JPS61102799A - Liquid chilling box and manufacture thereof - Google Patents

Liquid chilling box and manufacture thereof

Info

Publication number
JPS61102799A
JPS61102799A JP22516784A JP22516784A JPS61102799A JP S61102799 A JPS61102799 A JP S61102799A JP 22516784 A JP22516784 A JP 22516784A JP 22516784 A JP22516784 A JP 22516784A JP S61102799 A JPS61102799 A JP S61102799A
Authority
JP
Japan
Prior art keywords
cooling
liquid
plate
passage
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22516784A
Other languages
Japanese (ja)
Inventor
岩間 紀男
正夫 北野
昌彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP22516784A priority Critical patent/JPS61102799A/en
Publication of JPS61102799A publication Critical patent/JPS61102799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

く#築上の利用分野〉。 本発明は、パワートランジスタ等の発熱体を冷却し定温
に保つのに利用される液冷箱およびその智所方決に関す
る。 〈従来の技術〉 従来より、電力用半導体素子などの発熱体を冷却し一定
の温度に医つのに液冷箱が使用されている。液冷mけ、
一般に小型でかつ冷却効率が良好である点で有利である
。第7図ないし第9図は、従来の一般的な液冷箱を示す
。液冷箱22は、厚肉の金PAilSI冷却板nのす4
面に蛇行形状の冷却液通路夙を形成し、該n11路24
の始端および終端に冷却液の注入口25i?よび排出口
26を夫々設け、さらにカバー底板rを冷却板底if0
に水密に覆っ゛て成り、冷却すべき対象物8・・・を冷
却板h&cvP接に固定し、水などの冷却液を注入口δ
より(Jl、給し冷却液通路冴に流通させることにより
(第9間中、矢印C方向)、対象物8で発生しか熱を、
冷却板nを介して流通する冷却液にtl121i!<さ
せ外部へ除去して、対象物8を冷却することができる。 まな、冷却液通路がジグザグ肘状をなす液冷箱も従来よ
り利用されているが、その隅能は上記の液冷箱と同様で
ある。 〈!?!+ylが解決しようとする間頌点〉一般に、液
冷箱の冷却能力を高めるには、冷却・夜通路を長くして
冷却液との接触面積を増大する七よい。ξかし、上記の
従来の液冷箱では、冷却液が蛇行しであるいけジグザグ
に流れる故・冷却楕−路を長くすると、冷却液の流通抵
抗が著しく増大し、冷却液注入用ポンプの動力を大幅に
増す必要性が生じてくるので、冷却能力の飛躍的な向上
を図ることがボーであった0また、数個の対象物を規則
的に冷却板上に夫々配置′#シて使用すると、対象物で
発生した熱により冷却板が昇温し、この場合一般に板中
央部の層面714度は板鳴辺邪のそれより高くなる。し
かるに、6Y来の液冷箱では、冷却液が板周辺の注入口
より入り板中央部を、丸れ板固辺の排出口より出る構造
となっていななめ、使用時冷却板の内部温度が例えば第
10図に伯すような、注入口5近傍の香辺部でけ最も低
く排出0拠近傍の犀辺では最も高いという分布を表わし
、冷却板の温度分布が対象物の配置に対応していなかっ
た。従って、冷却作用が効果的に@揮されず、対象物全
てを一様の温度に保つことがボーでありな0 さらに、液冷箱で轄−紺に、冷却板が台間である理、す
なわち冷却板の表面と冷却欣通路の間隔が短い桿、対象
物の熱をより短時間で冷却液に移すこ七ができ、対象物
を一層罐〈冷却することができるため、より好ましい0
しかし、従来の液冷箱では、冷却液通路を通常冷却板底
面の切削加工により形成する方法を採ってtAたため、
該通路と板表面の1隔が短い冷却板をに1作し靭かっな
。しかも、切削加工である故、長い加工時間を(し、か
つ加工コストが高く、さらに材料の歩留りも低いという
欠点を有していた。 本発明(1、ヒ述の諸欠点を解消するべくなされたもの
で、その−の目的は、冷却液通路を長(して容易に冷却
能力を増大することができ、かつ対象物全てを一様の温
度に冷却することができみ液冷箱を提供することにある
。 また、本発明の他の目的は、前記の冷却能力°の向上に
加えて、製作時間の短縮1.コストの低減、および材料
歩留りの向上などを図ることができる襖冷箱の製造方法
を提供することにある0< +4R悶点を解決するため
の手段〉木道明の−のうh明の液冷箱は、冷却板内部を
活、れる冷却液により冷却板上の対象物を冷却するざ
Fields of use for construction. The present invention relates to a liquid cooling box used to cool a heat generating element such as a power transistor and keep it at a constant temperature, and its solution. <Prior Art> Liquid cooling boxes have conventionally been used to cool heating elements such as power semiconductor devices and maintain them at a constant temperature. Liquid cooling,
Generally, they are advantageous in that they are small and have good cooling efficiency. 7 to 9 show a conventional general liquid cooling box. The liquid cooling box 22 is made of thick gold PAilSI cooling plate n.
A meandering coolant passageway is formed on the surface, and the n11 passage 24
A cooling liquid inlet 25i is provided at the beginning and end of the and a discharge port 26 are provided respectively, and the cover bottom plate r is connected to the cooling plate bottom if0.
The object 8 to be cooled is fixed to the cooling plate h&cvP, and a cooling liquid such as water is injected into the injection port δ.
By circulating the supply coolant through the coolant passage (during the ninth period, in the direction of arrow C), the heat generated in the object 8 is
tl121i! to the cooling liquid flowing through the cooling plate n! The object 8 can be cooled by being removed to the outside. A liquid cooling box in which the cooling liquid passage has a zigzag elbow shape has also been used in the past, but its corner capabilities are the same as those of the liquid cooling box described above. <! ? ! +YL's Node Points to be Solved> Generally speaking, to increase the cooling capacity of a liquid cooling box, it is best to lengthen the cooling/night passage to increase the contact area with the cooling liquid. ξHowever, in the conventional liquid cooling box described above, the coolant flows in a meandering or zigzag pattern.If the cooling ellipse is lengthened, the flow resistance of the coolant increases significantly, and the coolant injection pump Since it would be necessary to significantly increase the power, it was desirable to dramatically improve the cooling capacity.In addition, several objects were placed regularly on the cooling plate. When used, the temperature of the cooling plate rises due to the heat generated by the object, and in this case, the layer surface 714 degrees at the center of the plate is generally higher than that of the plate. However, in the 6Y liquid cooling box, the cooling liquid enters from the inlet around the plate, exits from the center of the plate, and exits from the outlet on the solid side of the rounded plate. As shown in Fig. 10, the temperature distribution is lowest in the side part near the injection port 5 and highest in the side part near the discharge point 0, indicating that the temperature distribution of the cooling plate corresponds to the arrangement of the object. There wasn't. Therefore, the cooling effect is not effectively exerted, and it is impossible to keep all objects at a uniform temperature.Furthermore, in a liquid cooling box, the cooling plate is located between the stands. In other words, a rod with a short distance between the surface of the cooling plate and the cooling channel allows the heat of the object to be transferred to the cooling liquid in a shorter time, and the object can be further cooled.
However, in conventional liquid cooling boxes, the cooling liquid passages are usually formed by cutting the bottom of the cooling plate, and the
It is tough to make one cooling plate with a short distance between the passage and the plate surface. Moreover, since it is a cutting process, it has the disadvantages of long processing time, high processing cost, and low material yield. The purpose of this is to provide a liquid cooling box that can easily increase the cooling capacity by lengthening the cooling liquid passage and cool all objects to a uniform temperature. Another object of the present invention is to provide a fusuma cooling box that, in addition to improving the cooling capacity described above, can reduce manufacturing time, reduce costs, and improve material yield. The purpose of the liquid cooling box is to provide a manufacturing method for solving the 0<+4R problem> by Michiaki Ki. When cooling things down


冷箱において、冷却液を流[1号せしめるための、渦千
艶形状をなす冷却液通路を冷却板の底面にjじ成し、冷
却液の注入口および排出口を該通路の渦巻中心部分およ
び渦傳外側部分に夫々備え、さらにカバー底板を冷却板
底面に水密に覆ってなることを特徴きするものである。 すなわち、この発明岐、渦魯杉状の冷却液通路を形成す
ることにより、冷却液の流通抵抗を大幅に下げ、該通路
力(長(なっても流通抵抗が緩慢にしか増大したいよう
6でしたものである。まな、冷却1億が前記通路の渦*
中心←ち分より11+7.入し間通路の渦巻外圃昂)分
より流出するMかでとすることにより、冷却液による冷
却作用が対象物の卸It?:、す泡わち発熱分布に適切
に対応して発揮されるようにしたものである。 また、本発明の他の発明の液冷箱の製造方法は、切削D
O工に比して一般に低コストでかつ加工時間が短かくて
済むろう付け接合により、禍4、g rF:/状の冷却
液Xf回路を1ド成して上記発明の液冷箱を劇作する方
法である。ナなわも、アルミニウム系何科よりなりかつ
底面mlが開口し内部に冷却液室を形成した冷却板の該
冷却液室C・ζ、アルミニウム系材料よりなる渦き1?
帯材を収め、ろう付け接合して、渦$肘状の冷却液通路
を2に動板のが、「friに形成し、かつ冷却液の注入
口および排出口を肋通路の渦巻中心部分およびy!ll
傳外側比分に夫々設H1さらにカバー底板を冷却板IK
面に水密に肴って゛製作してなることを特徴とする方灼
である。 この発明によf+ fj、極めて薄肉の冷却板を使田し
ても、上記発明の液冷箱を製作することができる。従っ
て、冷却板の表面と冷却液通路の聞出を従来より格段に
短縮すみことができる。 噂な、アルミニウム系材料は一般に熱伝JrL率が高い
故、冷却板および帯材をアルミニウム系材料で楢成しを
この発明の液冷箱妓、冷却板上の対象物で生じ念熱を迅
速に冷却液に伝えg&暇でせることかで大、冷却性能が
高い。さらに、アルミニウム系材料代一般に安価である
故、これより成るこの発明の液冷箱は経済的に有利であ
る。 この発明に適用できるアルぜニウム糸材゛fトとしては
、アルミニウム融体の1世に、アルミニウム合金材料と
してアルミニウムに珪素(Si)、銅(Cu)、vンガ
ン(Mn)、亜鉛(Zn )、チタン(Ti)、クロム
(C「)、ジルコニウム(Zr )、マグネシウム(〜
(g)等を少な(と本一種類添加した合金がある。 鉢1不的′・ては、JIS3nn3.1050.705
2等σノアルiニウム会0村科がある。さらに、アルミ
ニウム合金材料としては、アルミニウムあ乙い蝶、上記
アルミニウム合金材料σ・表向に、s+p点が10〜1
00°C低い合金、tとえ?、jsiを7〜+2wt%
含鳴したA/−8i共晶合金を被覆したものでもよい○
シJ、体的には、JIS3003材σ)表面に4343
材をクラッドしたもの(BA12PCなど)でよい。 虜な、この発割においては冷却板と堝% 119缶材の
塀合方法、すなわちアルミニウム系材料同士σろう付け
方法が18:組となZ−0仮に接合(ろう付け)が簡便
にできないと、この種の液冷箱グ・生産性が低いもぐ〕
になる。本発明者等灯、持媚昭58−191311号に
記載されるように、カリウムふ−よびフッ素を含有す2
化成処11!p液を用いてアルミニウム系材料の表面に
7ラツクスとしてのペンタフルオロアルミニウム酸カリ
ウム(K 2 Aj! ト’ 5 )からなる皮膜を形
成しその後加熱してろう付行する方法を提案しており、
この新規なろう付け方法によれは、処卯溶液にアルミニ
ウム糸材料を接触させるのみで容易に7ラツクス居を形
成でき、しかもその後のろう付け工程による・ろう付け
時にろう材のdC2れがなめらかで、ろう材がろう付け
邪に均等にゆきわたるOその結果、少せのろう材で、欠
陥のないろう付け接合部を形成することができるととも
に、ムう付け後ろう付け部を洗滌したくてもろう付け接
合部を腐食させることがない。 従って、上記の方法を利用して、具体的に位、アルミニ
ウム系材料よりなる冷却板の冷却液室壁面および同材料
よりなる渦停形帯材の各々の’N 合’lS位に、カリ
ウムおよびフッ素を含有する化成処理〃を接触させてペ
ンタフルオロアルミニウム・糧カリ゛ウム皮膜を形成せ
しめ、その後前記接合g1゛1位をffn熱してろう材
により冷却材と帯材をろう付け、接合し、その徒冷却液
の注入口+排出口およびカバー床板を取り付けて液冷箱
ケ制作すると、各接合部のろら付けが円滑に進む大め、
渦巻)旨の冷却液通路を有する本発明の液冷箱シ茗易に
かつりh率良(警;造することができる。オな、ろう付
け接合部°で腐食が生じ咋〈なり、液冷箱の耐久性が向
上する。 この工程において使用するE紀化成処理油Iは、次の方
法により弊;明される。そのひとつけ、フッ化水素カリ
ウム(K)(F23を水に溶解する方法である。7ツ化
水素カリウムの溶解Mは、水ll当り1〜80gとした
ものがペンタフルオロアルミニウム酸カリウムを生成す
るのに冷害である。 的の、#蜀方法としては、フッ化カリウム(KF’>と
フッ化水素(HF)とを水に溶解して混合水・穴岬とし
てもよい。まな、水酸化カリウム(KOH)と7、化水
素とを水に溶解しをものでもよい。これらの水溶液は、
フッ素とカリウムのモル比が1〜10であって、かつカ
リウムが05〜40g/l含有しているものがよい0 アルミニウム系材料よりなる冷却板等の接合部位とE配
化FIi、処理液とを接触させる方法としては、浸漬、
塗布、吹き付けなどが挙げられるが、その接触時開け、
化成処理液中のカリウムおよびフ、朱のシ曳、該かL叩
〃fの41度などによって−MKは決まらないが、念と
えは0.5秒〜Δ」分卑度の軸v+1がよい。該接触に
よって、アルミニウム系材料の接合部位表面に存在する
酸化物4pが破壊され、アルミニウムとカリウムとフッ
素#; 化学反応し、ペンタフルオロアルミニウム酬カ
リウムが生成する。この化合吻の生成は・用ツによって
変化する。当然常温でも充分に化学反応が進行する。し
かし、接合部位の温度を例えば40〜700Cに上昇せ
しめろと、特に酸化被膜の訟去が完全に、しかも急速に
行なわれる0その結果、ペンタフルオロアルミニウム酬
カリウム皮膜がアルミニウム系材料の接合部位表面に強
固に1トa成され、ろう材により容易に接合可Qトとな
る。 (耳順例) しL下、本発明の実噸例を図面により説明する。 実嘩例1 この実鴫例の液冷箱け、交流モータを可変連部!f!1
するなめの琴換装酋に使用したものである0πl ’4
%いし袴3図に示すように、液冷箱1社、渦イ゛た1じ
吠をなす冷却液通路2を冷力1せ・3のr面に形成し、
冷t=Iir夜の注入口4および排出口5を通路2の渦
巻中心の通路始端も・よびア晶停外・1lllの尚路柊
4に夫々仏jえ、さらにカバー底板6を冷却板U(面に
ゴムシート等を介して水密に拠ってhる。7F入ロ4 
itポンプと、寸な排出口5(・ゴラジエー々と夫々チ
ューブ7を介して接隷している。そして、冷却板上には
、前記壷換装置の主復部品である対象物のパワートラン
ジス々8・・か密接に(2)足されている。 而して、ポンプを作製させ、水なとの冷却液を注入口4
より注入し渦ω形状の通路2に沿って流通させ排出口5
より?ト出することにより(第3図中、矢印入方向)、
寄侠公情の運転時パワートランジスタ8・・・で生じな
熱を冷却液に吸収させ、外へ除去してパワートランジス
タ8・・・を冷却することができる。 実師例の液冷綺lでは、冷却液の流内抵抗が小さく、低
いポンプ動力で冷却液を后、速・I和♂ずさせることが
でき、従来に片1して冷却能力が著しくfIヤ上した。 また、実也例の液冷嘴1でけ、使用時冷却板3の表面、
1・λ魔がほぼ均一で、全てのパワートランジスタ8・
・・を一様の温度に保つことができたOkお、第4図に
示す触状の冷却液通路9を有する液冷箱lOをイφ用し
た場合も、冷却液が冷却板11の中央側よりその周辺側
へ徐々に’kt通ずる構夕;T゛あるため、冷却すべき
対象物を全て一様の県歌に1vつことかできた。 実へ例2 竿5喝および第6図−1、ろう付け接合タイプの液冷箱
12を示す。液冷箱12のアルミニウム系材料調冷却板
13は、その底面側が開口し内部に冷却4室14を1ド
成してなり、薄肉となっている0璽を1冷却板13け、
聞辺部に冷却液の排出口15を備えてなる。そして、液
冷1fi12は、アルミニウム系材料制の渦巻形帯材1
6を冷却板13の冷却液室14に」Xめ、ろう付け接合
して渦昏形状の冷却液通Was 17を冷却板底面に形
成し、その後冷却液の注入口18を板中心に取付けたカ
バー底板19を冷却板底面にゴムシート等を介して水ン
に群ってなる。この場合のろう付け接合け、まず冷却液
室14の壁面と渦巻形帯材16の側面とに、カリウムお
よ(ムフッ素を含有する化成処理液(組成、j畠度およ
び!!y製は上記の記載に従う。)を接触させてベン々
フルオロアルミニウムMカリウム皮障を形l#せしめ、
次いで第6図に示すように帯材】6を冷却吻室14にb
う材を介して当接−?みように収め、その後これを炉I
C人へ610〜620°Cζ・ζ加熱して、冷却板13
と帯材16の?V合部加を形成する方法により行なった
。 而して、水などの冷却液を注入口18より注入し渦な1
形状の通路17に沿って4 ij’rTさせ排出口15
より排出することにより(第51中、矢印B方向)、冷
却板上に1着した対象物2】で生じた熱を冷却液に吸収
させ除去することがで**0この実、如例の液冷箱12
では、冷却板が律めてy#肉となっているfrめ、実陣
例1σそれに比して冷却性箭が著しぐ向上【また。そグ
・上、611’jlIQq工による従来のaツ法に比し
て加工世間を大幅に千7庵−できかつコストも低減でき
た。きらに、材料のセ留りイ、高かった。!な、上記化
成処理液を4(・#i してろう付け接合したことによ
り、液冷荏(12吋、長期間使用しても堕1食が生じず
、耐久性に優を乞ていp6 〈介Mlの仝b <Is > □゛J上、:p ill L念よう(C1本−1明の〃
ぞ冷箱妓、1Ria″氏抗が4・さい場@序冷却液通路
を1臼成したこと(・こよ0、低岨1.力で冷却液を高
d’ !(1)通させることう・でき、冷却能力が向上
し、その上、lj1記通路を長め冷却べとの接触面積を
増生しても41力対加の必要性が殆ど雛く、r−易に令
却幹力の増大ケ図ることができる0まな、冷却液が冷輩
板グ〕中央部よりそのIM辺部へ渦セ形に流れる構造と
しく=ことにより、冷却作用が対象物の配貨、すなわち
発熱ノド布に1切に対応して発揮されるよう−1こl)
す、冷却板の表面温度がほぼ均一となり、対象物忙てを
一様の74度に保つことができ心0 才な、本発明の液冷箱の製秦方法は、渦巻形缶材と冷却
板のろう付け接合により暦月1液曲路を形成して上記発
1月の液冷箱を作る・4法としたことにより、往来に比
して、・嘲造時illを格段に短縮できかつ加工コスト
も低減でき、ざらに材料の歩留9が著しく向上する。壕
な、極めて薄肉の冷却板を使用して1llJ作でき、冷
却性能を一層向上場?ることができる。
[
In the cold box, a coolant passage in the shape of a whirlpool is formed on the bottom of the cooling plate to allow the coolant to flow, and the coolant inlet and outlet are connected to the center of the whirlpool of the passage. and an outer portion of the vortex, and a cover bottom plate is provided on the bottom surface of the cooling plate in a watertight manner. That is, by forming the coolant passage in the shape of a spiral cedar, this invention can greatly reduce the flow resistance of the coolant, and reduce the passage force (length) even if the flow resistance increases only slowly. The 100 million yen of cooling is caused by the vortex in the passage*
Center ← 11+7. By making the M rod flow out from the spiral wall of the inlet passage, the cooling effect of the cooling liquid can be applied to the object. :This function is designed to respond appropriately to the bubbles, that is, the distribution of heat generation. In addition, the method for manufacturing a liquid cooling box according to another aspect of the present invention includes cutting D
The liquid cooling box of the above invention can be produced by forming a cooling liquid This is the way to do it. Also, the cooling liquid chamber C/ζ of the cooling plate is made of aluminum-based material and has an open bottom surface to form a cooling liquid chamber inside, and the vortex 1 is made of aluminum-based material.
The strips are housed and brazed together to form a spiral elbow-shaped coolant passage in the moving plate 2, and the coolant inlet and outlet are connected to the spiral center part of the rib passage and y!ll
Each H1 is installed on the outer side, and the bottom plate of the cover is attached to the cooling plate IK.
This method is characterized by the fact that it is made by placing it on the surface in a watertight manner. According to this invention, even if f+fj and extremely thin cooling plates are used, the liquid cooling box of the above invention can be manufactured. Therefore, the distance between the surface of the cooling plate and the coolant passage can be significantly shortened compared to the conventional method. It is rumored that aluminum-based materials generally have a high heat transfer rate, so the cooling plate and strips are made of aluminum-based material to quickly transfer the heat generated by the liquid cooling box of this invention to the object on the cooling plate. The cooling performance is high due to the fact that it can be transmitted to the coolant in a short amount of time. Furthermore, since aluminum-based materials are generally inexpensive, the liquid cooling box of the present invention made of aluminum is economically advantageous. Arzenium thread materials that can be applied to this invention include silicon (Si), copper (Cu), carbon dioxide (Mn), zinc (Zn), Titanium (Ti), chromium (C'), zirconium (Zr), magnesium (~
There is an alloy that has a small amount of (g) etc. added. JIS3nn3.1050.705
There is a 2nd class σ Noalium Society 0 village department. Furthermore, as an aluminum alloy material, aluminum blue butterfly, the above aluminum alloy material σ, the s+p point is 10 to 1 on the surface.
00°C low alloy, t? , jsi 7~+2wt%
May be coated with resonant A/-8i eutectic alloy○
Physically, JIS3003 material σ) 4343 on the surface
A clad material (such as BA12PC) may be used. In this interesting development, the method of joining the cooling plate and the can stock, that is, the method of sigma brazing between aluminum materials is 18: If joining (brazing) cannot be done easily, , This type of liquid cooling box has low productivity.
become. As described in the present inventor et al.
Chemical treatment 11! We have proposed a method in which a film consisting of potassium pentafluoroaluminate (K2Aj!t'5) in the form of 7 lux is formed on the surface of an aluminum-based material using a p-liquid, and then heated and brazed.
With this new brazing method, a 7-lux layer can be easily formed simply by contacting the aluminum thread material with a processing solution, and the dC2 curve of the brazing material during the subsequent brazing process is smooth. As a result, a defect-free brazed joint can be formed with a small amount of brazing material, and there is no need to clean the brazed joint after soldering. Will not corrode brazed joints. Therefore, by using the above method, potassium and A chemical conversion treatment containing fluorine is brought into contact to form a pentafluoroaluminum/potassium film, and then the joint g1 is heated to ffn to braze and join the coolant and the band with a brazing filler metal, When the liquid cooling box is made by attaching the cooling liquid inlet and outlet and the cover floor plate, it will be large enough to make the roughening of each joint proceed smoothly.
The liquid cooling box of the present invention having a coolant passage with a spiral shape can be easily and easily constructed. The durability of the cold box is improved. The E period chemically treated oil I used in this process is characterized by the following method. One of them is potassium hydrogen fluoride (K) (F23 is dissolved in water. The solution M of potassium hydrogen heptadide is 1 to 80 g per 1 liter of water, which causes cold damage to the production of potassium pentafluoroaluminate. (KF'> and hydrogen fluoride (HF) may be dissolved in water to make a mixed water/Anamisaki. Also, potassium hydroxide (KOH) and hydrogen hydride may be dissolved in water. .These aqueous solutions are
It is preferable that the molar ratio of fluorine and potassium is 1 to 10, and that the potassium content is 0.5 to 40 g/l. Methods for contacting include immersion,
Examples include coating, spraying, etc., but when contacting it, open it,
-MK is not determined by the potassium and fluoride in the chemical conversion solution, the red color, the 41 degrees of the L strike, etc., but just in case, the axis of baseness v+1 is 0.5 seconds to Δ''. good. This contact destroys the oxide 4p present on the surface of the bonding site of the aluminum-based material, causing a chemical reaction between aluminum, potassium, and fluorine, and pentafluoroaluminium-reducing potassium is produced. The formation of this compound proboscis changes depending on the use. Naturally, the chemical reaction proceeds satisfactorily even at room temperature. However, when the temperature of the bonding area is raised to, for example, 40 to 700C, the removal of the oxide film is completed and rapid. It is strongly bonded and can be easily joined with brazing filler metal. (Example) Below, practical examples of the present invention will be explained with reference to the drawings. Actual example 1 The liquid cooling box in this example has a variable connection with the AC motor! f! 1
0πl '4, which was used for Surname's Kotogaishoki
%Ishihakama As shown in Figure 3, one liquid cooling box manufacturer forms a swirling coolant passage 2 on the r side of the cooling force 1 and 3.
Place the inlet 4 and the outlet 5 at the cooling plate 4 at the beginning of the spiral center of the passage 2 and the cooling plate 4 outside the crystal stop. (Watertight with a rubber sheet etc. on the surface. 7F entrance 4
It is connected to the IT pump and the small discharge port 5 (and the goradiator) through tubes 7. On the cooling plate are the power transistors, which are the main recovery parts of the pot changing device. 8... or (2) is added closely. Then, a pump is made and a coolant such as water is injected into the inlet 4.
It is injected and distributed along the vortex ω-shaped passage 2 to the discharge port 5.
Than? (in the direction of the arrow in Figure 3),
It is possible to cool the power transistors 8 by absorbing the heat generated in the power transistors 8 in the coolant and removing it to the outside during a normal operation. In the example of the liquid cooling system, the resistance in the flow of the coolant is small, and the coolant can be cooled at a low speed with low pump power. I did it. In addition, when using the liquid cooling beak 1 of the example, the surface of the cooling plate 3,
1.λ is almost uniform, and all power transistors 8.
... was able to be maintained at a uniform temperature.Also, when using a liquid cooling box lO having a tactile cooling liquid passage 9 shown in FIG. Since there is a structure in which 'kt' gradually passes from the side to the surrounding side; T', it was possible to place all the objects to be cooled in one uniform prefectural song. Example 2 Figure 6-1 shows a brazing type liquid cooling box 12. The aluminum material-like cooling plate 13 of the liquid cooling box 12 has an open bottom side and has four cooling chambers 14 inside, and one cooling plate 13 has a thin wall.
A cooling liquid discharge port 15 is provided at the rear part. The liquid cooling 1fi12 is a spiral strip material 1 made of aluminum material.
6 to the coolant chamber 14 of the cooling plate 13, and soldered to form a swirl-shaped coolant passage Was 17 on the bottom of the cooling plate, and then the coolant inlet 18 was installed in the center of the plate. A cover bottom plate 19 is attached to the bottom of the cooling plate via a rubber sheet or the like. In this case, the brazing joint is first applied to the wall surface of the cooling liquid chamber 14 and the side surface of the spiral strip material 16 using a chemical conversion treatment solution containing potassium and fluorine (composition: according to the above description) to form a benzofluoroaluminium M potassium skin lesion,
Next, as shown in FIG.
Contact through the backing material -? After that, put it in the furnace I.
Heat the cooling plate 13 to 610-620°C ζ・ζ.
And band material 16? This was done by a method of forming a V joint. Then, a cooling liquid such as water is injected from the inlet 18 and a vortex 1 is created.
4 ij'rT along the passage 17 of the shape and the outlet 15
By discharging the heat (in the direction of arrow B in No. 51), the heat generated by the object 2] placed on the cooling plate can be absorbed by the cooling liquid and removed. Liquid cooling box 12
Now, the cooling plate is controlled by the y # meat, and the cooling performance is significantly improved compared to the actual example 1σ. Compared to the conventional A-method using 611'JlIQq machining, the processing time could be significantly reduced and the cost could be reduced. Unfortunately, the materials were expensive. ! By brazing and joining the above chemical conversion treatment liquid with 4 (#i), liquid cooling (12 inches) does not occur even when used for a long period of time, and it has excellent durability. <Is> □゛J, :pill L reminder
1 Ria'' has created a coolant passage (1).・The cooling capacity is improved, and even if the contact area with the cooling pot is increased by lengthening the lj1 passage, there is almost no need to apply 41 force, easily increasing the cooling power. By creating a structure in which the cooling liquid flows in a spiral shape from the center of the cooling plate to the IM side, the cooling effect is applied to the distribution of the object, that is, to the heat-generating throat cloth. (1) so that it can be demonstrated in response to each situation.
The surface temperature of the cooling plate is almost uniform, and the temperature of the object can be maintained at a uniform temperature of 74 degrees. The liquid cooling box for the above-mentioned January month is made by forming one liquid curve in the calendar month by joining the plates by brazing.By using the four method, the illumination time during the manufacturing process can be significantly shortened compared to the conventional method. Moreover, the processing cost can be reduced, and the material yield 9 can be significantly improved. Is it possible to make 1llJ using a thin, extremely thin cooling plate and further improve cooling performance? can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1mおよび炬2じ4は本発明の′実り例1の欣冷箱を
示す平面図および側IfrI図、2r!3図fi第1図
および第2図の液冷箱の内部を示すに面図、 鎗4図に′i蛮型例の液冷萌の内部を示す断面図)、弯
5図社実暢例2の液冷箱の内高を示す断4i図、 場6図は第5図のVl−Vl砿における゛喫f也倹12
の液冷箱の内部を示す断面図、 第7FAおよび第8曲は従来の液冷箱を示す平面#XJ
および側面図、 坑9図岐坑7図および第8図の液冷箱の内部を示すも叩
図1 ’8 lcl閾は第7崗および第8図の液冷箱の冷却板
表面の温度分布を示す図である。 4中、 1 、 Hl、 12・・・液冷箱  2,17・・・
冷却液通路3.13・・・冷却板    4.18・・
・住人口5.15・・・排m口    6.11・・・
カバー底板8.21・・・対象物 特許出岨人 株式会社  豊田中央研究所]ζl J 
    ”    −、= 2−第7図 第8図 ・q9二 第10=
1m and 2nd 4 are a plan view and a side IfrI view showing the cooling box of Example 1 of the present invention, 2r! Fig. 3 is a front view showing the inside of the liquid cooling box in Figs. 1 and 2; Section 4i shows the internal height of the liquid cooling box in Figure 2.
Cross-sectional view showing the inside of the liquid cooling box, No. 7FA and No. 8 are planes #XJ showing the conventional liquid cooling box.
Figure 1 '8 lcl threshold is the temperature distribution on the surface of the cooling plate of the liquid cooling box in Figures 7 and 8. FIG. 4, 1, Hl, 12...liquid cooling box 2,17...
Coolant passage 3.13...Cooling plate 4.18...
・Resident population 5.15...Exhaust port 6.11...
Cover bottom plate 8.21...Target patent developer Toyota Central Research Institute Co., Ltd.] ζl J
” -, = 2-Figure 7 Figure 8・q92 10=

Claims (2)

【特許請求の範囲】[Claims] (1)冷却板内部を流れる冷却液により冷却板上の対象
物を冷却する液冷箱において、冷却液を流通せしめるた
めの、渦巻形状をなす冷却液通路を冷却板の底面に形成
し、冷却液の注入口および排出口を該通路の渦巻中心部
分および渦巻外側部分に夫々備え、さらにカバー底板を
冷却板底面に水密に覆ってなることを特徴とする液冷箱
(1) In a liquid cooling box that cools objects on the cooling plate with the cooling liquid flowing inside the cooling plate, a spiral-shaped cooling liquid passage is formed on the bottom of the cooling plate to allow the cooling liquid to flow. A liquid cooling box characterized in that a liquid inlet and a liquid outlet are provided at a spiral center portion and a spiral outer portion of the passage, respectively, and a cover bottom plate is watertightly covered with a bottom surface of a cooling plate.
(2)アルミニウム系材料よりなりかつ底面側が開口し
内部に冷却液室を形成した冷却板の該冷却液室に、アル
ミニウム系材料よりなる渦巻形帯材を収め、ろう付け接
合して、渦巻形状の冷却液通路を冷却板の底面に形成し
、かつ冷却液の注入口および排出口を該通路の渦巻中心
部分および渦巻外側部分に夫々設け、さらにカバー底板
を冷却板底面に水密に覆って製作してなることを特徴と
する液冷箱の製造方法。
(2) A spiral strip made of an aluminum material is placed in the cooling liquid chamber of a cooling plate made of an aluminum material, the bottom side of which is open, and a cooling liquid chamber is formed inside, and the spiral strip made of an aluminum material is brazed and joined to form a spiral shape. A cooling liquid passage is formed on the bottom surface of the cooling plate, and a cooling liquid inlet and an outlet are provided in the spiral center part and the spiral outer part of the passage, respectively, and a cover bottom plate is made to cover the bottom surface of the cooling plate in a watertight manner. A method of manufacturing a liquid cooling box characterized by:
JP22516784A 1984-10-26 1984-10-26 Liquid chilling box and manufacture thereof Pending JPS61102799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22516784A JPS61102799A (en) 1984-10-26 1984-10-26 Liquid chilling box and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22516784A JPS61102799A (en) 1984-10-26 1984-10-26 Liquid chilling box and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61102799A true JPS61102799A (en) 1986-05-21

Family

ID=16824990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22516784A Pending JPS61102799A (en) 1984-10-26 1984-10-26 Liquid chilling box and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61102799A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224588U (en) * 1988-07-29 1990-02-19
JP2009010047A (en) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd Light source using light emitting diode
JP2011185457A (en) * 2010-03-04 2011-09-22 Kiko Kagi Kofun Yugenkoshi Heat exchanger structure
JP2014183072A (en) * 2013-03-18 2014-09-29 Fujitsu Ltd Electronic device and heat receiver

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224588U (en) * 1988-07-29 1990-02-19
JP2009010047A (en) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd Light source using light emitting diode
JP2011185457A (en) * 2010-03-04 2011-09-22 Kiko Kagi Kofun Yugenkoshi Heat exchanger structure
JP2014183072A (en) * 2013-03-18 2014-09-29 Fujitsu Ltd Electronic device and heat receiver

Similar Documents

Publication Publication Date Title
TWI355049B (en)
CN100511656C (en) Cooling device
US4723597A (en) Heat exchanger core
JPS61102799A (en) Liquid chilling box and manufacture thereof
JPH07227695A (en) Flux for brazing, heat exchanger and production of heat exchanger
JP2008211147A (en) Pipe fitting structure of heat exchanger
AU2007216908B2 (en) Air conditioner heat transfer water tank and manufacturing process thereof
JP2001289583A (en) Egr gas cooler
JP2603450Y2 (en) Vehicle heat exchanger
US3530932A (en) High strength heat exchange assembly
JP3370531B2 (en) Corrosion protection method for inner surface of aluminum alloy heat transfer tube
JP2002110878A (en) Cooling module and cooling system comprising it
CN109222660A (en) Hot tank and water dispenser
JPS6155596A (en) Heat exchanger
JPS6397309A (en) Production of clad pipe
CN209362490U (en) Chemical reaction kettle
CN207625992U (en) Interlayer water cooling with flow-disturbing group arranges structure
JPH04141223A (en) Tank container
JPH0221198A (en) Heat exchanger
JPS58110988A (en) Particle circulating type heat exchanger
JPH0356077U (en)
CN215440250U (en) Heat abstractor is used in bulky concrete construction
JPH02115693A (en) Latent heat accumulation system
JPS59189068A (en) Production of aluminum-brazed product
JPS61147095A (en) Heat exchanger structure and manufacture thereof