JP4577634B2 - Aluminum alloy extruded tube with brazing filler metal for heat exchanger - Google Patents

Aluminum alloy extruded tube with brazing filler metal for heat exchanger Download PDF

Info

Publication number
JP4577634B2
JP4577634B2 JP2000271139A JP2000271139A JP4577634B2 JP 4577634 B2 JP4577634 B2 JP 4577634B2 JP 2000271139 A JP2000271139 A JP 2000271139A JP 2000271139 A JP2000271139 A JP 2000271139A JP 4577634 B2 JP4577634 B2 JP 4577634B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
extruded tube
brazing material
alloy extruded
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000271139A
Other languages
Japanese (ja)
Other versions
JP2002079370A (en
Inventor
正和 江戸
建 当摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2000271139A priority Critical patent/JP4577634B2/en
Publication of JP2002079370A publication Critical patent/JP2002079370A/en
Application granted granted Critical
Publication of JP4577634B2 publication Critical patent/JP4577634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、アルミニウム合金押出管の表面に直接ろう材粉末を含有したフラックスを塗布したろう材被覆アルミニウム合金押出チューブに関するものであり、このろう材被覆アルミニウム合金押出チューブは特に耐食性に優れた熱交換器を製造するために使用されるものである。
【0002】
【従来の技術】
一般に、熱交換器は、図2に示されるように、ヘッダーパイプ5と称される左右一対の管体と、そのヘッダーパイプ5の間に互いに平行に間隔を空けて設けられたアルミニウム合金からなる多数のチューブ1と、チューブ1とチューブ1との間に設けられたフィン6とで構成されている。そして各チューブ1の内部空間とヘッダーパイプ5の内部空間を連通させ、ヘッダーパイプ5の内部空間と各チューブ1の内部空間に媒体を循環させ、前記フィン6を介して効率良く熱交換ができるようになっている。
【0003】
この熱交換器を構成する各チューブ1は、図1の斜視図に示されるような複数の冷媒通路穴4を有する断面偏平状のアルミニウム合金押出管3の表面に、ろう材粉末を含有したフラックスを塗布することによりろう材含有フラックス層2を形成したろう材被覆アルミニウム合金押出チューブ11を用いて作られることが知られており、前記アルミニウム合金押出管3には押出し加工性の優れたJIS1050が用いられており、前記ろう材含有フラックス層2に含まれるろう材としては、Si粉末、
Si:5〜60%を含有し、残部がAlおよび不可避不純物からなるAl−Si系合金粉末、または、
Si:5〜60%、Zn:5〜40%を含有し、残部がAlおよび不可避不純物からなるAl−Si−Zn系合金粉末が使用されることも知られている。
【0004】
これら従来のろう材被覆アルミニウム合金押出チューブ11を用いて熱交換器を作製するには、互いに平行に間隔を空けて設けられたヘッダーパイプ5に対してろう材被覆アルミニウム合金押出チューブ11を直角に架設し、各ろう材被覆アルミニウム合金押出チューブ11の端部をヘッダーパイプ5の側面に設けられた開口(図示せず)に挿入し、このろう材被覆アルミニウム合金押出チューブの間に波形のフィン6を配置して組み立て、得られた組立体を加熱炉に装入し加熱すると、ろう材被覆アルミニウム合金押出チューブ11のろう材によりヘッダーパイプ5とチューブ1はろう付けされ固定されるとともにチューブ1と1の間に波形のフィン6がろう付けされ固定された熱交換器が作られる。
【0005】
これら熱交換器は、特に空気に塩分を含む海岸地帯あるいは空気に腐食性ガスを含む工業地帯などの苛酷な環境下において孔食型の腐食が進行し、チューブ1に貫通孔が発生し、冷媒が漏れることで熱交換器の機能が失われることが多々あり、したがって一層優れた耐食性が要求されている。
【0006】
かかる要求に鑑み、近年、Si:0.4〜1.0%を含有し、さらに必要に応じてCu:0.15%以下を含有し、残りがAlおよび不可避不純物からなる組成のアルミニウム合金押出管の表面に直接ケイ素粉末を含有するろう材含有フラックス層を形成した耐食性の優れたろう材被覆アルミニウム合金押出チューブが提案されている(特開2000−63970号公報参照)。
【0007】
【発明が解決しようとする課題】
前記特開2000−63970号公報に記載のろう材被覆アルミニウム合金押出チューブを用いて製造した熱交換器は確かに従来の熱交換器と比べると、耐食性に優れるものの、実環境で使用する場合、まだ耐食性は不十分であり、さらに耐食性に優れた熱交換器が求められており、この耐食性に優れた熱交換器を製造するためのろう材被覆アルミニウム合金押出チューブが求められている。
【0008】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、さらに一層耐食性に優れた熱交換器を製造するためのろう材被覆アルミニウム合金押出チューブを開発すべく研究を行なった結果、アルミニウム合金押出管として、
(a)質量%で(以下、%は質量%を示す)、AlにSi:0.7〜1.2%を添加し、さらにMn:0.1〜1.2%を添加し、さらにTi:0.1〜0.2%またはZn:0.03〜0.5%を添加した組成のAl合金からなるアルミニウム合金押出管、または、
(b)AlにSi:0.7〜1.2%を添加し、さらにMn:0.1〜1.2%を添加し、さらにTi:0.1〜0.2%またはZn:0.03〜0.5%を添加し、さらにCu:0.1〜0.5%を添加した組成のAl合金からなるアルミニウム合金押出管の外表面に、Si粉末、Si:5〜60%を含有し残部がAlおよび不可避不純物からなるAl−Si系合金粉末、またはSi:5〜60%、Zn:5〜40%を含有し残部がAlおよび不可避不純物からなるAl−Si−Zn系合金粉末を含有したフラックスを塗布したろう材被覆アルミニウム合金押出チューブを用いて製造した熱交換器は一層の耐食性を示し、さらに押出管を構成するアルミニウム合金にMnが含まれているために、ろう付けして得られた熱交換器のチューブの強度が優れているという研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、
(1)Si:0.7〜1.2%、Mn:0.1〜1.2%を含有し、さらにTi:0.1〜0.2%またはZn:0.03〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成のAl合金からなるアルミニウム合金押出管の外表面に、Si粉末、Si:5〜60%を含有し、残部がAlおよび不可避不純物からなるAl−Si系合金粉末、Si:5〜60%、Zn:5〜40%を含有し残部がAlおよび不可避不純物からなるAl−Si−Zn系合金粉末の内のいずれかのろう材粉末を含有したフラックスを塗布してろう材含有フラックス層を形成した耐食性に優れた熱交換器用ろう材被覆アルミニウム合金押出チューブ、
(2)Si:0.7〜1.2%、Mn:0.1〜1.2%を含有し、さらにTi:0.1〜0.2%またはZn:0.03〜0.5%を含有し、さらにCu:0.1〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成のAl合金からなるアルミニウム合金押出管の外表面に、Si粉末、Si:5〜60%を含有し、残部がAlおよび不可避不純物からなるAl−Si系合金粉末、Si:5〜60%、Zn:5〜40%を含有し残部がAlおよび不可避不純物からなるAl−Si−Zn系合金粉末の内のいずれかのろう材粉末を含有したフラックスを塗布してろう材含有フラックス層を形成した耐食性に優れた熱交換器用ろう材被覆アルミニウム合金押出チューブ、に特徴を有するものである。
【0010】
この発明の熱交換器用ろう材被覆アルミニウム合金押出チューブにおいてアルミニウム合金押出管の外表面に塗布されるフラックスはフッ化物系フラックス(例えば、LiF,KF,CaF2,AlF3,SiF4などの弗化物、さらに前記弗化物の錯化合物であるKAlF4,KAlF5など)が好ましい。したがって、この発明は、
(3)前記ろう材含有フラックス層を構成するフラックスは、フッ化物系フラックスである前記(1)または(2)記載の耐食性に優れた熱交換器用ろう材被覆アルミニウム合金押出チューブ、に特徴を有するものである。
前記(3)記載のろう材含有フラックス層は、前記Si粉末、Al−Si系合金粉末、Al−Si−Zn系合金粉末などのろう材粉末とフラックスの混合物をバインダ樹脂および溶剤と共に混合してスラリー状ペーストを作製し、これを塗布することにより形成することができる。
【0011】
この発明の熱交換器用ろう材被覆アルミニウム合金押出チューブにおいてアルミニウム合金押出管に塗布されるろう材は、Si粉末よりも、Si:5〜60%を含有し、残部がAlおよび不可避不純物からなるAl−Si系合金粉末、またはSi:5〜60%、Zn:5〜40%を含有し残部がAlおよび不可避不純物からなるAl−Si−Zn系合金粉末であることが一層好ましい。
【0012】
前記(1)〜(3)記載のろう材被覆アルミニウム合金押出チューブを用いて製造した熱交換器は、耐食性が一段と向上する。したがって、この発明は、
(4)前記(1)、(2)、または(3)記載のろう材被覆アルミニウム合金押出チューブにフィン材をろう付けして製造した耐食性に優れた熱交換器、に特徴を有するものである。
【0013】
次に、この発明の熱交換器用ろう材被覆アルミニウム合金押出チューブを構成するアルミニウム合金押出管およびろう材の成分組成を前記の如く限定した理由を説明する。
【0014】
A.アルミニウム合金押出管の成分組成
Si:アルミニウム合金押出管にSiを多く固溶させることで押出管の電位を貴にし、ろう材部を優先的に腐食させることで押出管への深い孔食の発生を抑制させ、またろう付け性を向上させると共に良好な接合部を形成してろう付け後の強度を向上させる作用を有するが、その含有量が0.7%未満では所望の効果が得られないので好ましくなく、一方、Siを1.2%より多く含有させると、合金の融点を低下させてろう付け時の過剰な溶融を招き、さらに押出し性を低下させるので好ましくない。したがって、アルミニウム合金押出管に含まれるSiは0.7〜1.2%に定めた。Si含有量の一層好ましい範囲は1.0%を越え1.2%以下である。
【0015】
Mn:Mnはアルミニウム合金押出管の電位を貴にし、ろう中に拡散し難いためにフィン材およびろう材層との電位差を大きくとれ、フィン材およびろう材の防食効果をより有効にし、外部耐食性を向上させ、さらに金属間化合物として素地に晶出し、ろう付け後の強度を向上させる作用を有するが、その含有量が0.1%未満では所望の効果が得られないので好ましくなく、一方、Mnを1.2%より多く含有させると、粗大なAl−Mn系金属間化合物として素地中に分散し、高温での変形抵抗を大きくするために押出し性を著しく低下させるので好ましくない。したがって、アルミニウム合金押出管に含まれるMnは0.1〜1.2%に定めた。Mn含有量の一層好ましい範囲は0.2〜0.8%である。
【0016】
Cu:Cuはアルミニウム合金押出管の電位を貴にし、フィンとの電位差を大きくとれ、外部耐食性を著しく向上させ、さらに素地に固溶してろう付け後の強度を向上させる作用を有するが、その含有量が0.1%未満では所望の効果が得られないので好ましくなく、一方、Cuを0.5%より多く含有させると、Cuはろう付け時に拡散しやすいためにろうと押出管の電位差が小さくなることに加えて、孔食が深さ方向に成長しやすくなるために耐食性が低下するので好ましくない。したがって、アルミニウム合金押出管に含まれるCuは0.1〜0.5%に定めた。Cu含有量の一層好ましい範囲は0.1〜0.3%である。
【0017】
Ti:Tiは、鋳造時にTi濃度が高い部分と低い部分が生成し、このTi分布が押出し成形時に素地中に層状に分布し、Ti濃度が低い部分は高い部分に比べて電位が卑になるため優先的に腐食が進行し、腐食形態が層状となり、深い孔食の発生が抑制されるために耐食性が向上し、また強度を向上させる作用を有するので必要に応じて添加するが、その含有量が0.1%未満では所望のすぐれた効果が得られず、一方、0.2%を越えて含有すると、融点が向上するために鋳造時に溶け残りが発生したり、巨大な金属間化合物が生成しやすくなるために押出加工性が低下する場合が生じるので好ましくない。したがって、Ti:0.1〜0.2%に定めた。
【0018】
Zn:微量のZnは、材料の腐食形態を面状腐食とし、深い孔食の発生を抑制し、したがって耐孔食性を向上させる作用を有するので必要に応じて添加するが、その含有量が0.03%未満では所望の効果が得られず、一方、0.5%を越えて含有すると、腐食速度が増大すると共に、腐食形態は孔食となり、耐食性が低下するので好ましくない。したがって、Zn:0.03〜0.5%(一層好ましくは0.1〜0.4%)に定めた。
【0019】
B.ろう材含有フラックス層
この発明の熱交換器用ろう材被覆アルミニウム合金押出チューブを構成するろう材含有フラックス層は、ろう材を粉末状で含むために、ろう付け後は押出チューブ表面全面に溶融したろう材層が形成され、押出チューブの電位が貴な場合は、このろう材層が犠牲陽極材と同等の働きをし、ろう材層が優先的に面状に腐食されるため、深い孔食の発生が抑制され、耐食性が向上する。
このろう材含有フラックス層に含まれるろう材粉末は、従来から知られているSi粉末、Si:5〜60%を含有し、残部がAlおよび不可避不純物からなるAl−Si系合金粉末、またはSi:5〜60%、Zn:5〜40%を含有し残部がAlおよび不可避不純物からなるAl−Si−Zn系合金粉末の内のいずれのろう材でも使用できるが、Si:0.7〜1.2%、Mn:0.1〜1.2%を必須成分として含有する組成のアルミニウム合金押出管の外表面に被覆するろう材としては、前記Si粉末よりも前記Al−Si系合金粉末またはAl−Si−Zn系合金粉末の方が好ましく、さらにAl−Si系合金粉末はSi:15〜40%を含有し、残部がAlおよび不可避不純物からなるAl−Si系合金粉末が一層好ましく、またAl−Si−Zn系合金粉末はSi:15〜40%、Zn:10〜35%を含有し残部がAlおよび不可避不純物からなるAl−Si−Zn系合金粉末が一層好ましい。
【0020】
【発明の実施の形態】
表1に示される成分組成のAl合金を溶解し鋳造して、直径20cmビレットを製造し、このビレットを通常の条件で均質化処理したのち押出し加工することにより4個の冷媒通路穴を有し、肉厚:0.4mmを有する偏平押出管l,n,q,およびr、さらにt〜vを成形した。
【0021】
【表1】

Figure 0004577634
【0022】
さらに、ろう材粉末として、平均粒径:10μmを有するSi粉末、
Si:20%を含有し残部がAlおよび不可避不純物からなる組成を有し、平均粒径:20μmのAl−Si系合金粉末、並びに、
Si:20%、Zn:25%を含有し残部がAlおよび不可避不純物からなる組成を有し、平均粒径:20μmを有するAl−Si−Zn系合金粉末、を用意した。
さらにフラックスとしてKAlF4粉末、溶剤としてイソプロアルコール(IPA)、バインダーとして熱可塑性アクリル樹脂を用意した。
【0023】
前記用意した、ろう材粉末、フラックス、溶剤およびバインダーを表2に示される組成となるように配合し混合することによりスラリー状ペーストを作製し、このスラリー状ペーストを表1の偏平押出管l,n,q,およびr、さらにt〜vの表面に塗布することにより本発明ろう材被覆アルミニウム合金押出チューブ(以下、本発明被覆チューブという)1〜4、比較ろう材被覆アルミニウム合金押出チューブ(以下、比較被覆チューブという)1〜2および従来ろう材被覆アルミニウム合金押出チューブ(以下、従来被覆チューブという)を作製した。
【0024】
これら本発明被覆チューブ1〜4、比較被覆チューブ1〜2および従来被覆チューブを、前記スラリー状ペーストを塗布しかつ開口を設けたJISA3003からなるヘッダーの開口に通して熱交換器の枠を作製し、さらに厚さ:0.08mm、フィンピッチ:5mmを有し波形に成形されたJIS3003からなるフィンをチューブとチューブの間に設置してヘッダー部、チューブおよびフィンからなる組立体を製造した。得られた組立体を加熱炉に装入し、窒素ガス雰囲気下で600℃に保持された加熱炉に3分間保持することにより加熱したのち、100℃/minで冷却し、ヘッダー部5、チューブ1およびフィン6からなる図2に示される熱交換器を作製した。
【0025】
このようにして得られた図2に示される熱交換器のチューブ1のろう付けによる強度低下の有無を調べるために、本発明被覆チューブ1〜4、比較被覆チューブ1〜2および従来被覆チューブを窒素ガス雰囲気下で600℃に3分間保持したのち100℃/minで冷却するろう付けを想定した熱処理を施し、その後、室温で引張り試験を行ない、引張り強さを測定してその結果を表2に示した。
【0026】
さらに、得られた熱交換器の耐食性を評価するために、熱交換器に対してJISH8502で規定された塩水水噴霧試験を3000時間行い、熱交換器のチューブ1に発生した最大孔食深さを顕微鏡による焦点深度法により測定し、その結果を表2に示した。
【0027】
【表2】
Figure 0004577634
【0028】
【発明の効果】
表1〜2に示される結果から、本発明チューブ1〜4で製造した熱交換器は、従来チューブで製造した熱交換器に比べてチューブの強度が優れ、さらにチューブに発生した最大孔食深さが小さいところから耐食性に優れており、したがって本発明チューブ1〜4を使用して製造した熱交換器は従来チューブを使用して製造した熱交換器に比べて優れていることが分かる。しかし、この発明の範囲から外れた比較チューブ1〜2(表1において、この発明の条件から外れている値に*印をつけて示した)で製造した熱交換器は強度または耐食性が劣るので好ましくないことが分かる。
【0029】
上述のように、この発明のろう材被覆アルミニウム合金押出チューブは、耐食性に優れた熱交換器を提供することができ、工業上有用な効果をもたらすものである。
【図面の簡単な説明】
【図1】 従来の熱交換器用ろう材被覆アルミニウム合金押出チューブの斜視図である。
【図2】 熱交換器の斜視図である。
【符号の説明】
1 チューブ
2 ろう材含有フラックス層
3 押出管
4 穴
5 ヘッダーパイプ
6 フィン
11 従来の熱交換器用ろう材被覆アルミニウム合金押出チューブ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a brazing material-coated aluminum alloy extruded tube in which a flux containing brazing powder is directly applied to the surface of an aluminum alloy extruded tube, and this brazing material-coated aluminum alloy extruded tube has a heat exchange particularly excellent in corrosion resistance. It is used to manufacture a vessel.
[0002]
[Prior art]
In general, as shown in FIG. 2, the heat exchanger is made of a pair of left and right tubes called header pipes 5, and an aluminum alloy provided between the header pipes 5 so as to be spaced apart from each other in parallel. It is composed of a large number of tubes 1 and fins 6 provided between the tubes 1 and 1. The internal space of each tube 1 and the internal space of the header pipe 5 are communicated, and the medium is circulated between the internal space of the header pipe 5 and the internal space of each tube 1 so that heat can be exchanged efficiently via the fins 6. It has become.
[0003]
Each tube 1 constituting this heat exchanger has a flux containing brazing powder on the surface of an aluminum alloy extruded tube 3 having a flat cross section having a plurality of refrigerant passage holes 4 as shown in the perspective view of FIG. It is known that a brazing material-coated aluminum alloy extruded tube 11 in which a brazing material-containing flux layer 2 is formed by coating is used. The aluminum alloy extruded tube 3 has JIS 1050 having excellent extrudability. The brazing material contained in the brazing material-containing flux layer 2 is Si powder,
Si: Al—Si based alloy powder containing 5 to 60%, the balance consisting of Al and inevitable impurities, or
It is also known that Al—Si—Zn-based alloy powder containing Si: 5 to 60%, Zn: 5 to 40%, the balance being Al and inevitable impurities is used.
[0004]
In order to manufacture a heat exchanger using these conventional brazing material-coated aluminum alloy extruded tubes 11, the brazing material-coated aluminum alloy extruded tube 11 is perpendicular to the header pipes 5 spaced in parallel to each other. The end of each brazing material-coated aluminum alloy extruded tube 11 is inserted into an opening (not shown) provided on the side surface of the header pipe 5, and the corrugated fin 6 is interposed between the brazing material-coated aluminum alloy extruded tubes. When the assembly obtained is placed in a heating furnace and heated, the header pipe 5 and the tube 1 are brazed and fixed by the brazing material of the brazing material-coated aluminum alloy extruded tube 11, and the tube 1 and A heat exchanger in which the corrugated fins 6 are brazed and fixed during 1 is made.
[0005]
In these heat exchangers, pitting corrosion occurs in a severe environment such as a coastal area where salt is contained in the air or an industrial area where corrosive gas is contained in the air. As a result of leakage, the function of the heat exchanger is often lost, and therefore, better corrosion resistance is required.
[0006]
In view of such demands, in recent years, aluminum alloy extrusion containing Si: 0.4 to 1.0%, further containing Cu: 0.15% or less as required, the remainder comprising Al and inevitable impurities There has been proposed a brazing material-coated aluminum alloy extruded tube excellent in corrosion resistance, in which a brazing material-containing flux layer containing silicon powder is directly formed on the surface of the tube (see JP 2000-63970 A).
[0007]
[Problems to be solved by the invention]
Although the heat exchanger manufactured using the brazing filler metal-coated aluminum alloy extruded tube described in JP 2000-63970 A is certainly superior in corrosion resistance as compared with the conventional heat exchanger, when used in an actual environment, There is still a need for a heat exchanger that is insufficient in corrosion resistance and is excellent in corrosion resistance, and a brazing filler-coated aluminum alloy extruded tube for producing this heat exchanger excellent in corrosion resistance is required.
[0008]
[Means for Solving the Problems]
In view of the above, the present inventors have conducted research to develop a brazing material-coated aluminum alloy extruded tube for producing a heat exchanger having further excellent corrosion resistance. As
(A) In mass% (hereinafter,% indicates mass%), Si: 0.7-1.2% is added to Al, Mn: 0.1-1.2% is further added, and Ti is further added. : Aluminum alloy extruded tube made of an Al alloy having a composition with 0.1 to 0.2% or Zn added to 0.03 to 0.5% , or
(B) Si: 0.7-1.2% is added to Al, Mn: 0.1-1.2% is further added, and Ti: 0.1-0.2% or Zn: 0.00% . Si powder, Si: 5-60% is contained on the outer surface of an aluminum alloy extruded tube made of an Al alloy having a composition in which 03-0.5% is added and Cu: 0.1-0.5% is further added Al-Si-Zn alloy powder consisting of Al and unavoidable impurities in the balance, or Al-Si-Zn alloy powder containing Si: 5-60% and Zn: 5-40%, and the balance consisting of Al and unavoidable impurities The heat exchanger manufactured using the brazing material-coated aluminum alloy extruded tube coated with the flux containing it exhibits further corrosion resistance, and since the aluminum alloy constituting the extruded tube contains Mn, brazing is performed. Of the heat exchanger tube obtained Degree is the got the results of a study that is excellent.
[0009]
This invention was made based on the above research results,
(1) Si: 0.7 to 1.2%, Mn: 0.1 to 1.2%, Ti : 0.1 to 0.2% or Zn: 0.03 to 0.5% In the outer surface of an aluminum alloy extruded tube made of an Al alloy having a composition consisting of Al and inevitable impurities, the remaining surface contains Si powder, Si: 5 to 60%, and the balance is Al- consisting of Al and inevitable impurities. Si-based alloy powder, flux containing Si: 5-60%, Zn: 5-40%, the balance containing brazing filler metal powder of Al-Si-Zn-based alloy powder consisting of Al and inevitable impurities A brazing filler metal-coated aluminum alloy extruded tube for heat exchangers with excellent corrosion resistance formed by coating a brazing filler-containing flux layer,
(2) Si: 0.7 to 1.2%, Mn: 0.1 to 1.2%, Ti : 0.1 to 0.2% or Zn: 0.03 to 0.5% In addition, Cu powder is contained on the outer surface of an aluminum alloy extruded tube made of an Al alloy having a composition comprising Al and inevitable impurities , and Cu: 0.1 to 0.5%. Al—Si-Zn alloy powder comprising Al and unavoidable impurities in the balance, Si: 5 to 60%, Zn: 5 to 40% and the remainder comprising Al and unavoidable impurities It is characterized by a brazing material-coated aluminum alloy extruded tube for heat exchangers excellent in corrosion resistance, in which a flux containing any one of the alloy powders is applied to form a brazing material-containing flux layer.
[0010]
In the heat exchanger brazing material-coated aluminum alloy extruded tube of the present invention, the flux applied to the outer surface of the aluminum alloy extruded tube is a fluoride-based flux (for example, fluorides such as LiF, KF, CaF 2 , AlF 3 , and SiF 4). Further, KAlF 4 , KAlF 5 and the like, which are complex compounds of the above fluorides, are preferable. Therefore, the present invention
(3) The flux constituting the brazing material-containing flux layer is characterized by the brazing material-coated aluminum alloy extruded tube for heat exchangers having excellent corrosion resistance according to (1) or (2) , which is a fluoride-based flux. Is.
The brazing filler metal-containing flux layer described in (3) is obtained by mixing a mixture of brazing filler metal powder and flux such as the Si powder, Al—Si alloy powder, and Al—Si—Zn alloy powder together with a binder resin and a solvent. It can be formed by preparing a slurry-like paste and applying it.
[0011]
The brazing material applied to the aluminum alloy extruded tube in the brazing material-coated aluminum alloy extruded tube for heat exchanger of the present invention contains Si: 5 to 60% of the Si powder, with the balance being Al and inevitable impurities. -Si-based alloy powder or Al-Si-Zn-based alloy powder containing Si: 5 to 60% and Zn: 5 to 40% with the balance being Al and inevitable impurities is more preferable.
[0012]
The heat exchanger manufactured using the brazing material-coated aluminum alloy extruded tube according to the above (1) to (3) further improves the corrosion resistance. Therefore, the present invention
(4) A heat exchanger having excellent corrosion resistance, produced by brazing a fin material to the brazing material-coated aluminum alloy extruded tube according to (1), (2), or (3 ). .
[0013]
Next, the reason why the composition of the aluminum alloy extruded tube and the brazing material constituting the brazing material-coated aluminum alloy extruded tube for a heat exchanger of the present invention is limited as described above will be described.
[0014]
A. Component composition of the aluminum alloy extruded tube Si: Deep pitting corrosion occurs in the extruded tube by preferentially corroding the brazing filler metal part by making the extruded tube potential noble by dissolving a large amount of Si in the aluminum alloy extruded tube In addition, it has the effect of improving brazing properties and improving the strength after brazing by forming a good joint, but if its content is less than 0.7%, the desired effect cannot be obtained. On the other hand, if Si is contained in an amount of more than 1.2%, the melting point of the alloy is lowered to cause excessive melting at the time of brazing, and the extrudability is further lowered. Therefore, Si contained in the aluminum alloy extruded tube is set to 0.7 to 1.2%. A more preferable range of the Si content is more than 1.0% and 1.2% or less.
[0015]
Mn: Mn makes the potential of the aluminum alloy extruded tube noble and difficult to diffuse into the brazing. Therefore, the potential difference between the fin material and the brazing material layer can be increased, and the anticorrosion effect of the fin material and brazing material is made more effective, and the external corrosion resistance. In addition, it has the effect of improving the strength after brazing and crystallizing on the substrate as an intermetallic compound, but its content is less than 0.1%, because the desired effect cannot be obtained, which is not preferable, If Mn is contained in an amount of more than 1.2%, it is not preferable because it is dispersed in the substrate as a coarse Al—Mn intermetallic compound and the extrudability is remarkably lowered in order to increase the deformation resistance at high temperatures. Therefore, Mn contained in the aluminum alloy extruded tube is set to 0.1 to 1.2%. A more preferable range of the Mn content is 0.2 to 0.8%.
[0016]
Cu: Cu has the effect of making the potential of the aluminum alloy extruded tube noble, increasing the potential difference from the fin, significantly improving the external corrosion resistance, and further improving the strength after brazing by solid solution in the substrate. If the content is less than 0.1%, the desired effect cannot be obtained, which is not preferable. On the other hand, if Cu is added in an amount of more than 0.5%, Cu easily diffuses during brazing, so that the potential difference between the brazed tube and the extruded tube is small. In addition to being reduced, pitting corrosion is liable to grow in the depth direction, so that the corrosion resistance is lowered, which is not preferable. Therefore, Cu contained in the aluminum alloy extruded tube is set to 0.1 to 0.5%. A more preferable range of the Cu content is 0.1 to 0.3%.
[0017]
Ti: Ti has a portion with a high Ti concentration and a portion with a low Ti concentration during casting, and this Ti distribution is distributed in layers in the substrate at the time of extrusion molding, and the potential of the portion with a low Ti concentration is lower than that of the high portion. Therefore, corrosion progresses preferentially, the corrosion form becomes layered, and since the occurrence of deep pitting corrosion is suppressed, corrosion resistance is improved, and it has the action of improving strength, so it is added as necessary, but its inclusion If the amount is less than 0.1 %, the desired excellent effect cannot be obtained. On the other hand, if the amount exceeds 0.2 %, the melting point is improved, so that unmelted residue is generated during casting or a huge intermetallic compound is produced. This is not preferable because the extrudability is likely to be reduced due to the tendency to form. Therefore, Ti: 0.1 to 0.2 % was set.
[0018]
Zn: A trace amount of Zn is added as necessary because it has a function of making the corrosion form of the material planar corrosion, suppressing the occurrence of deep pitting corrosion, and thus improving pitting corrosion resistance, but its content is 0. If the content is less than 0.03%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.5%, the corrosion rate increases and the corrosion form becomes pitting corrosion, which is not preferable. Therefore, the Zn content is determined to be 0.03 to 0.5% (more preferably 0.1 to 0.4%).
[0019]
B. Brazing material-containing flux layer The brazing material-containing flux layer constituting the brazing material-coated aluminum alloy extruded tube for the heat exchanger of the present invention contains the brazing material in powder form, so that the brazing material was melted on the entire surface of the extruded tube after brazing. When the material layer is formed and the extruded tube has a noble potential, this brazing material layer works in the same way as the sacrificial anode material, and the brazing material layer is preferentially corroded in the form of a surface. Occurrence is suppressed and corrosion resistance is improved.
The brazing filler metal powder contained in the brazing filler metal-containing flux layer is a conventionally known Si powder, containing Si: 5 to 60%, the balance being Al—Si based alloy powder consisting of Al and inevitable impurities, or Si. : Any of brazing materials of Al-Si-Zn based alloy powder containing 5-60%, Zn: 5-40%, the balance being Al and inevitable impurities can be used, but Si: 0.7-1 As the brazing material for coating the outer surface of an aluminum alloy extruded tube having a composition containing 2% and Mn: 0.1 to 1.2% as essential components, the Al-Si alloy powder or Al-Si-Zn-based alloy powder is more preferable, Al-Si-based alloy powder is more preferable Al-Si-based alloy powder containing Si: 15-40%, the balance being Al and inevitable impurities, l-Si-Zn alloy powder is Si: 15~40%, Zn: Al-Si-Zn alloy powder is more preferably made balance containing 10 to 35 percent of Al and inevitable impurities.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
An aluminum alloy having the composition shown in Table 1 is melted and cast to produce a billet having a diameter of 20 cm, and the billet is homogenized under normal conditions and then extruded to have four refrigerant passage holes. A flat extruded tube l, n, q, and r having a wall thickness of 0.4 mm , and tv were further formed.
[0021]
[Table 1]
Figure 0004577634
[0022]
Further, as a brazing filler metal powder, an Si powder having an average particle size of 10 μm,
Si: 20% Al-Si alloy powder having a composition comprising Al and inevitable impurities with the balance being Al and inevitable impurities, and an average particle size: 20 μm, and
An Al—Si—Zn-based alloy powder having a composition containing Si: 20%, Zn: 25%, the balance consisting of Al and inevitable impurities, and an average particle size of 20 μm was prepared.
Furthermore, KAlF 4 powder as a flux, isopropyl alcohol (IPA) as a solvent, and a thermoplastic acrylic resin as a binder were prepared.
[0023]
A slurry-like paste is prepared by blending and mixing the prepared brazing material powder, flux, solvent and binder so as to have the composition shown in Table 2, and the slurry-like paste is made into a flat extruded tube l, n, q, and r, and by applying to the surfaces of t to v , the present invention brazing material coated aluminum alloy extruded tube (hereinafter referred to as the present invention coated tube) 1-4 , comparative brazing material coated aluminum alloy extruded tube (hereinafter referred to as the present invention coated tube) 1 and 2 and a conventional brazing material-coated aluminum alloy extruded tube (hereinafter referred to as a conventional coated tube).
[0024]
The present invention coated tubes 1 to 4 , comparative coated tubes 1 to 2 and the conventional coated tube are passed through the opening of the header made of JIS A3003 coated with the slurry-like paste and provided with an opening to produce a heat exchanger frame. Further, a fin made of JIS3003 having a thickness of 0.08 mm and a fin pitch of 5 mm and having a corrugated shape was placed between the tubes to produce an assembly comprising a header portion, tubes and fins. The obtained assembly was charged into a heating furnace and heated by holding it in a heating furnace maintained at 600 ° C. under a nitrogen gas atmosphere for 3 minutes, and then cooled at 100 ° C./min. The heat exchanger shown in FIG.
[0025]
In order to investigate the presence or absence of strength reduction due to brazing of the tube 1 of the heat exchanger shown in FIG. 2 obtained in this way, the present invention coated tubes 1 to 4 , comparative coated tubes 1 to 2 and the conventional coated tube A heat treatment assuming brazing by holding at 600 ° C. for 3 minutes in a nitrogen gas atmosphere and then cooling at 100 ° C./min was performed. Thereafter, a tensile test was performed at room temperature, and the tensile strength was measured. It was shown to.
[0026]
Further, in order to evaluate the corrosion resistance of the obtained heat exchanger, the salt water spray test specified in JISH8502 was performed for 3000 hours on the heat exchanger, and the maximum pitting depth generated in the tube 1 of the heat exchanger. Were measured by a depth of focus method using a microscope, and the results are shown in Table 2.
[0027]
[Table 2]
Figure 0004577634
[0028]
【The invention's effect】
From the results shown in Tables 1 and 2, the heat exchangers manufactured with the tubes 1 to 4 of the present invention have superior tube strength compared to the heat exchangers manufactured with conventional tubes, and the maximum pitting depth generated in the tubes. Therefore, it can be seen that the heat exchanger manufactured using the tubes 1 to 4 of the present invention is superior to the heat exchanger manufactured using the conventional tube. However, heat exchangers manufactured with comparative tubes 1 and 2 that are out of the scope of the present invention (shown in Table 1 with values deviating from the conditions of the present invention are marked with *) are inferior in strength or corrosion resistance. It turns out that it is not preferable.
[0029]
As described above, the brazing material-coated aluminum alloy extruded tube of the present invention can provide a heat exchanger excellent in corrosion resistance, and provides an industrially useful effect.
[Brief description of the drawings]
FIG. 1 is a perspective view of a conventional brazing material-coated aluminum alloy extruded tube for a heat exchanger.
FIG. 2 is a perspective view of a heat exchanger.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Tube 2 Brazing material containing flux layer 3 Extruded tube 4 Hole 5 Header pipe 6 Fin 11 Conventional brazing material coated aluminum alloy extruded tube for heat exchanger

Claims (4)

質量%で(以下、%は質量%を示す)、
Si:0.7〜1.2%、
Mn:0.1〜1.2%、
Ti:0.1〜0.2%またはZn:0.03〜0.5%、
を含有し、残りがAlおよび不可避不純物からなる組成のAl合金からなるアルミニウム合金押出管の外表面に、
Si粉末、
Si:5〜60%を含有し、残部がAlおよび不可避不純物からなるAl−Si系合金粉末、
Si:5〜60%、Zn:5〜40%を含有し残部がAlおよび不可避不純物からなるAl−Si−Zn系合金粉末、
の内のいずれかのろう材粉末を含有したフラックスを塗布してろう材含有フラックス層を形成したことを特徴とする耐食性に優れた熱交換器用ろう材被覆アルミニウム合金押出チューブ。
% By mass (hereinafter,% indicates% by mass)
Si: 0.7 to 1.2%,
Mn: 0.1 to 1.2%,
Ti: 0.1-0.2% or Zn: 0.03-0.5%,
On the outer surface of an aluminum alloy extruded tube made of an Al alloy having a composition consisting of Al and inevitable impurities.
Si powder,
Si: Al-Si alloy powder containing 5 to 60%, the balance being Al and inevitable impurities,
Al—Si—Zn-based alloy powder containing Si: 5 to 60%, Zn: 5 to 40%, the balance being Al and inevitable impurities,
A brazing material-coated aluminum alloy extruded tube for heat exchangers having excellent corrosion resistance, wherein a flux containing any one of the above brazing material powders is applied to form a brazing material-containing flux layer.
Si:0.7〜1.2%、
Mn:0.1〜1.2%、
Ti:0.1〜0.2%またはZn:0.03〜0.5%、
Cu:0.1〜0.5%
を含有し、残りがAlおよび不可避不純物からなる組成のAl合金からなるアルミニウム合金押出管の外表面に、
Si粉末、
Si:5〜60%を含有し、残部がAlおよび不可避不純物からなるAl−Si系合金粉末、
Si:5〜60%、Zn:5〜40%を含有し残部がAlおよび不可避不純物からなるAl−Si−Zn系合金粉末、
の内のいずれかのろう材粉末を含有したフラックスを塗布してろう材含有フラックス層を形成したことを特徴とする耐食性に優れた熱交換器用ろう材被覆アルミニウム合金押出チューブ。
Si: 0.7 to 1.2%,
Mn: 0.1 to 1.2%,
Ti: 0.1-0.2% or Zn: 0.03-0.5%,
Cu: 0.1 to 0.5%
On the outer surface of an aluminum alloy extruded tube made of an Al alloy having a composition consisting of Al and inevitable impurities.
Si powder,
Si: Al-Si alloy powder containing 5 to 60%, the balance being Al and inevitable impurities,
Al—Si—Zn-based alloy powder containing Si: 5 to 60%, Zn: 5 to 40%, the balance being Al and inevitable impurities,
A brazing material-coated aluminum alloy extruded tube for heat exchangers having excellent corrosion resistance, wherein a flux containing any one of the above brazing material powders is applied to form a brazing material-containing flux layer.
前記フラックスはフッ化物系フラックスであることを特徴とする請求項1または2記載の耐食性に優れた熱交換器用ろう材被覆アルミニウム合金押出チューブ。 3. The brazing material-coated aluminum alloy extruded tube for heat exchangers having excellent corrosion resistance according to claim 1, wherein the flux is a fluoride-based flux. 請求項1、2、または3記載のろう材被覆アルミニウム合金押出チューブを使用して製造した耐食性に優れた熱交換器。A heat exchanger excellent in corrosion resistance, produced using the brazing material-coated aluminum alloy extruded tube according to claim 1, 2 or 3 .
JP2000271139A 2000-09-07 2000-09-07 Aluminum alloy extruded tube with brazing filler metal for heat exchanger Expired - Fee Related JP4577634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000271139A JP4577634B2 (en) 2000-09-07 2000-09-07 Aluminum alloy extruded tube with brazing filler metal for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000271139A JP4577634B2 (en) 2000-09-07 2000-09-07 Aluminum alloy extruded tube with brazing filler metal for heat exchanger

Publications (2)

Publication Number Publication Date
JP2002079370A JP2002079370A (en) 2002-03-19
JP4577634B2 true JP4577634B2 (en) 2010-11-10

Family

ID=18757468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000271139A Expired - Fee Related JP4577634B2 (en) 2000-09-07 2000-09-07 Aluminum alloy extruded tube with brazing filler metal for heat exchanger

Country Status (1)

Country Link
JP (1) JP4577634B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9283633B2 (en) 2003-05-06 2016-03-15 Mitsubishi Aluminum Co. Ltd. Heat exchanger tube precursor and method of producing the same
JP4413526B2 (en) * 2003-05-06 2010-02-10 三菱アルミニウム株式会社 Tube for heat exchanger
US8640766B2 (en) 2003-05-06 2014-02-04 Mitsubishi Aluminum Co., Ltd. Heat exchanger tube
KR101047449B1 (en) 2003-12-30 2011-08-03 이상철 Heating system using air panel
JP4563204B2 (en) * 2004-02-13 2010-10-13 株式会社デンソー Aluminum alloy extruded material for heat exchanger and method for producing the same
JP4548829B2 (en) * 2004-11-16 2010-09-22 住友軽金属工業株式会社 Aluminum heat exchanger
JP4611797B2 (en) * 2005-04-28 2011-01-12 三菱アルミニウム株式会社 Aluminum alloy plate material for radiator tubes with excellent brazeability, and radiator tube and heat exchanger provided with the same
JP4980390B2 (en) * 2009-03-27 2012-07-18 三菱アルミニウム株式会社 Tube for heat exchanger
US8313590B2 (en) * 2009-12-03 2012-11-20 Rio Tinto Alcan International Limited High strength aluminium alloy extrusion
CN102114579B (en) * 2009-12-30 2013-12-11 北京有色金属与稀土应用研究所 High-strength aluminum alloy welding wire and preparation method thereof
JP5916314B2 (en) * 2011-08-12 2016-05-11 三菱アルミニウム株式会社 Extruded pipe members such as aluminum alloy tanks for heat exchangers
JP6030300B2 (en) * 2011-12-28 2016-11-24 三菱アルミニウム株式会社 Heat exchanger manufacturing method using pre-coated fin material and heat exchanger
CN103624356A (en) * 2013-11-14 2014-03-12 北京航空航天大学 Method for large-area low-defect rate soldering of dissimilar metallic combination drive pipe structure
JP6649889B2 (en) 2014-07-30 2020-02-19 株式会社Uacj Aluminum alloy brazing sheet
WO2016093017A1 (en) 2014-12-11 2016-06-16 株式会社Uacj Brazing method
JP6186455B2 (en) 2016-01-14 2017-08-23 株式会社Uacj Heat exchanger and manufacturing method thereof
JP6312968B1 (en) 2016-11-29 2018-04-18 株式会社Uacj Brazing sheet and method for producing the same
JP7053281B2 (en) 2017-03-30 2022-04-12 株式会社Uacj Aluminum alloy clad material and its manufacturing method
JP6916715B2 (en) 2017-11-08 2021-08-11 株式会社Uacj Brazing sheet and its manufacturing method
JP7291714B2 (en) 2018-09-11 2023-06-15 株式会社Uacj Brazing sheet manufacturing method
JP7222046B1 (en) * 2021-09-28 2023-02-14 株式会社Uacj Aluminum alloy extruded tube, manufacturing method thereof, and piping member for heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238438A (en) * 1984-05-11 1985-11-27 Nippon Light Metal Co Ltd Pitting resistant aluminum alloy for heat exchanger
JPH10175062A (en) * 1996-12-14 1998-06-30 Mitsubishi Alum Co Ltd Heat exchanger excellent in brazeability and its production
JPH11293371A (en) * 1998-04-07 1999-10-26 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger, excellent in strength and corrosion resistance
JP2000063970A (en) * 1998-08-21 2000-02-29 Nippon Light Metal Co Ltd Extruded heat-exchanger tube made of aluminum alloy
JP2000202680A (en) * 1999-01-11 2000-07-25 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238438A (en) * 1984-05-11 1985-11-27 Nippon Light Metal Co Ltd Pitting resistant aluminum alloy for heat exchanger
JPH10175062A (en) * 1996-12-14 1998-06-30 Mitsubishi Alum Co Ltd Heat exchanger excellent in brazeability and its production
JPH11293371A (en) * 1998-04-07 1999-10-26 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger, excellent in strength and corrosion resistance
JP2000063970A (en) * 1998-08-21 2000-02-29 Nippon Light Metal Co Ltd Extruded heat-exchanger tube made of aluminum alloy
JP2000202680A (en) * 1999-01-11 2000-07-25 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance

Also Published As

Publication number Publication date
JP2002079370A (en) 2002-03-19

Similar Documents

Publication Publication Date Title
JP4577634B2 (en) Aluminum alloy extruded tube with brazing filler metal for heat exchanger
EP1475598B1 (en) Heat exchange tube
JP5115963B2 (en) Aluminum heat exchanger member with excellent corrosion resistance and method for producing aluminum heat exchanger with excellent corrosion resistance
JP5750237B2 (en) Method for producing aluminum alloy heat exchanger
KR101589918B1 (en) Heat transfer tube and method for producing same
WO2011090059A1 (en) Heat exchanger tube
EP2543951A1 (en) Heat exchanger constituted of aluminum alloy
JP4822277B2 (en) Aluminum alloy brazing sheet for heat exchanger tubes with excellent brazing and corrosion resistance and heat exchanger tubes with excellent corrosion resistance
WO2015182318A1 (en) Heat exchanger tube, heat exchanger, and brazing paste
JP4980390B2 (en) Tube for heat exchanger
JP6530178B2 (en) Heat exchanger and method of manufacturing heat exchanger
JP2009058139A (en) Member for aluminum-made heat exchanger having superior corrosion resistance
JP5334086B2 (en) Aluminum heat exchanger having excellent corrosion resistance and method for producing the same
JP2009058167A (en) Aluminum heat exchanger using tube having superior corrosion resistance and its manufacturing method
JP6529749B2 (en) Heat exchanger and method of manufacturing heat exchanger
JP2000063970A (en) Extruded heat-exchanger tube made of aluminum alloy
JP3756439B2 (en) High strength and high corrosion resistance aluminum alloy extruded material for heat exchanger, method for producing the same, and heat exchanger
JP4573150B2 (en) Aluminum alloy extruded header tank for heat exchanger and heat exchanger using this header tank
JP6968598B2 (en) Manufacturing method of aluminum alloy heat exchanger with excellent corrosion resistance and aluminum alloy heat exchanger
JP4284515B2 (en) Aluminum alloy extruded header tank for heat exchanger and heat exchanger using this header tank
JP3601257B2 (en) Al or Al alloy extruded tube with brazing filler metal for heat exchanger
JP2002294378A (en) Aluminum alloy extrusion tube for producing header tank
JP3759441B2 (en) High strength and high corrosion resistance aluminum alloy extruded tube for heat exchanger, method for producing the same, and heat exchanger
JP6976041B2 (en) Heat exchanger
JP6776405B2 (en) Heat exchanger and manufacturing method of heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4577634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100815

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees