JP3370531B2 - Corrosion protection method for inner surface of aluminum alloy heat transfer tube - Google Patents

Corrosion protection method for inner surface of aluminum alloy heat transfer tube

Info

Publication number
JP3370531B2
JP3370531B2 JP31207896A JP31207896A JP3370531B2 JP 3370531 B2 JP3370531 B2 JP 3370531B2 JP 31207896 A JP31207896 A JP 31207896A JP 31207896 A JP31207896 A JP 31207896A JP 3370531 B2 JP3370531 B2 JP 3370531B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
aluminum alloy
zinc
flow paths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31207896A
Other languages
Japanese (ja)
Other versions
JPH10152767A (en
Inventor
達也 藤吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calsonic Kansei Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP31207896A priority Critical patent/JP3370531B2/en
Publication of JPH10152767A publication Critical patent/JPH10152767A/en
Application granted granted Critical
Publication of JP3370531B2 publication Critical patent/JP3370531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明に係るアルミニウム合金
製伝熱管内面の防食処理方法は、アルミニウム合金を押
し出し成形する事により造る伝熱管を、ヒータコア、ラ
ジエータ等、内部に腐食性流体を流す熱交換器に組み込
む場合に、この伝熱管の内部から腐食が進行する事を防
止する為に利用する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The method of anticorrosion treatment of the inner surface of a heat transfer tube made of an aluminum alloy according to the present invention is a heat transfer tube made by extruding an aluminum alloy to heat-exchange a corrosive fluid such as a heater core or a radiator. It is used to prevent corrosion from progressing from the inside of this heat transfer tube when it is installed in a vessel.

【0002】[0002]

【従来の技術】例えば特公平4−59077号公報に記
載されている様に、アルミニウム合金を押し出し成形す
る事により造られる、図3に示す様な伝熱管1が、従来
から広く知られている。この伝熱管1は、長円形の外周
壁2の内側に複数の隔壁3、3を設ける事により、内部
に複数の流路4、4を設けて成る。この様な伝熱管1を
使用した熱交換器として従来から、やはり特公平4−5
9077号公報に記載されている様に、図4に示す様な
熱交換器5が、広く知られている。
2. Description of the Related Art As disclosed in, for example, Japanese Patent Publication No. 4-59077, a heat transfer tube 1 as shown in FIG. 3 made by extrusion molding an aluminum alloy has been widely known. . The heat transfer tube 1 is provided with a plurality of flow paths 4 and 4 inside by providing a plurality of partition walls 3 and 3 inside an oval outer peripheral wall 2. As a heat exchanger using the heat transfer tube 1 as described above, there is a conventional Japanese Patent Publication No. 4-5.
As described in Japanese Patent No. 9077, a heat exchanger 5 as shown in FIG. 4 is widely known.

【0003】この熱交換器5は、上記伝熱管1をジグザ
グに折り曲げる事により、湾曲部6、6と直線部7、7
とを交互に連続させると共に、隣り合う直線部7、7同
士の間に、コルゲート型の伝熱フィン8、8を設けてい
る。更に、上記伝熱管1の一端開口部には入口コネクタ
9を、他端開口部には出口コネクタ10を、それぞれ接
続して、上記伝熱管1内に熱交換すべき流体を、上記一
端開口部から他端開口部に向け流通自在としている。そ
して、この伝熱管1内を流れる流体と、この伝熱管1外
を流れる空気との間で、熱交換を行なわせる様にしてい
る。
The heat exchanger 5 has curved portions 6 and 6 and straight portions 7 and 7 formed by bending the heat transfer tube 1 in a zigzag manner.
And are alternately continued, and corrugated heat transfer fins 8 and 8 are provided between the adjacent linear portions 7 and 7. Further, an inlet connector 9 is connected to one end opening of the heat transfer tube 1 and an outlet connector 10 is connected to the other end opening of the heat transfer tube 1, so that the fluid to be heat-exchanged in the heat transfer tube 1 is connected to the one end opening. From the other end to the opening. Then, heat is exchanged between the fluid flowing inside the heat transfer tube 1 and the air flowing outside the heat transfer tube 1.

【0004】上述の様な熱交換器5は従来、自動車用空
調機を構成する為のコンデンサ、或はエバポレータとし
て使用していた。従って、上記各伝熱管1内には、非腐
食性流体である冷媒が流れるのみで、内部からの腐食に
就いて考慮する必要はなかった。この為に従来は、雨水
や融雪塩等の付着により腐食が発生する可能性のある外
面にのみ、防食皮膜を形成していた。この防食皮膜とし
ては、例えば特公平3−46547号公報等に記載され
ている様に、上記伝熱管1の表面に亜鉛メッキを施した
り、或は亜鉛の溶射皮膜を形成したものが、広く知られ
ている。
Conventionally, the heat exchanger 5 as described above has been used as a condenser or an evaporator for constituting an automobile air conditioner. Therefore, only the refrigerant which is a non-corrosive fluid flows in each heat transfer tube 1, and it is not necessary to consider the corrosion from the inside. For this reason, conventionally, an anticorrosive film is formed only on the outer surface where corrosion may occur due to the attachment of rainwater, snow melting salt, or the like. As this anticorrosion coating, as described in, for example, Japanese Patent Publication No. 3-46547, there is widely known one in which the surface of the heat transfer tube 1 is galvanized or a sprayed coating of zinc is formed. Has been.

【0005】[0005]

【発明が解決しようとする課題】図3に示す様な伝熱管
1を、コンデンサやエバポレータの様に、伝熱管の内部
に非腐食性流体を流す熱交換器5に使用する場合には、
特に問題を生じない。これに対して、上記伝熱管1を、
ヒータコアやラジエータの様に、伝熱管の内部に腐食性
流体(冷却水)を流す熱交換器に組み込んだ場合には、
内部からの腐食に就いて考慮する必要が生じる。
When the heat transfer tube 1 as shown in FIG. 3 is used for a heat exchanger 5 in which a non-corrosive fluid is flown inside the heat transfer tube, such as a condenser or an evaporator,
No particular problem occurs. On the other hand, the heat transfer tube 1 is
When installed in a heat exchanger such as a heater core or a radiator that flows a corrosive fluid (cooling water) inside the heat transfer tube,
It is necessary to consider the corrosion from the inside.

【0006】上記伝熱管1の熱交換性能を劣化させる事
なく、この伝熱管1が内部から腐食する事を防止する為
には、この伝熱管1の流路4、4の内面に、犠牲腐食層
として機能する亜鉛拡散層を形成する事が効果がある。
そして、上記各流路4、4の内面にこの様な亜鉛拡散層
を形成する為には、この内面に亜鉛メッキ層を形成した
後、ろう付け時の(600℃程度の)加熱により、この
メッキ層を構成する亜鉛を、上記伝熱管1を構成するア
ルミニウム合金の一部で上記各流路4、4の内面近傍部
分に拡散させる事が考えられる。
In order to prevent the heat transfer tube 1 from corroding from the inside without deteriorating the heat exchange performance of the heat transfer tube 1, sacrificial corrosion is applied to the inner surfaces of the flow paths 4, 4 of the heat transfer tube 1. It is effective to form a zinc diffusion layer that functions as a layer.
Then, in order to form such a zinc diffusion layer on the inner surface of each of the flow paths 4 and 4, after forming a zinc plating layer on the inner surface, heating is performed at the time of brazing (at about 600 ° C.). It is conceivable that zinc forming the plating layer is diffused to a portion near the inner surface of each of the flow paths 4 and 4 with a part of the aluminum alloy forming the heat transfer tube 1.

【0007】又、上記各流路4、4の内面に亜鉛メッキ
層を形成する為には、例えばジンケート浴が考えられる
事が、前述した特公平4−59077号公報に記載され
ている。但し、ジンケート浴により上記各流路4、4の
内面に亜鉛メッキ層を形成しても、亜鉛の異常析出等に
より、この亜鉛メッキ層の厚さが不均一になる。従っ
て、上記各流路4、4の内面全体に亙って良好な防食性
能を発揮する亜鉛拡散層を形成する事は難しい。しか
も、ジンケート浴はアルカリ浴の為、アルミニウム合金
製の伝熱管1の腐食防止の面から、メッキ処理後に内部
洗浄等、十分な後処理を行なう必要があり、コストが嵩
む事が避けられない。本発明のアルミニウム合金製伝熱
管内面の防食処理方法は、この様な事情に鑑みて発明し
たものである。
Further, in order to form a galvanized layer on the inner surface of each of the flow paths 4 and 4, for example, a zincate bath is considered, as described in Japanese Patent Publication No. 4-59077. However, even if a zinc plating layer is formed on the inner surface of each of the flow paths 4 and 4 by the zincate bath, the zinc plating layer becomes uneven in thickness due to abnormal deposition of zinc or the like. Therefore, it is difficult to form a zinc diffusion layer that exhibits good anticorrosion performance over the entire inner surface of each of the flow paths 4 and 4. Moreover, since the zincate bath is an alkaline bath, from the viewpoint of preventing corrosion of the heat transfer tube 1 made of aluminum alloy, it is necessary to perform sufficient post-treatment such as internal cleaning after the plating treatment, which inevitably results in increased cost. The anticorrosion treatment method for the inner surface of the aluminum alloy heat transfer tube of the present invention was invented in view of such circumstances.

