TWI339220B - High tension steel plate with reduced sonic anisotropy and excellent weldability and having yield strength of 450 mpa or more and tensile strength of 570 mpa or more and a method for producing the same - Google Patents

High tension steel plate with reduced sonic anisotropy and excellent weldability and having yield strength of 450 mpa or more and tensile strength of 570 mpa or more and a method for producing the same Download PDF

Info

Publication number
TWI339220B
TWI339220B TW095141379A TW95141379A TWI339220B TW I339220 B TWI339220 B TW I339220B TW 095141379 A TW095141379 A TW 095141379A TW 95141379 A TW95141379 A TW 95141379A TW I339220 B TWI339220 B TW I339220B
Authority
TW
Taiwan
Prior art keywords
less
mpa
stress
tensile strength
steel
Prior art date
Application number
TW095141379A
Other languages
English (en)
Other versions
TW200724694A (en
Inventor
Manabu Hoshino
Masaaki Fujioka
Youichi Tanaka
Tatsuya Kumagai
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of TW200724694A publication Critical patent/TW200724694A/zh
Application granted granted Critical
Publication of TWI339220B publication Critical patent/TWI339220B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Description

1339220
九、發明說明: 【發明所屬之技術韻域】技術領域 本發明係關於一種聲波非均向性小'熔接性優異、降 伏應力在450MPa以上且拉伸強度在57〇MPa以上之高張力 鋼板’以及可使該鋼板無需於離線狀態(〇ff•丨ine)下之熱處 理而以高生產性製造的製造方法。本發明之鋼係作為橋 樑、船舶、建築構造物、海洋構造物、壓力容器、壓力水 管(Penstock)及管道(line pipe)等之熔接構造物的構造組 件,而以厚鋼板之形態加以利用者。I;先前技術;J 背景技術 15
20 作為橋樑、船舶、建築構造物、海洋構造物、壓力容 器、壓力水管及管道等之熔接構造組件而被利用的拉伸強 度達570MPa級以上之高張力鋼板,除強度之外亦要求韌性 及熔接性,特別是近年來亦多要求在大入熱下之熔接性, 故而至今為止已有許多用以提高特性之探討。 舉例而言,此種鋼板之組成及製造條件已揭示於曰本 特開昭53-119219號公報及特開平01-149923號公報等。該等 係關於一種鋼板軋延後於離線狀態下進行再加熱淬火,進 一步再加熱回火而進行熱處理之製造方法。另外,舉例來 說,於日本特開昭52-081014號公報、特開昭63-033521號公 報及特開平02-205627號公報等中,所揭示之發明係有關在 鋼板軋延後以在線(on-line)狀態下進行淬火,即所謂的直接 5 1339220 5
10 淬火製造。該等技術不論是在再加熱淬火或直接淬火時, 均需要離線狀態下之回火熱處理,而,若欲提高生產性, 則以—併省略回火熱處理而無需離線狀態下之熱處理(即 所謂的非調質製造方法)為宜。 有關非調質鋼製造方法的發明亦已有若干被揭示,舉 例來說’如日本特開昭54-021917號公報、特開昭54-071714 號公報、特開2001 -064723號公報及特開2〇(H -064728號公報 等所記載之發明。該等係關於使鋼板軋延後之加速冷卻在 中途停止的加速冷卻_中途停止製程。這是透過加速冷卻急 冷至相變溫度(transformation temperature)以下而獲得淬火 組織,同時於相變後之溫度相對較高的狀態下停止水冷而 移行至徐冷過程,以該徐冷過程獲得回火效果以省略再加 熱回火的手法。 15
20 此外,特開2002-088413號公報所記載之發明係關於一 種藉由加速冷卻-中途停止製程來製造拉伸強度57〇MPa級 以上之高張力鋼板的技術。 另外,特開2002-053912號公報揭示一種關於非調質製 程之發明’其亦不進行軋延後之水冷。 再者,特開2005-126819號公報所揭示之發明係關於聲 波非均向性小、熔接性優異且拉伸強度級以上之高 張力鋼板在加速冷卻-中途停止製程下的製造方法。 C發明内容;j 發明揭示 然而,上述特開昭53-119219號公報、特開平0M49923 6 號公報、特開昭52-081014.號公報、特開昭63-033521號公報 及特開平02-205627號公報所載之發明均需要在離線狀態 下之熱處理步驟,故而無論如何均有無法避免阻礙生產性 之問題。 為解決此一生產性問題,即使是揭示到一併省略回火 熱處理而無需離線狀態下之熱處理的所謂非調質之製造方 法者,即前述特開昭54-021917號公報、特開昭54-071714 號公報 '特開2001 -064723號公報及特開2001 -064728號公報 所記載之發明,為了獲得韌性及強度,也必須於相對低溫 下之控制軋延’結束軋延之溫度為800°C左右,因而需要等 待溫度之時間,生產性不可謂高。此外,特別是在橋樑、 建築等用途上’因將對熔接部之超音波斜角探傷試驗之精 度造成影響,聲波非均向性需較小,但以8〇(rc程度之溫度 下結束軋延的控制軋延方式,將形成集合組織而致使鋼板 之聲·皮非均向性增大,而有未必適用於此種用途之問題。 再者’前述特開2002-088413號公報所記載之發明中, V即使在中途加速冷卻停止後之徐冷階段亦希望能對析出 強化有所助益’但於本案發明人之探討中,如後所述得 知V在中途加速冷卻停止後之徐冷階段_ : 吁獲得安定之強度。
IL /«I 中,因 ’在前述之特開2002-053912號公報所載之發明 向 之 不進行低溫下之控制軋延,雖不致於使 性變大,但相對灿非均 ϊ地為取得強度,而有Cu、Ni、Μη等人金 添加量增多等等之經濟性問題。 另,上述特開:齡⑶⑽號公報所記載之發明係本案 發明人所W者’其使㈣波_向性小、_性優異且 拉伸強度57GMPa級以上之高張力鋼板可在滿足合金添加 量少之經濟成分組成、生產性高之加速冷卻·中途停止製程 為前提的製造方法下製得,更進-步探討之結果,得知: 特開細5.126819號公報之發明中,板厚為3〇〜⑽随程度 之厚鋼材(特別是在其板厚巾心、部)無法獲得目標之4 5 〇 M p a 以上降伏應力。原本記載於特開2005-126819號公報之表 3、表4中之實施例的降伏強度與拉伸強度係本案發明人針 對從板厚之】/4份(以下稱為I/4t份)採得之拉伸試驗片實施 拉伸試驗而獲得的結果。但,不需贅言的是,本發明鋼板 係用作橋樑、船舶、建築構造物、海洋構造物、壓力容器、 壓力水管及管道等之熔接構造物的構造組件而以厚鋼板形 態使用者,故而不僅1 /4t份處,即使是板厚中心部亦宜具有 450MPa以上之降伏應力。 於此,本發明之目的在於提供一種高張力鋼板及其製 ie方法’ s玄鋼板即使連板厚達30~l〇〇mm程度之厚鋼材的板 厚中心部亦具有聲波非均向性小、炫接性優異、降伏應力 450MPa以上且拉伸強度達570MPa以上之特性,且係以滿足 合金添加量少而甚經濟之成分組成、及係採用生產性高之 加速冷卻-中途停止製程為前提。再者,本發明之鋼板板厚 並非限定為30mm以上者’而係以厚鋼板製程所能製造之板 厚從6mm以上至100mm為止者作為對象。 本發明係以特開2 Ο 0卜126 819號公報所記載之發明為 基礎,而係更一併著眼於厚鋼板之板厚中心部的降伏應力 而成的改良發明。於此,除針對至得以完成本發明的詳細 過程外’亦適度加入特開2005-126819號公報所載發明之完 成過程,說明如下。 咼張力鋼之強化手段有若干種,但其中以利用Nb、v、 Ti、Mo、Cr之碳化物或氮化物等之析出強化的方法可以相 對較少之合金成分達到強化。此時,爲獲得較大之析出強 化量,形成一與基底具有整合性之析出物是很重要的。 在軋延後之加速冷卻-中途停止製程中,在軋延令之階 段内鋼組織為舆氏體,透過加速冷卻而相變,成為貝氏體 或純粒鐵等之純粒鐵基底組織。於軋延及加速冷卻前在 奥氏體中析出之析出物於相變後將失去與基底之整合性而 使強化效果降低。此外,在軋延之早期階段中析出之析出 物將粗大化,亦成為使韌性降低之要因。因此,重要的是, 於軋延中及加迷冷卻前抑制析出物析出,加速冷卻停止後 之徐冷階段則於貝氏體或純粒鐵組織中儘可能地析出。若 為水冷後再加熱而進行回火熱處理之習知調質製程,因可 充分取得用來進行析出之溫度與時間,可容易獲得較大之 析出強化。相對於此,在不進行再加熱回火之加速冷卻·中 途停止製程的情況下,雖期待於加速冷卻停止後之徐冷中 析出’但為獲得淬火組織而不得不使加速冷卻停止溫度呈 某種程度之低溫’用來析出之溫度及時間均受到限制,一 般而言在析出強化上甚為不利。因此,如前述般,非調質 製程生產性雖高,相反地,為獲得與習知之調質製程相同 的強度’不是需要較多之合金元素就是不得不進行低温下 之控制軋延。 因此,本案發明人係以生產性較高之加速冷卻-中途停 止製程為前提,為可無須添加多量合金元素及低溫下之控 制軋延即可獲得高強度的目的’而特別針對使析出強化達 到最大限度之方法加以反覆精心探討。 首先’為使加速冷卻停止後之徐冷過程中之析出動態 明朗化,而針對貝氏體或純粒鐵組織乃至於該等之混合組 織中之各合金元素的碳化物、氮化物及碳氮化物之析出速 度及析出強化量與溫度及保持時間之關係加以詳細探討。 結果得知,貝氏體或純粒鐵組織乃至於該等之混合組織 中’ Nb碳氮化物及Ti碳化物之析出速度較v等之其他元素 為快’且該等將成為可與基底整合之析出物而強化量甚 大’特別是600°C〜700°C之溫度領域下的析出速度甚快而強 化量較大。更者,獲知於併用Nb與Ti,或併用Nb ' Ti與Mo 而進行複合析出時’因相乘效果,即使僅維持短時間,與 基底呈整合之析出物將微細分散而可獲得甚大之析出強 化。 然而,若Nb、Τι之添加量過多,產生之析出物有變得 粗大之傾向,析出物之個數反而減少,因而使析出強化量 降低。此外,Nb、Ti之碳化物、氮化物及碳炭氮化物之奧 氏體中及純粒鐵巾的析丨速度及析丨物形態侧Nb、丁你 加量與C、N量而大受影響。本案發明人透過各種實驗及解 1339220
15
20 析,得知Nb、Ti之碳化物:氮化物及破氮化物之析出速度、 析出形態可藉參數八=([>〇3] + 2乂[1^])父([(:]+[川><12/14)-式統整’將該值控制於一定範圍内即可抑制軋延中之析 出’同時在水冷中途停止後之徐冷中獲得充分的微細析 出。意即’ Nb、Ti添加量越多,c、N之添加量必須越少。 A值若過小’純粒鐵中之析出速度將延遲,無法獲得充分之 析出強化。相反地,A值若過大,奥氏體中之碳化物、氮化 物及碳氮化物之析出速度將過快而使析出物粗大化,加速 冷卻停止後的徐冷中之整合析出量亦不足,因而仍使析出 強化量降低。 組織對此等析出強化效果之影響亦甚大。貝氏體組織 與純粒鐵相較下易維持轉位密度等之加工組織。為促進微 細整合析出,加工组織所含轉位及變形帶等析出位之充分 存在將非常有效地作用。依據本案發明人之探討,為獲得 充刀之強化,需製為貝氏體單相或貝氏體體積率3〇%以上 之貝氏體與純粒鐵之混合組織。若存有珠光體,Nb、丁丨之 碳化物、氮化物及碳氮化物將朝相界面析出而使目的之 強化效果減少’不僅難以卻保拉伸強度57GMPa,㈣等特 亦Ik之降低。因此,有必要極力減少珠光體,但若其雜 積率J、於5 /〇’則此種+良影響仍小,在可接受的範園内。 接著,本案發明人為獲得最大限度之析出強化效果而 針對具體製錢件騎探討,進而獲得以下的見解。 本發明係於延續軋延之加速冷卻-中途停止製程中,為 使Nb Τι等之析出強化至最大限度而獲得強度,於札延之 11 1339220
15
20 前’需於鋼片或鑄片力口熱時使Nb、Ti預先充分固溶(s〇lid s〇_。然而’若Nb_共存,與單獨存在時相較下有更 難在加熱時固溶之傾向,即使加熱至從各自之溶解度積等 而預測出之m溶溫度亦未必能使該等充分固溶。本案發明 人在本發明之鋼針對加熱溫度與Nb、Ti之固溶狀態進行調 查,特別疋詳細地解析前述A值與Nb、Ti之固溶狀態間的 關係。結果’獲得如下結論:令鋼片或铸片之加熱溫度較 下述所示之以含A值的條件式所算出的溫度T(t>c)更高,即 可使Nb、Ti充分固溶。 T= 6300/(1.9-LogA)-273 於此,A = ([Nb] + 2x[Ti])x([C]+[N]xl2/14),[Nb]、 [Ti]、[C]及[N]各自意味著以Nb、Ti、C、N之質量%表示的 含量。 此外,LogA為常用對數。 札延·^又階中之Nb、Ti析出係藉幸^延形變而受到促進, 因此奥氏體在高溫域下之軋延條件(即所謂的粗軋延條件) 將對最終之析出強化效果造成極大影響。具體來說,相^ 延在1020°C以上之溫度域中結束,且在小於i〇2〇°c、超過 920°C之溫度域中極力避免軋延乃是用以抑制軋延中之析 出的要件。但是,若所有之軋延均在1020。(: 以上之溫度域 中途停止後幾乎 完成,則透過回復、再結晶,於加速冷卻- 不殘留加工組織,轉位及變形帶等之析出位存在不足,無 法獲得充分之析出強化。因此’於未再結晶溫度域下進^ 必要且充分之軋延,而於軋延後迅速地進行加速冷卻 12 1339220 必須條件。具體而言,於920°C以下、860°C以上之限定範 圍中,進行累積壓下率20〜50%之較輕度軋延。若為此條 件,軋延形變不致過大,因而可抑制不必要之Nb、Ti析出, 也不會形成強力之集合組織,因此聲波非均向性不致增 大。此外,為於加速冷卻停止後亦能使適度之析出位殘存, 還可確保必要量之軋延形變。
加速冷卻-中途停止製程之加速冷卻停止溫度為有利 於Nb、Ti析出而定為600〜700°C,但為能於此種較高之停止 溫度下亦可獲得貝氏體體積率達30%以上之鋼組織,須使 1〇 鋼之成分組成限定在後述之特定範圍内,此外,在加速冷 卻時必須有2°C/sec以上、30°C/sec以下之冷卻速度。 在此獲得之見解為一創新的思考方式,即:從含高溫 域之軋延、加速冷卻至冷卻停止後之徐冷過程為止,於在 線狀態下制御Nb、Ti之碳化物或碳炭氮化物析出,而使習 15知之調質製程同等以上之析出強化得以在無需離線熱處理
之加速冷卻-中途停止製程中實現。 20 另外,依照該製程,可將鋼材組成之熔接破裂感受性 指數 Pcm(Pcm = [C] + [Si]/30 + [Mn]/20 + [Cu]/20 + [Ni]/6〇 + [Cr]/20+ [Mo]/15 + [V]/10+ 5[B];於此,[c]、[Si]、[Μη]、 [Cu]、[Ni]、[Cr]、[Mo]、[V]、[B]各自表示C、Si、Μη、 Cu、Ni、Cr、Mo、V、B之質量%)抑制為較低,而玎提供 一種PcmgO.18、即使在大入熱下炼接熱影響部韌性亦高、 熔接性優異且拉伸強度為570MPa級以上的高張力鋼材。 接著,針對特開2005-126819號公報所載發明中,板厚 13 1339220 30〜100mm程度之厚鋼材奉板厚中心部之降伏應力降低的 問題加以探討。首先,熔製出表1所示成分組成之鋼,將所 得鋼片以表2所示製造條件製成50mm厚之鋼板,再針對從 板厚之1/4份(l/4t份)及板厚中心部(l/2t份)採取之以JIS Z 5 2201為準的4號圓棒拉伸試驗片,以JIS Z 2241為準之方法 測定降伏應力及拉伸強度。結果係示於表2。 表1 m 化學組成(質 材 C Si Μη Ρ S Mo Ai Nb Ti Nb+2Ti A** N Pcm* W 0.06 0.18 1.74 0.013 0.016 0.13 0.057 0.032 0.020^ 0.072 0.0046 0.0044 0.162 X 0.06 0.38 1.16 0.005 0.014 0.06 0.019 0.063 0.007 0.077 0.0050 0.0050 0.135 *Pcm = C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B = (Nb+2Ti) x (C+N x 12/14) 表2
败造 任仵 No. 軋赶時之 加热顏 ro T* CC) 小約020oC 之累梢腰 下率 920*C 以 下 860*0 以上之絮 植歷下率 冷卻速度 (X /sec) 加速冷 卻停比 (¾) m (mm) {%) 珠光體 ^JGCTfl 降伏應力 (MPa) 拉伸強度 (MPa) (H) (%) (%) l/4t 1/2t l/4t U7\ 23 w 1230 12U 0 39 9 610 50 40 4 3 495 410 63S H4 X J250 r>n/n <ι-ι t 1225 0 39 10 $20 50 78 <1 5 4β9 4QB 6f5 60S 10
15 從表2可確認,l/4t份之降伏應力與拉伸強度及l/2t份之 拉伸強度滿足目標值,但板厚中心部之降伏應力降低而無 法滿足目標值450MPa。本案發明人針對其原因加以精心探 討,結果發現:產生在板厚中心部之島狀馬丁體引起降伏 應力降低,此外,以特開2005-126819號公報所記載之成分 組成與製造方法之組合,容易在板厚30〜l〇〇mm程度之厚鋼 材的板厚中心部產生島狀馬丁體。 茲就島狀馬丁體對降伏應力(上降伏點或0.2%耐力)造 成之影響加以探討。首先’炫製出表3所示成分組成之鋼, 令所得鋼片以表4所示製造條件製成50mm厚之鋼板,並針 對其板厚中心部(l/2t份),以倍率500倍之顯微鏡組織攝 14 * S ) 1339220 影’將lOOmmxlOOmm範固觀察10視野,算出島狀馬丁體之 體積率。再者,針對從該等試作鋼板之l/2t份採取而得之以 JISZ 2201為準的4號圓棒拉伸試驗片,以按照JISZ 2241為 準之方法測定降伏應力。該等結果係顯示於表4及第1圖。 表3 鋼 化學組成(哲Ί [%) 材 C Si Μη Ρ S ΑΙ Nb Ti Nb+271 A林 N Pcm* S1 0.07 0.00 1.86 0.016 0.003 0.035 0.045 0.014 0.073 0.0053 0.0025 0.163 S2 0.07 0.03 1.86 0.015 0.007 0.031 0.040 0.013 0,066 0.0047 0.0035 0.162 S3 0.07 0.05 1.82 0.013 0.006 0.036 0.042 0.012 0.066 0.0045 0.0034 0.158 S4 0.07 0‘07 1.85 0.016 0Ό05 0.027 0.046 0Ό14 0.074 0.0054 0.0028 0.165 S5 0.06 0.09 1.87 0.014 0.004 0.024 0.038 0.009 0.056 0.0036 0.0043 0.157 S6 0.07 0.12 1.68 0.015 0.006 0.023 0.050 0.013 0.076 0.0053 0.0032 0.155 S7 0.06 0.23 1.90 0.015 0.005 0.020 0.038 0,011 0.060 0.0038 0.0040 0.163 S8 0,07 0.27 1.86 0:012 0.004 0.039 0.045 0.012 0.069 0.0050 0.0036 0,171 S9 0.06 0.35 1.92 0.012 0.005 0.024 0.042 0.010 0.062 0.0041 0.0029 0.171 S10 0.06 0.42 1.75 0.010 0.002 0.034 0.039 0.009 0.057 0.0036 0.0037 0.162 *Pcm = C+Sr/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B = (Nb+2Ti) x (C+N x 12/14)
表4 期材 軋延時之 加熱湿度 (°C) T*(°C) 小於1020°C 超過920弋之 累積壓下率 (%) 920°C以下 860°C以上 之 累積壓下率 (%) 冷卻速度 (°C/sec) 加熱冷 卻停It 速度 (0〇 板厚 (mm) 島狀馬 丁體之 體積率 (%) 降伏應丈 (MPa) 1/2t SI 1260 1235 0 35 10 620 50 0.0 536 S2 1250 1217 0 34 to 630 50 0.3 532 S3 1260 1210 0 38 10 630 50 0.5 530 S4 1270 1237 0 34 10 620 50 0.8 522 S5 1230 1176 0 37 10 630 50 2.3 489 S6 1265 1236 0 32 10 620 50 3.3 408 S7 1210 1185 0 35 10 620 50 3.8 405 S8 1240 ms 0 36 10 610 SO 4.3 400 S9 1220 ”95 0 34 10 620 50 5.3 385 S10 1210 1177 0 37 10 630 50 6.2 370 *T=6300/(1.9-LogA)-273; A = (Nb+2Ti) x(C+N X 12/14).
由同圖可知,若存有體積率達3%以上之島狀馬丁體, 降伏應力將大幅降低。其理由在於拉伸試驗時之應力_形變 曲線的形狀在降伏應力領域中發生極大變化。具體來說,
15 1339220
15
20 未含有島狀馬丁體之鋼的應力·形變曲線係、如模式圖之第2 时之Α鋼所例示般,具有上降伏點。另-方面,以體積率 十3有數%島狀馬丁體之鋼的應力·形變曲線係如模式圖之 第2圖中,Β鋼所例不般,未出現明顯之上降伏點而成為圓 弧形1是因為’上降伏點出現前之低應力負荷時已緩發 生局部性的降伏(局部降伏),以㈣耐力測定時之降伏應 力’、產生有上降伏點之鋼的降伏應力相較下較低。因此, 於存有島狀馬丁體之鋼中,以G2%_力測定之降伏應力盘 未存有島狀馬丁體之鋼相較下大幅降低。於存有島狀馬; 體之鋼中’在㈣應力貞荷雜生局騎伏之理由尚未明 朗’但可推測如下:在產生島狀馬丁體時,鄰接島狀馬丁 體之純粒齡内或収體粒⑽導人因馬T體相變膨張而 發生的可動轉位,該可動轉位在拉伸試驗之低應力負荷時 將局部移動而導致局部降伏。 更進v針對島狀馬丁體之產生條件進行詳盡之探 討。結果得知,以特開2〇〇5_丨26819號公報所載發明之成分 組成,容易在板厚為3〇〜丨00mm程度之厚鋼材的板厚中心部 產生島狀馬丁體。其部分原因在於,特開2005-126819號公 報所載發明之成分組成特徵中,為將析出強化作最大限利 用而必須添加多量Nb。Nb具有讓奧氏體朝純粒鐵及貝氏體 之相變延遲的效果。再者,特開2005-126819號公報所裁發 明之製造方法中,軋延係於860°C以上進行,且亦將92〇。(: 以下之累積壓下率限定在5〇%以下,因此,在板厚為 30〜100mm程度之厚鋼材的板厚中心部中’軋延形變之蓄積 16 1339220 5 減少,結果,奥氏體粒不易透過軋延形變所造成之再結晶 發生細粒化,而成為較粗大之顆粒。奥氏體粒若粗大,純 粒鐵相變或貝氏體相變開始溫度將降低。因此,板厚中心 部在軋延後之加速冷卻中,貝氏體相變將在不足狀態下直 接移行至徐冷階段,伴隨成分組成特微之多量Nb添加所弓丨 起之相變延遲效果,徐冷中亦有部份貝氏體相變或珠光體 相變未結束之部分,推測其為產生島狀馬丁體之成因。
10 但是,若板厚中心部之島狀馬丁體體積率小於3%,則 如第1圖所示般,降伏應力之降低較小,而為可接受之 圍。厂 苹已 旱鋼板之板厚中心部的降伏應力必須滿足500MPa以上 0夸’則較佳之島狀馬丁體體積率為1%以下。 15
接著’針對減少板厚中心部之島狀馬丁體的方法加以 檢4 °結果,如第3圖所示’將Si量減少至小於〇.ι〇〇/0, 可使板厚中心部之島狀馬丁體的產生量減少至小於3 %未 再者,第4圖係顯示對板厚中心部之降伏應力造成影響 之暑 。將Si量減少至小於〇1〇%可大幅提高板厚中心部之 r伏應力。厚鋼材之板厚中心部之降伏應力需滿足500MPa :上時’較佳之&量為〇 〇7%以下。將&量減少至小於〇 ι〇% ^抑制島狀馬丁體產生之理由尚未明朗但有如下之可能 長Sl難以固浴於渗碳體(eementite)中而使渗碳體之成 =遲’故而減少Si量可促進渗碳體之成長,貝氏體相變 光體相變受到促進,結果抑制島狀馬丁體之產生。 本發明係基於上述切而首揭者,其要旨係如下所述。 (1) 一種聲波非均向性小、祕性優異、降伏應力在 17 1339220 450MPa以上且拉伸強度夺570MPa以上之高張力鋼板,其以 質量%計係含有下述成分組成:C: 0.03%以上、0.07%以下; 5
10
Si:小於0.10% ; Μη : 0.8%以上、2.0%以下;及,A1: 〇.〇〇3% 以上、0.1%以下;更滿足下列條件地含有Nb、Ti:Nb: 0.025% 以上,Ti: 0.005%以上;且〇.〇45%S [Nb] + 2x[Ti]S 0.105% ; 並進一步含有·· N :超過0.0025%、0.008%以下;而,更於 可使下述所示A值滿足0.0022以上、0.0055以下之關係的範 圍内含有Nb、Ti、C及N ’且熔接破裂感受性指數pcm為Ο」8 以下’殘餘部分則由Fe及不可避免之不純物構成;並且’ 於鋼組織中’貝氏體之體積率為30%以上,珠光體之體積 率為小於5%’島狀馬丁體之體積率小於3〇/〇 ; A = ([Nb] + 2x[Ti])x([C] + [N]x 12/14) Pcm = [C] + [Si]/30 + [Mn]/20 + [Cu]/20 + [Ni]/6〇 + [Cr]/204- [Mo]/l5 + [V]/l0 + 5[B] 15
20 於此,[Nb]、[Ti]、[C] ' [N]、[Si]、[Mn]、[Cu]、[Ni]、 [Cr]、[Mo] ' [V]、[B]各自為以 Nb ' Ti、C、N、Si、Mn、 Cu、Ni、Cr、Mo、V、B之質量。/〇表示之含量。 P)如前述(1)之聲波非均向性小、熔接性優異、降伏 應力在450MPa以上且拉伸強度在57〇MPa以上之高張力鋼 板,其以質量%計更含有:Mo : 0.05%以上、〇·30/0以下。 (3)如前述(1)或(2)之聲波非均向性小、熔接性優異、降 伏應力在450MPa以上且拉伸強度在57〇MPa以上之高張力 鋼板,其以質量%計更含有下各成分中之丨種或2種以上: Cu : 0.1%以上、〇.8%以下;Ni : 〇 1%以上、丨〇%以下;& : 18 1339220
10 15
0.1%以上、〇.8%以下;V.: 〇.01%以上、小於0.03% ; W : 0.1 %以上、3%以下;及,B : 0.0005%以上、0.0050%以下。 (4)如上述(Ο〜(3)中任一之聲波非均向性小、熔接性優 異、降伏應力在45〇MPa以上且拉伸強度在570MPa以上之高 5張力鋼板,其以質量%計更含有下述成分中之1種或2種: Mg : 0.0005%以上、0.01%以下;及,Ca : 0.0005%以上、 0.01 %以下。 (5) —種聲波非均向性小、溶接性優異、降伏應力在 450MPa以上且拉伸強度在570MPa以上之高張力鋼板的製 造方法’其係使具有如前述(1)至(4)中任一之成分組成的麵 片或鑄片加熱至如下述之T(°C)以上、1300X:以下,再以 1020°C以上之溫度範圍進行粗軋後進行精軋,該精札係在 小於1020°C、超過9201之範圍内令累積壓下率抑制於1 $% 以下,而在920°C以下、860°C以上之範圍内令累積壓下率 為20%以上、50%以下,接著’從800。0以上開始加速冷卻, 使冷卻速度為2°C/sec以上' 30°C/sec以下,並於7〇〇t以下 600°C以上時使該加速冷卻停止,之後再以〇 4°c/sec以下之 冷卻速度進行冷卻; T-6300/(1.9-LogA)-273 2〇 於此,A=([Nb] + 2x[Ti])x([C] + [N]xl2/l4),而⑽卜 [丁十[(:]及[叫各自指以1^、丁卜(:、^4之質量%表示之含量。 依據本發明,可利用合金添加量少而甚經濟之成八爹 成且生產性高之非調質製造方法製得一即使連板厚達 30〜100mm程度之厚鋼材的板厚中心部亦具有聲波非均向 19 1339220
10 15
性小、熔接性優異、降伏應力450MPa以上且拉伸強度達 570MPa以上之特性的高張力鋼板,其對產業界造成之效應 極大。 圈式簡單說明 5 第1圖係顯示板厚中心部之島狀馬丁體體積率與降伏 應力之關係者。 第2圖係一將未存有島狀馬丁體之鋼板(a鋼)在拉伸試 驗時之應力-形變曲線與存有島狀馬丁體之鋼板(B鋼)在拉 伸試驗時之應力-形變曲線間之差異作模式性對比之圖。 第3圖係用以顯示鋼成分Si量對板厚中心部之島狀馬 丁體體積率所造成之影響者。 第4圖係用以顯示鋼成分Si量對板厚中心部之降伏應 力所造成之影響者。 【貧施方式3 實施發明之最佳型態 從將本發明中之各成分及微組織等各發明特定事項之 限定理由說明於下。 C將與Nb、Ti形成碳化物及碳氮化物,而成為本發明鋼 之強化機制中的主要素,為甚重要之元素。若c量不足,於 20加速冷卻停止後之徐冷過程中,析出量將不足而無法獲得 強度。相反地,若過剩,軋延中之奥氏體域中之析出速度 將增快,就結果來說,加速冷卻停止後之徐冷過程中,整 合析出量不足而無法獲得強度。因此,C量限定於〇〇3%以 上、0.07%以下之範圍。 20 1339220 為抑制島狀馬丁體芩產生,Si之上限需限定在小於 0.10。/。。Si量達〇.丨〇%以上時,板厚為30mm程度以上之厚鋼 板(特別是板厚中心部)中,島狀馬丁體之體積率將超過 3%,降伏應力(0·2%耐力)及韌性容易降低。厚鋼材之板厚 5 中心部之降伏應力需滿足500MPa以上時,較佳之Si量為 0.07%以下。Si量之下限無須特別限定’為〇%。 為獲得提高淬火性之貝氏體單相或貝氏體體積率達
30%以上之貝氏體與純粒鐵之混合組織,Μη為必要元素。 為達此目的,必須在0.8%以上’但若添加至超過2.0%將導 10 致母材韋刃性降低’而將上限定為2.0%。 作為一般之脫氧元素,令Α1之添加範圍為0.003%以 上、0.1 %以下。
Nb及Ti將形成NbC、Nb(CN)、TiC、TiN、Ti(CN)或該 等之複合析出物,甚或該等與Mo之複合析出物,而為本發 15 明鋼之強化機制的主要素,為甚重要之元素。加速冷卻-中
20 途停止製程中,為獲得充分之複合析出物,必須同時添加 0.025%以上之Nb與0.005。/。以上之Ti,並控制成[Nb] + 2x[Ti] 為0.045%以上,且令A = ([Nb] + 2x[Ti])x([C] + [N]xl2/14) 時,A值為0.0022以上(於此,[Nb]、[Ti]、[C]、[N]各自表 示Nb、Ti' C、N之質量%)。需要超過570MPa之拉伸強度(如 600MPa以上之拉伸強度)時,宜同時添加0.035%以上之Nb 與0.005%以上之Ti,並控制成[Nb] + 2x[Ti]為0.055%以上。 [Nb] + 2x[Ti]若超過〇.1〇5〇/0,因Nb、Ti之添加量過多,而有 使產生之析出物變得粗大之傾向,反而使析出物個數減 l C '3 •m0 21 1339220 少,進而導致析出強化量降低而無法滿足拉伸強度 570MPa。因此,需使[Nb] + 2x[Ti]為0.105%以下。A = ([Nb] + 2x[Ti])x([C] + [N]xl2/14)之值若超過0.0055,奧氏體中之 碳化物、氮化物及碳氮化物之析出速度將過快,致使析出 物粗大化,加速冷卻停止後之徐冷過程中的整合析出量亦 不足’使析出強化量降低而無法滿足拉伸強度57〇Mpa。因 此’ A之值需在0.0055以下。
N將與Ti結合而形成TiNcTiN呈微細分散時,因釘扎效 應(Pinning Effect)而抑制熔接熱影響部組織之粗大化,提高 熔接熱影響部之韌性。但是,N若不足至〇.〇〇25°/。以下之程 度,TiN將變得粗大而無法獲得釘扎效應。於此,為使TiN 微細分散,N至少需超過0_0025%。即使在熔接熱影響部 (HAZ)之暴露在更高溫下之溶融線(FL)附近的部分為獲得 TiN之微細分散效果以更提高韌性,宜令N為超過〇 〇〇4%。 15
此外,若過剩地含有N,反而使母材及熔接接縫之韌性降 低,因此令可接受之上限為0.008%。需極力抑制韌性之降 低時’ N之上限宜為0,006%。
Mo可使淬火性料,且與Nb'Ti形成複合析出物而對 強化帶來甚大助益。為獲得此一效果而添加〇 〇5%以上。但 2〇是,若添加過剩,則將阻礙熔接熱影響部之韌性,故而添 加在0.3%以下。
Cu作為強化元素添加時,為發揮其效果需達以 上,但即使添加超過0.8%,其效果亦不會與添加量成比例 增加,且若添加過剩將阻礙熔接熱影響部之韌性故而令 22 < £ > ^39220 其為0,8%以下。 Νι在欲提高母材韌性而添加時,需達〇1%以上,但過 剩添加將阻礙熔接性,且其亦為高價元素,故而令添加之 上限為1.0%。
10 15
20 C r與Μ η相同可使浮火性提高,而有易獲得貝氏體組織 之效果。為達該目的而添加〇.1%以上,但若過剩添加將阻 礙溶接熱影響部之勒性’而令上限為〇8%。 V與Nb、Ti相較下強化效果較少,但某種程度上具有 提高析出強化與淬火性之效果。為獲得此效果,Q Q1%以上 之添加量是必要的’但若過剩添加將導致祕熱影響部之 韌性降低,即使在欲添加之情况下,亦令其小於〇 〇3%。 W可提高強度。欲添加時需添加〇1%以上,但多量地 添加將使成本乂南’而令率加量為3%以下。 B可提高淬火性’為獲得強度而欲添加時,〇 〇〇〇5%以 上之添加量是必要的,但即使添加超過〇 〇〇5〇%其效果亦不 發生變化,故而令添加量為0.0005%以上、0.0050%以下。 藉由添加Mg及Ca中之1種或2種以形成硫化物或氧化 物’進而可提高母材韌性及炫接熱影響部之韌性。為獲得 此效果,Mg或Ca需各自添加0.0005%以上。但是,若添加 超過0.01%而過剩,將產生粗大之硫化物及氧化物’反而使 韋刃性降低。因此’令添加量各自為〇 〇〇〇5%以上、0.01%以 下。 上述成分外之不可避免的不純物,即p、S係使母材韌 性降低之有害元素,其量越少越好。較佳地’令Ρ為0.02% 23 1339220
10 15
以下、S為0.02°/。以下。 此外,熔接破裂感受性指數Pcm若超過〇,18,將無法避 免大入熱炫接下之炫接熱影響之細性降低,而須在〇. 1 8%以 下。於此 ’ Pcm = [C] + [Si]/30 + [Mn]/20 + [Cu]/20 + [Ni]/60 5 + [Cr]/20 + [Mo]/l 5 + [V]/l〇 + 5[B],[C]、[Si]、[Μη]、[Cu]、 [Ni]、[Cr]、[Mo]、[V]、[B]各自意味著以c、Si、Mn、Cu、
Ni、Cr、Mo、V、B之質量%表示之含量。 為促進本發明中Nb、Ti之碳化物、氮化物或碳氮化物 之微細整合析出而獲得充分之強化,宜充分存有加工組織 所含之轉位及變形帶等之析出位,在此觀點下,貝氏體組 織與純粒鐵組織相較,易維持轉位密度等之加工組織,為 理想之金屬組織。但,貝氏體之體積率若小於30%,難以 確保拉伸強度570MPa,其體積率宜在30%以上。 若存有珠光體,Nb、Ti之碳化物、氮化物或碳氮化物 將朝其相界面析出,目的之強化效果將變小,不僅難以確 保拉伸強度570MPa,韌性等特性亦將降低,必須極力減 少’但其體積率若小於5%,則此等不良影響尚小而為可接 文之範圍。 若存有島狀馬丁體,將使降伏應力(上降伏點或0.2%耐 20 力)及韌性降低而需極力減少,但若其體積率小於3%,此等 愿影響尚小而為可接受之範圍。島狀馬丁體特別容易產生 於板厚中心部。為使板厚中心部中亦可獲得450MPa以上之 降伏應力,板厚中心部亦須使島狀馬丁體之體積率小於 3°/0。較佳之島狀馬丁體之體積率為小於2%。 24 其-人,針對成分以外夂製造方法地各發明特定事項加 以敛述。 為使Nb、丁i充分固溶,需使鋼片或镑片之加熱溫度較 下述含A值之條件式所算出的溫度丁(。〇更高。 5 T= 6300/(1.9-LogA)-273 於此,A = ([Nb] + 2x[Ti])x([C]+[N]xl2/14),[Nb]、 [Τι]、[C]、[N]各自表示Nb、Ti、C、N之質量 %。此外,L〇gA 為常用對數。但是,若令加熱溫度超過13〇〇t,奥氏體粒 杈將粗大化而亦成為韌性降低之原因,軋延時之鋼片或鑄 10片之加熱溫度宜為TfC)以上、1300。(:以下。 就軋延而言,為儘可能抑制軋延中之Nb、Ti析出,在 1020 C以上之溫度範圍下以適當之壓下率進行粗軋延後, 小於1020°C、超過920DC之範圍下之軋延需令累積壓下率為 15°/。以下。更者’爲獲得作為析出位之必要且充分的加工 15組織,係以920t以下、860°C以上之範圍且累積壓下率20% 以上、50%以下進行軋延。若為該軋延條件,集合組織之 形成將受到抑制,而使聲波非均向性不致增大。 為抑制加工組織之回復及加工後之析出,軋延結束後 迅速地進行加速冷卻。該加速冷卻係以從800°C以上起冷卻 20 速度為2°C/sec以上、3(TC/sec以下之條件進行。為使貝氏體 之體積率達30%以上,2°C/sec以上之冷卻速度是必要的, 且為使珠光體之體積率小於5%、島狀馬丁體之體積率小於 3%,令冷卻速度之上限為3〇°C/sec以下。為使鋼板溫度為 和70(TC以下、600°C以上’使加速冷卻中途停止,之後以 25 1339220 放冷等手法令冷卻速度為〇.4°C/sec以下。其目的在於確保 Nb、Ti及該等之複合析出、以及與Mo之複合析出所需的充 分溫度及時間。加速冷卻停止溫度若過於高溫則難以獲得 貝氏體組織,相反地,低溫下析出將延遲而無法獲得充分 5之強化。此外,加速冷卻停止後,鋼板之中心部溫度較表 面更為高溫’因此,在之後,鋼板表面溫度係透過來自内 P之復”.、而度上昇’再轉而冷卻。於此,所謂之加速冷 、制T止/皿度係指復熱後之鋼板表面之最高到達溫度。 本發明_係用作橋樑、船舶、建築構造物、海洋構造 10 物、壓力衮3? γ 克、壓力水管及管道等之熔接構造物的構造組 件而以厚鋼板之形態被使用者。 實施例 炼製表5 15
、、表6所示成分組成之鋼,將所得鋼片以表7、 表斤示製造條件製為12〜100mm厚之鋼板。於該等中, _A 2〇 T為本發明鋼,21-U〜48-A為比較例。表中,底線標 八之數子係表示成分或製造條件超出專利範®,¾是特性 未滿足K目標值者。 26 1339220 表5 期 符 化學組成(筠置%> c Si Μη P s Cu Ni Cr Mo At Nb Ti Nb+2Ti A林 V W Θ Mg Ce N Pem* A 0.07 0.00 2.00 〇j〇16 0.009 0.005 0.038 0.014 0.066 0.0049 0.0045 0.170 β 0.07 0.02 1.98 0.014 0.004 0.11 0.041 0.039 0.017 0.073 0.0054 0.0042 0.177 C 0.04 0.09 1.02 0.015 0.007 0.12 0.056 0.049 0.017 0.083 0.0037 0.0050 0.102 0 0.06 0.04 1.09 0.008 0.017 0.06 0.016 0Ό49 0.019 0.087 0.0055 0.D032 0.120 E 0.04 0.06 1^3 O.Q05 O.OU 0.13 0.040 0.039 0.019 0.077 0Ό034 0.0052 0.117 F 0.04 0.05 1.41 0.006 0.015 0.064 0.025 0Ό19 〇j〇63 0.0027 0.0016 0.0027 0.120 G 0.06 0.05 0.87 0.016 0.013 0^3 0.049 0.044 0.019 0.082 0.0052 0,0044 0.121 H 0.04 0.03 1.5t 0.012 0.013 0.14 0.038 0.045 0.009 0.063 0.0027 0.0028 0.126 1 0.05 0.03 U7 0.009 0.002 0.18 0.022 0.043 0.020 0.083 0.0046 0.024 0.0057 0.129 J 0.06 0.03 1.81 0.016 0.010 0.075 0.050 0.014 0.078 0.0050 0.11 0.00S5 0.152 K 0.06 0.06 1.21 0.007 0.011 0.26 0.069 0.040 0.015 0.070 0.0045 0.0017 0.0050 0.148 L 0.06 0.02 1.60 0.013 0.018 0.66 0.28 0.028 0.041 0.020 0.081 0.0050 0.0027 0.170 M 004 0.02 1.41 0.016 0.011 0.17 0.21 0.050 0.036 0.017 0.070 0.0031 0.0042 0.134 N 0.05 0.09 1.56 0.008 0.009 0.51 0.06 0.031 0.049 0.007 0.063 0.0035 0.0056 0.161 0 0.05 0.02 1.01 0.012 0.006 0.26 0.010 0.037 0.008 0.053 0.0028 0.026 0.0045 0.0028 0.121 P 0.06 0.02 0.86 0.010 0.013 0.70 0^8 0.10 0.017 0.041 0.011 0,063 0.0040 0.0014 0.0035 0.159 0 0.05 0.04 1.97 o.ooe 0.007 0.19 0.020 0.027 0^)14 0卯5 0.0029 0.0020 0.0029 0.163 R 0.06 0.09 1.05 0.007 0.004 0.13 0.071 0.042 0.013 0.068 0.0044 0.0049 0.0060 0.124 S 0.03 0.07 Ϊ.25 0.005 0.005 0^9 0.88 0.50 omo 0.065 0.007 0.079 0.0026 0.0029 0.149 T 0.03 0.02 1.40 0.012 0.002 0^8 0.62 0.40 022 0.064 0.095 0.005 0.105 0.0034 0.0010 0.0026 0.180 ♦Pern = C+Si/30+Mn/20+Cu/20+Ni/60+Cr/2CKM〇/15+V/10-f5B **A = (Nb+2Ti)x(C+N X12/14)
表6 m 化學粗成(aa%> 材 C Si Μη P s Cu Ni Cr Mo Al Nb Ti Nb+2Ti A** V W Θ Me Ce N Pern* u 0.02 0.08 1.95 0.006 0.006 0J7 0.065 0.063 0.006 0.075 Q.OOfP 0.0055 0.132 V 0.09 0.08 0.69 0.011 0.017 0.25 0.045 0.030 0.022 0.074 0.0070 0.0052 0.154 w 0.06 0,1$ 1.74 0.013 0.016 0.13 0.057 0.032 0.020 0.072 0.0046 0.0044 0.162 X 0.06 0·38 1.16 0.005 0.014 0.0Q 0.019 0.093 0.007 0.077 0.0050 0.0050 0.135 Y 0.07. 0.07 0.76 0.018 0.019 0^7 0.063 0.043 0.012 0.067 0.0049 0.0029 0.128 z 0.04 0.07 ?43 0.004 0.017 0.10 0.066 0.055 0.015 0.085 0.0037 0.0043 0.171 AA 0.06 0.07 Ο.Θ3 0.006 0.003 m 0.060 0.026 0.016 0.058 0.0037 0.0053 0.150 ΑΘ 0.04 0.08 1.89 0.004 0.005 0.15 0.004 0012 0.022 0.056 0.0024 0.0039 0.147 AC 0.03 0.09 1.90 0.019 0.015 0.004 0.108 0.019 0.146 0.0048 0.0032 0.128 比 AD 0.06 0.05 1.66 0.01 Θ 0.017 0.15 0.029 0.051 0.003 0.057 0.0036 0.0028 0.155 較 AE 0.04 0.05 1.37 0.014 0.008 0.26 0.013 0.062 〇m 0.152 Q,〇0M 0.0054 0.128 供 AF 0.03 0.08 1.93 0.012 0.010 0.20 0.047 0.035 0.012 0.059 P,〇〇19 0.0026 0.143. AG 0.07 0.09 1.24 0.004 0.020 o.to 0.044 0.047 0.025 0.097 0.0071 0.0041 0.142 AH 0.04 0.08 1.61 0.015 0.012 0J2 0.053 0.056 0JD11 0.078 0.0033 0.0022 0.131 A1 0.06 0.09 0.85 0.007 0.008 0.17 0.041 0.056 0.016 0.092 0.0065 0.0119 0.117 AJ 0.06 0.05 1.24 0.009 0.003 022 0.034 0.057 0JD22 0.101 0.0064 0,070 0.0036 0.144 AK 0.05 0.06 0.88 0.011 0.002 1.28 0.i5 0.066 0.026 0.011 0.048 0.0026 0.0059 0.170 AL 0.05 0.06 1.49 0.020 0.011 1.78 0.19 0.050 0.066 0.019 0.104 0.0055 0.0039 0.169 AM 0.05 0.08 1.15 0.019 0.017 1·15 0.1 S 0.035 0.044 0.019 0.082 0.0045 0.0057 0.178 AN 0.06 0.08 1.77 0.019 0.008 0.20 0.022 0.034 0.007 0.048 0.0031 0.017 0.0043 0.165 AO o.oe 0.08 1.58 0.016 0.008 0.13 0.002 0.044 0.018 0.080 0.0051 0.015 0.0047 0.150 ♦Pern = C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B **A = (Nb+2Ti) x{C+N x 12/14) (S ;j 27 1339220
本發明例 製造 條件 No. 明材 礼延時 之加熱 mm ro T*(eC) 小州020¾ Se920°C (%) 920°C 以 下B80eC 以上之m 供e下 亭 (%) 冷卻速 度 (X /sec) 加速冷 卻停止 温度 (βΟ 板9 (mm) 貝氏β 之β携 率 (%) 珠光β znm 串 (%) 島狀馬丁 «I之饅積 率 (%) 降伏應力 (MPa) 拉伸強度 (MPa) 母材 靭性 vTrs (°C) 溶接钴 彩轚部 之靭性 vE-20 (J) 靠騖向性· (音速比) 1/4t 1/2t 1/4t 1/2t 1 A 1280 1223 0 31 10 610 5D 90 <1 1 523 510 620 611 -55 276 1.01 2 β 1260 1238 0 30 6 600 75 85 3 2 513 505 596 588 -50 248 1.01 3 C 1260 1180 15 50 30 700 12 30 4 2 5 S5 6 35 -80 308 too. 4 D 1270 1240 10 45 20 650 25 78 <1 <1 564 650 -65 254 1.00 5 E 1190 1170 0 42 15 63〇 35 87 <1 <1 535 524 645 635 -50 316 ΐ.01 6 F 1250 1135 0 39 15 630 35 90 <t <1 546 534 634 626 -70 281 1.01 7 Q 1260 1234 0 32 15 630 35 93 <1 <1 545 529 650 639 _6〇 2A9 1.0ί 8 H 1280 1135 0 31 12 1 620 40 89 <1 1 543 528 646 634 -55 324 1.01 9 ! 1270 1212 0 36 12 620 40 的 <1 1 534 523 622 609 -65 264 1.01 10 J 1270 1228 0 37 10 610 50 87 1 t 532 522 631 629 -60 316 1.01 11 K 1230 1210 0 34 10 620 50 ββ 1 1 536 512 633 620 -55 259 1.01 12 L 1240 1228 0 22 8 600 60 83 1 2 517 505 606 597 -45 292 1.00 13 M 1170 1154 0 38 15 630 35 93 <1 <1 555 537 647 634 -60 311 1.01 14 N 1220 1171 0 40 β 640 60 68 4 2 488 467 612 589 -55 256 1.00 15 0 1260 Π41 8 31 20 660 25 8Τ <1 <1 562 641 -65 276 1.00 t6 P 1220 1192 0 38 10 620 50 92 1 2 529 507 634 612 -50 316 1.01 17 Q 1210 1146 0 31 10 620 50 93 1 2 522 509 638 627 -50 302 1.00 18 R 1270 1208 0 30 15 630 35 95 <1 <1 567 547 667 654 -65 290 1.02 19 S U70 1130 0 42 10 610 50 94 \ 2 533 512 B35 623 -50 254 1.00 I 20 T 1230 "88 0 39 3 600 100 76 3 2 468 459 590 588 -40 303 1.00 *T=e3〇〇/(l.9-LogA)-273 ; A = (Nb+2T〇 x(C+Nx 12/14; 表8
比较俐 製造 條件 No. 费材 fum 之加熱 mgt Cc) T* rc) 小於1020 %超過 920¾^ 签携懕下 *(%) >20Χ^Γ 下 βδ〇1 以上之 mftm 下率 (9i>) 冷卻速 度 (¾ /sec) 加逋冷 卻侈止 溫度 (¾) 板摩 (mm) 貝氏β 之領梢 率 珠光饅 之18梢 率 島狀馬 丁《之 mwm 降伏應力 (MPa) 拉伸強度 (MPa) 母材 靭性 vTrs mm 擧淡部; 之鞀性 vE-20 CJ) 波非均 向性 (音速比) 1 (%) (%) (%) I/4t 1/2t 1/4t l/2t (°C) 21 U 1250 1087 0 39 10 610 50 55 <1 1 432 m 5ZI m -75 276 1.01 22 V 1290 1280 0 39 10 600 50 β5 6 2 44β 432 546 sai -75 248 1.02 23 w .. 1230 1214 0 39 9 610 50 40 4 1 495 m丨 &35 621 -55 308丨 1.00 24 X 1250 1225 0 39 10 620 50 78 <1 互 4的ι 408 ' 615 605 -55 254 1.01 25 Y 1250 1222 ο ! 45 10 630 50 87 <1 <1 467 462 536 m -55 316 1.01 26 Z 1200 1182 0 39 10 600 50 90 <1 2 S09 1 489 655 642 =5 63 1.01 27 1200 1183 0 39 10 610 50 93 <1 Z 502 1 478 650 639 -25 21 1.01 28 AB 11B0 1122 0 39 10 650 50 62 4 t 436 423 522 sia -70 335 1.01 29 AC 1240 1220 0 39 to 620 50 48 2 2 468 453 $06 586 -30 32 1.02 30 AD 1200 1176 0 50 d 610 SO 87 1 <i 445 433 563 bps -60 12$ 1.01 3f Αε 1290 1275 0 39 10 620 50 的 1 <r 515 498 605 597 -35 IS 1.01 32 AF 1180 1090 0 40 10 600 50 83 1 <1 4S0 432 SfiO 545 -65 342 tm 33 AG 1290 1264 0 40 10 630 SO 93 <1 1 459 445 姐 m -40 n 1.01 34 AH 1200 1163 0 35 10 610 50 BO 2 1 499 477 615 590 -75 ~5Γ" 1.01 35 A1 1280 1267 0 39 to i 620 50 81 2 <t 506 489 610 592 d. 13. 1.00 36 AJ 1280 1265 0 39 10 620 50 92 1 <1 527 504 625 610 -€5 迪 ! 1.01 37 AK 1200 U34 0 ί 39 8 620 50 93 1 <1 479 46B 5d9 516 -30 36 1.00 38 AL 1260 1243 0 39 10 630 50 95 <1 <1 478 462 593 579 -55 ί.02 39 AM ! 1240 1210 0 35 10 I 610 50 94 1 <ί 1 498 477 630 618 -65 奴 1:01 40 AN 1200 1154 1 0 39 10 640 50 78 3 2 466 458 618 597 39 1.01 41 AO 1240 1230 0 39 9 650 SO 76 3 2 460 448 596 5B7 zlfl 44 1.00 42 A 1200 1223 0 35 10 600 so 76 3 <1 kSBii ¢51 RggRIEflEa -60 27S~ 1.01 43 A 1240 1223 as 35 10 610 50 78 3 <1 -55 220^ 1.00 44 A 1240 1223 0 m 10 600 SO 76 3 <1 532 -15 289 ί.00 45 A 1240 1223 0 m 10 620 50 76 3 <1 435 425 552 S4g -55 270 1Μ 46 A 1240 1223 0 48 l 680 35 40 3 β 408 m 590 -55 288 1.01 47 A 1240 1223 0 40~ 10 Μ 50 48 3 2 415 422 MI. 532 -75 303 1.00 48 A 1240 1223 〇 1 40 10 480 50 98 <t <1 426 418 5SZ -80 278 t.01 *T=6300/(l.9-LogA)-273 ; A * (Nb+2Ti)X(C+N X 12/14) s 28 1339220 拉將針對該等鋼板所作之母材強度、韋刀性與溶接熱影 響部之純及聲波非均向性之測定結果顯示於表7、表8。 才木取以JIS z 2201為準之1A號全厚拉伸試驗片或4號圓棒拉 伸試驗片,再以按瓜工咖為準之方法測定母材強度。板 5厚25mm以下係採取1A號全厚拉伸試驗片,板厚超過25mm 超則從板厚之丨/4份(l/4t份)與板厚中心部(1/2t份)採取4號 丸棒拉伸^»式驗片,以作為拉伸試驗片。從相對軋延方向呈 ^ 直角方向之板厚中心部採取依JIS Z 2202為準之衝擊試驗 片,並以按照Jis Z 2242為準之方法求出破面遷移溫度 10 (vTrs),以評估母材韌性。板厚32mm以下之鋼材係以原本 之厚度,板厚超過32mm之鋼材則準備已減厚為32mm之鋼 板,對b型斜角之焊接部進行入熱量2〇kJ/mm之大入熱潛弧
I 熔接(submerged arc welding),槽口底沿著溶融線(fusion line)採取JIS Z 2202規定之衝擊試驗片,以·2〇^下之吸收能 15菫(νΕ-20)評估熔接熱影響部之韌性。聲波非均向性係依照
曰本非破壞檢查協會規格NDIS2413-86,若音速比為1.02以 下則評估為聲波非均向性小。各特性之目標值各自為:降 伏應力450MPa以上、拉伸強度57〇MPa以上、vTrs為-20°C 以下、vE-20為70J以上、音速比為1 〇2以下。以在板厚中心 20部攝影之倍率500倍的顯微鏡組織照片,將lOOmmxlOOmm 之範圍作10視野觀察,算出母材組織之體積率。 實施例1-A〜2〇·Τ均為降伏應力超過450MPa、拉伸強度 超過570MPa、熔接熱影響部之韌性vE_2〇超過200J且音速比 為丨.02以下’聲波非均向性甚小。 29 丄幻9220
15
相對於此,比較例21-U因C較低、比較例22-V因C較 鬲、比較例25-Y因Μη較低、比較例28-AB因Nb較低、比較 例3〇-八0因丁丨較低、比較例32-AF因上述參數A之值(A = ([灿]+ 2父[叫)><([(:]+ [川><12/14))未滿 0.0022、比較例 33-AG係因參數a之值超過0.0055、比較例42-A因加熱溫度 較T°C低、比較例46-A係因冷卻速度較小,導致降伏應力及 拉伸強度不足。 比較例47-A因加速冷卻停止溫度較高,比較例48_A則 因加速冷卻停止溫度較低,兩者均降伏應力及拉伸強度不 足。 比較例23-W、24-X係因Si量較多,島狀馬丁體之體積 率達3%以上,使l/2t份處之降伏應力不足。 比較例27-AA因Mo量較多、比較例29-AC因Nb量較多 且Nb + 2Ti超過0.105%、比較例31-AE因Ti量較多且Nb + 2Ti 超過0.105%、比較例34-AH因N量較少、比較例36-AJ因V 量較多、比較例37-AK因Cu量較多、比較例38-AL因Ni量較 多、比較例39-AM因Cr量較多、比較例40-AN因Mg量較多、 比較例41-AO因Ca量較多’任一者均溶接熱影響部之拿刃性 低。 比較例26-Z因Μη量較多、比較例35-AI因N量較多,兩 者均母材韌性低。 比較例43-Α因小於1020°C、超過920t之範圍下的累積 壓下率較高、比較例44_A則是因920。(:以下、860°C以上之 範圍下的累積壓下率較低,兩者均降伏應力及拉伸強度低。 30 ί 5 > 1339220 比較例45-A因920°C以下860°C以上之範圍下的累積壓 下率較高,降伏應力及拉伸強度低,且聲波非均向性大。 【圖式簡單說明3 第1圖係顯示板厚中心部之島狀馬丁體體積率與降伏 5 應力之關係者。 第2圖係一將未存有島狀馬丁體之鋼板(A鋼)在拉伸試
驗時之應力-形變曲線與存有島狀馬丁體之鋼板(B鋼)在拉 伸試驗時之應力-形變曲線間之差異作模式性對比之圖。 10 第3圖係用以顯示鋼成分Si量對板厚中心部之島狀馬 丁體體積率所造成之影響者。 第4圖係用以顯示鋼成分Si量對板厚中心部之降伏應 力所造成之影響者。 【主要元件符號說明】 (無)
31

Claims (1)

1339220 15
20 2010 争
第 95141 轉案申請專利範圍替換本 、申請專利範圍:. 一種聲波非均向性小、熔接性優異、包含;中 降伏應力在450MPa以上且拉伸強度在57〇MPa以上之高 張力鋼板,以質量%計係含有下述成分組成: C : 0.03%以上、0.07%以下; Si :小於0.10% ; Μη : 0.8%以上、2.0%以下;及 Α1 : 0.010%以上、〇.1 %以下; 更以滿足下列條件之方式含有Nb、Ti : Nb : 0.025%以上; Ti : 0_005%以上;且 0.045%^ [Nb] + 2x[Ti] ^ 0.105% 並進一步含有: N :超過0.0025%、0.008%以下; 而,更於可使下述所示A值滿足0.0022以上、0.〇〇55 以下之關係的範圍内含有Nb、Ti、C及N,且溶接破裂 感受性指數Pcm為0.18以下,殘餘部分則由&及不 <避 免之不純物構成;並且,於板厚中心部之鋼組織中,貝 氏體之體積率為30%以上,珠光體之體積率為小於5%, 島狀馬丁體之體積率小於3% ; A=([Nb]+2x[Ti])x([C] + [Ν]χ12/14) Pcm = [C] + [Si]/30 + [Mn]/20 + [Cu]/20 -f [Ni]/60 + [Cr]/20 + [M〇]/15 + [V]/10+5[B] 於此,[Nb]、[Ti]、[C]、[N]、[Si]、[Mn]、[Cu]、 32 1339220 [Ni]、[Cr]、[Mo]、[V]、[B]各自為以Nb、Ti、C、N、 Si、Mn、Cu、Ni、Cr、Mo、V、B之質量%表示的含量。 2.如申請專利範圍第1項之聲波非均向性小、熔接性優 異、包含板厚中心部之降伏應力在450MPa以上且拉伸 5 強度在570MPa以上之高張力鋼板,其以質量%計更含有 下述元素中之1種或2種以上: Mo : 0.05%以上、0.3%以下;
10
Cu : 0.1%以上、0.8%以下; Ni : 0.1%以上、1.0%以下; Cr : 0.1 %以上、0.8%以下; V : 0.01%以上、小於0.03% ; W : 0.1%以上、3%以下; Mg : 0.0005%以上、0.01%以下; Ca : 0.0005%以上、0.01%以下;及 B : 0.0005%以上、0.0050%以下。 3. —種聲波非均向性小、熔接性優異、包含板厚中心部之 降伏應力在450MPa以上且拉伸強度在570MPa以上之高 張力鋼板的製造方法,其係使具有如申請專利範圍第1 或2項之成分組成的鋼片或鑄片加熱至如下述之T(°C) 以上、1300°C以下,再以1 〇2〇。〇以上之溫度範圍進行粗 軋後進行精軋,該精軋係在小於102CTC、超過920°C之 範圍内令累積壓下率抑制於15%以下’而在920°C以 下、860°C以上之範圍内令累積壓下率為20%以上、50% 以下,接著,從800°C以上開始加速冷卻,使冷卻速度 33 20 1339220
為2°C/sec以上、30°C/sec以下,並於700°C 以下、600°C 以上時使該加速冷卻停止,之後再以〇.4°C/sec以下之冷 卻速度進行冷卻; T= 6300/(1.9-LogA)-273 5 於此,A=([Nb] + 2x[Ti])x([C] +[N]xl2/14),而 [Nb]、[Ti]、[C]及[N]各自指以 Nb、Ti、C、N之質量 % 表示的含量。 34
TW095141379A 2005-11-09 2006-11-08 High tension steel plate with reduced sonic anisotropy and excellent weldability and having yield strength of 450 mpa or more and tensile strength of 570 mpa or more and a method for producing the same TWI339220B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005324798 2005-11-09
JP2006301540A JP4226626B2 (ja) 2005-11-09 2006-11-07 音響異方性が小さく溶接性に優れる、板厚中心部も含めて降伏応力450MPa以上かつ引張強さ570MPa以上の高張力鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
TW200724694A TW200724694A (en) 2007-07-01
TWI339220B true TWI339220B (en) 2011-03-21

Family

ID=38023378

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095141379A TWI339220B (en) 2005-11-09 2006-11-08 High tension steel plate with reduced sonic anisotropy and excellent weldability and having yield strength of 450 mpa or more and tensile strength of 570 mpa or more and a method for producing the same

Country Status (8)

Country Link
US (1) US8246768B2 (zh)
EP (1) EP1978121B1 (zh)
JP (1) JP4226626B2 (zh)
KR (1) KR101009056B1 (zh)
CN (1) CN101305110B (zh)
BR (1) BRPI0618491B1 (zh)
TW (1) TWI339220B (zh)
WO (1) WO2007055387A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098235B2 (ja) 2006-07-04 2012-12-12 新日鐵住金株式会社 低温靱性に優れたラインパイプ用高強度鋼管及びラインパイプ用高強度鋼板並びにそれらの製造方法
JP5037204B2 (ja) * 2007-04-12 2012-09-26 新日本製鐵株式会社 溶接熱影響部の靭性に優れる降伏応力500MPa以上引張強さ570MPa以上の高強度鋼材の製造方法
JP5037203B2 (ja) * 2007-04-12 2012-09-26 新日本製鐵株式会社 溶接熱影響部の靭性に優れる降伏応力470MPa以上引張強さ570MPa以上の高強度鋼材の製造方法
CN101481774B (zh) * 2008-01-07 2010-11-24 宝山钢铁股份有限公司 一种屈服强度500MPa级低裂纹敏感性钢板及其制造方法
JP5347827B2 (ja) * 2009-08-17 2013-11-20 新日鐵住金株式会社 音響異方性に優れた高降伏点490MPa級溶接構造用鋼およびその製造方法
KR101309881B1 (ko) * 2009-11-03 2013-09-17 주식회사 포스코 신선가공성이 우수한 신선용 선재, 초고강도 강선 및 그 제조방법
JP5883257B2 (ja) * 2011-09-13 2016-03-09 株式会社神戸製鋼所 母材および溶接熱影響部の靭性に優れた鋼材、およびその製造方法
WO2013088715A1 (ja) * 2011-12-14 2013-06-20 Jfeスチール株式会社 大入熱溶接用鋼材
IN2014KN01251A (zh) 2011-12-27 2015-10-16 Jfe Steel Corp
KR101638715B1 (ko) 2012-01-31 2016-07-11 제이에프이 스틸 가부시키가이샤 발전기 림용 열연 강판 및 그 제조 방법
JP6008042B2 (ja) * 2013-03-29 2016-10-19 Jfeスチール株式会社 厚肉鋼管用鋼板、その製造方法、および厚肉高強度鋼管
JP5999005B2 (ja) * 2013-03-29 2016-09-28 Jfeスチール株式会社 溶接熱影響部靭性に優れた低降伏比高張力鋼板およびその製造方法
JP5817805B2 (ja) * 2013-10-22 2015-11-18 Jfeスチール株式会社 伸びの面内異方性が小さい高強度鋼板およびその製造方法
CN104726787A (zh) * 2013-12-23 2015-06-24 鞍钢股份有限公司 一种低温韧性良好的高强度压力容器厚板及生产方法
TWI655299B (zh) * 2017-04-28 2019-04-01 日商新日鐵住金股份有限公司 High-strength steel plate and manufacturing method thereof
CN109023068B (zh) * 2018-09-04 2020-09-01 鞍钢股份有限公司 Vc纳米颗粒强化x90塑性管用钢板及其制造方法
CN109355583A (zh) * 2018-11-09 2019-02-19 唐山钢铁集团有限责任公司 一种低各向异性低合金高强冷轧退火钢带及其生产方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281014A (en) 1975-12-29 1977-07-07 Kawasaki Steel Co Production of high strength steel sheets having strength above 60kg mmz
JPS53119219A (en) 1977-03-29 1978-10-18 Nippon Steel Corp Manufacture of weldable high tensile steel
JPS5421917A (en) 1977-07-20 1979-02-19 Nippon Kokan Kk <Nkk> Method of manufacturing non-quenched high-tensile steel having high toughness
JPS5827327B2 (ja) 1977-11-21 1983-06-08 日本鋼管株式会社 セパレ−シヨンの生じない制御圧延高張力鋼の製造法
JPS54132421A (en) * 1978-04-05 1979-10-15 Nippon Steel Corp Manufacture of high toughness bainite high tensile steel plate with superior weldability
JPS58100625A (ja) * 1981-12-11 1983-06-15 Kawasaki Steel Corp 溶接性の優れた高靭性高張力鋼板の製造方法
JPS6333521A (ja) 1986-07-25 1988-02-13 Kawasaki Steel Corp 直接焼入れ−焼もどし工程による高じん性高張力鋼板の製造方法
JP2585321B2 (ja) 1987-12-07 1997-02-26 川崎製鉄株式会社 溶接性の優れた高強度高靭性鋼板の製造方法
JP2655901B2 (ja) 1989-02-01 1997-09-24 株式会社神戸製鋼所 靭性の優れた直接焼入型高張力鋼板の製造方法
JPH09235617A (ja) * 1996-02-29 1997-09-09 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法
US6319338B1 (en) * 1996-11-28 2001-11-20 Nippon Steel Corporation High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
CA2295582C (en) 1997-07-28 2007-11-20 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
JP3718348B2 (ja) * 1998-07-31 2005-11-24 新日本製鐵株式会社 高強度高靱性圧延形鋼とその製造方法
JP3854412B2 (ja) * 1998-10-02 2006-12-06 新日本製鐵株式会社 溶接熱影響部靱性に優れた耐サワー鋼板およびその製造法
JP3737300B2 (ja) * 1999-02-01 2006-01-18 株式会社神戸製鋼所 溶接性の優れた非調質型低降伏比高張力鋼板
JP4112733B2 (ja) 1999-03-08 2008-07-02 新日本製鐵株式会社 強度および低温靭性に優れた50キロ(490MPa)ないし60キロ(588MPa)級の厚手高張力鋼板の製造方法
JP2001064728A (ja) 1999-08-26 2001-03-13 Nkk Corp 溶接性及び歪時効後の靭性に優れた60キロ級高張力鋼の製造方法
JP3823627B2 (ja) 1999-08-26 2006-09-20 Jfeスチール株式会社 溶接性及び歪時効後の靭性に優れた60キロ級非調質高張力鋼の製造方法
JP4276341B2 (ja) * 1999-09-02 2009-06-10 新日本製鐵株式会社 引張強さ570〜720N/mm2の溶接熱影響部と母材の硬さ差が小さい厚鋼板およびその製造方法
JP4071906B2 (ja) 1999-11-24 2008-04-02 新日本製鐵株式会社 低温靱性の優れた高張力ラインパイプ用鋼管の製造方法
JP3747724B2 (ja) * 2000-01-17 2006-02-22 Jfeスチール株式会社 溶接性および靭性に優れた60キロ級高張力鋼及びその製造方法
JP3734692B2 (ja) 2000-08-01 2006-01-11 株式会社神戸製鋼所 音響異方性が小さく溶接性に優れた非調質型低降伏比高張力鋼板の製造方法
JP2002088413A (ja) 2000-09-14 2002-03-27 Nippon Steel Corp 溶接性と靭性に優れた高張力鋼の製造方法
JP3644369B2 (ja) * 2000-09-28 2005-04-27 住友金属工業株式会社 高エネルギービーム溶接用鋼材
KR100630402B1 (ko) * 2002-03-29 2006-10-02 신닛뽄세이테쯔 카부시키카이샤 고온 강도가 우수한 고장력 강 및 그 제조 방법
JP4341396B2 (ja) * 2003-03-27 2009-10-07 Jfeスチール株式会社 低温靱性および溶接性に優れた高強度電縫管用熱延鋼帯
CA2527594C (en) * 2003-06-12 2010-11-02 Jfe Steel Corporation Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe, and method for manufacturing the same
JP4317499B2 (ja) * 2003-10-03 2009-08-19 新日本製鐵株式会社 音響異方性が小さく溶接性に優れる引張強さ570MPa級以上の高張力鋼板およびその製造方法

Also Published As

Publication number Publication date
JP2007154309A (ja) 2007-06-21
CN101305110A (zh) 2008-11-12
BRPI0618491B1 (pt) 2018-05-15
CN101305110B (zh) 2011-07-06
US8246768B2 (en) 2012-08-21
EP1978121A1 (en) 2008-10-08
WO2007055387A1 (ja) 2007-05-18
EP1978121A4 (en) 2012-06-13
US20090107591A1 (en) 2009-04-30
TW200724694A (en) 2007-07-01
BRPI0618491A2 (pt) 2012-02-28
KR20080058476A (ko) 2008-06-25
EP1978121B1 (en) 2014-06-04
JP4226626B2 (ja) 2009-02-18
KR101009056B1 (ko) 2011-01-17

Similar Documents

Publication Publication Date Title
TWI339220B (en) High tension steel plate with reduced sonic anisotropy and excellent weldability and having yield strength of 450 mpa or more and tensile strength of 570 mpa or more and a method for producing the same
EP3081662B1 (en) Steel plate and method for manufacturing same
KR101635008B1 (ko) 용접 열영향부 ctod 특성이 우수한 후육 고장력강 및 그의 제조 방법
KR20160090399A (ko) 용접 열 영향부의 저온 인성이 우수한 고장력 강판 및 그 제조 방법
WO2009123292A1 (ja) 高張力鋼およびその製造方法
JPS5877528A (ja) 低温靭性の優れた高張力鋼の製造法
WO2006011257A1 (ja) 音響異方性が小さく溶接性に優れる高張力鋼板およびその製造方法
EP1790749A1 (en) 490 MPa GRADE HIGH TENSILE STEEL FOR WELDED STRUCTURE EXHIBITING EXCELLENT HIGH TEMPERATURE STRENGTH AND METHOD FOR PRODUCTION THEREOF
CN104011247A (zh) 脆性裂纹传播停止特性优良的高强度厚钢板及其制造方法
WO2008126944A1 (ja) 高温強度、靭性に優れた鋼材並びにその製造方法
JP2008045174A (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
CN108026618A (zh) 结构用高强度厚钢板及其制造方法
CN105473753A (zh) 厚钢板及其制造方法
JP2008111165A (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
EP3730642B1 (en) Structural steel having excellent brittle crack propagation resistance, and manufacturing method therefor
CN111542633B (zh) 抑制疲劳裂纹扩展特性优异的结构用高强度钢材及其制造方法
JP5034392B2 (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JPS5814848B2 (ja) 非調質高強度高靭性鋼の製造法
JP5708349B2 (ja) 溶接熱影響部靭性に優れた鋼材
JP4507669B2 (ja) 溶接部靭性に優れた低温用低降伏比鋼材の製造方法
JP2008111166A (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
WO2017107778A1 (zh) 一种大线能量焊接热影响区韧性优异的厚钢板及其制造方法
JP5103037B2 (ja) 母材および溶接熱影響部の靭性に優れた厚鋼板
WO2016143345A1 (ja) 高強度極厚鋼板およびその製造方法
KR20020048034A (ko) 미세한TiO산화물과 TiN의 석출물을 갖는 고강도용접구조용 강의 제조방법

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees