WO2018123984A1 - Heat exchanger and manufacturing method therefor - Google Patents

Heat exchanger and manufacturing method therefor Download PDF

Info

Publication number
WO2018123984A1
WO2018123984A1 PCT/JP2017/046465 JP2017046465W WO2018123984A1 WO 2018123984 A1 WO2018123984 A1 WO 2018123984A1 JP 2017046465 W JP2017046465 W JP 2017046465W WO 2018123984 A1 WO2018123984 A1 WO 2018123984A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
heat exchanger
source
peak intensity
brazing
Prior art date
Application number
PCT/JP2017/046465
Other languages
French (fr)
Japanese (ja)
Inventor
上田 薫
加奈 荻原
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Publication of WO2018123984A1 publication Critical patent/WO2018123984A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Definitions

  • the present invention relates to a heat exchanger including a metal tube, an aluminum fin, and a brazing part to which both are connected, and a method for manufacturing the heat exchanger.
  • a heat exchanger has a metal tube made of aluminum or the like through which a refrigerant flows and an aluminum fin for performing heat exchange between air outside the metal tube, and the metal tube and the fin
  • the brazing parts are connected. Since the hydrophilicity of the fin greatly affects the heat exchange performance of the heat exchanger, a fin having a hydrophilic coating film formed on the surface is often used. For joining the fin having such a hydrophilic coating film and the metal tube, for example, brazing joining is used.
  • Patent Document 1 proposes a fin material having a coating film containing silicate as a main component as a fin material pre-coated with a coating film.
  • Patent Document 2 proposes a method of manufacturing a heat exchanger using a fin in which a film containing a support such as xylene or a silicon-based binder such as silicone oil is previously formed before brazing. Yes.
  • the hydrophilicity of the fin and its sustainability are not obtained in the heat exchanger obtained after joining the fin and the metal tube. May decrease.
  • a heat exchanger after bonding even if a fin material having a coating film containing silicate as a main component is used, or a fin in which a coating film including a support or a silicon-based binder is formed in advance is used, a heat exchanger after bonding In this case, the fins may not be able to exhibit sufficient hydrophilicity and hydrophilic sustainability. Therefore, development of a heat exchanger excellent in hydrophilicity and its sustainability is desired.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a heat exchanger excellent in hydrophilicity and hydrophilic sustainability and a manufacturing method thereof.
  • One aspect of the present invention is a metal tube; Aluminum fins, A brazing part to which the fin and the metal pipe are connected,
  • the peak intensity I Si derived from Si the peak intensity I Zr derived from Zr
  • the peak intensity I F derived from F the peak intensity I Al derived from Al are 0.05.
  • the fin has a total value C Si + C zr at% of the Si atom content C Si at% and the Zr atom content C Zr at% within a range from the surface of the fin to a depth of 100 nm.
  • the heat exchanger has a high content portion that is twice or more the total value at a position of 200 nm.
  • Another aspect of the present invention is the above heat exchanger production method, An abutting step for abutting an aluminum fin and a metal tube; An application step of applying a flux liquid containing at least a fluoride-based flux on the surface of the fin and the contact portion between the fin and the metal tube; A joining step of forming the brazed portion by brazing the fin and the metal tube at the abutting portion; At least one of the surfaces of the flux liquid and the fins is in a method for manufacturing a heat exchanger, containing at least one of a Si source and a Zr source.
  • the heat exchanger has fins in which each peak intensity in the fluorescent X-ray spectrum satisfies the predetermined relationship. Further, the fin has a high content portion having a high total content of Si and Zr as described above in a range from the surface to a depth of 100 nm as compared with a position at a depth of 200 nm. Therefore, in the heat exchanger, the fin exhibits excellent hydrophilicity, and the excellent hydrophilicity is maintained for a long time. That is, the heat exchanger is excellent in hydrophilicity and hydrophilic sustainability.
  • the heat exchanger can be manufactured by performing the contact step, the coating step, and the joining step.
  • a flux liquid containing a fluoride-based flux is applied to the contact portion between the metal tube and the fin brought into contact in the coating step and the surface of the fin.
  • This fluoride-based flux becomes the F source, and F remains in the fins of the heat exchanger.
  • At least one of the Si source and the Zr source is contained in at least one of the flux liquid and the fin. That is, for example, a flux liquid containing at least one of a Si source and a Zr source can be used, or a fin in which at least one of the Si source and the Zr source is supplied to the surface as a coating film or the like can be used. Thereby, at least one of Si and Zr remains in the fin of the heat exchanger.
  • each peak intensity satisfies the predetermined relationship, and it is possible to obtain a heat exchanger including fins having a high content portion.
  • Example 1 The perspective view of the core part of the heat exchanger in Example 1.
  • FIG. 1 (a) The expanded sectional view of the fin of a heat exchanger, (b) The expanded sectional view of the coating-film surface of a fin.
  • Example 1 (a) Explanatory drawing which shows the cross-sectional structure of the contact part of the fin and tube before brazing, (b) Explanatory drawing which shows the cross-sectional structure of the brazing part of a fin and a tube.
  • A The expanded sectional view of the fin of a heat exchanger in Example 2
  • Example 2 The expanded sectional view of the fin surface.
  • aluminum is a concept including not only pure aluminum but also an aluminum alloy. Specifically, as the aluminum, A1000 series pure aluminum, A3000 series aluminum alloy, or the like can be used.
  • the heat exchanger has a metal tube, aluminum fins, and a brazing part for connecting the fins and the metal tube.
  • the metal tube is preferably made of a metal having excellent thermal conductivity, and examples of such a metal include aluminum, copper, and copper alloy. More preferably, the metal tube is made of aluminum.
  • the metal tube for example, a tube formed by processing a brazing sheet into a round tube shape or a flat tube shape can be used.
  • the brazing sheet is made of, for example, a core material made of aluminum and clad with a brazing material, and may be single-sided clad or double-sided clad.
  • a clad tube having a surface clad with a brazing material can be used as the metal tube.
  • the brazing material clad on the core material for example, Al—Si alloy powder, Si powder, Al—Si—Zn alloy powder or the like is used.
  • the Si powder can exert its function as a brazing filler metal by forming Al and an Al—Si alloy in the metal tube and / or fin during brazing heating. it can.
  • flux and binder resin can also be mixed with the above-mentioned brazing material.
  • the flux for example, fluoride-based flux powders such as potassium fluoroaluminate and potassium fluorozudie are used.
  • the binder resin for example, an acrylic resin is used.
  • the metal tube a bare tube in which a brazing material or the like is not clad can be used.
  • a shape such as a corrugated fin, a plate fin, or a pin fin can be adopted as the fin.
  • the fin may have a slit.
  • a clad fin with a brazing material clad on the surface can be used, a pre-coated fin with a coating film formed on the surface, or a brazing material or a coating film is formed. Not bare fins can be used.
  • the clad fin is used, as the brazing material, the same material as the above-mentioned powder can be used, and the above-mentioned flux and binder resin can be mixed into the brazing material.
  • the clad fin may be single-sided clad or double-sided clad.
  • the coating film can be formed by applying and drying a paint containing at least one of colloidal silica and zirconia, for example.
  • the paint for forming a coating film may further contain water glass and / or an organic resin.
  • the coating film in the precoat fin may be formed on one side or may be formed on both sides.
  • the coating film can be formed, for example, with an adhesion amount of 100 to 2000 mg / m 2 per side of the substrate.
  • a coating material containing colloidal silica is used, a coating film in which amorphous silica particles are dispersed can be formed.
  • a coating film in which zirconia is dispersed can be formed.
  • the coating film can further contain water glass and / or an organic resin.
  • the coating property at the time of forming the coating film is improved, the retention of the amorphous silica particles in the coating film is improved, and the falling off of the amorphous silica particles can be prevented.
  • water glass generally shows the aqueous solution of silicate
  • the above-mentioned water glass contained in a coating film is solid content of water glass, ie, silicate.
  • the organic resin is preferably made of a water-soluble acrylic resin and / or polyoxyethylene alkylene glycol (PAE).
  • PAE polyoxyethylene alkylene glycol
  • the fin is made of aluminum, and a coating film may be formed on the surface or may not be formed. Moreover, the fin may have a chemical conversion film between the board
  • the chemical conversion film can be formed by, for example, phosphoric acid chromate treatment, zirconium phosphate treatment, boehmite treatment, and the like. The chemical conversion film can improve the adhesion between the substrate and the coating film.
  • the peak intensity I Si derived from Si the peak intensity I Zr derived from Zr , the peak intensity I F derived from F, and the peak intensity I Al derived from Al are 0.05.
  • Each peak intensity is an intensity at the peak top. If this relationship is not satisfied, the hydrophilicity or hydrophilic sustainability of the fins may be insufficient. Further, in the case of (I Si + I Zr ) / I F > 10, the brazing property may be hindered and the strength of the brazed portion may be insufficient.
  • the peak intensity I Si , the peak intensity I Zr, and the peak intensity I F satisfy the relationship of 0.1 ⁇ (I Si + I Zr ) / I F ⁇ 5. In this case, the hydrophilic durability of the fin can be further improved.
  • the fin has a total value of Si atom content C Si at% and Zr atom content C Zr at% in the range from the surface to a depth of 100 nm, which is twice the above total value at a position 200 nm deep from the surface. It has the high content part which becomes the above. Either C Si or C Zr may be zero. When the high content portion is not present, that is, when the total value is less than twice, the hydrophilicity or hydrophilic sustainability becomes insufficient.
  • a fin satisfying the relationship of 0.05 ⁇ (I Si + I Zr ) / I F ⁇ 10 and I F / I Al ⁇ 1 ⁇ 10 ⁇ 4 and having a high content portion is, for example, This can be realized by supplying at least one of a Si source and a Zr source and an F source to the surface and adjusting the supply amount thereof.
  • Supply of the Si source, the Zr source, and the F source can be performed by various timings and methods.
  • the flux liquid used at the time of brazing can contain a Si source, a Zr source, and an F source, or a fin having a coating film on the surface is used and a Si source, a Zr source, and an F source are contained in the coating film. You can also. These supply methods will also be described in the following production methods and examples.
  • the contact process, the application process, and the bonding process are performed as described above.
  • the fin and the metal tube are brought into contact.
  • a fin with a coating film formed on the surface that is, a pre-coated fin
  • a fin without a coating film that is, a bare fin
  • the bare fin may have a chemical conversion film on the surface, and does not need to have it.
  • the coating film can contain at least one of a Si source and a Zr source.
  • a Si source and a Zr source In this case, at least one of Si and Zr derived from the coating film is supplied to the surface of the fin, each peak intensity in the fluorescent X-ray spectrum satisfies the above relationship, and a fin having a high content portion is formed. Is possible.
  • the contents of the Si source and the Zr source in the coating film can be appropriately adjusted.
  • the Si source in the coating is preferably amorphous silica derived from colloidal silica. In this case, hydrophilicity and hydrophilic sustainability can be further improved.
  • the Zr source preferably contains zirconia. Also in this case, hydrophilicity and hydrophilic sustainability can be further improved.
  • a flux solution containing at least a fluoride-based flux is applied to the contact portion between the fin and the metal tube and the surface of the fin.
  • F derived from the fluoride-based flux is supplied to the surface of the fin and can remain on the surface of the fin even after brazing heating described later.
  • the flux liquid can contain at least one of a Si source and a Zr source.
  • at least one of a flux-derived Si source and a Zr source is supplied to the surface of the fin in the coating step, and can remain on the surface of the fin even after brazing heating described later.
  • the contents of fluoride flux, Si source, and Zr source in the flux liquid can be adjusted as appropriate.
  • the Si source in the flux liquid is preferably colloidal silica. In this case, hydrophilicity and hydrophilic sustainability can be further improved.
  • the flux liquid preferably contains zirconia as a Zr source. Also in this case, hydrophilicity and hydrophilic sustainability can be further improved.
  • a brazing part is formed by brazing the fin and the metal tube at the contact part.
  • Brazing can be performed by heating, for example. Heating at the time of brazing is performed at a maximum temperature of 570 ° C. to 610 ° C., for example. By this heating, the brazing material is melted at the contact portion between the fin and the metal tube, and the molten brazing material is cured by the subsequent cooling. Thereby, the brazing part in which the fin and the metal tube are connected is formed. Furthermore, in the heating at the time of brazing, the F source supplied in the coating process can be baked on the surface of the fin. Moreover, when the flux liquid containing at least one of Si source and Zr source is used, Si source and Zr source can be baked at the time of brazing heating.
  • brazing is preferably performed using a flux liquid containing a fluoride-based flux.
  • the brazing performance is further improved by the flux action, and the strength of the brazing portion where the fin and the metal tube are connected is further improved.
  • brazing heating is preferably performed in a non-oxidizing atmosphere such as a nitrogen atmosphere or a hydrogen atmosphere.
  • potassium fluoroaluminate such as KAlF 4 , K 2 AlF 5 , K 3 AlF 6 can be used. Further, as the fluoride flux, potassium fluorozudie such as KZnF 3 can be used.
  • the fluoride-based flux the above-mentioned compounds can be used alone or in combination.
  • the fluoride flux for example, one having an average primary particle diameter of 1 to 50 nm can be used.
  • the average primary particle diameter of the fluoride-based flux means the particle diameter at a volume integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method.
  • the heat exchanger has a core part composed of fins, metal tubes, and brazing parts connecting them. Specific examples of the heat exchanger will be described with reference to the drawings in the following embodiments, but the heat exchanger is manufactured by assembling a header, a side support, an inlet / outlet pipe, and the like to the core portion.
  • the heat exchanger can be used for an air conditioner and a refrigerator, for example. It can also be used for automobile condensers, evaporators, radiators, heaters, intercoolers, oil coolers, and the like. Furthermore, it can also be used for a cooling device for cooling a heating element such as an IGBT (Insulated Gate Bipolar Transistor) provided in an inverter unit for controlling a drive motor of a hybrid vehicle or an electric vehicle.
  • IGBT Insulated Gate Bipolar Transistor
  • the heat exchanger 1 has a large number of core portions 10 including metal tubes 2, fins 3, and brazed portions 4 to which these are connected.
  • the core portion 10 is formed by alternately laminating corrugated fins 3 and metal tubes 2, and the fins 3 and the metal tubes 2 are connected by brazing portions 4.
  • each core portion 10 has a metal tube 2 and fins 3, and the corrugated fins 3 are sandwiched between the metal tubes 2.
  • one of the two metal tubes 2 sandwiching the fin 3 is indicated by a broken line in order to clearly show the corrugated shape of the fin 3.
  • the fin 3 is a pre-coated fin having a fin material 31 made of, for example, an aluminum plate formed in a corrugated shape, and a coating film 32 formed on both surfaces of the fin material 31. is there.
  • illustration is abbreviate
  • the metal tube 2 includes a core material 21 made of, for example, a flat multi-hole tube made of an aluminum alloy, and a brazing material layer 22 formed on the surface of the core material 21.
  • the core material 21 has a large number of refrigerant flow paths 211 for circulating the refrigerant.
  • the fins 3 and the metal pipe 2 are connected by brazing, and a brazing part 4 is formed between them.
  • headers 5 are assembled at both ends of the metal tube 2, and side plates 6 are disposed at both ends (outermost sides) in the stacking direction of the core portion 10. It is assembled.
  • a tank 7 is assembled to the header 5.
  • the header 5, the side plate 6, and the tank 7 can be joined by, for example, brazing, similarly to the joining of the metal pipe 2 and the fin 3 described above.
  • the core unit 10 is manufactured as follows. Specifically, first, a core material 21 made of a flat multi-hole tube made of an aluminum alloy was produced by extrusion (see FIGS. 1 and 2). And the brazing filler metal layer 22 was formed by apply
  • degreasing treatment and phosphoric acid chromate treatment were performed on an aluminum plate material having a JIS standard A1050 composition.
  • the degreasing treatment was performed by heating at 60 ° C. for 30 seconds using a 2% by mass solution of EC760 manufactured by Nippon Paint Co., Ltd.
  • the phosphoric acid chromate treatment was performed under the conditions of a temperature of 45 ° C. and a treatment time of 20 seconds using a 1.2 mass% solution of Alchrome 702SK / ACK manufactured by Nihon Parkerizing Co., Ltd.
  • a bar coater a coating material containing colloidal silica was applied to the plate material and dried to form a coating film. Thereafter, the plate material on which the coating film was formed was processed into a corrugated shape. In this way, a corrugated fin 3 having a coating film 32 formed on the surface of the fin material 31 was obtained (see FIGS. 2 to 4).
  • a corrugated fin 3 was sandwiched between the two metal tubes 2 to produce an assembly (see FIGS. 2 and 3).
  • the brazing material layer 22 of each metal tube 2 was opposed to each other, and the fins 3 were sandwiched between the two so that each vertex 30 of the corrugated fin 3 and the brazing material layer 22 were brought into contact with each other.
  • a flux liquid 101 prepared by dispersing a fluoride-based flux in water was sprayed on the entire assembly composed of the metal tube 2 and the fins 3.
  • the assembly was held for 3 minutes in a furnace at a temperature of 600 ° C. in a nitrogen gas atmosphere, and then cooled to room temperature (specifically, 25 ° C.).
  • the brazing filler metal layer 22 is melted during heating in the furnace, and the molten brazing filler metal layer 22 is cured during cooling.
  • the metal tube 2 and the fin 3 are connected to form the brazing portion 4 (see FIG. 5B).
  • the core part 10 is obtained as shown in FIGS.
  • the heat exchanger 1 having the configuration illustrated in FIG. 1 can be obtained by a known assembly method using the core portion 10.
  • the fin 3 has the coating film 32 which has Si source derived from colloidal silica, and the fluoride type flux is used at the time of brazing joining. Accordingly, the Si source derived from the coating film 32 and the F source derived from the flux are present on the surface of the fin 3. And as shown as sample E1 of the below-mentioned experimental example, the fin 3 of this example has a peak intensity I Si derived from Si , a peak intensity I Zr derived from Zr, and a peak intensity derived from F in the fluorescent X-ray spectrum.
  • the fin 3 has a Si atom content C Si at% and a Zr atom content C Zr at% in a range from the surface 33 to a depth of 100 nm, and the total value of C Si at a position 200 nm deep from the surface 33. It has the high content part 34 which becomes 2 times or more of the total value of at% and CZrat % (refer FIG.4 (b)).
  • the high content part 34 should just exist in the range of depth 100nm from the surface 33 surface of the fin 3, and may be exposed to the surface 33, or a depth direction rather than the surface 33 without exposing at least one part. It may be formed inside.
  • the fin 3 since the peak intensity satisfies the predetermined relationship and has a high content portion, the fin 3 exhibits excellent hydrophilicity and the excellent hydrophilicity is maintained for a long time.
  • the heat exchanger 1 of this example is excellent in the hydrophilicity and hydrophilic sustainability of the fins 3.
  • Example 2 This example is an example of a heat exchanger that has fins that do not have a coating film on the surface, and that uses a flux liquid that contains at least one of a Si source and a Zr source as well as a fluoride flux during brazing. It is. As illustrated in FIGS. 6A and 6B, the fin 3 in the heat exchanger of this example does not have a coating film on the surface 33 unlike the first embodiment. In addition, although illustration is abbreviate
  • the heat exchanger of this example uses the fin 3 produced without forming a coating film, and uses a flux liquid in which at least one of a Si source and a Zr source and a fluoride-based flux are dispersed in water. Except for this, it is manufactured in the same manner as in Example 1.
  • the fin 3 does not have a coating film on the surface 33, but on the surface of the fin 3, at least one of the Si source and the Zr source derived from the flux liquid and the F source And exist.
  • the fin 3 of this example has a peak intensity I Si derived from Si , a peak intensity I Zr derived from Zr, and a peak derived from F in the fluorescent X-ray spectrum. and the peak intensity I F, and the peak intensity I Al from Al satisfies 0.05 ⁇ (I Si + I Zr ) / I F ⁇ 10, and the relationship I F / I Al ⁇ 1 ⁇ 10 -4.
  • the fin 3 has a total value of Si atom content C Si and Zr atom content C Zr within a range from the surface 33 to a depth of 100 nm, and C Si and C Zr at a position 200 nm deep from the surface 33. And a high-content portion 34 that is twice or more the total value (see FIG. 6B).
  • the fin 3 in the heat exchanger of this example also exhibits excellent hydrophilicity, and the excellent hydrophilicity is maintained for a long time. Details thereof will be shown in an experimental example described later.
  • the same reference numerals as those used in the above-described embodiments represent the same components as those in the above-described embodiments unless otherwise indicated.
  • Example E1 to sample E4 a plurality of plate material samples (sample E1 to sample E4, sample C1 to sample C3) used as fins for a heat exchanger are prepared, and their hydrophilicity and hydrophilic sustainability are evaluated.
  • Sample E1 is a plate material sample having an aluminum plate and a coating film formed on the surface thereof, and was prepared as follows. First, degreasing treatment and phosphoric acid chromate treatment were performed on an aluminum plate material having an A1050 composition according to JIS standards. The degreasing treatment was performed by heating at 60 ° C. for 30 seconds using a 2% by mass solution of EC760 manufactured by Nippon Paint Co., Ltd. The phosphoric acid chromate treatment was performed under the conditions of a temperature of 45 ° C. and a treatment time of 20 seconds using a 1.2% by mass solution of Alchrome 702SK / ACK manufactured by Nippon Parkerizing Co., Ltd.
  • the coating material was apply
  • the paint was prepared by dispersing silicate, binder and colloidal silica in water.
  • the adhesion amount of the coating film is 500 mg / m 2 .
  • a flux solution was applied to the plate material on which the coating film was formed, and then this plate material was heated at a temperature of 600 ° C. for 3 minutes in a nitrogen atmosphere.
  • the plate material sample for fin thus obtained is designated as sample E1.
  • the flux liquid was prepared by dispersing fluoride-based flux in water.
  • Sample E2 to Sample E4 are plate material samples having no coating film, and were prepared as follows. First, similarly to the sample E1, a degreasing treatment and a phosphoric acid chromate treatment were performed on an aluminum plate material having an A1050 composition according to JIS standards. Next, assuming brazing heating, a flux solution was applied to the plate material on which the coating film was formed, and then the plate material was heated at a temperature of 600 ° C. for 3 minutes in a nitrogen atmosphere. In preparing the sample E2, a flux liquid prepared by dispersing fluoride-based flux and colloidal silica in water was used. In preparing the sample E3, a flux liquid prepared by dispersing fluoride-based flux and zirconia in water was used. In preparing the sample E4, a flux liquid prepared by dispersing fluoride-based flux, colloidal silica, and zirconia in water was used.
  • Sample C1 to Sample C3 three types of plate material samples were prepared for comparison with the samples E1 to E4. These plate material samples are designated as Sample C1 to Sample C3.
  • an aluminum plate material having a JIS standard A1050 composition was prepared.
  • a flux solution was applied to the plate material, and then the plate material was heated in a nitrogen atmosphere at a temperature of 600 ° C. for 3 minutes.
  • the flux liquid was prepared by dispersing fluoride-based flux in water.
  • NOCOLLOK manufactured by Solvay is used as the fluoride flux, and the content of the fluoride flux in the flux liquid is 3% by mass.
  • colloidal silica Cataloid SI-550 which is an amorphous colloidal silica manufactured by JGC Catalysts & Chemicals Co., Ltd. was used.
  • zirconia B-2000, an aqueous coating agent manufactured by Nikken Co., Ltd., was used.
  • Si-derived peak intensity I Si Si-derived peak intensity
  • Zr-derived peak intensity I Zr Zr-derived peak intensity
  • F-derived peak intensity I F Al-derived peak intensity I Seeking relationship with Al .
  • (I Si + I Zr ) / I F , I Si / I F , I Zr / I F , and I F / I Al were determined.
  • Each peak intensity is an intensity at the peak top.
  • the measurement apparatus and measurement conditions are as follows. Measuring device: Rix3100 manufactured by RIGAKU Tube voltage: 30-50kV Tube current: 80-130mA
  • GD-OES glow discharge emission analysis
  • the result of the sample E2 is shown in FIG. 7, and the result of the sample C1 is shown in FIG.
  • C Al indicates the content of Al atoms
  • C 2 O indicates the content of O atoms
  • C Si indicates the content of Si atoms
  • C N indicates the content of N atoms.
  • C Si is shown at 10 times.
  • GD-OES measuring equipment and measuring conditions are as follows. Measuring device: GDA750 manufactured by RIGAKU Sputtering gas: Ar gas Pressure: 3.5 hPa Anode diameter: ⁇ 2.5mm Sputter rate: 20 nm / s (standard aluminum metal)
  • the total value C Si + C Zr of the Si atom content C Si and the Zr atom content C Zr within a depth of 100 nm from the surface The maximum value (peak top in GD-OES) was determined. This is C max .
  • the total value C Si + C Zr of the Si atom content C Si and the Zr atom content C Zr at a position 200 nm deep from the surface was determined. This is referred to as C 200.
  • the ratio of C max / C 200 is calculated, and the value is shown in Table 1 as the C Si + C Zr ratio.
  • the ratio of the Si atom content rate at the position of the above-mentioned maximum value with respect to the position of the depth of 200 nm is calculated, and the value is shown in Table 1 as the C Si ratio.
  • the ratio of the Zr atom content rate at the position of the above-mentioned maximum value with respect to the position at a depth of 200 nm is calculated, and the value is shown in Table 1 as the C Zr ratio.
  • the hydrophilicity was evaluated by measuring the contact angle of water droplets on each sample.
  • the contact angle was measured using a FACE automatic contact angle meter “CA-Z” manufactured by Kyowa Interface Chemical Co., Ltd. Specifically, a water drop was dropped on the sample at room temperature, and the contact angle of the water drop after 30 seconds was measured. The case where the contact angle was 20 ° or less was evaluated as “A”, and the case where the contact angle exceeded 20 ° was evaluated as “B”.
  • the samples E1 to E4 have a peak intensity I Si derived from Si , a peak intensity I Zr derived from Zr , a peak intensity I F derived from F, and a peak intensity I Al derived from Al.
  • Sample E1 to Sample E4 have a C Si + C Zr ratio of 2 or more, and within a range from the fin surface to a depth of 100 nm, the Si atom content C Si at% and the Zr atom content C Zr at% And the total value C Si + C Zr at% of the above-mentioned surface has a high content part that is at least twice the total value at a position 200 nm deep from the surface. Therefore, as shown in Table 1, Sample E1 to Sample E4 are excellent in hydrophilicity and hydrophilic sustainability. Note that it is considered that the colloidal silica and zirconia present on the surfaces of the samples E1 to E4 are partially reduced during heating.
  • the sample C1 satisfies the relationship of 0.05 ⁇ (I Si + I Zr ) / I F ⁇ 10 and I F / I Al ⁇ 1 ⁇ 10 ⁇ 4 , but the samples E1 to E4 are satisfied.
  • the high content part like does not exist. Therefore, the hydrophilic sustainability was insufficient.
  • Sample C2 and Sample C3 since a fluoride-based flux is not used, the relationship of 0.05 ⁇ (I Si + I Zr ) / I F ⁇ 10 and I F / I Al ⁇ 1 ⁇ 10 ⁇ 4 Is not satisfied, and the sample C2 does not have a higher content. As a result, both hydrophilicity and hydrophilic sustainability were insufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The present invention provides a heat exchanger having excellent hydrophilicity and hydrophilic sustainability and a manufacturing method therefor. Provided are: a heat exchanger (1) that is provided with a metal pipe (2), an aluminum fin (3), and a brazed part (4) where the metal pipe (2) and the aluminum fin (3) are joined; and a manufacturing method therefor. In the X-ray fluorescence spectrum of the fin (3), an Si-derived peak intensity (ISi), a Zr-derived peak intensity (IZr), an F-derived peak intensity (IF), and an Al-derived peak intensity (IAl) satisfy a predetermined relationship. The fin (3) has a predetermined high-content section in the range from the surface thereof to a depth of 100 nm.

Description

熱交換器及びその製造方法Heat exchanger and manufacturing method thereof
 本発明は、金属管と、アルミニウム製のフィンと、両者が接続されたろう付け部と、を備える熱交換器及びその製造方法に関する。 The present invention relates to a heat exchanger including a metal tube, an aluminum fin, and a brazing part to which both are connected, and a method for manufacturing the heat exchanger.
 一般に、熱交換器は、冷媒が流れるアルミニウム等からなる金属管と、金属管の外側の空気との間で熱交換を行うためのアルミニウム製のフィンとを有しており、金属管とフィンとはろう付け部によって接続されている。熱交換器の熱交換性能にはフィンの親水性が大きく影響するため、表面に親水性の塗膜が形成されたフィンがよく用いられている。このような親水性の塗膜を有するフィンと金属管との接合には、例えばろう付け接合が利用される。 Generally, a heat exchanger has a metal tube made of aluminum or the like through which a refrigerant flows and an aluminum fin for performing heat exchange between air outside the metal tube, and the metal tube and the fin The brazing parts are connected. Since the hydrophilicity of the fin greatly affects the heat exchange performance of the heat exchanger, a fin having a hydrophilic coating film formed on the surface is often used. For joining the fin having such a hydrophilic coating film and the metal tube, for example, brazing joining is used.
 しかし、一般的な樹脂系又は無機系の塗膜は、ろう付け時の加熱温度で変質又は分解してしまうため、ろう付け後に十分な親水性を発揮できなくなるおそれがある。そこで、親水性の向上を目的として、例えば特許文献1には、塗膜がプレコートされたフィン材として、ケイ酸塩を主成分とする塗膜を有するフィン材が提案されている。また、特許文献2には、ろう付け前に、キシレン等の支持体やシリコーンオイル等の珪素系結合剤等を含む被膜を予め形成したフィンを用いて熱交換器を作製する方法が提案されている。 However, since a general resin-based or inorganic coating film is altered or decomposed at the heating temperature during brazing, there is a possibility that sufficient hydrophilicity cannot be exhibited after brazing. Therefore, for the purpose of improving hydrophilicity, for example, Patent Document 1 proposes a fin material having a coating film containing silicate as a main component as a fin material pre-coated with a coating film. Further, Patent Document 2 proposes a method of manufacturing a heat exchanger using a fin in which a film containing a support such as xylene or a silicon-based binder such as silicone oil is previously formed before brazing. Yes.
特開2013-137153号公報JP 2013-137153 A 特表2008-508103号公報Special table 2008-508103 gazette
 しかしながら、金属管との接合前の状態のフィンが優れた親水性を有していたとしても、フィンと金属管との接合後に得られる熱交換器においては、フィンの親水性やその持続性が低下するおそれがある。上記のごとく、ケイ酸塩を主成分とする塗膜を有するフィン材を用いても、支持体や珪素系結合剤等を含む被膜を予め形成したフィンを用いても、接合後の熱交換器においては、フィンが十分な親水性及び親水持続性を発揮できなくなるおそれがある。そこで、親水性及びその持続性に優れた熱交換器の開発が望まれている。 However, even if the fin in the state before joining with the metal tube has excellent hydrophilicity, the hydrophilicity of the fin and its sustainability are not obtained in the heat exchanger obtained after joining the fin and the metal tube. May decrease. As described above, even if a fin material having a coating film containing silicate as a main component is used, or a fin in which a coating film including a support or a silicon-based binder is formed in advance is used, a heat exchanger after bonding In this case, the fins may not be able to exhibit sufficient hydrophilicity and hydrophilic sustainability. Therefore, development of a heat exchanger excellent in hydrophilicity and its sustainability is desired.
 本発明は、かかる課題に鑑みてなされたものであり、親水性及び親水持続性に優れた熱交換器及びその製造方法を提供しようとするものである。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a heat exchanger excellent in hydrophilicity and hydrophilic sustainability and a manufacturing method thereof.
 本発明の一態様は、金属管と、
 アルミニウム製のフィンと、
 該フィンと上記金属管とが接続されたろう付け部と、を備え、
 上記フィンの蛍光X線スペクトルにおいては、Si由来のピーク強度ISiと、Zr由来のピーク強度IZrと、F由来のピーク強度IFと、Al由来のピーク強度IAlとが、0.05≦(ISi+IZr)/IF≦10、及びIF/IAl≧1×10-4の関係を満足し、
 上記フィンは、該フィンの表面から深さ100nmまでの範囲内に、Si原子含有率CSiat%とZr原子含有率CZrat%との合計値CSi+Czrat%が上記表面から深さ200nmの位置における上記合計値の2倍以上となる高含有部を有する、熱交換器にある。
One aspect of the present invention is a metal tube;
Aluminum fins,
A brazing part to which the fin and the metal pipe are connected,
In the fluorescent X-ray spectrum of the fin, the peak intensity I Si derived from Si , the peak intensity I Zr derived from Zr , the peak intensity I F derived from F, and the peak intensity I Al derived from Al are 0.05. ≦ (I Si + I Zr ) / I F ≦ 10 and I F / I Al ≧ 1 × 10 −4
The fin has a total value C Si + C zr at% of the Si atom content C Si at% and the Zr atom content C Zr at% within a range from the surface of the fin to a depth of 100 nm. The heat exchanger has a high content portion that is twice or more the total value at a position of 200 nm.
 本発明の他の態様は、上記熱交換器の製造方法において、
 アルミニウム製のフィンと、金属管とを当接させる当接工程と、
 上記フィンと上記金属管との当接部、及び上記フィンの表面に少なくともフッ化物系フラックスを含有するフラックス液を塗布する塗布工程と、
 上記フィンと上記金属管とを上記当接部においてろう付けすることによって、上記ろう付け部を形成する接合工程と、を有し、
 上記フラックス液及び上記フィンの表面の少なくとも一方は、Si源及びZr源の少なくとも一方を含有する、熱交換器の製造方法にある。
Another aspect of the present invention is the above heat exchanger production method,
An abutting step for abutting an aluminum fin and a metal tube;
An application step of applying a flux liquid containing at least a fluoride-based flux on the surface of the fin and the contact portion between the fin and the metal tube;
A joining step of forming the brazed portion by brazing the fin and the metal tube at the abutting portion;
At least one of the surfaces of the flux liquid and the fins is in a method for manufacturing a heat exchanger, containing at least one of a Si source and a Zr source.
 上記熱交換器は、蛍光X線スペクトルにおける各ピーク強度が上記所定の関係を満足するフィンを有している。さらに、フィンは、その表面から深さ100nmまでの範囲内に、深さ200nmの位置に比べて上記のごとくSiとZrとの合計含有率が高い高含有部を有している。そのため、熱交換器は、フィンが優れた親水性を示すと共に、その優れた親水性が長期間維持される。すなわち、熱交換器は、親水性及び親水持続性に優れている。 The heat exchanger has fins in which each peak intensity in the fluorescent X-ray spectrum satisfies the predetermined relationship. Further, the fin has a high content portion having a high total content of Si and Zr as described above in a range from the surface to a depth of 100 nm as compared with a position at a depth of 200 nm. Therefore, in the heat exchanger, the fin exhibits excellent hydrophilicity, and the excellent hydrophilicity is maintained for a long time. That is, the heat exchanger is excellent in hydrophilicity and hydrophilic sustainability.
 熱交換器は、上記のごとく、当接工程と塗布工程と接合工程とを行うことにより製造することができる。塗布工程においては、塗布工程において当接させた金属管とフィンとの当接部及びフィンの表面に、フッ化物系フラックスを含有するフラックス液を塗布する。このフッ化物系フラックスがF源となり、熱交換器のフィンにはFが残存する。また、Si源及びZr源の少なくとも一方は、フラックス液及びフィンの少なくとも一方に含有されている。すなわち、例えばSi源及びZr源の少なくとも一方を含有するフラックス液を用いたり、Si源及びZr源の少なくとも一方が例えば塗膜等として表面に供給されたフィンを用いたりすることができる。これにより、熱交換器のフィンにはSi及びZrお少なくとも一方が残存する。そして、上記のごとく各ピーク強度が上記所定の関係を満足し、高含有部を有するフィンを備えた熱交換器を得ることが可能になる。 As described above, the heat exchanger can be manufactured by performing the contact step, the coating step, and the joining step. In the coating step, a flux liquid containing a fluoride-based flux is applied to the contact portion between the metal tube and the fin brought into contact in the coating step and the surface of the fin. This fluoride-based flux becomes the F source, and F remains in the fins of the heat exchanger. At least one of the Si source and the Zr source is contained in at least one of the flux liquid and the fin. That is, for example, a flux liquid containing at least one of a Si source and a Zr source can be used, or a fin in which at least one of the Si source and the Zr source is supplied to the surface as a coating film or the like can be used. Thereby, at least one of Si and Zr remains in the fin of the heat exchanger. As described above, each peak intensity satisfies the predetermined relationship, and it is possible to obtain a heat exchanger including fins having a high content portion.
実施例1における熱交換器の説明図。Explanatory drawing of the heat exchanger in Example 1. FIG. 実施例1における熱交換器のコア部の斜視図。The perspective view of the core part of the heat exchanger in Example 1. FIG. 実施例1における熱交換器のコア部の断面図。Sectional drawing of the core part of the heat exchanger in Example 1. FIG. 実施例1における、(a)熱交換器のフィンの拡大断面図、(b)フィンの塗膜表面の拡大断面図。In Example 1, (a) The expanded sectional view of the fin of a heat exchanger, (b) The expanded sectional view of the coating-film surface of a fin. 実施例1における、(a)ろう付け前のフィンとチューブとの当接部の断面構造を示す説明図、(b)フィンとチューブとのろう付け部の断面構造を示す説明図。In Example 1, (a) Explanatory drawing which shows the cross-sectional structure of the contact part of the fin and tube before brazing, (b) Explanatory drawing which shows the cross-sectional structure of the brazing part of a fin and a tube. 実施例2における、(a)熱交換器のフィンの拡大断面図、(b)フィン表面の拡大断面図。(A) The expanded sectional view of the fin of a heat exchanger in Example 2, (b) The expanded sectional view of the fin surface. 実験例における、試料E2の板材の表面からの深さ方向と、各元素の含有率との関係を示す図。The figure which shows the relationship between the depth direction from the surface of the board | plate material of the sample E2, and the content rate of each element in an experiment example. 実験例における、試料C1の板材の表面からの深さ方向と、各元素の含有率との関係を示す図。The figure which shows the relationship between the depth direction from the surface of the board | plate material of the sample C1, and the content rate of each element in an experiment example.
 次に、上記熱交換器及びその製造方法における好ましい実施形態について説明する。なお、本明細書において、「アルミニウム」は、純アルミニウムだけでなく、アルミニウム合金を含む概念である。具体的には、アルミニウムとしては、A1000系の純アルミニウム、A3000系のアルミニウム合金等を用いることができる。 Next, preferred embodiments of the heat exchanger and the manufacturing method thereof will be described. In the present specification, “aluminum” is a concept including not only pure aluminum but also an aluminum alloy. Specifically, as the aluminum, A1000 series pure aluminum, A3000 series aluminum alloy, or the like can be used.
 熱交換器は、金属管、アルミニウム製のフィン、及びフィンと金属管とが接続するろう付け部を有する。金属管は、熱伝導性に優れた金属からなることが好ましく、このような金属としては、例えばアルミニウム、銅、銅合金等がある。より好ましくは、金属管はアルミニウムからなることがよい。 The heat exchanger has a metal tube, aluminum fins, and a brazing part for connecting the fins and the metal tube. The metal tube is preferably made of a metal having excellent thermal conductivity, and examples of such a metal include aluminum, copper, and copper alloy. More preferably, the metal tube is made of aluminum.
 金属管としては、例えばブレージングシートを丸管形状又は扁平管形状に加工してなるチューブを用いることができる。ブレージングシートは、例えばアルミニウムからなる心材に、ろう材をクラッドしてなり、片面クラッドでも両面クラッドでもよい。このようなブレージングシートを加工してなる金属管を用いる場合には、フィンとの接合時に別途ろう材を使用する必要がなくなる。すなわち、金属管として、表面にろう材がクラッドされたクラッドチューブを用いることができる。心材にクラッドされるろう材としては、例えばAl-Si系合金粉末、Si粉末、Al-Si-Zn系合金粉末等が用いられる。なお、ろう材の粉末のうち、Si粉末は、ろう付け加熱時に、金属管及び/又はフィン中に含まれるAlとAl-Si系合金を形成することによりろう材としての機能を発揮することができる。また、上述のろう材には、フラックスやバインダ樹脂を混合することもできる。フラックスとしては、例えばフルオロアルミン酸カリウム、フルオロ亜鉛酸カリウム等のフッ化物系フラックス粉末等が用いられる。バインダ樹脂としては、例えばアクリル系樹脂等が用いられる。また、金属管としては、ろう材等がクラッドされていないベアチューブを用いることもできる。 As the metal tube, for example, a tube formed by processing a brazing sheet into a round tube shape or a flat tube shape can be used. The brazing sheet is made of, for example, a core material made of aluminum and clad with a brazing material, and may be single-sided clad or double-sided clad. When using a metal tube formed by processing such a brazing sheet, it is not necessary to use a separate brazing material when joining the fin. That is, a clad tube having a surface clad with a brazing material can be used as the metal tube. As the brazing material clad on the core material, for example, Al—Si alloy powder, Si powder, Al—Si—Zn alloy powder or the like is used. Of the brazing filler metal powders, the Si powder can exert its function as a brazing filler metal by forming Al and an Al—Si alloy in the metal tube and / or fin during brazing heating. it can. Moreover, flux and binder resin can also be mixed with the above-mentioned brazing material. As the flux, for example, fluoride-based flux powders such as potassium fluoroaluminate and potassium fluorozincate are used. As the binder resin, for example, an acrylic resin is used. Further, as the metal tube, a bare tube in which a brazing material or the like is not clad can be used.
 フィンとしては、コルゲートフィン、プレートフィン、ピンフィン等の形状を採用することができる。熱交換性能の向上のため、フィンはスリットを有していてもよい。また、フィンとしては、表面にろう材がクラッドされたクラッドフィンを用いることもできるし、表面に塗膜が形成されたプレコートフィンを用いることもできるし、ろう材や塗膜等が形成されていないベアフィンを用いることもできる。クラッドフィンを用いる場合には、ろう材としては、上述の粉末と同様の材料を用いることができ、また、ろう材には上述のフラックス、バインダ樹脂を混合することもできる。クラッドフィンは片面クラッドでも両面クラッドでもよい。プレコートフィンを用いる場合には、塗膜は、例えばコロイダルシリカ及びジルコニアの少なくともいずれかを含む塗料を塗布し乾燥させることにより形成することができる。塗膜形成用の塗料は、さらに水ガラス及び/又は有機樹脂を含有していてもよい。プレコートフィンにおける塗膜は片面に形成されていても、両面に形成されていてもよい。塗膜は、基板の片面あたりに例えば付着量100~2000mg/m2で形成することができる。コロイダルシリカを含有する塗料を用いると、非晶質シリカ粒子が分散された塗膜を形成することができる。また、ジルコニアを含む塗料を用いると、ジルコニアが分散された塗膜を形成することができる。 A shape such as a corrugated fin, a plate fin, or a pin fin can be adopted as the fin. In order to improve heat exchange performance, the fin may have a slit. Further, as the fin, a clad fin with a brazing material clad on the surface can be used, a pre-coated fin with a coating film formed on the surface, or a brazing material or a coating film is formed. Not bare fins can be used. When the clad fin is used, as the brazing material, the same material as the above-mentioned powder can be used, and the above-mentioned flux and binder resin can be mixed into the brazing material. The clad fin may be single-sided clad or double-sided clad. When using pre-coated fins, the coating film can be formed by applying and drying a paint containing at least one of colloidal silica and zirconia, for example. The paint for forming a coating film may further contain water glass and / or an organic resin. The coating film in the precoat fin may be formed on one side or may be formed on both sides. The coating film can be formed, for example, with an adhesion amount of 100 to 2000 mg / m 2 per side of the substrate. When a coating material containing colloidal silica is used, a coating film in which amorphous silica particles are dispersed can be formed. Further, when a paint containing zirconia is used, a coating film in which zirconia is dispersed can be formed.
 塗膜は、さらに水ガラス及び/又は有機樹脂を含有することができる。この場合には、塗膜形成時の塗工性が向上すると共に、塗膜中の非晶質シリカ粒子の保持性が向上し、非晶質シリカ粒子の脱落を防止することができる。なお、水ガラスは、一般にはケイ酸塩の水溶液を示すが、塗膜中に含まれる上述の水ガラスは、水ガラスの固形分、即ちケイ酸塩のことである。 The coating film can further contain water glass and / or an organic resin. In this case, the coating property at the time of forming the coating film is improved, the retention of the amorphous silica particles in the coating film is improved, and the falling off of the amorphous silica particles can be prevented. In addition, although water glass generally shows the aqueous solution of silicate, the above-mentioned water glass contained in a coating film is solid content of water glass, ie, silicate.
 また、有機樹脂は、水溶性アクリル樹脂及び/又はポリオキシエチレンアルキレングリコール(PAE)からなることが好ましい。この場合には、有機樹脂がろう付け時の加熱により分解され易く、塗膜中から有機樹脂を消失させることが可能になる。その結果、ろう付け後の塗膜中の有機樹脂が少なくなるため、ろう付け性が阻害されることを防止できる。 The organic resin is preferably made of a water-soluble acrylic resin and / or polyoxyethylene alkylene glycol (PAE). In this case, the organic resin is easily decomposed by heating during brazing, and the organic resin can be lost from the coating film. As a result, since the organic resin in the coating film after brazing decreases, it is possible to prevent the brazing performance from being inhibited.
 フィンは、アルミニウム製であり、表面に塗膜が形成されていてもよいし、形成されていなくてもよい。また、フィンは、アルミニウムからなる基板と、塗膜との間に化成皮膜を有していてもよい。化成皮膜は、例えばリン酸クロメート処理、リン酸ジルコニウム処理、ベーマイト処理などにより形成することができる。化成皮膜は、基板と塗膜との密着性を向上させることができる。 The fin is made of aluminum, and a coating film may be formed on the surface or may not be formed. Moreover, the fin may have a chemical conversion film between the board | substrate which consists of aluminum, and a coating film. The chemical conversion film can be formed by, for example, phosphoric acid chromate treatment, zirconium phosphate treatment, boehmite treatment, and the like. The chemical conversion film can improve the adhesion between the substrate and the coating film.
 フィンは、その蛍光X線スペクトルにおいて、Si由来のピーク強度ISiと、Zr由来のピーク強度IZrと、F由来のピーク強度IFと、Al由来のピーク強度IAlとが、0.05≦(ISi+IZr)/IF≦10、及びIF/IAl≧1×10-4の関係を満足する。各ピーク強度は、ピークトップにおける強度のことである。この関係を満足しない場合には、フィンの親水性又は親水持続性が不十分になるおそれがある。また、(ISi+IZr)/IF>10の場合には、ろう付け性が阻害されるおそれ、ろう付け部の強度が不十分になるおそれがある。(ISi+IZr)/IF<0.05の場合には、親水持続性が不十分になるおそれがある。上記の関係においてISi又はIZrのいずれかは0であってもよい。また、IF/IAl≧1×10-4の関係は、フィンの表面に所定量以上のFが存在することを表しており、このようなFは、例えばろう付け時に用いられるフッ化物系フラックス等に由来する。 In the fluorescent X-ray spectrum of the fin, the peak intensity I Si derived from Si , the peak intensity I Zr derived from Zr , the peak intensity I F derived from F, and the peak intensity I Al derived from Al are 0.05. ≦ (I Si + I Zr ) / I F ≦ 10 and I F / I Al ≧ 1 × 10 −4 . Each peak intensity is an intensity at the peak top. If this relationship is not satisfied, the hydrophilicity or hydrophilic sustainability of the fins may be insufficient. Further, in the case of (I Si + I Zr ) / I F > 10, the brazing property may be hindered and the strength of the brazed portion may be insufficient. In the case of (I Si + I Zr ) / I F <0.05, hydrophilic sustainability may be insufficient. In the above relationship, either I Si or I Zr may be 0. Further, the relationship of I F / I Al ≧ 1 × 10 −4 indicates that a predetermined amount or more of F exists on the surface of the fin, and such F is, for example, a fluoride system used during brazing. Derived from flux and the like.
 また、ピーク強度ISiとピーク強度IZrとピーク強度IFとは、0.1≦(ISi+IZr)/IF≦5の関係を満足することが好ましい。この場合には、フィンの親水持続性をより向上させることができる。 Moreover, it is preferable that the peak intensity I Si , the peak intensity I Zr, and the peak intensity I F satisfy the relationship of 0.1 ≦ (I Si + I Zr ) / I F ≦ 5. In this case, the hydrophilic durability of the fin can be further improved.
 フィンは、表面から深さ100nmまでの範囲内に、Si原子含有率CSiat%とZr原子含有率CZrat%との合計値が表面から深さ200nmの位置における上記合計値の2倍以上となる高含有部を有する。CSi又はCZrのいずれかは0であってもよい。高含有部が存在しない場合、すなわち、上記合計値が2倍未満の場合には、親水性又は親水持続性が不十分になる。 The fin has a total value of Si atom content C Si at% and Zr atom content C Zr at% in the range from the surface to a depth of 100 nm, which is twice the above total value at a position 200 nm deep from the surface. It has the high content part which becomes the above. Either C Si or C Zr may be zero. When the high content portion is not present, that is, when the total value is less than twice, the hydrophilicity or hydrophilic sustainability becomes insufficient.
 上述のように0.05≦(ISi+IZr)/IF≦10、及びIF/IAl≧1×10-4の関係を満足し、さらに高含有部を有するフィンは、例えばフィンの表面にSi源及びZr源の少なくとも一方とF源とを供給し、これらの供給量を調整することにより実現できる。Si源、Zr源、F源の供給は、種々のタイミング、及び方法によって行うことができる。例えばろう付け時に用いられるフラックス液にSi源、Zr源、F源を含有させることもできるし、表面に塗膜を有するフィンを用いると共に塗膜中にSi源、Zr源、F源を含有させることもできる。これらの供給方法については、下記の製造方法及び実施例においても説明する。 As described above, a fin satisfying the relationship of 0.05 ≦ (I Si + I Zr ) / I F ≦ 10 and I F / I Al ≧ 1 × 10 −4 and having a high content portion is, for example, This can be realized by supplying at least one of a Si source and a Zr source and an F source to the surface and adjusting the supply amount thereof. Supply of the Si source, the Zr source, and the F source can be performed by various timings and methods. For example, the flux liquid used at the time of brazing can contain a Si source, a Zr source, and an F source, or a fin having a coating film on the surface is used and a Si source, a Zr source, and an F source are contained in the coating film. You can also. These supply methods will also be described in the following production methods and examples.
 熱交換器の製造にあたっては、上記の通り、当接工程、塗布工程、接合工程を行う。当接工程においては、フィンと金属管とを当接させる。フィンとしては、上述のごとく、表面に塗膜が形成されたフィン(すなわち、プレコートフィン)を用いてもよいし、塗膜が形成されていないフィン(すなわち、ベアフィン)を用いてもよい。なお、ベアフィンは、表面に化成皮膜を有していてもよいし、有していなくてもよい。 In manufacturing the heat exchanger, the contact process, the application process, and the bonding process are performed as described above. In the contact step, the fin and the metal tube are brought into contact. As described above, as described above, a fin with a coating film formed on the surface (that is, a pre-coated fin) may be used, or a fin without a coating film (that is, a bare fin) may be used. In addition, the bare fin may have a chemical conversion film on the surface, and does not need to have it.
 プレコートフィンの場合には、塗膜は、Si源及びZr源の少なくとも一方を含有することができる。この場合には、フィンの表面に塗膜由来のSi及びZrの少なくとも一方が供給され、蛍光X線スペクトルにおける各ピーク強度が上述の関係を満足し、かつ高含有部を有するフィンを形成することが可能になる。塗膜中のSi源、Zr源の含有量は適宜調整することができる。塗膜中のSi源は、コロイダルシリカ由来の非晶質シリカであることが好ましい。この場合には、親水性及び親水持続性をより向上させることができる。Zr源としては、ジルコニアを含有することが好ましい。この場合にも親水性及び親水持続性をより向上させることができる。 In the case of a pre-coated fin, the coating film can contain at least one of a Si source and a Zr source. In this case, at least one of Si and Zr derived from the coating film is supplied to the surface of the fin, each peak intensity in the fluorescent X-ray spectrum satisfies the above relationship, and a fin having a high content portion is formed. Is possible. The contents of the Si source and the Zr source in the coating film can be appropriately adjusted. The Si source in the coating is preferably amorphous silica derived from colloidal silica. In this case, hydrophilicity and hydrophilic sustainability can be further improved. The Zr source preferably contains zirconia. Also in this case, hydrophilicity and hydrophilic sustainability can be further improved.
 塗布工程においては、フィンと金属管との当接部、及びフィンの表面に少なくともフッ化物系フラックスを含有するフラックス液を塗布する。この塗布工程においては、フッ化物系フラックスに由来するFがフィンの表面に供給され、後述のろう付け加熱後においてもフィンの表面に残存させることができる。また、フラックス液は、Si源及びZr源の少なくとも一方を含有することができる。この場合には、塗布工程においてフィンの表面にフラックス由来のSi源及びZr源の少なくとも一方が供給され、後述のろう付け加熱後においてもフィンの表面に残存させることができる。これにより、蛍光X線スペクトルの各ピーク強度が上述の関係を満足し、かつ高含有部を有するフィンの形成が可能になる。フラックス液中のフッ化物系フラックス、Si源、Zr源の含有量は適宜調整可能である。フラックス液中のSi源は、コロイダルシリカであることが好ましい。この場合には、親水性及び親水持続性をより向上させることができる。フラックス液は、Zr源として、ジルコニアを含有することが好ましい。この場合にも親水性及び親水持続性をより向上させることができる。 In the coating step, a flux solution containing at least a fluoride-based flux is applied to the contact portion between the fin and the metal tube and the surface of the fin. In this coating process, F derived from the fluoride-based flux is supplied to the surface of the fin and can remain on the surface of the fin even after brazing heating described later. The flux liquid can contain at least one of a Si source and a Zr source. In this case, at least one of a flux-derived Si source and a Zr source is supplied to the surface of the fin in the coating step, and can remain on the surface of the fin even after brazing heating described later. Thereby, each peak intensity of the fluorescent X-ray spectrum satisfies the above relationship, and a fin having a high content portion can be formed. The contents of fluoride flux, Si source, and Zr source in the flux liquid can be adjusted as appropriate. The Si source in the flux liquid is preferably colloidal silica. In this case, hydrophilicity and hydrophilic sustainability can be further improved. The flux liquid preferably contains zirconia as a Zr source. Also in this case, hydrophilicity and hydrophilic sustainability can be further improved.
 接合工程においては、フィンと金属管とを当接部においてろう付けすることによって、ろう付け部を形成する。ろう付けは例えば加熱によって行うことができる。ろう付け時の加熱は、例えば570℃~610℃の最高到達温度で行われる。この加熱により、フィンと金属管との当接部においてろう材が溶融し、その後の冷却により、溶融したろう材が硬化する。これにより、フィンと金属管とが接続したろう付け部が形成される。さらに、ろう付け時の加熱においては、塗布工程において供給されたF源をフィンの表面に焼き付けることができる。また、Si源及びZr源の少なくとも一方を含有するフラックス液を用いた場合には、Si源、Zr源をろう付け加熱時に焼き付けることができる。 In the joining process, a brazing part is formed by brazing the fin and the metal tube at the contact part. Brazing can be performed by heating, for example. Heating at the time of brazing is performed at a maximum temperature of 570 ° C. to 610 ° C., for example. By this heating, the brazing material is melted at the contact portion between the fin and the metal tube, and the molten brazing material is cured by the subsequent cooling. Thereby, the brazing part in which the fin and the metal tube are connected is formed. Furthermore, in the heating at the time of brazing, the F source supplied in the coating process can be baked on the surface of the fin. Moreover, when the flux liquid containing at least one of Si source and Zr source is used, Si source and Zr source can be baked at the time of brazing heating.
 接合工程においては、フッ化物系フラックスを含有するフラックス液を用いてろう付けを行うことが好ましい。この場合には、フラックス作用によりろう付け性がより向上し、フィンと金属管とが接続されたろう付け部の強度がより向上する。なお、フラックス作用を充分に得るためには、窒素雰囲気、水素雰囲気等の非酸化雰囲気中でろう付け加熱を行うことが好ましい。 In the joining step, brazing is preferably performed using a flux liquid containing a fluoride-based flux. In this case, the brazing performance is further improved by the flux action, and the strength of the brazing portion where the fin and the metal tube are connected is further improved. In order to obtain a sufficient flux effect, brazing heating is preferably performed in a non-oxidizing atmosphere such as a nitrogen atmosphere or a hydrogen atmosphere.
 フッ化物系フラックスとしては、例えばKAlF4、K2AlF5、K3AlF6等のフルオロアルミン酸カリウムを用いることができる。また、フッ化物系フラックスとしては、KZnF3等のフルオロ亜鉛酸カリウムを用いることもできる。フッ化物系フラックスとしては、上述の化合物を単独で用いることもできるし、併用してもよい。フッ化物系フラックスとしては、例えば平均1次粒子径1~50nmのものを用いることができる。フッ化物系フラックスの平均1次粒子径は、レーザー回折・散乱法によって求めた粒度分布における体積積算値50%での粒径を意味する。 As the fluoride flux, potassium fluoroaluminate such as KAlF 4 , K 2 AlF 5 , K 3 AlF 6 can be used. Further, as the fluoride flux, potassium fluorozincate such as KZnF 3 can be used. As the fluoride-based flux, the above-mentioned compounds can be used alone or in combination. As the fluoride flux, for example, one having an average primary particle diameter of 1 to 50 nm can be used. The average primary particle diameter of the fluoride-based flux means the particle diameter at a volume integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method.
 熱交換器は、フィンと、金属管と、これらを接続するろう付け部とからなるコア部を有する。熱交換器の具体例は、後述の実施例において図面を参照して説明するが、熱交換器は、コア部に、ヘッダ、サイドサポート、出入り口管等を組み付けることにより製造される。 The heat exchanger has a core part composed of fins, metal tubes, and brazing parts connecting them. Specific examples of the heat exchanger will be described with reference to the drawings in the following embodiments, but the heat exchanger is manufactured by assembling a header, a side support, an inlet / outlet pipe, and the like to the core portion.
 熱交換器は、例えば、空調機、冷蔵庫に用いることができる。また、自動車のコンデンサ、エバポレータ、ラジエータ、ヒータ、インタークーラ、オイルクーラ等に用いることもできる。さらに、ハイブリッド自動車や電気自動車の駆動用モータを制御するインバータユニットに備えられたIGBT(Insulated Gate Bipolar Transistor)等の発熱体を冷却するための冷却装置に用いることもできる。 The heat exchanger can be used for an air conditioner and a refrigerator, for example. It can also be used for automobile condensers, evaporators, radiators, heaters, intercoolers, oil coolers, and the like. Furthermore, it can also be used for a cooling device for cooling a heating element such as an IGBT (Insulated Gate Bipolar Transistor) provided in an inverter unit for controlling a drive motor of a hybrid vehicle or an electric vehicle.
(実施例1)
 次に、実施例にかかる熱交換器について図1~図5を参照して説明する。図1に例示されるように、熱交換器1は、金属管2と、フィン3と、これらが接続されたろう付け部4とを備えるコア部10を多数有する。コア部10は、コルゲート状のフィン3と、金属管2とを交互に多数積層してなり、フィン3と金属管2とがろう付け部4によって接続されている。
Example 1
Next, the heat exchanger according to the embodiment will be described with reference to FIGS. As illustrated in FIG. 1, the heat exchanger 1 has a large number of core portions 10 including metal tubes 2, fins 3, and brazed portions 4 to which these are connected. The core portion 10 is formed by alternately laminating corrugated fins 3 and metal tubes 2, and the fins 3 and the metal tubes 2 are connected by brazing portions 4.
 図2に例示されるように、各コア部10は、金属管2とフィン3とを有し、コルゲート形状のフィン3が金属管2に挟まれている。なお、図2においては、フィン3のコルゲート形状を明示するために、フィン3を挟む2つの金属管2の一方を破線にて示してある。図2~図4に例示されるように、フィン3は、例えばコルゲート状に成形されたアルミニウム板よりなるフィン材31と、フィン材31の両面に形成された塗膜32とを有するプレコートフィンである。なお、図示を省略するが、フィン材31と塗膜32との間には、後述のリン酸クロメート処理によって形成された化成皮膜が存在している。 2, each core portion 10 has a metal tube 2 and fins 3, and the corrugated fins 3 are sandwiched between the metal tubes 2. In FIG. 2, one of the two metal tubes 2 sandwiching the fin 3 is indicated by a broken line in order to clearly show the corrugated shape of the fin 3. As illustrated in FIGS. 2 to 4, the fin 3 is a pre-coated fin having a fin material 31 made of, for example, an aluminum plate formed in a corrugated shape, and a coating film 32 formed on both surfaces of the fin material 31. is there. In addition, although illustration is abbreviate | omitted, between the fin material 31 and the coating film 32, the chemical conversion film formed by the below-mentioned phosphoric acid chromate process exists.
 図2及び図3に例示されるように、金属管2は、例えばアルミニウム合金製の扁平多穴管からなる心材21と、この心材21の表面に形成されたろう材層22とを有する。心材21は、冷媒を流通させるための多数の冷媒流路211を有している。コア部10においては、図5(b)に例示されるように、フィン3と金属管2とがろう付けによって接続されており、両者の間にはろう付け部4が形成されている。 2 and 3, the metal tube 2 includes a core material 21 made of, for example, a flat multi-hole tube made of an aluminum alloy, and a brazing material layer 22 formed on the surface of the core material 21. The core material 21 has a large number of refrigerant flow paths 211 for circulating the refrigerant. In the core part 10, as illustrated in FIG. 5B, the fins 3 and the metal pipe 2 are connected by brazing, and a brazing part 4 is formed between them.
 図1に例示されるように、熱交換器1において、金属管2の両端には、ヘッダ5が組み付けられており、コア部10の積層方向における両端(最外側)には、サイドプレート6が組み付けられている。また、ヘッダ5には、タンク7が組み付けられている。これらのヘッダ5、サイドプレート6、及びタンク7は、上述の金属管2とフィン3との接合と同様に、例えばろう付けにより接合を行うことができる。 As illustrated in FIG. 1, in the heat exchanger 1, headers 5 are assembled at both ends of the metal tube 2, and side plates 6 are disposed at both ends (outermost sides) in the stacking direction of the core portion 10. It is assembled. In addition, a tank 7 is assembled to the header 5. The header 5, the side plate 6, and the tank 7 can be joined by, for example, brazing, similarly to the joining of the metal pipe 2 and the fin 3 described above.
 コア部10は、次のようにして製造される。具体的には、まず、押出加工により、アルミニウム合金製の扁平多穴管からなる心材21を作製した(図1及び図2参照)。そして、心材21の表面にSi粉末からなるろう材を塗布することにより、ろう材層22を形成した。このようにして金属管2を得た。 The core unit 10 is manufactured as follows. Specifically, first, a core material 21 made of a flat multi-hole tube made of an aluminum alloy was produced by extrusion (see FIGS. 1 and 2). And the brazing filler metal layer 22 was formed by apply | coating the brazing filler metal which consists of Si powder to the surface of the core material 21. FIG. In this way, a metal tube 2 was obtained.
 また、JIS規格のA1050組成のアルミニウム板材に対して、脱脂処理、リン酸クロメート処理を施した。脱脂処理は、日本ペイント株式会社製のEC760の2質量%溶液を用い、温度60℃で30秒加熱することにより行った。リン酸クロメート処理は、日本パーカライジング株式会社製のアルクロム702SK/ACKの1.2質量%溶液を用い、温度45℃、処理時間20秒という条件で行った。次いで、バーコータを用いて、コロイダルシリカを含有する塗料を板材に塗布し、乾燥し、塗膜を形成した。その後、塗膜を形成した板材をコルゲート状に加工した。このようにして、フィン材31の表面に形成された塗膜32を有するコルゲート状のフィン3を得た(図2~図4参照)。 Further, degreasing treatment and phosphoric acid chromate treatment were performed on an aluminum plate material having a JIS standard A1050 composition. The degreasing treatment was performed by heating at 60 ° C. for 30 seconds using a 2% by mass solution of EC760 manufactured by Nippon Paint Co., Ltd. The phosphoric acid chromate treatment was performed under the conditions of a temperature of 45 ° C. and a treatment time of 20 seconds using a 1.2 mass% solution of Alchrome 702SK / ACK manufactured by Nihon Parkerizing Co., Ltd. Next, using a bar coater, a coating material containing colloidal silica was applied to the plate material and dried to form a coating film. Thereafter, the plate material on which the coating film was formed was processed into a corrugated shape. In this way, a corrugated fin 3 having a coating film 32 formed on the surface of the fin material 31 was obtained (see FIGS. 2 to 4).
 次に、2つの金属管2の間に、コルゲート状のフィン3を挟み込んで組立品を作製した(図2及び図3参照)。このとき、各金属管2のろう材層22を互いに対向させた状態で両者の間にフィン3を挟み込むことにより、コルゲート状のフィン3の各頂点30とろう材層22とを当接させた。次いで、図5(a)に示すごとく、フッ化物系フラックスを水に分散させて作製したフラックス液101を、金属管2とフィン3とからなる組立品の全体に噴霧した。 Next, a corrugated fin 3 was sandwiched between the two metal tubes 2 to produce an assembly (see FIGS. 2 and 3). At this time, the brazing material layer 22 of each metal tube 2 was opposed to each other, and the fins 3 were sandwiched between the two so that each vertex 30 of the corrugated fin 3 and the brazing material layer 22 were brought into contact with each other. . Next, as shown in FIG. 5A, a flux liquid 101 prepared by dispersing a fluoride-based flux in water was sprayed on the entire assembly composed of the metal tube 2 and the fins 3.
 その後、窒素ガス雰囲気で温度600℃の炉内に、組立品を3分間保持した後、室温(具体的には、25℃)まで冷却した。この炉内での加熱時にろう材層22が溶融し、冷却時に溶融したろう材層22が硬化する。このろう材層22の溶融と硬化により、金属管2とフィン3とが接続され、ろう付け部4が形成される(図5(b)参照)。このようにして、図2及び図3に示すごとく、コア部10が得られる。コア部10を用いて、公知の組立方法等により、図1に例示される構成の熱交換器1を得ることができる。 Thereafter, the assembly was held for 3 minutes in a furnace at a temperature of 600 ° C. in a nitrogen gas atmosphere, and then cooled to room temperature (specifically, 25 ° C.). The brazing filler metal layer 22 is melted during heating in the furnace, and the molten brazing filler metal layer 22 is cured during cooling. By melting and hardening the brazing material layer 22, the metal tube 2 and the fin 3 are connected to form the brazing portion 4 (see FIG. 5B). Thus, the core part 10 is obtained as shown in FIGS. The heat exchanger 1 having the configuration illustrated in FIG. 1 can be obtained by a known assembly method using the core portion 10.
 本例においては、フィン3がコロイダルシリカ由来のSi源を有する塗膜32を有しており、ろう付け接合時にフッ化物系フラックスが用いられている。したがって、フィン3の表面には、塗膜32由来のSi源とフラックス由来のF源とが存在している。そして、後述の実験例の試料E1として示すように、本例のフィン3は、蛍光X線スペクトルにおいて、Si由来のピーク強度ISiと、Zr由来のピーク強度IZrと、F由来のピーク強度IFと、Al由来のピーク強度IAlとが0.05≦(ISi+IZr)/IF≦10、及びIF/IAl≧1×10-4の関係を満足する。さらにフィン3は、表面33から深さ100nmまでの範囲内に、Si原子含有率CSiat%とZr原子含有率CZrat%の合計値が、表面33から深さ200nmの位置におけるCSiat%とCZrat%との合計値の2倍以上となる高含有部34を有する(図4(b)参照)。なお、図4(b)において、D1=100nmであり、D2=200nmであり、後述の実施例2において参照する図6(b)においても同様である。高含有部34は、フィン3の表33面から深さ100nmの範囲に存在すればよく、表面33に露出していてもよいし、少なくとも一部が露出せずに表面33よりも深さ方向の内部に形成されていてもよい。 In this example, the fin 3 has the coating film 32 which has Si source derived from colloidal silica, and the fluoride type flux is used at the time of brazing joining. Accordingly, the Si source derived from the coating film 32 and the F source derived from the flux are present on the surface of the fin 3. And as shown as sample E1 of the below-mentioned experimental example, the fin 3 of this example has a peak intensity I Si derived from Si , a peak intensity I Zr derived from Zr, and a peak intensity derived from F in the fluorescent X-ray spectrum. I F and the peak intensity I Al derived from Al satisfy the relationship of 0.05 ≦ (I Si + I Zr ) / I F ≦ 10 and I F / I Al ≧ 1 × 10 −4 . Further, the fin 3 has a Si atom content C Si at% and a Zr atom content C Zr at% in a range from the surface 33 to a depth of 100 nm, and the total value of C Si at a position 200 nm deep from the surface 33. It has the high content part 34 which becomes 2 times or more of the total value of at% and CZrat % (refer FIG.4 (b)). In FIG. 4B, D 1 = 100 nm and D 2 = 200 nm, and the same applies to FIG. 6B referred to in Example 2 described later. The high content part 34 should just exist in the range of depth 100nm from the surface 33 surface of the fin 3, and may be exposed to the surface 33, or a depth direction rather than the surface 33 without exposing at least one part. It may be formed inside.
 後述の実験例において詳説するが、ピーク強度が上記所定の関係を満足し、かつ高含有部を有するため、フィン3は、優れた親水性を示すと共に、その優れた親水性が長期間維持される。すなわち、本例の熱交換器1はフィン3の親水性及び親水持続性に優れている。 As will be described in detail in the experimental examples to be described later, since the peak intensity satisfies the predetermined relationship and has a high content portion, the fin 3 exhibits excellent hydrophilicity and the excellent hydrophilicity is maintained for a long time. The That is, the heat exchanger 1 of this example is excellent in the hydrophilicity and hydrophilic sustainability of the fins 3.
(実施例2)
 本例は、表面に塗膜を有さないフィンを備え、ろう付け時にフッ化物系フラックスだけでなく、Si源及びZr源の少なくとも一方を含有するフラックス液を用いて作製した熱交換器の例である。図6(a)及び(b)に例示されるように本例の熱交換器におけるフィン3は、実施例1とは異なり、表面33に塗膜を有していない。なお、図示を省略するが表面に化成皮膜は形成されている。本例の熱交換器は、塗膜を形成せずに作製したフィン3を用い、Si源及びZr源の少なくとも一方と、フッ化物系フラックスとが水に分散されたフラックス液を用いた点を除いては、実施例1と同様にして作製される。
(Example 2)
This example is an example of a heat exchanger that has fins that do not have a coating film on the surface, and that uses a flux liquid that contains at least one of a Si source and a Zr source as well as a fluoride flux during brazing. It is. As illustrated in FIGS. 6A and 6B, the fin 3 in the heat exchanger of this example does not have a coating film on the surface 33 unlike the first embodiment. In addition, although illustration is abbreviate | omitted, the chemical conversion film is formed in the surface. The heat exchanger of this example uses the fin 3 produced without forming a coating film, and uses a flux liquid in which at least one of a Si source and a Zr source and a fluoride-based flux are dispersed in water. Except for this, it is manufactured in the same manner as in Example 1.
 図6(b)に例示されるように、フィン3は、表面33に塗膜を有していないが、フィン3の表面には、フラックス液由来のSi源及びZr源の少なくとも一方とF源とが存在している。そして、後述の実験例の試料E2~E4として示すように、本例のフィン3は、蛍光X線スペクトルにおいて、Si由来のピーク強度ISiと、Zr由来のピーク強度IZrと、F由来のピーク強度IFと、Al由来のピーク強度IAlとが0.05≦(ISi+IZr)/IF≦10、及びIF/IAl≧1×10-4の関係を満足する。さらにフィン3は、表面33から深さ100nmまでの範囲内に、Si原子含有率CSiとZr原子含有率CZrとの合計値が、表面33から深さ200nmの位置におけるCSiとCZrとの合計値の2倍以上となる高含有部34を有する(図6(b)参照)。 As illustrated in FIG. 6B, the fin 3 does not have a coating film on the surface 33, but on the surface of the fin 3, at least one of the Si source and the Zr source derived from the flux liquid and the F source And exist. And as shown as samples E2 to E4 in the experimental examples described later, the fin 3 of this example has a peak intensity I Si derived from Si , a peak intensity I Zr derived from Zr, and a peak derived from F in the fluorescent X-ray spectrum. and the peak intensity I F, and the peak intensity I Al from Al satisfies 0.05 ≦ (I Si + I Zr ) / I F ≦ 10, and the relationship I F / I Al ≧ 1 × 10 -4. Further, the fin 3 has a total value of Si atom content C Si and Zr atom content C Zr within a range from the surface 33 to a depth of 100 nm, and C Si and C Zr at a position 200 nm deep from the surface 33. And a high-content portion 34 that is twice or more the total value (see FIG. 6B).
 したがって、実施例1のフィンと同様に、本例の熱交換器におけるフィン3も、優れた親水性を示すと共に、その優れた親水性が長期間維持される。その詳細は、後述の実験例に示す。なお、実施例2において用いた符号のうち、既出の実施例において用いた符号と同一のものは、特に示さない限り、既出の実施例におけるものと同様の構成要素等を表す。 Therefore, like the fin of Example 1, the fin 3 in the heat exchanger of this example also exhibits excellent hydrophilicity, and the excellent hydrophilicity is maintained for a long time. Details thereof will be shown in an experimental example described later. Of the reference numerals used in the second embodiment, the same reference numerals as those used in the above-described embodiments represent the same components as those in the above-described embodiments unless otherwise indicated.
(実験例)
 本例は、熱交換器用のフィンとして用いられる複数の板材サンプル(試料E1~試料E4、試料C1~試料C3)を作製し、これらの親水性及び親水持続性を評価する例である。
(Experimental example)
In this example, a plurality of plate material samples (sample E1 to sample E4, sample C1 to sample C3) used as fins for a heat exchanger are prepared, and their hydrophilicity and hydrophilic sustainability are evaluated.
 試料E1は、アルミニウム板と、その表面に形成された塗膜とを有する板材サンプルであり、次のようにして作製した。まず、JIS規格のA1050組成のアルミニウム板材に対して、脱脂処理、リン酸クロメート処理を施した。脱脂処理は、日本ペイント株式会社製のEC760の2質量%溶液を用い、温度60℃で30秒加熱することにより行った。また、リン酸クロメート処理は、日本パーカライジング株式会社製のアルクロム702SK/ACKの1.2質量%溶液を用い、温度45℃、処理時間20秒という条件で行った。次いで、バーコータを用いて塗料を板材に塗布し、乾燥し、塗膜を形成した。塗料は、ケイ酸塩、バインダ、コロイダルシリカを水に分散させて作製した。塗膜の付着量は500mg/m2である。次いで、ろう付け加熱を想定して、塗膜を形成した板材にフラックス液を塗布した後、窒素雰囲気中でこの板材を温度600℃で3分間加熱した。このようにして得られたフィン用の板材サンプルを試料E1とする。なお、フラックス液は、フッ化物系フラックスを水に分散させて作製した。 Sample E1 is a plate material sample having an aluminum plate and a coating film formed on the surface thereof, and was prepared as follows. First, degreasing treatment and phosphoric acid chromate treatment were performed on an aluminum plate material having an A1050 composition according to JIS standards. The degreasing treatment was performed by heating at 60 ° C. for 30 seconds using a 2% by mass solution of EC760 manufactured by Nippon Paint Co., Ltd. The phosphoric acid chromate treatment was performed under the conditions of a temperature of 45 ° C. and a treatment time of 20 seconds using a 1.2% by mass solution of Alchrome 702SK / ACK manufactured by Nippon Parkerizing Co., Ltd. Subsequently, the coating material was apply | coated to the board | plate material using the bar coater, it dried, and the coating film was formed. The paint was prepared by dispersing silicate, binder and colloidal silica in water. The adhesion amount of the coating film is 500 mg / m 2 . Next, assuming brazing heating, a flux solution was applied to the plate material on which the coating film was formed, and then this plate material was heated at a temperature of 600 ° C. for 3 minutes in a nitrogen atmosphere. The plate material sample for fin thus obtained is designated as sample E1. The flux liquid was prepared by dispersing fluoride-based flux in water.
 試料E2~試料E4は、塗膜を有していない板材サンプルであり、次のようにして作製した。まず、試料E1と同様に、JIS規格のA1050組成のアルミニウム板材に対して、脱脂処理、リン酸クロメート処理を施した。次いで、ろう付け加熱を想定して、塗膜を形成した板材にフラックス液を塗布した後、窒素雰囲気中で板材を温度600℃で3分間加熱した。試料E2の作製にあたっては、フッ化物系フラックスとコロイダルシリカとを水に分散させて作製したフラックス液を用いた。試料E3の作製にあたっては、フッ化物系フラックスとジルコニアとを水に分散させて作製したフラックス液を用いた。試料E4の作製にあたっては、フッ化物系フラックスとコロイダルシリカとジルコニアとを水に分散させて作製したフラックス液を用いた。 Sample E2 to Sample E4 are plate material samples having no coating film, and were prepared as follows. First, similarly to the sample E1, a degreasing treatment and a phosphoric acid chromate treatment were performed on an aluminum plate material having an A1050 composition according to JIS standards. Next, assuming brazing heating, a flux solution was applied to the plate material on which the coating film was formed, and then the plate material was heated at a temperature of 600 ° C. for 3 minutes in a nitrogen atmosphere. In preparing the sample E2, a flux liquid prepared by dispersing fluoride-based flux and colloidal silica in water was used. In preparing the sample E3, a flux liquid prepared by dispersing fluoride-based flux and zirconia in water was used. In preparing the sample E4, a flux liquid prepared by dispersing fluoride-based flux, colloidal silica, and zirconia in water was used.
 また、試料E1~試料E4との比較用として、3種類の板材サンプルを作製した。これらの板材サンプルを試料C1~試料C3とする。試料C1の作製にあたっては、まず、JIS規格のA1050組成のアルミニウム板材を準備した。次いで、ろう付け加熱を想定して、板材にフラックス液を塗布した後、窒素雰囲気中で板材を温度600℃で3分間加熱した。なお、フラックス液は、フッ化物系フラックスを水に分散させて作製した。 Also, three types of plate material samples were prepared for comparison with the samples E1 to E4. These plate material samples are designated as Sample C1 to Sample C3. In preparing the sample C1, first, an aluminum plate material having a JIS standard A1050 composition was prepared. Next, assuming brazing heating, a flux solution was applied to the plate material, and then the plate material was heated in a nitrogen atmosphere at a temperature of 600 ° C. for 3 minutes. The flux liquid was prepared by dispersing fluoride-based flux in water.
 試料C2の作製にあたっては、まず、試料E1と同様に、JIS規格のA1050組成のアルミニウム板材に対して、脱脂処理、リン酸クロメート処理を施した。次いで、ろう付け加熱を想定して、窒素雰囲気中で板材を温度600℃で3分間加熱した。なお、試料C2においてはフラックス液を使用していない。 In preparing the sample C2, first, similarly to the sample E1, a degreasing treatment and a phosphoric acid chromate treatment were performed on an aluminum plate material having a JIS standard A1050 composition. Next, assuming the brazing heating, the plate was heated at a temperature of 600 ° C. for 3 minutes in a nitrogen atmosphere. In the sample C2, no flux liquid is used.
 試料C3の作製にあたっては、まず、試料E1と同様に、JIS規格のA1050組成のアルミニウム板材に対して、脱脂処理、リン酸クロメート処理を施した。次いで、バーコータを用いて塗料を板材に塗布し、乾燥し、塗膜を形成した。塗料としては、試料E1と同様のものを使用した。塗膜の付着量は500mg/m2である。次いで、ろう付け加熱を想定して、窒素雰囲気中で板材を温度600℃で3分間加熱した。なお、試料C3においてはフラックス液を使用していない。 In preparing the sample C3, first, similarly to the sample E1, a degreasing treatment and a phosphoric acid chromate treatment were performed on an aluminum plate material having a JIS standard A1050 composition. Subsequently, the coating material was apply | coated to the board | plate material using the bar coater, it dried, and the coating film was formed. As the paint, the same paint as sample E1 was used. The adhesion amount of the coating film is 500 mg / m 2 . Next, assuming the brazing heating, the plate was heated at a temperature of 600 ° C. for 3 minutes in a nitrogen atmosphere. In the sample C3, no flux liquid is used.
 各試料の作製にあたっては、フッ化物系フラックスとして、ソルベイ(SOLVAY)社製のNOCOLOKを用い、フラックス液中のフッ化物系フラックスの含有量は3質量%である。コロイダルシリカとしては、日揮触媒化成(株)製の非晶質コロイダルシリカであるCataloid SI-550を用いた。ジルコニアとしては、日研(株)製の水性コーティング剤であるB-2000を用いた。 In the preparation of each sample, NOCOLLOK manufactured by Solvay is used as the fluoride flux, and the content of the fluoride flux in the flux liquid is 3% by mass. As the colloidal silica, Cataloid SI-550 which is an amorphous colloidal silica manufactured by JGC Catalysts & Chemicals Co., Ltd. was used. As the zirconia, B-2000, an aqueous coating agent manufactured by Nikken Co., Ltd., was used.
 次に、各試料について表面の蛍光X線分析を行うことにより、Si由来のピーク強度ISiと、Zr由来のピーク強度IZrと、F由来のピーク強度IFと、Al由来のピーク強度IAlとの関係を求めた。具体的には、(ISi+IZr)/IF、ISi/IF、IZr/IF、IF/IAlを求めた。各ピーク強度はピークトップにおける強度である。測定装置、測定条件は次の通りである。
 測定装置:RIGAKU社製のRix3100
 管電圧:30~50kV
 管電流:80~130mA
Next, by performing surface X-ray fluorescence analysis on each sample, Si-derived peak intensity I Si , Zr-derived peak intensity I Zr , F-derived peak intensity I F , and Al-derived peak intensity I Seeking relationship with Al . Specifically, (I Si + I Zr ) / I F , I Si / I F , I Zr / I F , and I F / I Al were determined. Each peak intensity is an intensity at the peak top. The measurement apparatus and measurement conditions are as follows.
Measuring device: Rix3100 manufactured by RIGAKU
Tube voltage: 30-50kV
Tube current: 80-130mA
 次に、グロー放電発光分析(GD-OES)により、各試料について表面から深さ方向における各元素の含有率を測定した。代表例として、試料E2の結果を図7に示し、試料C1の結果を図8に示す。なお、これらの図において、CAlはAl原子の含有率を示し、COはO原子の含有率を示し、CSiはSi原子の含有率を示し、CNはN原子の含有率を示しており、CSiは10倍で示されている。GD-OESの測定装置、測定条件は次の通りである。
 測定装置:RIGAKU社製のGDA750
 スパッタリング用ガス:Arガス
 圧力:3.5hPa
 アノード径:φ2.5mm
 スパッタレート:20nm/s(アルミニウム金属を標準とした)
Next, the content of each element in the depth direction from the surface of each sample was measured by glow discharge emission analysis (GD-OES). As a representative example, the result of the sample E2 is shown in FIG. 7, and the result of the sample C1 is shown in FIG. In these figures, C Al indicates the content of Al atoms, C 2 O indicates the content of O atoms, C Si indicates the content of Si atoms, and C N indicates the content of N atoms. C Si is shown at 10 times. GD-OES measuring equipment and measuring conditions are as follows.
Measuring device: GDA750 manufactured by RIGAKU
Sputtering gas: Ar gas Pressure: 3.5 hPa
Anode diameter: φ2.5mm
Sputter rate: 20 nm / s (standard aluminum metal)
 GD-OESによって測定された深さ方向における各元素の含有率に基づいて、表面から深さ100nmの範囲内におけるSi原子含有率CSiとZr原子含有率CZrとの合計値CSi+CZrの最大値(GD-OESにおけるピークトップ)を求めた。これをCmaxとする。さらに、表面から深さ200nmの位置におけるSi原子含有率CSiとZr原子含有率CZrとの合計値CSi+CZrを求めた。これをC200とする。そしてCmax/C200の比を算出し、その値をCSi+CZr比として表1に示す。同様にして、深さ200nmの位置に対する上述の最大値の位置におけるSi原子含有率の比を算出し、その値を表1にCSi比として示す。同様に、深さ200nmの位置に対する上述の最大値の位置におけるZr原子含有率の比を算出し、その値を表1にCZr比として示す。 Based on the content of each element in the depth direction measured by GD-OES, the total value C Si + C Zr of the Si atom content C Si and the Zr atom content C Zr within a depth of 100 nm from the surface The maximum value (peak top in GD-OES) was determined. This is C max . Furthermore, the total value C Si + C Zr of the Si atom content C Si and the Zr atom content C Zr at a position 200 nm deep from the surface was determined. This is referred to as C 200. Then, the ratio of C max / C 200 is calculated, and the value is shown in Table 1 as the C Si + C Zr ratio. Similarly, the ratio of the Si atom content rate at the position of the above-mentioned maximum value with respect to the position of the depth of 200 nm is calculated, and the value is shown in Table 1 as the C Si ratio. Similarly, the ratio of the Zr atom content rate at the position of the above-mentioned maximum value with respect to the position at a depth of 200 nm is calculated, and the value is shown in Table 1 as the C Zr ratio.
 各試料について、親水性及び親水持続性の評価を以下のようにして行った。その結果を表1に示す。 Each sample was evaluated for hydrophilicity and hydrophilicity sustainability as follows. The results are shown in Table 1.
<親水性>
 各試料上における水滴の接触角を測定することにより、親水性の評価を行った。接触角の測定は、協和界面化学株式会社製のFACE自動接触角計「CA-Z」を用いて行った。具体的には、室温で、試料上に水滴を滴下し、30秒後の水滴の接触角を測定した。接触角が20°以下の場合を「A」と評価し、20°を超える場合を「B」と評価した。
<Hydrophilicity>
The hydrophilicity was evaluated by measuring the contact angle of water droplets on each sample. The contact angle was measured using a FACE automatic contact angle meter “CA-Z” manufactured by Kyowa Interface Chemical Co., Ltd. Specifically, a water drop was dropped on the sample at room temperature, and the contact angle of the water drop after 30 seconds was measured. The case where the contact angle was 20 ° or less was evaluated as “A”, and the case where the contact angle exceeded 20 ° was evaluated as “B”.
<親水持続性>
 各試料を純水に2分間浸漬した後、6分間風乾した。この浸漬と風乾とを合計300サイクル繰り返し実施した。その後、上述の親水性の評価と同様にして水滴との接触角を測定した。300サイクル後の接触角が25°以下の場合を「A」と評価し、25°を超える場合を「B」と評価した。
<Hydrophilic sustainability>
Each sample was immersed in pure water for 2 minutes and then air-dried for 6 minutes. This immersion and air drying were repeated for a total of 300 cycles. Thereafter, the contact angle with water droplets was measured in the same manner as the hydrophilicity evaluation described above. The case where the contact angle after 300 cycles was 25 ° or less was evaluated as “A”, and the case where the contact angle exceeded 25 ° was evaluated as “B”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試料E1~試料E4は、Si由来のピーク強度ISiと、Zr由来のピーク強度IZrと、F由来のピーク強度IFと、Al由来のピーク強度IAlとが、0.05≦(ISi+IZr)/IF≦10、及びIF/IAl≧1×10-4の関係を満足している。さらに、試料E1~試料E4は、CSi+CZr比が2以上であり、フィンの表面から深さ100nmまでの範囲内に、Si原子含有率CSiat%とZr原子含有率CZrat%との合計値CSi+CZrat%が上記表面から深さ200nmの位置における上記合計値の2倍以上となる高含有部を有する。そのため、試料E1~試料E4は、表1に示されるように、親水性及び親水持続性に優れている。なお、試料E1~試料E4の表面に存在するコロイダルシリカ、ジルコニアは、加熱時に一部が還元されていると考えられる。 As shown in Table 1, the samples E1 to E4 have a peak intensity I Si derived from Si , a peak intensity I Zr derived from Zr , a peak intensity I F derived from F, and a peak intensity I Al derived from Al. 0.05 ≦ (I Si + I Zr ) / I F ≦ 10 and I F / I Al ≧ 1 × 10 −4 . Further, Sample E1 to Sample E4 have a C Si + C Zr ratio of 2 or more, and within a range from the fin surface to a depth of 100 nm, the Si atom content C Si at% and the Zr atom content C Zr at% And the total value C Si + C Zr at% of the above-mentioned surface has a high content part that is at least twice the total value at a position 200 nm deep from the surface. Therefore, as shown in Table 1, Sample E1 to Sample E4 are excellent in hydrophilicity and hydrophilic sustainability. Note that it is considered that the colloidal silica and zirconia present on the surfaces of the samples E1 to E4 are partially reduced during heating.
 これに対し、試料C1においては、0.05≦(ISi+IZr)/IF≦10及びIF/IAl≧1×10-4の関係を満足しているが、試料E1~試料E4のような高含有部が存在していない。そのため、親水持続性が不十分であった。また、試料C2及び試料C3においては、フッ化物系フラックスが用いられていないため、0.05≦(ISi+IZr)/IF≦10及びIF/IAl≧1×10-4の関係を満足しておらず、試料C2においてはさらに高含有部も存在していない。その結果、親水性及び親水持続性のいずれも不十分であった。 In contrast, the sample C1 satisfies the relationship of 0.05 ≦ (I Si + I Zr ) / I F ≦ 10 and I F / I Al ≧ 1 × 10 −4 , but the samples E1 to E4 are satisfied. The high content part like does not exist. Therefore, the hydrophilic sustainability was insufficient. In Sample C2 and Sample C3, since a fluoride-based flux is not used, the relationship of 0.05 ≦ (I Si + I Zr ) / I F ≦ 10 and I F / I Al ≧ 1 × 10 −4 Is not satisfied, and the sample C2 does not have a higher content. As a result, both hydrophilicity and hydrophilic sustainability were insufficient.

Claims (9)

  1.  金属管と、
     アルミニウム製のフィンと、
     該フィンと上記金属管とが接続されたろう付け部と、を備え、
     上記フィンの蛍光X線スペクトルにおいては、Si由来のピーク強度ISiと、Zr由来のピーク強度IZrと、F由来のピーク強度IFと、Al由来のピーク強度IAlとが、0.05≦(ISi+IZr)/IF≦10、及びIF/IAl≧1×10-4の関係を満足し、
     上記フィンは、該フィンの表面から深さ100nmまでの範囲内に、Si原子含有率CSiat%とZr原子含有率CZrat%との合計値CSi+Czrat%が上記表面から深さ200nmの位置における上記合計値の2倍以上となる高含有部を有する、熱交換器。
    A metal tube,
    Aluminum fins,
    A brazing part to which the fin and the metal pipe are connected,
    In the fluorescent X-ray spectrum of the fin, the peak intensity I Si derived from Si , the peak intensity I Zr derived from Zr , the peak intensity I F derived from F, and the peak intensity I Al derived from Al are 0.05. ≦ (I Si + I Zr ) / I F ≦ 10 and I F / I Al ≧ 1 × 10 −4
    The fin has a total value C Si + C zr at% of the Si atom content C Si at% and the Zr atom content C Zr at% within a range from the surface of the fin to a depth of 100 nm. A heat exchanger having a high content portion that is at least twice the total value at a position of 200 nm.
  2.  上記ピーク強度ISiと上記ピーク強度IZrと上記ピーク強度IFとが、0.1≦(ISi+IZr)/IF≦5の関係を満足する、請求項1に記載の熱交換器。 2. The heat exchanger according to claim 1, wherein the peak intensity I Si , the peak intensity I Zr, and the peak intensity I F satisfy a relationship of 0.1 ≦ (I Si + I Zr ) / I F ≦ 5. .
  3.  上記金属管がアルミニウムからなる、請求項1又は2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the metal tube is made of aluminum.
  4.  請求項1~3のいずれか1項に記載の熱交換器の製造方法において、
     アルミニウム製の上記フィンと、上記金属管とを当接させる当接工程と、
     上記フィンと上記金属管との当接部、及び上記フィンの上記表面に少なくともフッ化物系フラックスを含有するフラックス液を塗布する塗布工程と、
     上記フィンと上記金属管とを上記当接部においてろう付けすることによって、上記ろう付け部を形成する接合工程と、を有し、
     上記フラックス液及び上記フィンの表面の少なくとも一方は、Si源及びZr源の少なくとも一方を含有する、熱交換器の製造方法。
    The method of manufacturing a heat exchanger according to any one of claims 1 to 3,
    An abutting step for abutting the fin made of aluminum and the metal tube;
    An application step of applying a flux liquid containing at least a fluoride-based flux to the abutment portion between the fin and the metal tube, and the surface of the fin;
    A joining step of forming the brazed portion by brazing the fin and the metal tube at the abutting portion;
    The method for manufacturing a heat exchanger, wherein at least one of the surfaces of the flux liquid and the fin contains at least one of a Si source and a Zr source.
  5.  上記フィンは、表面に塗膜を有し、該塗膜が上記Si源及び上記Zr源の少なくとも一方を含有する、請求項4に記載の熱交換器の製造方法。 The method for producing a heat exchanger according to claim 4, wherein the fin has a coating film on the surface, and the coating film contains at least one of the Si source and the Zr source.
  6.  上記塗膜中の上記Si源がコロイダルシリカ由来の非晶質シリカである、請求項5に記載の熱交換器の製造方法。 The method for producing a heat exchanger according to claim 5, wherein the Si source in the coating film is amorphous silica derived from colloidal silica.
  7.  上記塗膜中の上記Zr源がジルコニアである、請求項5又は6に記載の熱交換器の製造方法。 The method for producing a heat exchanger according to claim 5 or 6, wherein the Zr source in the coating film is zirconia.
  8.  上記フラックス液中の上記Si源はコロイダルシリカである、請求項4~7のいずれか1項に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to any one of claims 4 to 7, wherein the Si source in the flux liquid is colloidal silica.
  9.  上記フラックス液中の上記Zr源はジルコニアである、請求項4~8のいずれか1項に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to any one of claims 4 to 8, wherein the Zr source in the flux liquid is zirconia.
PCT/JP2017/046465 2016-12-28 2017-12-25 Heat exchanger and manufacturing method therefor WO2018123984A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-254616 2016-12-28
JP2016254616A JP2018105572A (en) 2016-12-28 2016-12-28 Heat exchanger and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2018123984A1 true WO2018123984A1 (en) 2018-07-05

Family

ID=62709437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046465 WO2018123984A1 (en) 2016-12-28 2017-12-25 Heat exchanger and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2018105572A (en)
WO (1) WO2018123984A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230015420A1 (en) * 2021-07-01 2023-01-19 Purdue Research Foundation Shape morphing fins for frost removal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051731A (en) * 2018-09-28 2020-04-02 三菱アルミニウム株式会社 Hydrophilic fin and heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030051773A1 (en) * 2001-09-14 2003-03-20 Dolan Shawn E. Conversion coating compositions
JP2005186504A (en) * 2003-12-26 2005-07-14 Fuji Photo Film Co Ltd Lithographic printing plate original plate and lithographic printing method
JP2007216283A (en) * 2006-02-20 2007-08-30 Sumitomo Light Metal Ind Ltd Method for producing aluminum alloy clad plate having excellent face joinability by brazing on sacrificial anode material face
JP4667978B2 (en) * 2005-06-29 2011-04-13 古河スカイ株式会社 Aluminum painted plate and pre-coated aluminum fin material
JP2012172061A (en) * 2011-02-22 2012-09-10 Nihon Univ Hydrophilic thin film, and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030051773A1 (en) * 2001-09-14 2003-03-20 Dolan Shawn E. Conversion coating compositions
JP2005186504A (en) * 2003-12-26 2005-07-14 Fuji Photo Film Co Ltd Lithographic printing plate original plate and lithographic printing method
JP4667978B2 (en) * 2005-06-29 2011-04-13 古河スカイ株式会社 Aluminum painted plate and pre-coated aluminum fin material
JP2007216283A (en) * 2006-02-20 2007-08-30 Sumitomo Light Metal Ind Ltd Method for producing aluminum alloy clad plate having excellent face joinability by brazing on sacrificial anode material face
JP2012172061A (en) * 2011-02-22 2012-09-10 Nihon Univ Hydrophilic thin film, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230015420A1 (en) * 2021-07-01 2023-01-19 Purdue Research Foundation Shape morphing fins for frost removal
US11874074B2 (en) * 2021-07-01 2024-01-16 Purdue Research Foundation Shape morphing fins for frost removal

Also Published As

Publication number Publication date
JP2018105572A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
EP1475598A2 (en) Heat exchange tube
JP5115963B2 (en) Aluminum heat exchanger member with excellent corrosion resistance and method for producing aluminum heat exchanger with excellent corrosion resistance
JP6106530B2 (en) Method for preventing corrosion of heat exchange pipe outer surface made of extruded aluminum and method for producing heat exchanger
JP2013137153A (en) All-aluminum heat exchanger using precoat fin material
JP2009106947A (en) Aluminum alloy tube
JP2009058139A (en) Member for aluminum-made heat exchanger having superior corrosion resistance
JP2006307292A (en) Aluminum-alloy sheet material for radiator tube excellent in brazing property, and radiator tube and heat exchanger having the same
WO2018123984A1 (en) Heat exchanger and manufacturing method therefor
JP7030605B2 (en) Aluminum fins for heat exchangers with excellent hydrophilicity, heat exchangers and their manufacturing methods
JPH07109355B2 (en) Aluminum heat exchanger and manufacturing method thereof
WO2017170772A1 (en) Hydrophilic coating, heat exchanger fin using same, and heat exchanger
RU2194596C2 (en) Method for making section of heat exchanger with aluminum base tubes
JP6576055B2 (en) Pre-coated fin and heat exchanger using the same
JP6460598B2 (en) Flux liquid
JP5944626B2 (en) Manufacturing method of heat exchanger
JP2019070499A (en) Method of manufacturing heat exchanger
JP3370531B2 (en) Corrosion protection method for inner surface of aluminum alloy heat transfer tube
JP7096638B2 (en) Pre-coated fins and heat exchangers using them
WO2019102915A1 (en) Aluminum fin having excellent hydrophilicity after brazing, and heat exchanger and method for producing same
JP7209487B2 (en) ALUMINUM FIN AND HEAT EXCHANGER EXCELLENT IN HYDROPHILIC AFTER BRAZING PROCESS AND METHOD FOR MANUFACTURING THE SAME
JP2019190725A (en) Precoated fin material for brazed heat exchanger, and heat exchanger
JP2009082971A (en) Joint of heat exchanger made of aluminum alloy having satisfactory corrosion resistance, heat exchanger using the same, and method for producing them
JP2019045091A (en) Heat exchanger
JP2021161447A (en) Method for producing hydrophilic coat, method for producing precoated fin, and method for producing heat exchanger
JP2019045091A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887775

Country of ref document: EP

Kind code of ref document: A1