【0008】[0008]

【課題を解決するための手段】本発明のアルミニウム合
金製伝熱管内面の防食処理方法は、アルミニウム合金を
押し出し成形する事により造られる伝熱管の内面に、こ
の内面から腐食が進行する事を防止する為の防食皮膜を
形成するものである。この様な本発明のアルミニウム合
金製伝熱管内面の防食処理方法は、上記伝熱管の内面
に、高温時に炭化せずに分解する高粘性バインダー中に
亜鉛粉末と弗化物粉末とを分散混合した粘性混合物を
上記伝熱管の内面に対する亜鉛粉末の付着量が0.5〜
30g/m 2 の範囲に納まる様に規制しつつ塗布した後、
伝熱管の温度を上昇させる事により、この伝熱管の内
面に亜鉛拡散層を形成する。又、請求項2に記載したア
ルミニウム合金製伝熱管内面の防食処理方法は、上記高
粘性バインダー中に分散混合させる亜鉛粉末の粒径を、
10〜30μmとする。
The method of anticorrosion treatment of the inner surface of the aluminum alloy heat transfer tube of the present invention prevents corrosion from progressing from the inner surface of the heat transfer tube formed by extrusion molding the aluminum alloy. It forms an anticorrosion film for the purpose. Such an anticorrosion treatment method for the inner surface of the aluminum alloy heat transfer tube of the present invention, the inner surface of the heat transfer tube, the viscosity obtained by dispersing and mixing zinc powder and fluoride powder in a highly viscous binder that decomposes without carbonization at high temperature. the mixture,
The amount of zinc powder adhered to the inner surface of the heat transfer tube is 0.5 to
After coating with regulations so as to fit in the range of 30g / m 2, this
By raising the temperature of the heat transfer tube, to form a zinc diffusion layer on the inner surface of the heat transfer tube. In addition, according to claim 2,
The anticorrosion treatment method for the inner surface of the heat transfer tube made of aluminum alloy is
The particle size of the zinc powder to be dispersed and mixed in the viscous binder,
It is set to 10 to 30 μm.

【0009】[0009]

【作用】上述の様な本発明のアルミニウム合金製伝熱管
内面の防食処理方法によれば、高粘性バインダーの粘着
力により、このバインダー中に分散混合した亜鉛粉末と
弗化物粉末とを伝熱管の内面に、均一に付着させる事が
できる。この様にして亜鉛粉末と弗化物粉末とを伝熱管
の内面に付着させた後、上記伝熱管の温度をろう付け温
度(600℃程度)にまで上昇させれば、上記バインダ
ーが分解昇華すると共に、上記弗化物粉末から発生した
弗素が、上記伝熱管の内面に存在する酸化膜を除去す
る。この結果、上記亜鉛粉末が上記伝熱管の内面部分
で、この伝熱管を構成するアルミニウム合金と直接接触
し、このアルミニウム合金中に拡散して、上記内面部分
に亜鉛拡散層を形成する。この様にして形成した亜鉛拡
散層は、犠牲腐食層として作用する事により、上記伝熱
管に腐食が、内面からこの伝熱管の厚さ方向に進行する
事を防止する。しかも、本発明の場合には、粘性混合物
をこの伝熱管の内面に塗布する際の、この伝熱管の内面
に対する亜鉛粉末の付着量が0.5〜30g/m 2 の範囲に
収まる様に規制している為、この伝熱管の内面部分から
この伝熱管の厚さ方向に腐食が進行する事を有効に防止
できる。
According to the method of anticorrosion treatment of the inner surface of the aluminum alloy heat transfer tube of the present invention as described above, the zinc powder and the fluoride powder dispersed and mixed in the binder are adhered to the heat transfer tube due to the adhesive force of the high viscosity binder. Can be evenly attached to the inner surface. After the zinc powder and the fluoride powder are adhered to the inner surface of the heat transfer tube in this way and the temperature of the heat transfer tube is raised to the brazing temperature (about 600 ° C.), the binder is decomposed and sublimated. Fluorine generated from the fluoride powder removes the oxide film existing on the inner surface of the heat transfer tube. As a result, the zinc powder comes into direct contact with the aluminum alloy forming the heat transfer tube at the inner surface portion of the heat transfer tube and diffuses into the aluminum alloy to form a zinc diffusion layer on the inner surface portion. The zinc diffusion layer thus formed acts as a sacrificial corrosion layer to prevent corrosion of the heat transfer tube from progressing from the inner surface in the thickness direction of the heat transfer tube. Moreover, in the case of the present invention, a viscous mixture
Inner surface of this heat transfer tube when applying to the inner surface of this heat transfer tube
The amount of zinc powder adhered to is in the range of 0.5 to 30 g / m 2 .
Since it is regulated so that it will fit, from the inner surface part of this heat transfer tube
Effectively prevent corrosion from progressing in the thickness direction of this heat transfer tube
it can.

