms the refrigerant flow path 16. The heat generating body 30 is radiated by exchanging heat with the radiating fins 14. And the refrigerant | coolant which flows toward the thermal radiation wall part 20 through the refrigerant | coolant flow path 16 collides with the thermal radiation wall part 20, as shown in FIG. . This heat exchange also releases heat from the heating element 30. The refrigerant flows into the local flow path 18 after colliding with the heat radiating wall portion 20. As shown in FIGS. 13 and 14, the refrigerant passing through the local flow path 18 collides (buts against) the back surface 12 b of the heat radiating plate 12 (directly below the heating element 30), thereby exchanging heat with the heat radiating plate 12. Do. This heat exchange also releases heat from the heating element 30. Here, in order for the refrigerant passing through the local flow path 18 to collide with the back surface 12b of the heat radiating plate 12, the height of the local flow path 18 (indicated by the dimension B in FIG. 13) is made sufficiently smaller than the height of the heat radiating fins 14. Is preferred. The refrigerant that has collided with the back surface 12b of the heat radiating plate 12 (passed through the local flow path 18) flows out to the refrigerant flow path 26 (the other of the adjacent refrigerant flow paths with the heat radiation fin 14 on which the local flow path 18 is formed). To do. The refrigerant flowing through the refrigerant flow path 26 performs heat exchange with the heat radiating fins 14 forming the refrigerant flow path 26, so that the heat generating body 30 is radiated. As shown in FIGS. 1 and 6, the direction of the refrigerant flowing through the refrigerant flow path 26 is opposite to the direction of the refrigerant flowing through the refrigerant flow path 16 adjacent (communication via the local flow path 18) with the radiation fin 14 interposed therebetween. Direction. As shown in FIG. 3, the refrigerant that has passed through the refrigerant flow path 26 flows out from the refrigerant outlet 46 and is further discharged from the refrigerant discharge port 24 c through the refrigerant discharge flow path 28. In the example shown in FIG. 1, the refrigerant flow paths 16 and 26 and the local flow path 18 are arranged symmetrically with the heat radiating wall portion 20 interposed therebetween, and the refrigerant flow is symmetric with respect to the heat radiating wall portion 20.

以上説明した本実施形態では、放熱板12の裏面12bに複数の放熱フィン14を立設することで、放熱フィン14から冷媒流路16,26を流れる冷媒への伝熱面積を拡大することができるので、発熱体30の発熱面積が大きい場合でも十分な放熱効果を得ることができる。また、放熱板12に面する局所流路18を発熱体30の発熱量が大きい領域に選択的に形成することで、マイクロチャンネルのように微小流路を多数形成することなく、冷媒の圧力損失を低減することができる。そして、局所流路18付近(発熱量の大きい領域)に放熱壁部20を配設し、冷媒流路16を流れる冷媒を放熱壁部20に衝突させることで、熱交換を促進させることができ、発熱体30の温度を低減することができる。さらに、放熱壁部20に衝突して局所流路18に流入した冷媒が放熱板12の裏面12b(発熱量の大きい領域)に衝突することによっても、熱交換を促進させることができる。また、発熱体30の下部の領域では、冷媒流路16と冷媒流路26とで冷媒の流れる方向を反転させることで、発熱体30からの除熱により冷媒の温度が上昇しても、発熱体30の下部の領域での冷媒温度を均一にすることができる。その結果、発熱体30の温度分布を均一化することができ、発熱体30の熱膨張、すなわち熱応力を低減することができる。このように、本実施形態によれば、放熱フィン14による伝熱面積の拡大効果と発熱量の大きい領域での局所的な放熱効果とを併用することで、冷媒の圧力損失を抑制しながら放熱能力を向上させることができる。なお、特許文献1及び非特許文献1には、放熱フィンによる伝熱面積の拡大効果と発熱量の大きい領域での局所的な放熱効果とを併用する技術は示されていない。   In the present embodiment described above, the heat transfer area from the heat radiation fins 14 to the refrigerant flowing through the refrigerant flow paths 16 and 26 can be increased by erecting the plurality of heat radiation fins 14 on the rear surface 12b of the heat radiation plate 12. Therefore, even when the heat generating area of the heating element 30 is large, a sufficient heat dissipation effect can be obtained. Further, by selectively forming the local flow path 18 facing the heat radiating plate 12 in a region where the heat generation amount of the heating element 30 is large, the pressure loss of the refrigerant can be reduced without forming a large number of micro flow paths as in the micro channel. Can be reduced. Then, by disposing the heat radiating wall portion 20 near the local flow path 18 (region where the amount of heat generation is large), the refrigerant flowing through the refrigerant flow path 16 collides with the heat radiating wall section 20 to promote heat exchange. The temperature of the heating element 30 can be reduced. Furthermore, heat exchange can also be promoted when the refrigerant that has collided with the heat radiating wall portion 20 and has flowed into the local flow path 18 collides with the rear surface 12b of the heat radiating plate 12 (region where the amount of heat generation is large). Also, in the lower region of the heating element 30, the refrigerant flow direction is reversed between the refrigerant flow path 16 and the refrigerant flow path 26, so that heat is generated even if the temperature of the refrigerant rises due to heat removal from the heating element 30. The refrigerant temperature in the lower region of the body 30 can be made uniform. As a result, the temperature distribution of the heating element 30 can be made uniform, and the thermal expansion of the heating element 30, that is, thermal stress can be reduced. As described above, according to the present embodiment, by combining the effect of expanding the heat transfer area by the heat radiating fins 14 and the local heat dissipation effect in the region where the heat generation amount is large, the heat dissipation is performed while suppressing the pressure loss of the refrigerant. Ability can be improved. Note that Patent Document 1 and Non-Patent Document 1 do not show a technique for combining the effect of expanding the heat transfer area by the heat radiating fins and the local heat radiating effect in a region where the heat generation amount is large.

さらに、本実施形態では、局所流路18の流路面積を冷媒流路16の流路面積より小さくすることで、局所流路18を流れる(発熱体30の直下に衝突する)冷媒の流速を増大させることができ、熱交換をさらに促進させることができる。   Furthermore, in this embodiment, the flow area of the local flow path 18 is made smaller than the flow path area of the refrigerant flow path 16, so that the flow rate of the refrigerant flowing through the local flow path 18 (collising directly below the heating element 30) is increased. The heat exchange can be further promoted.

また、本実施形態では、冷媒流路16,26の下側(底板22と器24の底板24bとの間を冷媒が全面に排出される冷媒排出流路28とすることで、冷媒の圧力損失をさらに低減することができる。さらに、冷媒流路16,26の下側のほぼ全領域を冷媒排出流路28とすることで、温度分布を均一化することができる。   Further, in the present embodiment, the pressure loss of the refrigerant is achieved by using the refrigerant discharge flow path 28 from which the refrigerant is discharged to the entire surface between the bottom side of the refrigerant flow paths 16 and 26 (between the bottom plate 22 and the bottom plate 24b of the vessel 24). Furthermore, the temperature distribution can be made uniform by using the refrigerant discharge flow path 28 in almost the entire lower region of the refrigerant flow paths 16, 26.

また、本実施形態では、放熱板12の面積を発熱体30の面積より大きくすることで、発熱体30の熱の広がりも考慮して放熱を行うことができる。   Further, in the present embodiment, by making the area of the heat radiating plate 12 larger than the area of the heat generator 30, heat can be radiated in consideration of the heat spread of the heat generator 30.

次に、本実施形態の他の構成例について説明する。   Next, another configuration example of this embodiment will be described.

本実施形態では、例えば図15に示すように、放熱フィン厚さ方向(図15の上下方向)に配列された複数の冷媒流路16,26の幅(流路面積)を異ならせる、つまり放熱フィン14のピッチ(間隔)を異ならせることもできる。図15に示す例では、冷媒流路16,26の幅(流路面積)は、放熱フィン厚さ方向に関して中央部が両端部よりも小さく設定されている。つまり、放熱フィン14のピッチは、放熱フィン厚さ方向に関して中央部が両端部よりも狭く設定されている。図15に示す例によれば、中央部の伝熱面積を拡大することができ、中央部での放熱量を増大させることができる   In this embodiment, for example, as shown in FIG. 15, the widths (flow channel areas) of the plurality of refrigerant channels 16 and 26 arranged in the thickness direction of the radiating fins (vertical direction in FIG. 15) are changed, that is, the heat is radiated. The pitch (interval) of the fins 14 can be varied. In the example shown in FIG. 15, the width (flow path area) of the refrigerant flow paths 16 and 26 is set to be smaller in the center portion than in the both end portions with respect to the direction of the radiation fin thickness. In other words, the pitch of the radiating fins 14 is set so that the center portion is narrower than the both end portions in the radiating fin thickness direction. According to the example shown in FIG. 15, the heat transfer area in the central part can be expanded, and the heat radiation amount in the central part can be increased.

また、本実施形態では、例えば図16,17に示すように、放熱フィン14に形成する局所流路18(切り欠き部)の幅(流路面積)を異ならせることもできる。図16,17に示す例では、局所流路18の幅(流路面積)は、放熱フィン厚さ方向(図16,17の上下方向)に関して中央部が両端部よりも小さく設定されている。また、例えば図18,19に示すように、冷媒流路16,26及び局所流路18については、放熱壁部20を挟んで非対称に配置することもできる。図18,19に示す例では、放熱壁部20を挟んで配置された放熱フィン14は、その厚さ方向(図18,19の上下方向)に関する位置を互いにずらして形成されている。また、例えば図20に示すように、必ずしもすべての放熱フィン14に局所流路18を形成しなくてもよく、局所流路18の数については任意に設定することができる。   Moreover, in this embodiment, as shown, for example in FIG. 16, 17, the width | variety (channel area) of the local flow path 18 (notch part) formed in the radiation fin 14 can also be varied. In the example shown in FIGS. 16 and 17, the width of the local flow path 18 (flow path area) is set to be smaller in the center than the both ends in the thickness direction of the radiating fin (up and down direction in FIGS. 16 and 17). For example, as shown in FIGS. 18 and 19, the refrigerant flow paths 16 and 26 and the local flow path 18 can be arranged asymmetrically with the heat radiating wall portion 20 interposed therebetween. In the example shown in FIGS. 18 and 19, the radiating fins 14 arranged with the radiating wall portion 20 interposed therebetween are formed with their positions in the thickness direction (vertical direction in FIGS. 18 and 19) shifted from each other. Further, for example, as shown in FIG. 20, the local flow paths 18 do not necessarily have to be formed in all the radiation fins 14, and the number of the local flow paths 18 can be arbitrarily set.

また、放熱壁部20については、例えば図21に示すように、必ずしもすべての局所流路18に近接していなくてもよい。また、放熱壁部20の形状については、必ずしも厚さが一定の板状である必要はなく、例えば図22に示すように、放熱壁部20の厚さを変化させることもできる。図22に示す例では、放熱壁部20の厚さは、その長手方向(図の上下方向)に関して中央部が両端部よりも薄く設定されており、両端部から中央部に向かうにつれて徐々に減少している。   Moreover, about the thermal radiation wall part 20, as shown, for example in FIG. 21, it does not necessarily need to adjoin to all the local flow paths 18. Moreover, about the shape of the heat radiating wall part 20, it does not necessarily need to be a plate shape with constant thickness, for example, as shown in FIG. 22, the thickness of the heat radiating wall part 20 can also be changed. In the example shown in FIG. 22, the thickness of the heat radiating wall portion 20 is set so that the central portion is thinner than both end portions in the longitudinal direction (vertical direction in the figure), and gradually decreases from both end portions toward the central portion. is doing.

また、本実施形態では、例えば図23〜25に示すように、各放熱フィン14の局所流路18(切り欠き部)を、その長手方向(図23〜25の左右方向)に関する位置を互いにずらして形成するとともに、各冷媒流路16を流れる冷媒が衝突する(突き当たる)放熱壁部20を、放熱フィン長手方向に関する位置を互いにずらして形成することもできる。図23〜25に示す例では、局所流路18が形成された放熱フィン14を挟んで隣接する(局所流路18を介して連通する)冷媒流路16,26において、冷媒の流れる方向が同一方向となる。また、冷媒流出口46の数については任意に設定することができ、冷媒流路16,26の下側の冷媒排出流路28を形成しなくてもよい。   Moreover, in this embodiment, as shown, for example in FIGS. 23-25, the position regarding the longitudinal direction (left-right direction of FIGS. 23-25) of the local flow path 18 (notch part) of each radiation fin 14 is shifted mutually. It is also possible to form the heat radiating wall portion 20 with which the refrigerant flowing through the refrigerant flow paths 16 collide (striking) with the positions in the longitudinal direction of the radiating fins shifted from each other. In the example shown in FIGS. 23 to 25, the refrigerant flow directions are the same in the refrigerant flow paths 16 and 26 adjacent (communication through the local flow path 18) with the heat radiation fin 14 having the local flow path 18 interposed therebetween. Direction. Further, the number of the refrigerant outlets 46 can be arbitrarily set, and the refrigerant discharge channel 28 below the refrigerant channels 16 and 26 may not be formed.

また、本実施形態では、例えば図26,27に示すように、放熱壁部20における冷媒が衝突する面(衝突面)20aの形状については、必ずしも平面でなくてもよい。図26に示す例では、放熱壁部20に形成された衝突面20aが凹曲面形状を呈している。また、図27に示す例では、放熱壁部20に形成された衝突面20aが、冷媒流路16を流れる冷媒を局所流路18内へ導くように、冷媒流路16を流れる冷媒の方向に対し傾斜している。図27に示す例によれば、放熱壁部20の衝突面20aに衝突する冷媒を局所流路18に効率よく導くことができる。   Moreover, in this embodiment, as shown, for example in FIG.26, 27, about the shape of the surface (collision surface) 20a where the refrigerant | coolant collides in the thermal radiation wall part 20, it does not necessarily need to be a plane. In the example shown in FIG. 26, the collision surface 20a formed on the heat radiating wall 20 has a concave curved surface shape. In the example shown in FIG. 27, the collision surface 20a formed on the heat radiating wall portion 20 is directed in the direction of the refrigerant flowing through the refrigerant flow path 16 so as to guide the refrigerant flowing through the refrigerant flow path 16 into the local flow path 18. It is slanted. According to the example shown in FIG. 27, the refrigerant that collides with the collision surface 20 a of the heat radiating wall portion 20 can be efficiently guided to the local flow path 18.

また、本実施形態では、例えば図28に示すように、局所流路18(切り欠き部)が形成された放熱フィン14において、局所流路18が形成された部分14aの厚さ(図28の寸法Aで示す)を他の部分14bの厚さより薄くすることもできる。図28に示す例によれば、局所流路18の長さを減少させることができ、冷媒の圧力損失を減らすことができる。   Further, in the present embodiment, for example, as shown in FIG. 28, in the radiating fin 14 in which the local flow path 18 (notch) is formed, the thickness of the portion 14a in which the local flow path 18 is formed (in FIG. 28). It can also be made thinner than the thickness of the other part 14b. According to the example shown in FIG. 28, the length of the local flow path 18 can be reduced, and the pressure loss of the refrigerant can be reduced.

また、本実施形態では、例えば図29に示すように、放熱フィン14(局所流路18が形成された部分14a)には、局所流路18に面し、冷媒流路16から冷媒流路26へ向かうにつれて(局所流路18を介して連通する冷媒流路の一方から他方へ向かうにつれて)放熱板12の裏面12bとの距離が徐々に減少する傾斜面14cが形成されていてもよい。ここでは、例えば図29(b)に示すように、局所流路18の出口で局所流路18の高さが最小になるように構成することもできるし、例えば図29(c)に示すように、局所流路18の途中で局所流路18の高さが最小になるように構成することもできる。図29に示す例によれば、局所流路18に流入した冷媒を放熱板12の裏面12b(発熱体30の直下)に効率よく導くことができ、熱交換をさらに促進させることができる。また、本実施形態では、例えば図30に示すように、局所流路18の内壁面に曲面(凹曲面)18aを形成することもできる。   In the present embodiment, for example, as shown in FIG. 29, the radiation fin 14 (the portion 14 a where the local flow path 18 is formed) faces the local flow path 18, and the refrigerant flow path 16 to the refrigerant flow path 26. An inclined surface 14c in which the distance from the back surface 12b of the heat radiating plate 12 gradually decreases may be formed as it goes toward (from one side of the refrigerant flow path communicating via the local flow path 18 to the other). Here, for example, as shown in FIG. 29B, the height of the local flow path 18 can be minimized at the outlet of the local flow path 18, or as shown in FIG. 29C, for example. In addition, the height of the local flow path 18 can be minimized in the middle of the local flow path 18. According to the example shown in FIG. 29, the refrigerant that has flowed into the local flow path 18 can be efficiently guided to the back surface 12b of the heat radiating plate 12 (directly under the heating element 30), and heat exchange can be further promoted. In this embodiment, for example, as shown in FIG. 30, a curved surface (concave surface) 18 a can be formed on the inner wall surface of the local flow path 18.

また、本実施形態では、例えば図31に示すように、冷媒排出口24cを器24の側板24aに(発熱体30に対し側面側に)形成することもできる。そして、冷媒排出口24cの数についても任意に設定することができる。   Further, in the present embodiment, for example, as shown in FIG. 31, the refrigerant discharge port 24 c can be formed in the side plate 24 a of the container 24 (on the side of the heating element 30). And the number of the refrigerant | coolant discharge ports 24c can also be set arbitrarily.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.

本発明の実施形態に係る放熱装置の概略構成を示す図である。It is a figure which shows schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の概略構成を示す図である。It is a figure which shows schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の概略構成を示す図である。It is a figure which shows schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の概略構成を示す図である。It is a figure which shows schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の概略構成を示す図である。It is a figure which shows schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の概略構成を示す図である。It is a figure which shows schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の概略構成を示す図である。It is a figure which shows schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 発熱体の発熱分布の一例を示す図である。It is a figure which shows an example of the heat_generation | fever distribution of a heat generating body. 本発明の実施形態に係る放熱装置の概略構成を示す図である。It is a figure which shows schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 冷媒流路の寸法の一例を示す図である。It is a figure which shows an example of the dimension of a refrigerant flow path. 局所流路の寸法の一例を示す図である。It is a figure which shows an example of the dimension of a local flow path. 本発明の実施形態に係る放熱装置における冷媒の流れを説明する図である。It is a figure explaining the flow of the refrigerant | coolant in the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置における冷媒の流れを説明する図である。It is a figure explaining the flow of the refrigerant | coolant in the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放熱装置の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the thermal radiation apparatus which concerns on embodiment of this invention.

符号の説明Explanation of symbols

10 放熱装置、12 放熱板、14 放熱フィン、16,26 冷媒流路、18 局所流路、20 放熱壁部、22 底板、24 器、24c 冷媒排出口、28 冷媒排出流路、30 発熱体、36 冷媒流入口、46 冷媒流出口。   DESCRIPTION OF SYMBOLS 10 Radiation device, 12 Radiation plate, 14 Radiation fin, 16, 26 Refrigerant flow path, 18 Local flow path, 20 Radiation wall part, 22 Bottom plate, 24 units, 24c Refrigerant discharge port, 28 Refrigerant discharge flow path, 30 Heating element, 36 refrigerant inlet, 46 refrigerant outlet.

Claims (6)

一主面に発熱体が載置された放熱板と、
放熱板の一主面の裏面に互いに間隔をおいて立設された複数の放熱フィンであって、互いに隣接する放熱フィン間に冷媒流路が形成される複数の放熱フィンと、
を備える放熱装置であって、
発熱体の発熱量が大きい領域の裏側に位置する放熱フィンの、放熱板の前記裏面付近には、当該放熱フィンを挟んで互いに隣接する冷媒流路間を連通させる連通流路が形成されており、
放熱板の前記裏面における前記連通流路付近に立設され、前記隣接する冷媒流路の一方を流れる冷媒が突き当たる放熱壁部を備え、
前記放熱壁部に突き当たった冷媒が前記連通流路を通って前記隣接する冷媒流路の他方へ流出する、放熱装置。
A heat sink with a heating element mounted on one main surface;
A plurality of heat dissipating fins erected on the back surface of one main surface of the heat dissipating plate, with a plurality of heat dissipating fins forming a refrigerant flow path between the heat dissipating fins adjacent to each other;
A heat dissipation device comprising:
In the vicinity of the back surface of the heat radiating plate located on the back side of the region where the heat generation amount of the heat generating element is large, a communication flow path is formed that connects adjacent refrigerant flow paths with the heat radiating fin interposed therebetween. ,
A heat dissipating wall portion that is erected in the vicinity of the communication flow path on the back surface of the heat dissipating plate, and against which the refrigerant flowing through one of the adjacent refrigerant flow paths hits;
The heat radiating device, wherein the refrigerant hitting the heat radiating wall flows out to the other of the adjacent refrigerant flow paths through the communication flow path.
請求項1に記載の放熱装置であって、
前記連通流路の流路面積が前記隣接する冷媒流路の流路面積と同等以下であり、且つ前記連通流路の流路長さが前記隣接する冷媒流路の流路長さより短い、放熱装置。
The heat dissipating device according to claim 1,
Heat dissipation in which the flow channel area of the communication flow channel is equal to or less than the flow channel area of the adjacent refrigerant flow channel, and the flow channel length of the communication flow channel is shorter than the flow channel length of the adjacent refrigerant flow channel. apparatus.
請求項1または2に記載の放熱装置であって、
前記放熱壁部には、前記隣接する冷媒流路の一方を流れる冷媒を前記連通流路へ導くための衝突面が形成されている、放熱装置。
The heat dissipating device according to claim 1 or 2,
The heat radiating device, wherein the heat radiating wall is formed with a collision surface for guiding the refrigerant flowing through one of the adjacent refrigerant flow paths to the communication flow path.
請求項1〜3のいずれか1に記載の放熱装置であって、
前記連通流路が形成された放熱フィンにおいて、該連通流路が形成された部分の厚さが他の部分の厚さより薄い、放熱装置。
The heat dissipation device according to any one of claims 1 to 3,
The heat dissipating fin in which the communication channel is formed, wherein the thickness of the portion where the communication channel is formed is thinner than the thickness of the other portion.
請求項1〜4のいずれか1に記載の放熱装置であって、
前記連通流路が形成された放熱フィンには、該連通流路に面し、前記隣接する冷媒流路の一方から他方へ向かうにつれて放熱板の前記裏面との距離が徐々に減少する傾斜面が形成されている、放熱装置。
The heat dissipation device according to any one of claims 1 to 4,
The radiating fin formed with the communication channel has an inclined surface that faces the communication channel and gradually decreases in distance from the back surface of the heat radiating plate as it goes from one of the adjacent refrigerant channels to the other. A heat dissipation device is formed.
請求項1〜5のいずれか1に記載の放熱装置であって、
前記隣接する冷媒流路において、冷媒の流れる方向が互いに逆方向である、放熱装置。
The heat dissipation device according to any one of claims 1 to 5,
The heat dissipation device, wherein the refrigerant flows in opposite directions in the adjacent refrigerant flow paths.
JP2007142464A 2007-05-29 2007-05-29 Heat radiation device Pending JP2008300447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142464A JP2008300447A (en) 2007-05-29 2007-05-29 Heat radiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142464A JP2008300447A (en) 2007-05-29 2007-05-29 Heat radiation device

Publications (1)

Publication Number Publication Date
JP2008300447A true JP2008300447A (en) 2008-12-11

Family

ID=40173711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142464A Pending JP2008300447A (en) 2007-05-29 2007-05-29 Heat radiation device

Country Status (1)

Country Link
JP (1) JP2008300447A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053318A (en) * 2013-09-05 2015-03-19 三菱電機株式会社 Semiconductor device
JP2018006688A (en) * 2016-07-07 2018-01-11 株式会社デンソー Cooling apparatus
JP2019169533A (en) * 2018-03-22 2019-10-03 三菱重工業株式会社 Cooler and electric apparatus comprising the same
CN113899140A (en) * 2021-09-23 2022-01-07 迈克医疗电子有限公司 Reagent storehouse and reagent cold storage plant
JP7342811B2 (en) 2020-07-10 2023-09-12 株式会社豊田自動織機 Cooler

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053318A (en) * 2013-09-05 2015-03-19 三菱電機株式会社 Semiconductor device
JP2018006688A (en) * 2016-07-07 2018-01-11 株式会社デンソー Cooling apparatus
JP2019169533A (en) * 2018-03-22 2019-10-03 三菱重工業株式会社 Cooler and electric apparatus comprising the same
JP7002384B2 (en) 2018-03-22 2022-01-20 三菱重工業株式会社 Cooling device and electrical equipment equipped with it
JP7342811B2 (en) 2020-07-10 2023-09-12 株式会社豊田自動織機 Cooler
CN113899140A (en) * 2021-09-23 2022-01-07 迈克医疗电子有限公司 Reagent storehouse and reagent cold storage plant

Similar Documents

Publication Publication Date Title
JP4649359B2 (en) Cooler
JP4776032B2 (en) Heat exchanger
WO2007145352A1 (en) Heat sink and cooler
JP6194700B2 (en) Radiator and method of manufacturing radiator
JP2006295178A (en) Heatsink apparatus for electronic device
JP6462737B2 (en) heatsink
JP2008300447A (en) Heat radiation device
JP2008016872A (en) Cooling device of semiconductor element
JP4041437B2 (en) Semiconductor device cooling device
JP2011192730A (en) Cooler, laminated cooler, and intermediate plate
JP3201784U (en) Cooling device for computer arithmetic unit
JP2009266936A (en) Stacked cooler
JP2010080455A (en) Cooling device and cooling method for electronic equipment
JP5800429B2 (en) Radiators in liquid cooling systems for electronic equipment
EP3770958B1 (en) Liquid-cooled cooler
JP2000299585A (en) Cooling device
JP2014033015A (en) Cooler
JP2019054224A (en) Liquid-cooled type cooling device
JP2010210202A (en) Heat exchange body
JP2019079908A (en) Cooling device and semiconductor module including the same
JP4522725B2 (en) heatsink
JP4747220B1 (en) Heat sink using multi-layer heat dissipation unit
JP7091103B2 (en) Cooling system
JP2005166789A (en) Heat dissipator
JP3838982B2 (en) Impinging jet heat sink and power electronics equipment