【0010】[0010]

【発明の実施の形態】図1は本発明の方法により内面を
防食処理した伝熱管1を、図2は流体(冷却水)の流れ
方向に対して互いに平行に配置した伝熱管1、1と伝熱
フィン8とにより構成した熱交換器の一部を、それぞれ
示す断面図である。上記伝熱管1は、例えばJIS A
3003材の様に、必要とする強度を有するアルミニ
ウム合金を押し出し成形する事により造ったもので、長
円形の外周壁2の内側に複数の隔壁3、3を設ける事に
より、内部に複数の流路4、4を設けて成る。
1 shows a heat transfer tube 1 whose inner surface is anticorrosion-treated by the method of the present invention, and FIG. 2 shows heat transfer tubes 1 and 1 arranged parallel to each other in the flow direction of a fluid (cooling water). It is sectional drawing which each shows a part of heat exchanger comprised with the heat transfer fin 8. The heat transfer tube 1 is, for example, JIS A
Like 3003 material, it is made by extrusion-molding an aluminum alloy having the required strength. By providing a plurality of partition walls 3 inside the oblong outer peripheral wall 2, a plurality of flow paths can be provided inside. It is provided with paths 4 and 4.

【0011】この様な伝熱管1の内面である、上記各流
路4、4の内周面に防食の為の亜鉛拡散層11、11を
形成する為には、高温時に炭化せずに分解する高粘性バ
インダー中に亜鉛粉末と弗化物粉末とを分散混合した粘
性混合物を塗布した後、上記伝熱管1の温度を上昇させ
る。上記の条件を満たす高粘性バインダーとしては、ア
クリル樹脂、ポリブデン等が利用可能である。又、上記
亜鉛粉末としては、粒径が5〜50μmのもの、更に好
ましくは10〜30μmのものを使用する。更に、上記
弗化物粉末としては、弗化物系のフラックスを使用す
る。例えば、特公昭58−27037号公報に記載さ
れ、「NOCOLOK」の商標で市販されている、KAl
4 とK3 AlF6 との混合物が、現在容易に入手できる
フラックスのうちでは、最も好ましく利用できる。この
他にも、特公平4−48556号公報に記載されている
様に、K2 AlF5 化合物のフラックスも、或はKFとAl
3 との混合物のフラックスも、それぞれ利用できる。
更には、特開昭63−177998〜9号公報、特開平
1−104494〜7号公報等に記載された弗化物系の
フラックスも、利用可能である。
In order to form the zinc diffusion layers 11, 11 for corrosion protection on the inner peripheral surface of each of the flow paths 4, 4 which is the inner surface of the heat transfer tube 1 as described above, decomposition occurs without carbonization at high temperature. After applying a viscous mixture in which zinc powder and fluoride powder are dispersed and mixed in the highly viscous binder, the temperature of the heat transfer tube 1 is raised. As the high-viscosity binder satisfying the above conditions, acrylic resin, polybutene, etc. can be used. The zinc powder used has a particle size of 5 to 50 μm, and more preferably 10 to 30 μm. Further, as the above-mentioned fluoride powder, a fluoride-based flux is used. For example, KAl described in JP-B-58-27037 and marketed under the trademark "NOCOLOK"
Mixtures of F 4 and K 3 AlF 6 are the most preferred of the currently readily available fluxes. In addition to this, as described in JP-B-4-48556, the flux of K 2 AlF 5 compound or KF and Al is also used.
A flux of a mixture with F 3 can also be used.
Furthermore, the fluoride-based flux described in JP-A-63-177998-9 and JP-A-1-104494-7 can be used.

【0012】これら亜鉛粉末と弗化物粉末と高粘性バイ
ンダーとは、粘度調整の為にアルコール等の有機溶剤を
加えて混練した後、上記伝熱管1に設けた各流路4、4
内に流し込む。この流し込み作業により上記亜鉛粉末と
弗化物粉末とは、高粘性バインダーの粘着力により、上
記各流路4、4の内周面に均一に付着する。付着量とし
ては、これら各流路4、4の内周面に対する亜鉛粉末の
付着量が0.5〜30g/m2の範囲に納まる様に規制す
る。この様にして亜鉛粉末と弗化物粉末とを伝熱管の内
面に付着させた後、上記伝熱管1、1と伝熱フィン8と
を、図示しないタンク等、他の構成部材と組み合わせ
て、熱交換器を構成する。この伝熱フィン8は、芯材と
なるべきJIS A 3003材の両面に、ろう材とな
るJIS A4343材(Siを多く含み、融点が低いア
ルミニウム合金)を積層した、所謂両面クラッド材を波
形に形成した、コルゲートフィンである。
The zinc powder, the fluoride powder and the high-viscosity binder are kneaded by adding an organic solvent such as alcohol for adjusting the viscosity, and then the flow paths 4, 4 provided in the heat transfer tube 1 described above.
Pour inside. By this pouring operation, the zinc powder and the fluoride powder are evenly attached to the inner peripheral surfaces of the flow paths 4 and 4 by the adhesive force of the highly viscous binder. The amount of adhesion is regulated so that the amount of zinc powder adhered to the inner peripheral surface of each of the flow paths 4 and 4 falls within the range of 0.5 to 30 g / m 2 . After the zinc powder and the fluoride powder are adhered to the inner surface of the heat transfer tube in this manner, the heat transfer tubes 1 and 1 and the heat transfer fins 8 are combined with other components such as a tank (not shown) to generate heat. Configure an exchange. This heat transfer fin 8 has a so-called double-sided clad material formed by laminating JIS A4343 material (aluminum alloy containing a large amount of Si and having a low melting point), which is a brazing material, on both sides of a JIS A 3003 material to be a core material in a corrugated shape. It is a corrugated fin that was formed.

【0013】上述の様に伝熱管1、1と伝熱フィン8と
を組み合わせたならば、これら伝熱管1、1と伝熱フィ
ン8とを治具により抑え付けた状態のまま加熱炉中に入
れ、JIS A 4343材は溶けるがJIS3003
材は溶けない温度である、ろう付け温度(600℃程
度)にまで上昇させる。この温度上昇に基づき、上記各
伝熱管1、1の外側面と上記伝熱フィン8とがろう付け
接合されると共に、これら各伝熱管4、4の内周面部分
に亜鉛拡散層11、11が形成される。
When the heat transfer tubes 1 and 1 and the heat transfer fins 8 are combined as described above, the heat transfer tubes 1 and 1 and the heat transfer fins 8 are placed in a heating furnace while being held down by a jig. Put, JIS A 4343 material melts, but JIS 3003
The material is raised to the brazing temperature (about 600 ° C), which is the temperature at which it does not melt. Based on this temperature rise, the outer surfaces of the heat transfer tubes 1 and 1 are brazed to the heat transfer fins 8 and the zinc diffusion layers 11 and 11 are formed on the inner peripheral surfaces of the heat transfer tubes 4 and 4. Is formed.

【0014】即ち、上記ろう付けの為の加熱により、上
記各流路4、4の内周面に付着した高粘性バインダーが
分解昇華(有機溶剤は、高粘性バインダーの分解昇華以
前に蒸発)すると共に、上記弗化物粉末から発生した弗
素が、上記伝熱管1の各流路4、4の内周面に存在する
酸化膜を除去する。この結果、上記亜鉛粉末が、上記各
流路4、4の内周面部分で、上記伝熱管1を構成するア
ルミニウム合金(JIS A 3003材)と直接接触
し、このアルミニウム合金中に拡散して、上記各流路
4、4の内周面部分に亜鉛拡散層11、11を形成す
る。この様にして形成した亜鉛拡散層11、11は、犠
牲腐食層として作用する事により、上記各流路4、4の
内周面部分から上記伝熱管1の厚さ方向に腐食(孔食)
が進行する事を防止する。
That is, by heating for the brazing, the high-viscosity binder attached to the inner peripheral surfaces of the flow paths 4, 4 is decomposed and sublimated (the organic solvent is evaporated before the high-viscosity binder is decomposed and sublimated). At the same time, the fluorine generated from the fluoride powder removes the oxide film existing on the inner peripheral surfaces of the flow paths 4 and 4 of the heat transfer tube 1. As a result, the zinc powder comes into direct contact with the aluminum alloy (JIS A 3003 material) forming the heat transfer tube 1 at the inner peripheral surface portions of the flow paths 4 and 4, and diffuses into the aluminum alloy. The zinc diffusion layers 11, 11 are formed on the inner peripheral surface portions of the flow paths 4, 4. The zinc diffusion layers 11 and 11 thus formed act as sacrificial corrosion layers, so that corrosion (pitting corrosion) occurs from the inner peripheral surface of each of the flow paths 4 and 4 in the thickness direction of the heat transfer tube 1.
Prevent progress.

【0015】[0015]

【実施例】本発明による効果を確認する為、本発明者が
行なった実験に就いて説明する。JIA A 3003
材を押し出し成形する事により、図1〜2に示す様な断
面形状を有し、板厚が0.4mmの伝熱管1を造った。こ
の伝熱管1の流路4、4内に、アクリル樹脂粉末を5
部、粒径が10〜30μmの亜鉛粉末を50部、イソプ
ロピルアルコールを40部、「NOCOLOK」フラッ
クスを5部の割合で混練したものを流し込み、上記亜鉛
粉末を上記各流路4、4の内周面に付着させた後、上記
アルコールを蒸発させて、これら各流路4、4の内周面
を乾燥させた。この様にして各流路4、4の内周面に亜
鉛粉末を付着させた伝熱管1と、板厚が0.13mmであ
るコルゲート型の伝熱フィン8とを組み合わせて熱交換
器を構成した。尚、この伝熱フィン8は、JIS A
3003材の両面にJIS A4343材を積層した、
両面クラッド材により造った。
EXAMPLES In order to confirm the effects of the present invention, experiments conducted by the present inventors will be described. JIA A 3003
By extruding the material, a heat transfer tube 1 having a sectional shape as shown in FIGS. 1 and 2 and a plate thickness of 0.4 mm was produced. Acrylic resin powder was added to the flow paths 4 and 4 of the heat transfer tube 1
Parts, 50 parts of zinc powder having a particle size of 10 to 30 μm, 40 parts of isopropyl alcohol, and 5 parts of “NOCOLOK” flux were kneaded, and the zinc powder was poured into each of the flow paths 4 and 4. After adhering to the peripheral surface, the alcohol was evaporated to dry the inner peripheral surface of each of the flow paths 4 and 4. In this way, the heat exchanger is constructed by combining the heat transfer tube 1 having zinc powder adhered to the inner peripheral surface of each of the flow paths 4 and 4 and the corrugated heat transfer fin 8 having a plate thickness of 0.13 mm. did. In addition, this heat transfer fin 8 is a JIS A
JIS A4343 material is laminated on both sides of 3003 material,
Made from double-sided clad material.

【0016】この様な伝熱管1、1と伝熱フィン8とを
図2に示す様に組み合わせた後、これら伝熱管1、1と
伝熱フィン8との表面に「NOCOLOK」フラックス
を、2〜3g/m2の割合で塗布し、乾燥させた。その後、
窒素ガス雰囲気中で600℃に加熱して、上記伝熱管
1、1と伝熱フィン8とを含む、熱交換器の構成各部材
を一体ろう付けした。そして、このろう付けの為の加熱
に伴って、上記各流路4、4の内周面に亜鉛拡散層1
1、11を形成した。
After the heat transfer tubes 1 and 1 and the heat transfer fins 8 are combined as shown in FIG. 2, "NOCOLOK" flux is applied to the surfaces of the heat transfer tubes 1 and 1 and the heat transfer fins 2 It was applied at a rate of ˜3 g / m 2 and dried. afterwards,
It was heated to 600 ° C. in a nitrogen gas atmosphere, and the constituent members of the heat exchanger including the heat transfer tubes 1 and 1 and the heat transfer fins 8 were integrally brazed. With the heating for brazing, the zinc diffusion layer 1 is formed on the inner peripheral surface of each of the flow paths 4 and 4.
1 and 11 were formed.

【0017】この様にして上記各流路4、4の内周面に
形成した亜鉛拡散層の防食性能を知る為、Cl-1を200
ppm 、SO4 2- を60ppm 、Fe3+を30ppm 、Cu2+を1pp
m 含む腐食性液体を使用して、腐食試験を行なった。こ
の腐食試験は、上記組成を有し、88℃に加熱した腐食
性液体を10リットル/minの割合で8時間循環させた
後、この循環を停止し、室温で16時間放置する行程を
1サイクルとして、90サイクル(3箇月間)行なっ
た。この実験の結果を、次の表1に示す。
In order to know the anticorrosion performance of the zinc diffusion layer formed on the inner peripheral surface of each of the flow paths 4 and 4 as described above, Cl -1 is added to 200
ppm, SO 4 2- to 60 ppm, 30 ppm and Fe 3+, the Cu 2+ 1pp
A corrosion test was performed using a corrosive liquid containing m. In this corrosion test, a corrosive liquid having the above composition and heated to 88 ° C. was circulated at a rate of 10 liter / min for 8 hours, then the circulation was stopped, and the process was left for 16 hours at room temperature for one cycle. As a result, 90 cycles (for 3 months) were performed. The results of this experiment are shown in Table 1 below.

【0018】[0018]

【表1】 [Table 1]

【0019】この表1の記載から明らかな通り、各流路
4、4の内周面に亜鉛粉末を0.5g/m2以上付着させて
これら各内周面に犠牲腐食層として機能する亜鉛拡散層
11、11を形成すれば、これら各流路4、4の内周面
部分から上記伝熱管1の厚さ方向に腐食(孔食)が進行
する事を有効に防止できる。尚、上記各流路4、4の内
周面に付着させる亜鉛粉末の量が過剰になると、犠牲腐
食層部分の腐食の進行が速くなり過ぎ、冷却水中に混入
する腐食生成物が多くなり過ぎる。そこで、上記付着量
の上限は、30g/m2程度にする事が好ましい。
As is clear from the description in Table 1, zinc powder having 0.5 g / m 2 or more of zinc powder adhered to the inner peripheral surface of each of the flow paths 4 and 4 functions as a sacrificial corrosion layer on each inner peripheral surface. By forming the diffusion layers 11, 11, it is possible to effectively prevent the corrosion (pitting corrosion) from proceeding from the inner peripheral surface portions of the flow paths 4, 4 in the thickness direction of the heat transfer tube 1. When the amount of zinc powder attached to the inner peripheral surface of each of the flow paths 4 and 4 becomes excessive, the corrosion of the sacrificial corrosion layer portion proceeds too fast, and the corrosion products mixed in the cooling water become too large. . Therefore, it is preferable that the upper limit of the adhesion amount is about 30 g / m 2 .

【0020】[0020]

【発明の効果】本発明のアルミニウム合金製伝熱管内面
の防食処理方法は、以上に述べた通り構成され作用する
ので、従来困難であった、押し出し成形により造られる
伝熱管の内面への均一な亜鉛拡散層の形成を行なえる。
そして、この伝熱管に内部から腐食が進行する事を有効
に防止できて、この様な伝熱管の用途拡大に寄与でき
る。
EFFECTS OF THE INVENTION The method of anticorrosion treatment of the inner surface of the heat transfer tube made of aluminum alloy of the present invention is constructed and operates as described above, so that it has been difficult to obtain a uniform heat transfer tube on the inner surface of the heat transfer tube produced by extrusion molding. A zinc diffusion layer can be formed.
Further, it is possible to effectively prevent the corrosion from advancing from the inside of the heat transfer tube, which can contribute to the expansion of applications of such a heat transfer tube.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法により犠牲腐食層を形成した伝熱
管の断面図。
FIG. 1 is a cross-sectional view of a heat transfer tube having a sacrificial corrosion layer formed by the method of the present invention.

【図2】この伝熱管により構成した熱交換器の1例を示
す部分断面図。
FIG. 2 is a partial cross-sectional view showing an example of a heat exchanger configured by this heat transfer tube.

【図3】本発明の対象となる伝熱管の端部斜視図。FIG. 3 is an end perspective view of a heat transfer tube which is a target of the present invention.

【図4】この伝熱管により構成した、従来から知られて
いる熱交換器の1例を示す斜視図。
FIG. 4 is a perspective view showing an example of a conventionally known heat exchanger configured by this heat transfer tube.

【符号の説明】[Explanation of symbols]

1 伝熱管 2 外周壁 3 隔壁 4 流路 5 熱交換器 6 湾曲部 7 直線部 8 伝熱フィン 9 入口コネクタ 10 出口コネクタ 11 亜鉛拡散層 1 heat transfer tube 2 outer wall 3 partitions 4 channels 5 heat exchanger 6 curved part 7 Straight section 8 heat transfer fins 9 inlet connector 10 Outlet connector 11 Zinc diffusion layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 10/28,10/30 F28F 19/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) C23C 10 / 28,10 / 30 F28F 19/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミニウム合金を押し出し成形する事
により造られる伝熱管の内面に、この内面から腐食が進
行する事を防止する為の防食皮膜を形成する、アルミニ
ウム合金製伝熱管内面の防食処理方法であって、上記伝
熱管の内面に、高温時に炭化せずに分解する高粘性バイ
ンダー中に亜鉛粉末と弗化物粉末とを分散混合した粘性
混合物を、上記伝熱管の内面に対する亜鉛粉末の付着量
が0.5〜30g/m 2 の範囲に納まる様に規制しつつ塗布
した後、この伝熱管の温度を上昇させる事により、この
伝熱管の内面に亜鉛拡散層を形成する、アルミニウム合
金製伝熱管内面の防食処理方法。
1. A method for anticorrosion treatment of an inner surface of a heat transfer tube made of an aluminum alloy, which comprises forming an anticorrosion film for preventing corrosion from advancing from the inner surface of a heat transfer tube produced by extrusion-molding an aluminum alloy. In the inner surface of the heat transfer tube, a viscous mixture obtained by dispersing and mixing zinc powder and fluoride powder in a high-viscosity binder that decomposes without being carbonized at high temperature, the amount of zinc powder deposited on the inner surface of the heat transfer tube.
There was coated with regulations as to fit in the range of 0.5 to 30 g / m 2, by raising the temperature of the heat transfer tube, to form a zinc diffusion layer on the inner surface of the <br/> heat transfer tube, Method of anticorrosion treatment on inner surface of aluminum alloy heat transfer tube.
【請求項2】 高粘性バインダー中に分散混合させる亜
鉛粉末の粒径を10〜30μmとする、請求項1に記載
したアルミニウム合金製伝熱管内面の防食処理方法。
2. The method for anticorrosion treatment of the inner surface of a heat transfer tube made of an aluminum alloy according to claim 1, wherein the zinc powder dispersed and mixed in the high-viscosity binder has a particle size of 10 to 30 μm.
JP31207896A 1996-11-22 1996-11-22 Corrosion protection method for inner surface of aluminum alloy heat transfer tube Expired - Fee Related JP3370531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31207896A JP3370531B2 (en) 1996-11-22 1996-11-22 Corrosion protection method for inner surface of aluminum alloy heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31207896A JP3370531B2 (en) 1996-11-22 1996-11-22 Corrosion protection method for inner surface of aluminum alloy heat transfer tube

Publications (2)

Publication Number Publication Date
JPH10152767A JPH10152767A (en) 1998-06-09
JP3370531B2 true JP3370531B2 (en) 2003-01-27

Family

ID=18024979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31207896A Expired - Fee Related JP3370531B2 (en) 1996-11-22 1996-11-22 Corrosion protection method for inner surface of aluminum alloy heat transfer tube

Country Status (1)

Country Link
JP (1) JP3370531B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4399925B2 (en) 1999-10-21 2010-01-20 株式会社デンソー Method for forming sacrificial corrosion layer, heat exchanger, and dual heat exchanger
KR100954091B1 (en) 2003-10-13 2010-04-23 한라공조주식회사 Heat exchanger and it's manufacturing method
JP4844167B2 (en) * 2006-02-24 2011-12-28 東京エレクトロン株式会社 Cooling block and plasma processing apparatus
US20090214773A1 (en) * 2008-02-27 2009-08-27 General Electric Company Diffusion Coating Systems with Binders that Enhance Coating Gas
CN103857973A (en) * 2011-10-18 2014-06-11 开利公司 Micro channel heat exchanger alloy system
US9332673B2 (en) 2013-10-17 2016-05-03 Globalfoundries Inc. Surface modification of hoses to reduce depletion of corrosion inhibitor
DE102017201583A1 (en) * 2017-02-01 2018-08-02 Robert Bosch Gmbh Method for producing a cooling device
EP3975315A4 (en) * 2019-04-18 2024-07-31 Valeo Japan Co Ltd Heat exchanger for cooling vehicle battery

Also Published As

Publication number Publication date
JPH10152767A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
EP1475598A2 (en) Heat exchange tube
US4645119A (en) Method of brazing an aluminum heat exchanger
JP2006255755A (en) Aluminum alloy material for brazing and method for brazing aluminum alloy material
JP2015061995A (en) Aluminum alloy heat exchanger
CN103038014A (en) Method for producing aluminum alloy heat exchanger
JP4577634B2 (en) Aluminum alloy extruded tube with brazing filler metal for heat exchanger
JP2009106947A (en) Aluminum alloy tube
JP3370531B2 (en) Corrosion protection method for inner surface of aluminum alloy heat transfer tube
JP2016099101A (en) Heat exchanger, and method of manufacturing the same
JPS61186164A (en) Production of aluminum heat exchanger
JP7030605B2 (en) Aluminum fins for heat exchangers with excellent hydrophilicity, heat exchangers and their manufacturing methods
JP7131950B2 (en) Pre-coated fin stock for brazed heat exchangers and heat exchangers
JP2006145060A (en) Aluminum heat exchanger
JPH11216592A (en) Aluminum material for brazing, and heat exchanger manufacturing method
JP4411803B2 (en) Brazing method for aluminum heat exchanger and aluminum member brazing solution
WO2018123984A1 (en) Heat exchanger and manufacturing method therefor
JP2000202620A (en) Aluminum plate for brazing and manufacture of heat exchanger
JPH093580A (en) Heat exchanger made of aluminum alloy, excellent in corrosion resistance
JP6983699B2 (en) Brazing mixed composition paint
JP6776405B2 (en) Heat exchanger and manufacturing method of heat exchanger
JPH0223265B2 (en)
JP2003225760A (en) Aluminum heat exchanger manufacturing method
JP2000061624A (en) Brazing method for aluminum material
KR100954091B1 (en) Heat exchanger and it&#39;s manufacturing method
JPH1177292A (en) Manufacture of aluminum heat exchanger

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees