TWI310730B - Technique for separating a mold from solidified imprinting material - Google Patents

Technique for separating a mold from solidified imprinting material Download PDF

Info

Publication number
TWI310730B
TWI310730B TW095137688A TW95137688A TWI310730B TW I310730 B TWI310730 B TW I310730B TW 095137688 A TW095137688 A TW 095137688A TW 95137688 A TW95137688 A TW 95137688A TW I310730 B TWI310730 B TW I310730B
Authority
TW
Taiwan
Prior art keywords
mold
template
substrate
volume
regions
Prior art date
Application number
TW095137688A
Other languages
English (en)
Other versions
TW200722273A (en
Inventor
Mahadevan Ganapathisubramanian
Byung-Jin Choi
Michael N Miller
Nicholas A Stacey
Michael P C Watts
Original Assignee
Molecular Imprints Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/292,568 external-priority patent/US7803308B2/en
Application filed by Molecular Imprints Inc filed Critical Molecular Imprints Inc
Publication of TW200722273A publication Critical patent/TW200722273A/zh
Application granted granted Critical
Publication of TWI310730B publication Critical patent/TWI310730B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/442Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with mechanical ejector or drive means therefor
    • B29C33/444Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with mechanical ejector or drive means therefor for stripping articles from a mould core, e.g. using stripper plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/50Removing moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F1/00Platen presses, i.e. presses in which printing is effected by at least one essentially-flat pressure-applying member co-operating with a flat type-bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

1310730 九、發明說明: I:發明所屬之技術領域3 發明背景 本發明大體有關於結構的奈米製造。更特別的是,本 5 發明的目的是:用於改善銘刻微影製程(imprint lithographic process)可用之接觸銘刻(contact imprinting)的方法。 L先前技術;3 奈米尺度製造係有關於極微小結構的製造,例如,具 有約一奈米或更多之特徵的結構。銘刻微影術為習知大有 ίο 前途可用於奈米尺度製造的製程。在許多出版品中有詳述 示範用之銘刻微影製程,例如申請成為美國專利申請案第 10/264,960號的美國公開專利申請案第2004/0065976號,標 題為“可配置特徵於基板上以複製有最小尺寸差異之特徵 的方法與鑄模”;申請成為美國專利申請案第10/264,926號 15 的美國公開專利申請案第2004-0065252號,標題為“在基板 上形成一層以利製造度量衡標準的方法’,;以及,美國專利 第6,936,194號,標題為“可配置特徵於基板上以複製有最小 尺寸差異之特徵的方法與鑄模”;這些專利都已頒給本發明 的申請人。 2〇 請參考第1圖’銘刻微影術背後的基本概念是在基板上 形成可用作尤其是蚀刻遮罩的凸起圖樣(relief pattern)藉此 可形成與該凸起圖樣相對應之圖樣於基板内。用來形成凸 起圖樣的系統係包含一支撐一基板12的平台11,以及一 模板14,其係具有一帶有一圖樣成形表面18於其上的鑄模 1310730 16。圖樣成形表面18可大體呈平滑及/或平坦,或可被圖樣 化藉此形成一或更多凹處於其中。模板14係與一銘刻頭 (imprint head) 20耦合以利移動模板14。耦合一流體點膠系 統(fluid dispense system) 22使其可被選擇性地安置成能與 5 基板12流體相通以便沉積可聚合材料24於其上。耦合—能 量28之來源26以沿著一路徑30導引能量28。銘刻頭2〇與平 台11係經組態成可各自配置會重疊的鑄模16與基板12(兩 者是配置在路徑30中)。銘刻頭2〇、平台u、或兩者可隨著 鑄模16、基板12之間的距離而改變以在其間界定一想要填 10滿可聚合材料24的體積。使用標準夾持技術保持基板丨之與 平台11的相對位置。例如,平台丨丨可包含一耦合於一真空 供給益(未圖示)的真空夾頭(vacuum chuck),例如支桿失頭 (pin chuck,未圖示)。 通常於界定在鑄模16與基板12之間的所欲體積之前將 15可聚合材料24配置於基板12上。不過,在得到所欲體積後, 可聚合材料24可能填滿該體積。在所欲體積被可聚合材料 24填滿後,來源26產生能量28,這會導致可聚合材料_ 化及/或交聯(cross-link) ’形成與基板表面25和鑄模表面18 之形狀共形(conform)的聚合材料。此一製程的控制是用處 20理器32調節,該處理器32係與平⑽銘刻頭2〇、流體點膠 系統22、以及來源26有資料通訊,其係以儲存於記憶體μ 内的電腦可讀取程式操作。 在可聚合材料24中精確地形成圖樣的重要特徵是要保 證能控制形成於可聚合材料24内之特徵的尺寸。否則,可 1310730 能導致蝕刻於底下基板内之特徵的變形(dist〇rti〇n)。 因此’亟須改善用於接觸微影製程的銘刻技術。 C發明内容】 發明概要 5 本發明提供一種分離鑄模與固化銘刻材料的方法,其 係包含··產生内含鑄模之模板中的變形。該變形係足以產 生大於*玄固化銘刻材料和該鑄模兩者之附著力(adhesion force)的返回力。例如,在該鑄模與該模板對著該鑄模的表 面之間所產生的壓差(pressure differentiai)可產生該變形。 10以此方式,該變形可為該模板中之波狀起伏,在配置該固 化銘刻材料後,該波狀起伏的大小足以與該基板接觸。本 文將描述數個具體實施例。 圖式簡單說明 第1圖為一先前技術微影系統的簡化平面圖; 15 帛2 ®的簡化平面®I係根據本發明圖示-模板和配置 於基板上的銘刻材料; 第3圖的簡化平面圖係圖示第2圖的模板與基板,圖中 銘刻材料已被圖樣化及固化於基板上; 第4圖係根據本發明圖示第2圖至第3圖基板的詳細圖; 2〇 第5圖為第4圖基板的詳細圖,其上已配置銘刻材料的 固化形成物; 第6圖為第5圖基板的詳細圖,其係已經受钮刻化學以 暴露數個基板區域; 第7圖為第6圖基板的詳細圖,其係已經受固化銘刻材 1310730 料的蝕刻及移除; 第8圖為本發明撓性模板的橫截面圖; 圖鑄模的橫_,其係根據本發明銘刻 -置於第4圖基板上的可聚合材料; _圖為第9圖鑄模與基板形狀共形之前的詳細圖; 第U圖為第9圖基板的詳細圖,其係已經受_化學以 暴露數個基板區域;
10 第12圖為第9圖基板_細圖,其係已經受固化銘刻材 料的蝕刻及移除; 第13圖為本發明第8圖挽性模板之替代實施例的橫截 面圖; 第14圖為本發明第8圖挽性模板之第二替代實施例的 橫戴面圖; 第15圖為本發明第8圖撓性模板之第三替代實施例的 15 橫截面圖; 第16圖的流程圖係根據本發明圖示使用第丨2圖模板的 示範路刻操作(imprinting operation); 第17圖為用來保持第13圖模板之夾持系統(chucking system)的簡化平面圖,其中模板已被配置成緊鄰於基板; 20 弟18圖為第17圖吸盤體(chuck body)的仰視圖; 第19圖係根據本發明圖示内含於第1圖銘刻頭之組件 的展開透視圖; 第20圖為第19圖中之組件的仰視透視圖; 第21圖為第17圖夾持系統的簡化平面圖,其中模板係 1310730 經受變形以利分離模板和在基板上的固化銘刻材料; 第22圖係根據替代實施例圖示第21圖中之區域217的 詳細圖; 第23圖為第21圖模板214的簡化平面圖; 5 f24®的L橫截面圖係圖示正與形成物50分離的 第21圖模板;以及 第25圖為第21圖模板的簡化橫截面圖。 【實施方式3 較佳實施例之詳細說明 10 請參考第1圖到第2圖,根據本發明,系統10可使用一 禱模36,該鍀模36可界定一大體有平滑或平坦輪廊的表面 (未圖不)。替換地,鑄模36可包含數個用多個分隔之凹處38 和犬出40界定的特徵。多個特徵界定一待轉印至基板42内 的原始圖樣。基板42可由裸晶圓或其上已配置一層或更多 15層的晶圓構成。為此目的,減少鑄模36與基板42之間的距 離“d”。以此方式,鑄模36上的特徵可被銘刻成銘刻材料(例 如,可聚合材料24),其係配置於表面44有大體平坦輪廓的 部份。應瞭解,基板42可為裸矽晶圓48或可包含自然氧化 物或一或更多層,如底層45所示。在本實施例中,係以含 20有底層45的基板42來說明。可形成底層45與可聚合材料42 的示範組合物在美國專利申請案第11/187,4〇6號中有描 述,其係申請於2005年7月22日,標題為“黏著材料的組合 物”,發明人中有FrankXu ,頒給本發明的申請人且併入本 文作為參考資料。 1310730 明 > 考第2圖與第3圖,可用任何習知技術沉積該銘刻 材料例如,旋塗、浸塗、及其類似方法。不過,在本實 施例中,該銘刻材料是在基板42上沉積成多個分開離散的 J、滴46。形成銘刻材料的組合物為可被選擇性聚合及交聯 、°己錄原始圖樣於其中,而可界定-記錄下來的圖樣。 具體δ之,部份藉由鑄模36的相互作用來產生記錄於 銘刻材料内的圖樣’例如’電氣相互作用、磁性相互作用、 熱相互作用、機械相互仙 '或其類似者。在本實施例中, 麵輪36係與銘刻材料機械接觸,散佈數個小滴46,以便產 1〇生銘刻材料的鄰層於會被固化成為形成物50的表面44上。 形成物50包含數個突出部份52及凹陷區34。形成物50的總 厚度t!是用突出部份52界定。凹陷區54則界定形成物5〇的殘 留厚度k °在一具體實施例中,減少距離“d,,以使銘刻材料 能進入及填入凹處38。為了有利於凹處%的填入,在鑄模 15 36與小滴46接觸之前’鑄模36與小滴46之間的環境用氦氣 浸透或完全抽空或是部份抽空的氦氣。 請參考第2圖、第3圖及第4圖,本發明論及的問題是有 關於在到達想要距離d後控制厚度^與。的問題。具體言 之,鑄模36的示範特徵尺寸,例如,突出4〇的寬度與凹 20 處38的寬度W2,可在30至1〇〇奈米的範圍内。總厚度、可在 400奈米至1微米±20-80奈米的範圍内。殘留厚度t2可在400 奈米至1微米±20-80奈米的範圍内。因此,突出部份52的高 度(從最低點表面55測量)是在40至140奈米的範圍内。結 果,表面44會有不平坦輪廓,例如,有山56及谷57的波狀 10 1310730 起伏。波狀起伏會導致厚度^與。的控制問題。 請參考第3圖、第4圖及第5圖,波狀起伏使得難以保證 形成物150區域中的厚度ti大體相同和形成物150區域中的 厚度k大體相同。例如,在固化銘刻材料之後,厚度tl和厚 5 度〖2有變化的區域形成形成物150。例如,由於表面44的曲 率與區域58重疊,區域58之中的特徵有總厚度和殘 留厚度ΐ’2±δί,2,在此δί,#δί,2分別為厚度t,#t,2的變化。 同樣’由於表面44的曲率與區域60重疊,區域60之中的特 徵有總厚度t” i邊” 1和殘留厚度Γ2±δΓ2,在此δΓ,與δΓ2分別 10對應至厚度^^與丨、的變化。 請參考第5圖、第6圖及第7圖,由於殘留厚度t,2±3t’2 與t”2士δί”2的差大於ί’θδί、,以致形成於基板42的圖樣會變 形。這在形成物150經受突破蚀刻(break-through etch)以暴 露基板42的區域62、64、66之後可看出。如果想要開始蝕 15 刻區域62、64及66,結果會有凹處68、70及72,然而會有 大部份未被圖樣化的區域74以致在突破姓刻期間不會暴露 基板42。這不令人合意。如果想要圖樣化基板42的區域84, 則會蝕刻形成物150直到區域60突破。這會導致區域58的所 有特徵大體全被移除。結果,由於沒有尤其是遮罩材料, 20 以致基板42的大片區域仍然未被圖樣化。 請參考第3圖、第4圖及第8圖,若不排除的話,為了減 少波狀起伏造成的問題,製作含有鑄模136的模板114以便 與表面44共形。以此方式,鑄模136可與波狀起伏共形,藉 此最小化形成物50區域之中的厚度^變化和厚度t2變化。為 1310730 此目的,用熔融二氧化矽(fused silica)有厚度in的相對薄 片製成模板114 ’厚度113係以對立面115 ' 116測量約達1 5 毫米,約0.7毫米較佳。厚度為〇.7毫米時,藉由建立面積約 4,225平方毫米的模板114可提供撓性。鑄模136的面積可為 5任何想要的面積,例如,由625平方毫米到基板42的面積。 請參考苐8圖到第12圖模板114的共形性 (conformableness)提供鑄模13 6在有波狀起伏的情形下仍可 控制厚度1^與1;2的機能。具體言之,鑄模136會與銘刻材料 接觸藉此可形成形成物250。形成物250的第一表面252係靠 10著基板42且在有波狀起伏的情形下其輪廓仍與基板42的表 面44輪廓匹配。不過,撓性鑄模236所呈現的困難是由於在 鑄模136與小滴46内的可聚合材料之間會產生毛細力 (capillary force)。在鑄模136與可聚合材料的第一子部份 (sub-portion)(例如,區域!58内的小滴46)接觸後,在鑄模j 36 15與可聚合材料之間會產生毛細力。不過,在可聚合材料的 其餘子部份(例如,區域160、161内的小滴)中大體不會有毛 細力。為了形成形成物250,施加流體壓力於表面115以使 杈板114變形,因此,使得鑄模136一樣與區域16〇、丨^内 的小滴46接觸。 2〇 丨於鑄模136有撓性,可達成厚度【亦2的控制使得厚 度ti疋在指定公差,而被稱作大體為均勻。同樣,厚 度t2大體均勻是因為同樣在指定公差咖内。公差係源於禱 模136與表面44共形所導致的特徵變形。不過,據測定,藉 由保持叫额2在25毫米範圍内小於或等於5奈米能使得鑄 12 1310730 模136的共形性所造成的變形為可接受。具體言之,在突破 钱刻形成物250後,會暴露基板42整個面積内的區域162。 之後,會發生基板整個表面的圖樣化,如凹處164所示。以 此方式,整個基板42可被圖樣化,藉此克服厚度^和厚度t2 5在基板42待圖樣化的區域内會有變化的問題。 请參考第8圖與第13圖,雖然圖中模板114的鑄模136沿 著表面U6有落在公共平面P的突出,然而可用其他的模 板。例如,模板214可包含一具體實作鑄模236的台地235。 通帛台地235的高度h約為15微米,它是從表面216到突出 10 240的上表面。 請參考第8圖與第14圖,在另一具體實施例中,模板314 大體與模板U4相同,除了鑄模336被夾帶通道㈣㈤細加 channel) 337包圍以外。夾帶通道337係由表面316延伸比凹 處338深些。在另一具體實施例中,第15圖的模板414係與 15第8圖的模板114相同,除了表面416在鑄模436外面的區域 是與凹處438共平面以外。 請參考第4圖、第U圖及第圖,在示範操作期間,在 步驟500將模板214與基板42安置成彼此靠近,例如,在丄毫 米内。在步驟502,彎曲模板214使得面對基板42的表面 20 216,因此和鑄模236都有中凸的形狀,共係界定—彎曲的 模板。具體吕之,彎曲鑄模236的中性軸(neutrai axjs)N使得 中央部份離開中性軸N有350至400微米以便有彎曲的形 狀。在步驟504,減少彎曲模板和基板42之間的相對距離藉 此使彎曲鑄模236與銘刻材料的一或更多個小滴恥接觸,隨 13 1310730 後在兩者的壓縮下與配置於鑄模236、基板42之間的銘刻材 料之形狀共形。通常,鑄模236在接觸銘刻材料之前是以基 板42為中心。鑄模236的中央部份233是以基板42待圖樣化 之區域為中心。在此實施例中,幾乎基板44的整個表面44 5要被圖樣化。基板42待圖樣化之區域的尺寸是用形成物250 的厚度和小滴46中可聚合材料的總計體積定義。結果,鑄 模236的面積可大於、小於或等於基板42的面積。通常,鑄 模236的中央部份233會與該區域(未圖示)的中心接觸,隨後 銘刻區的其餘部份會被鑄模236的非中央部份接觸到。 10 在步驟506,若不排除的話,施加流體壓力於表面115 以削減形成物150區域内的厚度tl變化和形成物15〇區域内 的厚度k變化。具體言之,表面115經受有充分大小的流體 壓力以壓縮鑄模236和基板42之間的銘刻材料到銘刻材料 再也無法壓縮的狀態。在此狀態時,該銘刻材料會顯示表 15現與固體一樣的黏彈性(visco_elastic property)。此外,處於 黏彈狀態時,該銘刻材料會與表面44完全共形使得銘刻材 料面對鑄模236的表面會有與表面44一樣的形狀。禱模说 係經建立成比處於黏彈狀態的銘刻材料更有順應性 (compliant),因此,可與銘刻材料面對鑄模236的那一面之 2〇形狀完全共形。在步驟508,暴露銘刻材料於光化學輕射 (actinic radiation)以固化銘刻材料藉此與鑄模幻6的形狀和 基板42的表面44共形。在步驟510,使轉模m與固化銘刻 材料分離。 請參考第12圖、第17圖及第18圖,為了利於控制模板 14 1310730 214表面215上的C力’ g己置於鑄模236對面的吸盤體520係 經設計成可用真空技術保持模板214。為此目的,吸盤體52〇 包含第-522、第二524的兩個相對表面。為側面或旁邊的 表面526在第一面520與第二面524之間延伸。第一面522包 5含第-凹處532和與第一凹處532隔開的第二凹處534,係界 定分開的第-536、第二538支撑區。第—支揮區536係環繞 第-支樓區538和第-凹處532、第二534凹處。第二支樓區 538環繞第二凹處534 "及盤體52〇與第2凹處534重疊的部 份540能傳送有預定波長的能量,例如上述用來固化可聚合 10材料之光化學能(actinic energy)的波長。為此目的,部份54〇 是由能傳送寬帶紫外線能量的材料之薄層製成,例如,玻 璃。不過,製成部份540的材料可取決於第丨圖來源26所產 生之能量的波長。 請再參考第17圖與第18圖,部份54〇由第二面524延伸 15且在第一凹處534附近結束且應界定至少一跟鑄模236面積 一樣大的區域使得鑄模236與它重疊。吸盤體52〇内形成一 或更多條直達通路,如圖中的542與544。直達通路中之一 條,例如直達通路542,係使第一凹處532與側面526流體相 通。其餘的直達通路,例如直達通路542,係使第二凹處532 20 與側面526流體相通。 應瞭解,直達通路542也可在第二面524與第一凹處532 之間延伸。同樣,直達通路544可在第二面524與第二凹處 534之間延伸。所要的是,安置直達通路542與544以利凹處 532、534分別與壓力控制系統(例如,泵浦系統546)流體相 15 1310730 通。 泵浦系統546可包含一或更多個泵浦以彼此獨立地控 制凹處532與534附近的壓力。具體言之,當裝上吸盤體52〇 時,模板136是靠著第一支撐區536、第二538支撐區,覆蓋 5第一凹處532與第二534凹處。重疊的第一凹處532與模板 136之一部份548係界定第一室550。重疊的第二凹處534與 模板136之一部份552界定第二室554。操作泵浦系統546以 控制第一室550與第二室554内的壓力。具體言之,建立第 一室550内的壓力以便在重力g下用吸盤體52〇保持模板214 10的位置,若無法避免,則縮小模板214與吸盤體520的分離。 第一室554内的壓力可不同於第一室548内的壓力,藉由調 制模板214的形狀以減少尤其是銘刻時模板214所產生的圖 樣變形。例如,基於上述理由,泵浦系統546可施加正壓於 室554内。泵浦系統546是在處理器32的控制下操作,如第1 I5 圖所示。 請參考第1圖、第17圖及第19圖,經由吸盤體520與撓 曲部份556的耦合使模板214耦合於銘刻頭20,該撓曲部份 556係與定向系統558耦合。定向系統558會移動模板214。 撓曲部份556係揭示於美國專利申請案第11/142,838號且申 20 請專利,其係申請於2005年6月1日,標題為“用於奈米尺度 製造的順應性裝置”,其係頒給本發明的申請人,且併入本 文作為參考資料。定向系統558係於美國專利申請案第 11/142,825號’其係申請於2005年6月1日,標題為“控制用 於奈米尺度製造之物體移動的方法及系統,,,其係頒給本發 16 1310730 明的申凊人,且併入本文作為參考資料。 明參考第19圖與第20圖,圖中定向系統558具有:一經 配置罪近於一外框562的内框56〇,以及撓曲環564,以下有 更完整的說明。主體52〇係通過撓曲部份556而與定向系統 5 558搞口。具體言之,主體52〇係使用任何適當構件而與撓 曲部伤556連接,例如位於主體52〇四隅的螺紋緊固件(未圖 示)係連接至撓曲部份556最靠近主體520四隅的四個角 落。使用任何適當構件(例如,螺紋緊固件,未圖示)使撓曲 部份556的四個角落566與最靠近的内框560表面568連接。 10 内框560有一中央直達通路570,且外框562有一與中央 直達通路570重疊的中央開口 572。撓曲環564為環狀,例 如,圓开>或橢圓形,且福合至内框56〇和外框562且位於中 央直達通路570、中央開口 572的外面。具體言之,使用任 何適當構件(例如,螺紋緊固件,未圖示),使撓曲環564在 15區域574、576及578處與内框560耦合,且在區域580、582 及584處與外框562耦合。區域580配置在區域574、576之間 且與後兩者等距;區域582配置在區域576、58之間且與後 兩者等距;以及,區域584配置在區域574、584之間且與後 兩者等距。以此方式,撓曲環564圍住撓曲部份556、主體 20 520、以及模板214,且使内框560固接於外框562。 應瞭解,定向系統558和撓曲部份556的組件可由任何 適當材料形成,例如,鋁、不鏽鋼及其類似物。此外,撓 曲部份556可用任何適當構件而耦合於定向系統558。在本 實施例中,撓曲部份556使用位於四個角落586的螺紋緊固 17 1310730 件(未圖示)而與表面45耦合。 請參考第17圖與第19圖,系統558係經組態成可控制模 板214的移動且使模板214與參考面(例如,配置於平台^上 的基板42)有想要的空間關係。為此目的,定向系統558連 5接多個致動器588、590、592於外框562、内框560之間藉此 隔開外框562、内框560。每一致動器588、590及592都有第 一末端594與第二末端5%。第一末端594面對外框562,且 第二末端596則背對外框562。 請參考第19圖與第20圖,致動器588、590及592藉由使 10内框56〇容易沿著軸Ζ!、Z2、Z3平移運動而能使内框560相 對於外框562傾斜。定向系統558可提供對軸厶、&、&有 約±1.2¾米的移動範圍。以此方式,致動器588、590及592 使得内框560能賦予撓曲部份556,因而模板214及主體520 對於軸T!、丁2、Τ'3中之一條或更多條的角運動(angUiar 15 motlon)。具體言之,藉由減少内框560和外框562沿著軸Z2、 A之間的距離且增加沿著軸Ζι之間的距離,第一方向會出 現繞著傾斜軸T2的角運動。 增加内框560和外框562沿著軸Ζ2、Ζ3之間的距離且減 少沿著軸’!之間的距離,在與該第一方向相反的第二方向 20中會出現繞著傾斜軸I的角運動。以相同的方式,藉由使 内框560沿著軸Zi、Ζ2在相同方向及大小的移動同時使内框 5 6 0沿著軸Z3在相反方向且大小兩倍於沿著軸ζ ι及z 2的移 動來改變内框560、外框562之間的距離可出現繞著軸乃的 角運動。同樣’藉由使内框560沿著軸Ζ!、Z3在相同方向及 18 1310730 大小的移動同時使内框5 60沿著轴Z2在相反方向且大小兩 倍於沿著軸Z!及乙3的移動來改變内框560、外框562之間的 距離可出現繞著軸T3的角運動。致動器588、590及592可具 有±200牛頓的最大操作力。定向系統558可提供繞著軸Τ!、 5 Τ2、及Τ3約有±0.15°的運動範圍。 致動器588、590及592係經選定以使機械另件最小化, 因此’使不均勻的機械順應性和磨擦最小化,磨擦可能產 生被粒。致動器588、590及592的例子包含音圈(voice coil) 致動器、壓電(piezo)致動器、以及線性致動器。致動器588、 10 590及592的不耽實施例售自位於加州Syimar的βει
Technologies,商標為LA24-20-000A,且使用任何適當構件 (例如’螺紋緊固件)而與内框5 60耦合。此外,將致動器5 8 8、 590及592耦合於内框560、外框562之間以便大致對稱地配 置該等致動器且位於中央直達通路570及中央開口 572的外 15面。以此組態,可組態一條由外框562到撓曲部份556沒有 阻礙的直達通路。此外,對稱排列能使動態振動(dynamic vibration)和不均勻的熱漂移(thermal drift)最小化,從而提 七、内框560的微動修正(fine-motion correction)。 内框560、外框562、撓曲環564和致動器588、590及592 20的組合可提供撓曲部份556(因此,主體520與模板214)繞著 傾斜軸Tl、丁2、丁3的角運動。不過,想要賦予模板214可沿 著落在對軸z〗、Z2、a為橫向(若不是正交的話)延伸之平面 内的軸做平移運動。為達成此目的可藉由使撓曲部份556有 機月b T賦予模板214繞著多條順應軸(compiiance axis)中之 19 1310730 條或更多(如的角運動,該等順應軸係與傾斜軸
Tl、、%分開且在組裝模板、模板夾頭、及順應性裝置 時是在模板的表面上。 本發明另一具體實施例係有利於分離鑄模236、形成例 如形成物5〇的固化銘刻材料。此係基於以下發現:使初始 刀離局限於鑄模236與固化銘刻材料之界面中的相對小區 域能減少以定向系統558對鑄模236提供為達成分離所需之 向上力的大小。合意的結果是基板42與平台11分離的機率 減少。 叫 > 考第21圖,其係圖示在鑄模236與形成物刈分離後 基板42與平台11分離且為本發明想要避免的不良情況。銘 刻頭2◦施加足夠的力以克服鑄模236、形成物5〇之間的吸引 力。在鑄模236面積與基板42面積大體同延(㈣⑽㈣的 情形下’例如,銘刻整個晶圓,分離鑄模236、形成物_ 需要的力常常遠大於基板42、平台u之間的吸引力,例如, 基板42、平台U之間的真空吸引力或靜電吸引力。因此, 最好減少為達成分輯模236與形絲要施加於模 板214的力。具體言之’最好確保分離模板叫與形成物別 20 所需要的向上力小於平台11施加於基板42的向下力以使基 板42保持在平台η上。 土 獅鑄模236周邊的區域產生鑄模236與形成物 少分離模板214與形成物50所需要的向 形有最大_確保二=: 20 1310730 邊緣222隔開約1毫米,如距離R所示。使用加壓小室554約 達20 kPa的泵浦系統546使鑄模236與固化銘刻材料初始分 離可獲致局部分離。這會扭曲模板214包圍鑄模236之區域 217的形狀。使表面模板214在區域217内的第—部份SB向 5基板42向下位移離開中性位置Np,且部份219的最低點低於 基板42表面43大約1微米。結果,用泵浦系統546提供給模 板214的變形應足以使最低點部份219由中性位置Np延伸且 大小大於圖示於第3圖的厚度〖】以及圖示於第13圖的高度卜 請再參考第21圖及第22圖,模板214表面的第二部份 10 220係向上移動離開基板42,它的頂點與表面43分開約15微 米。模板配置於第二部份220、最低點部份219之間的部份 係與基板42的邊緣222相接觸。與模板214有關的揚氏係數 會產生返回力Fr而有利於使區域217返回到中性位置Np,盆 中以最低點部份219、第二部份圖示的波狀起伏被減弱以形 15成弓形表面224。返回力FR使模板214的材料移動回到應力 減少及/或應變減少的狀態。 «月參考弟21圖、弟24圖及第25圖,返回力戸以吏得鑄模 236接近區域217的區域221可與基板42分離,同時部份227 用來把基板42向下壓至平台11以彼等緊緊地固定在一起。 20以此方式,藉由使模板214相對於基板42呈懸臂可分離鑄模 236與形成物50。具體言之,部份227與基板42的邊緣222接 觸以保持基板42依靠著平台11,這能減少分離鑄模236與基 板所需要之模板214向上力且防止基板42與平台η分離。因 此,可以說返回力fr會減少用定向系統558施加予鑄模236 21 1310730 來達成分離所需要的向上力之大小。結果,返回力。必須 大於區域22卜形成物50之間的附著力^返回力心導致相對 於形成物50會生成斜角θ,例如,凹處38之最低點表面138 所在的平面P2與凹陷區54之最低點表面154所在的平面p3 5之間的斜角。反壓(back Pressure)和返回力fr與角度θ的耦合 使^于模板214以及鑄模236會呈弓形,其中相較於鑄模236遠 離形成物50的區域(即,鑄模236靠近中心軸A的中心部 份)’區域221離形成物50較遠。通常,角度0約為數個微弧 度(micro-radian)使用固化層50中特徵的剪力(shearing)約為 10數皮米(Pico_meter)。藉由致動器588、590及592的操作可控 制鑄模236的其餘部份與形成物5〇分離,如第19圖所示。 請參考第19圖與第25圖,藉由使致動器588、59〇及592 以大約相同速率移動,使鑄模236與形成物分離使得在區域 接近中心軸A之前使靠近區域221的最後部份與形成物5〇 15 分離。以此方式,使鑄模236對於轴A呈徑向對稱的區域依 序與形成物50分離’例如,分離區域221,然後區域223, 然後區域225、等等。不過,應瞭解,由於鑄模236的形狀, 區域221、223及225對於軸A係呈徑向對稱。長方形或方形 的鑄模236是全然有可能的。結果,依序離開形成物5〇之區 20 域的形狀會與周界237的形狀呈互補。結果,鑄模236中與 周界237同中心的區域會依序與形成物50分離。不過,應瞭 解,可操作致動器588、590及592以便使鑄模236由形成物 50剝離。藉由使鑄模236對於傾斜軸乃、T2 ' T3中之一條移 動可達成此一目的。 22 1310730 請參考第21圖及第22圖,可實現局部分離模板214的另 一方式可包含形成靠近鑄模236的模板之弓形表面224。具 體5之,泵浦系統546在加壓室554中產生足以使弓形表面 224彎曲的壓力且使弓形表面224有大體不變的曲率半徑。 5如上述,返回力FR會誘發鑄模236與靠近區域221之形成物 50的局部分離。之後,用上述技術使鑄模236與形成物刈分 離。形成波狀外形的表面特別有利於製訂鑄模236的尺寸以 便遠小於基板42的面積,例如,若是鑄模236的面積為625 平方毫米’則不會出現懸臂情況。 〇 上述本發明的具體實施例均僅供示範。對於上述揭示 内容可做出許多改變及修改而且仍在本發明的範疇内。因 此,本發明的範疇不應受限於上述說明,反而是應該用附 上之申請專利範圍和等價陳述的完整範疇來判定。 【圖式簡單說明】 第1圖為一先前技術微影系統的簡化平面圖; 第2圖的間化平面圖係根據本發明圖示一模板和配置 於基板上的銘刻材料; 第3圖的簡化平面圖係圖示第2圖的模板與基板’圖中 銘刻材料已被圖樣化及固化於基板上; 第4圖係根據本發明圖示第2圖至第3圖基板的詳細圖; 第5圖為第4圖基板的詳細圖,其上已配置銘刻材料的 固化形成物; 第6圖為第5圖基板的詳細圖,其係已經受蚀刻化學以 暴露數個基板區域; 23 1310730 第7圖為第6圖基板的詳細圖,其係已經受固化銘刻材 料的蝕刻及移除; 第8圖為本發明撓性模板的橫截面圖; 第9圖為第8圖鑄模的橫截面圖,其係根據本發明銘刻 5 配置於第4圖基板上的可聚合材料; 第10圖為第9圖鑄模與基板形狀共形之前的詳細圖; 第11圖為第9圖基板的詳細圖,其係已經受蝕刻化學以 暴露數個基板區域; 第12圖為第9圖基板的詳細圖,其係已經受固化銘刻材 10 料的蝕刻及移除; 第13圖為本發明第8圖撓性模板之替代實施例的橫截 面圖; 第14圖為本發明第8圖撓性模板之第二替代實施例的 橫截面圖; 15 第15圖為本發明第8圖撓性模板之第三替代實施例的 橫截面圖; 第16圖的流程圖係根據本發明圖示使用第12圖模板的 示範絡刻操作(imprinting operation); 第17圖為用來保持第13圖模板之夾持系統(chucking 20 system)的簡化平面圖,其中模板已被配置成緊鄰於基板; 第18圖為第17圖吸盤體(chuck body)的仰視圖; 第19圖係根據本發明圖示内含於第1圖銘刻頭之組件 的展開透視圖, 第20圖為第19圖中之組件的仰視透視圖; 24 1310730 第21圖為第17圖夾持系統的簡化平面圖,其中模板係 經受變形以利分離模板和在基板上的固化銘刻材料; 第22圖係根據替代實施例圖示第21圖中之區域217的 詳細圖; 5 第23圖為第21圖模板214的簡化平面圖; 第24圖的的詳細橫截面圖係圖示正與形成物50分離的 第21圖模板;以及 第25圖為第21圖模板的簡化橫截面圖。 【主要元件符號說明】 10...系統 36…鑄模 11...平台 38...凹處 12...基板 40...突出 14...模板 42...基板 16...鑄模 44...表面 18...圖樣成形表面 45…底層 20...銘刻頭 46".小滴 22...流體點膠系統 48...裸碎晶圓 24...可聚合材料 50...形成物 25...基板表面 52...突出部份 26...來源 54...凹陷區 28…能量 56...山 30...路徑 57…谷 32...處理器 58,60...區域 34...記憶體 62,64,66...區域 25 13Ϊ0730 68,70,72.··凹處 250...形成物 74...區域 252...第一表面 84...區域 314...模板 113...厚度 316...表面 114...模板 337...夾帶通道 115,116...對立面 338...凹處 136...鑄模 414...模板 138...最低點表面 416...表面 150...形成物 436...鑄模 158...區域 500、502、504、506、508、510 160,161...區域 ...步驟 162...區域 520...吸盤體 214...模板 522·.·第一面 216...表面 524…第二面 217...區域 526...表面 219...部份 532.··第一凹處 220…第二部份 534·.·第二凹處 221...區域 536...第一支撐區 222...邊緣 538...第二支撐區 223,225...區域 540...部份 227…部份 542,544...直達通路 235...台地 546...泵浦系統 236...撓性鑄模 548...部份 237...周界 550...第一室 26 Ι31Ό730 554...第二室 594...第一末端 556...撓曲部份 596...第二末端 558…系統 Θ...斜角 560···内框 C1,C2...順應軸 562...外框 d...距離 564...撓曲環 FR·.·返回力 566...角落 N...中性軸 568…表面 Np...中性位置 570...中央直達通路 P2,P3.··平面 572...中央開口 ti,t2...厚度 574,576,578...區域 1、τ2、τ3...傾斜軸 580,582,584...區域 wl5\v2...寬度 586.. .角落 588.590.592.. .致動器 Zl、Z2、Z3...車由 27

Claims (1)

  1. [ild03^ft88號專利申請案申請專利範圍修正本 修正日期:98年1月公曰 十、申請專利範圍: 1. 一種用於從配置於一基板上之固化銘刻材料分離一包 含於一模板内之鑄模的方法,該模板包括一相對於該鑄 模設置的第一側,該方法包含: • 5 直接施加一壓力至該模板之第一側,以使緊鄰該鑄 模的該模板變形,由於該被施加壓力之該模板之變形係 足以產生大於該固化銘刻材料和該鑄模間之一附著力 的一返回力。 • 2.如申請專利範圍第1項之方法,其中該直接施加一壓力 10 至該模板之第一側之步驟提供一在該第一側與該鑄模 之間的壓差。 3. 如申請專利範圍第1項之方法,其中該直接施加一壓力 至該模板之第一側之步驟更包含:在該鑄模中產生一波 狀起伏(undulation),該波狀起伏之大小足以與該基板之 15 至少一邊緣接觸。 4. 如申請專利範圍第1項之方法,其中該鑄模包含一周界 籲 (perimeter),且該方法更包含從該固化銘刻材料分離該 鑄模的數個區域,該等區域係經配置成與該周界同中 心〇 ’ 20 5.如申請專利範圍第1項之方法,其中該鑄模包含一周 界,且該方法更包含從該固化銘刻材料依序分離該鑄模 的多個區域,該等區域係經配置成與該周界同中心。 6.如申請專利範圍第1項之方法,其更包含從該固化銘刻 材料分離該鑄模的數個區域,該等區域係經配置成對於 28 1310730 -穿過該鑄模之中心點的軸呈徑向對稱。 7. ΙΓ專鄕圍第1項之方法,其更包含從該固化銘刻 斜二依ΐ刀離錢模的多個區域,該等區域係經配置成 對於-穿過該鑄模之中心點的軸呈徑向對稱。 • 圍第1項之方法,其更包含:藉由使該鑄 、几者彳目對於錢模表面之m橫向延伸的軸旋 轉以從遠固化銘刻材料分離該鑄模的數個區域。 10 如申π專利範圍第!項之方法,其中該直接施加一壓力 至該模板之第i之步驟包含:形成該模板之一表面, 4表面係包圍該鑄模以具有不變的曲率半徑。 10·-種用於在-基板與—具有―鑄模的模板之間散佈一 有共形性之材料(conformable material)的方法,該方法 包含: 定位該鑄模以與該基板重疊成可在其間界定一體 積’且該基板具有一不平坦表面; 透過該有共形性之材料與該鑄模及該基板兩者中 之一個之間的毛細管作用,填裝該有共形性之材料於該 體積的第一子部份; 使該禱模變形以與該不平坦表面共形(conform),來 填充該體積的第二子部份;以及, 固化該有共形性之材料,該經固化的有共形性之材 料具有一具均勻厚度之殘留層。 U·如申請專利範圍第10項之方法,其中該模板包含一相對 於該鑄模設置的第一側,以及該填充步驟更包含:產生 29 該第一側與該鑄模之間的壓差。 12. 如申請專利範圍第10項之方法,其中該鑄模包含一中央 部份,以及該填充步驟更包含:使有共形性之材料與該 中央部份接觸,接著使該鑄模的其餘部份與該有共形性 5 之材料接觸。 13. 如申請專利範圍第10項之方法,其中該鑄模包含一中性 軸(neutral axis),以及該填裝步驟更包含:在接觸該有 共形性之材料之前彎曲該中性轴。 14. 如申請專利範圍第10項之方法,其中該定位步驟更包 10 含:使該鑄模位於該基板之正中。 15. 如申請專利範圍第10項之方法,其中該鑄模的面積大於 該基板的面積。 16. 如申請專利範圍第10項之方法,其中該模板包含一相對 於該鑄模設置的第一側,以及該填裝該有共形性之材料 15 於該體積的第一子部份之步驟更包含:改變該鑄模與該 基板之間的距離,同時在該第一側以及該鑄模上保持相 等的壓力。 17. 如申請專利範圍第10項之方法,其中在使該鑄模變形以 填充該體積的第二子部份之步驟前進行填裝該有共形 20 性之材料於該體積的第一子部份之步驟。 18. 如申請專利範圍第10項之方法,其中該第一子部份具有 一第一體積且該第二子部份具有一第二體積,其中該第 一體積及第二體積全體係小於該藉由該鑄模與該基板 重疊而界定之體積。 30 1310730
    19. 如申請專利範圍第1項之方法,其中該模板係一銘刻微 影模板(imprint lithography template)。 20. 如申請專利範圍第10項之方法,其中該模板係一銘刻微 影模板。 31
TW095137688A 2005-12-01 2006-10-13 Technique for separating a mold from solidified imprinting material TWI310730B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/292,568 US7803308B2 (en) 2005-12-01 2005-12-01 Technique for separating a mold from solidified imprinting material
US11/303,777 US7906058B2 (en) 2005-12-01 2005-12-16 Bifurcated contact printing technique

Publications (2)

Publication Number Publication Date
TW200722273A TW200722273A (en) 2007-06-16
TWI310730B true TWI310730B (en) 2009-06-11

Family

ID=38092554

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095137688A TWI310730B (en) 2005-12-01 2006-10-13 Technique for separating a mold from solidified imprinting material

Country Status (6)

Country Link
US (1) US7906058B2 (zh)
EP (2) EP1954472A4 (zh)
JP (2) JP5236484B2 (zh)
KR (2) KR101375132B1 (zh)
TW (1) TWI310730B (zh)
WO (1) WO2007064386A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI411523B (zh) * 2009-09-30 2013-10-11 Canon Kk 壓印設備和製造產品的方法

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7162035B1 (en) 2000-05-24 2007-01-09 Tracer Detection Technology Corp. Authentication method and system
US7442336B2 (en) * 2003-08-21 2008-10-28 Molecular Imprints, Inc. Capillary imprinting technique
US7077992B2 (en) 2002-07-11 2006-07-18 Molecular Imprints, Inc. Step and repeat imprint lithography processes
US7019819B2 (en) 2002-11-13 2006-03-28 Molecular Imprints, Inc. Chucking system for modulating shapes of substrates
US8211214B2 (en) 2003-10-02 2012-07-03 Molecular Imprints, Inc. Single phase fluid imprint lithography method
US20060062922A1 (en) 2004-09-23 2006-03-23 Molecular Imprints, Inc. Polymerization technique to attenuate oxygen inhibition of solidification of liquids and composition therefor
US7803308B2 (en) 2005-12-01 2010-09-28 Molecular Imprints, Inc. Technique for separating a mold from solidified imprinting material
MY144847A (en) 2005-12-08 2011-11-30 Molecular Imprints Inc Method and system for double-sided patterning of substrates
US7670530B2 (en) 2006-01-20 2010-03-02 Molecular Imprints, Inc. Patterning substrates employing multiple chucks
US7802978B2 (en) * 2006-04-03 2010-09-28 Molecular Imprints, Inc. Imprinting of partial fields at the edge of the wafer
KR20090003153A (ko) * 2006-04-03 2009-01-09 몰레큘러 임프린츠 인코퍼레이티드 다수의 필드와 정렬 마크를 갖는 기판을 동시에 패턴화하는방법
US8142850B2 (en) * 2006-04-03 2012-03-27 Molecular Imprints, Inc. Patterning a plurality of fields on a substrate to compensate for differing evaporation times
US8012395B2 (en) 2006-04-18 2011-09-06 Molecular Imprints, Inc. Template having alignment marks formed of contrast material
US8215946B2 (en) 2006-05-18 2012-07-10 Molecular Imprints, Inc. Imprint lithography system and method
US7946837B2 (en) * 2006-10-06 2011-05-24 Asml Netherlands B.V. Imprint lithography
US20080303187A1 (en) * 2006-12-29 2008-12-11 Molecular Imprints, Inc. Imprint Fluid Control
US20090014917A1 (en) * 2007-07-10 2009-01-15 Molecular Imprints, Inc. Drop Pattern Generation for Imprint Lithography
KR101503331B1 (ko) * 2007-09-28 2015-03-17 도레이 카부시키가이샤 미세 형상 전사시트의 제조방법 및 제조장치
NL1036034A1 (nl) * 2007-10-11 2009-04-15 Asml Netherlands Bv Imprint lithography.
US8119052B2 (en) * 2007-11-02 2012-02-21 Molecular Imprints, Inc. Drop pattern generation for imprint lithography
US20090148619A1 (en) * 2007-12-05 2009-06-11 Molecular Imprints, Inc. Controlling Thickness of Residual Layer
US8361371B2 (en) * 2008-02-08 2013-01-29 Molecular Imprints, Inc. Extrusion reduction in imprint lithography
US7995196B1 (en) 2008-04-23 2011-08-09 Tracer Detection Technology Corp. Authentication method and system
US20100096775A1 (en) * 2008-10-16 2010-04-22 Koh Teng Hwee Mold imprinting
US20100096764A1 (en) * 2008-10-20 2010-04-22 Molecular Imprints, Inc. Gas Environment for Imprint Lithography
US8512797B2 (en) * 2008-10-21 2013-08-20 Molecular Imprints, Inc. Drop pattern generation with edge weighting
US8586126B2 (en) 2008-10-21 2013-11-19 Molecular Imprints, Inc. Robust optimization to generate drop patterns in imprint lithography which are tolerant of variations in drop volume and drop placement
US20100112220A1 (en) * 2008-11-03 2010-05-06 Molecular Imprints, Inc. Dispense system set-up and characterization
CN102349131A (zh) * 2009-03-12 2012-02-08 应用材料公司 大面积可溶解模板光刻
JP5438578B2 (ja) 2010-03-29 2014-03-12 富士フイルム株式会社 微細凹凸パターンの形成方法及び形成装置
JP5491931B2 (ja) * 2010-03-30 2014-05-14 富士フイルム株式会社 ナノインプリント方法およびモールド製造方法
KR20130073890A (ko) * 2010-04-27 2013-07-03 몰레큘러 임프린츠 인코퍼레이티드 나노임프린트 리소그래피를 위한 기판/주형의 분리 제어
TWI400160B (zh) * 2010-11-18 2013-07-01 Univ Nat Taiwan Science Tech 應用於微奈米壓印製程之模具
JP5646396B2 (ja) * 2011-06-08 2014-12-24 株式会社東芝 テンプレートの製造方法
JP5938218B2 (ja) 2012-01-16 2016-06-22 キヤノン株式会社 インプリント装置、物品の製造方法およびインプリント方法
JP5824380B2 (ja) * 2012-02-07 2015-11-25 キヤノン株式会社 インプリント装置、インプリント方法、及び物品の製造方法
JP5824379B2 (ja) 2012-02-07 2015-11-25 キヤノン株式会社 インプリント装置、インプリント方法、及び物品の製造方法
JP6060796B2 (ja) * 2013-04-22 2017-01-18 大日本印刷株式会社 インプリントモールド及びダミーパターン設計方法
KR102336499B1 (ko) * 2014-08-04 2021-12-07 삼성전자주식회사 패턴 구조체 및 그 제조방법과, 금속 와이어 그리드 편광판을 채용한 액정 표시장치
BR112017013073A2 (pt) 2014-12-22 2018-01-02 Koninklijke Philips Nv estampa para litografia de estampagem, método de fabricação de uma estampa, uso de uma estampa, e método de impressão
JP2017045849A (ja) * 2015-08-26 2017-03-02 東京エレクトロン株式会社 シーズニング方法およびエッチング方法
IL258703B2 (en) * 2015-10-15 2023-11-01 Univ Texas A versatile process for precise manufacturing on a nanometer scale
US9993962B2 (en) * 2016-05-23 2018-06-12 Canon Kabushiki Kaisha Method of imprinting to correct for a distortion within an imprint system
TWI672212B (zh) * 2016-08-25 2019-09-21 國立成功大學 奈米壓印組合體及其壓印方法
US10627715B2 (en) 2016-10-31 2020-04-21 Canon Kabushiki Kaisha Method for separating a nanoimprint template from a substrate
US11249405B2 (en) * 2018-04-30 2022-02-15 Canon Kabushiki Kaisha System and method for improving the performance of a nanoimprint system
JP7507641B2 (ja) 2020-09-08 2024-06-28 キヤノン株式会社 成形装置及び物品の製造方法

Family Cites Families (253)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1236304A (en) * 1917-02-03 1917-08-07 Riley L Howell Cushioned hand-stamp.
US2124711A (en) * 1937-06-25 1938-07-26 George S Rowell Method and apparatus for reproducing images on curved surfaces
US2201302A (en) * 1938-11-30 1940-05-21 Westinghouse Electric & Mfg Co Printing device
GB1183056A (en) 1966-11-29 1970-03-04 Bp Chemicals U K Ltd Formerly Metering Process for Dispensing Measured Quantities of Liquefied Gas
US3868901A (en) * 1972-05-22 1975-03-04 Interspace Corp Apparatus for mechanical contact in printing on ceramic tableware
US4022855A (en) * 1975-03-17 1977-05-10 Eastman Kodak Company Method for making a plastic optical element having a gradient index of refraction
FR2325018A1 (fr) * 1975-06-23 1977-04-15 Ibm Dispositif de mesure d'intervalle pour definir la distance entre deux faces ou plus
US4208240A (en) * 1979-01-26 1980-06-17 Gould Inc. Method and apparatus for controlling plasma etching
DE3022709A1 (de) 1980-06-18 1982-01-07 Felix Schoeller jr. GmbH & Co KG, 4500 Osnabrück Wasserfestes fotografisches papier und verfahren zu seiner herstellung
US4576900A (en) * 1981-10-09 1986-03-18 Amdahl Corporation Integrated circuit multilevel interconnect system and method
DE3208081A1 (de) 1982-03-06 1983-09-08 Braun Ag, 6000 Frankfurt Verfahren zur herstellung einer siebartigen scherfolie fuer einen elektrisch betriebenen trockenrasierapparat mit erhebungen auf ihrer der haut zugewandten flaeche
US4440804A (en) * 1982-08-02 1984-04-03 Fairchild Camera & Instrument Corporation Lift-off process for fabricating self-aligned contacts
US4490409A (en) * 1982-09-07 1984-12-25 Energy Sciences, Inc. Process and apparatus for decorating the surfaces of electron irradiation cured coatings on radiation-sensitive substrates
US4637904A (en) * 1983-11-14 1987-01-20 Rohm And Haas Company Process for molding a polymeric layer onto a substrate
US4512848A (en) 1984-02-06 1985-04-23 Exxon Research And Engineering Co. Procedure for fabrication of microstructures over large areas using physical replication
US4908298A (en) * 1985-03-19 1990-03-13 International Business Machines Corporation Method of creating patterned multilayer films for use in production of semiconductor circuits and systems
EP0228671A1 (en) 1985-12-23 1987-07-15 General Electric Company Method for the production of a coated substrate with controlled surface characteristics
DE3767317D1 (de) 1986-02-13 1991-02-21 Philips Nv Matrize fuer einen abdruck-process.
US4676868A (en) * 1986-04-23 1987-06-30 Fairchild Semiconductor Corporation Method for planarizing semiconductor substrates
US4737425A (en) * 1986-06-10 1988-04-12 International Business Machines Corporation Patterned resist and process
KR900004269B1 (ko) 1986-06-11 1990-06-18 가부시기가이샤 도시바 제 1물체와 제 2 물체와의 위치 맞추는 방법 및 장치
JPS6376330A (ja) 1986-09-18 1988-04-06 Oki Electric Ind Co Ltd 半導体装置の製造方法
FR2604553A1 (fr) 1986-09-29 1988-04-01 Rhone Poulenc Chimie Substrat polymere rigide pour disque optique et les disques optiques obtenus a partir dudit substrat
US4707218A (en) 1986-10-28 1987-11-17 International Business Machines Corporation Lithographic image size reduction
JPH06104375B2 (ja) * 1986-11-10 1994-12-21 松下電器産業株式会社 印刷方法
JP2823016B2 (ja) * 1986-12-25 1998-11-11 ソニー株式会社 透過型スクリーンの製造方法
US6391798B1 (en) * 1987-02-27 2002-05-21 Agere Systems Guardian Corp. Process for planarization a semiconductor substrate
US6048799A (en) * 1987-02-27 2000-04-11 Lucent Technologies Inc. Device fabrication involving surface planarization
US5736424A (en) * 1987-02-27 1998-04-07 Lucent Technologies Inc. Device fabrication involving planarization
US4731155A (en) 1987-04-15 1988-03-15 General Electric Company Process for forming a lithographic mask
US5028361A (en) * 1987-11-09 1991-07-02 Takeo Fujimoto Method for molding a photosensitive composition
US4936465A (en) 1987-12-07 1990-06-26 Zoeld Tibor Method and apparatus for fast, reliable, and environmentally safe dispensing of fluids, gases and individual particles of a suspension through pressure control at well defined parts of a closed flow-through system
US5028366A (en) 1988-01-12 1991-07-02 Air Products And Chemicals, Inc. Water based mold release compositions for making molded polyurethane foam
US4866307A (en) 1988-04-20 1989-09-12 Texas Instruments Incorporated Integrated programmable bit circuit using single-level poly construction
US4862019A (en) 1988-04-20 1989-08-29 Texas Instruments Incorporated Single-level poly programmable bit circuit
JPH0269936A (ja) 1988-07-28 1990-03-08 Siemens Ag 半導体材料上の樹脂構造の形成方法
US4921778A (en) * 1988-07-29 1990-05-01 Shipley Company Inc. Photoresist pattern fabrication employing chemically amplified metalized material
JP2546350B2 (ja) 1988-09-09 1996-10-23 キヤノン株式会社 位置合わせ装置
US4964945A (en) 1988-12-09 1990-10-23 Minnesota Mining And Manufacturing Company Lift off patterning process on a flexible substrate
US5110514A (en) * 1989-05-01 1992-05-05 Soane Technologies, Inc. Controlled casting of a shrinkable material
US5053318A (en) 1989-05-18 1991-10-01 Shipley Company Inc. Plasma processing with metal mask integration
US4932358A (en) 1989-05-18 1990-06-12 Genus, Inc. Perimeter wafer seal
CA2011927C (en) * 1989-06-02 1996-12-24 Alan Lee Sidman Microlithographic method for producing thick, vertically-walled photoresist patterns
US4919748A (en) * 1989-06-30 1990-04-24 At&T Bell Laboratories Method for tapered etching
US5151754A (en) 1989-10-06 1992-09-29 Kabushiki Kaisha Toshiba Method and an apparatus for measuring a displacement between two objects and a method and an apparatus for measuring a gap distance between two objects
US5362606A (en) 1989-10-18 1994-11-08 Massachusetts Institute Of Technology Positive resist pattern formation through focused ion beam exposure and surface barrier silylation
US5073230A (en) 1990-04-17 1991-12-17 Arizona Board Of Regents Acting On Behalf Of Arizona State University Means and methods of lifting and relocating an epitaxial device layer
US5003062A (en) * 1990-04-19 1991-03-26 Taiwan Semiconductor Manufacturing Co. Semiconductor planarization process for submicron devices
US5328810A (en) * 1990-05-07 1994-07-12 Micron Technology, Inc. Method for reducing, by a factor or 2-N, the minimum masking pitch of a photolithographic process
US5451435A (en) 1990-06-18 1995-09-19 At&T Corp. Method for forming dielectric
DE4029912A1 (de) 1990-09-21 1992-03-26 Philips Patentverwaltung Verfahren zur bildung mindestens eines grabens in einer substratschicht
US5126006A (en) * 1990-10-30 1992-06-30 International Business Machines Corp. Plural level chip masking
US5288436A (en) * 1990-11-06 1994-02-22 Colloptics, Inc. Methods of fabricating a collagen lenticule precursor for modifying the cornea
US5362940A (en) 1990-11-09 1994-11-08 Litel Instruments Use of Fresnel zone plates for material processing
US5240878A (en) 1991-04-26 1993-08-31 International Business Machines Corporation Method for forming patterned films on a substrate
US5212147A (en) * 1991-05-15 1993-05-18 Hewlett-Packard Company Method of forming a patterned in-situ high Tc superconductive film
FR2677043B1 (fr) 1991-05-29 1993-12-24 Solems Procede, dispositif et appareil pour traiter un substrat par un plasma basse pression.
EP0524759A1 (en) 1991-07-23 1993-01-27 AT&T Corp. Device fabrication process
US5357122A (en) 1991-09-05 1994-10-18 Sony Corporation Three-dimensional optical-electronic integrated circuit device with raised sections
JPH0580530A (ja) 1991-09-24 1993-04-02 Hitachi Ltd 薄膜パターン製造方法
US5277749A (en) * 1991-10-17 1994-01-11 International Business Machines Corporation Methods and apparatus for relieving stress and resisting stencil delamination when performing lift-off processes that utilize high stress metals and/or multiple evaporation steps
US5263073A (en) * 1991-12-20 1993-11-16 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Scanning systems for high resolution E-beam and X-ray lithography
JP2867194B2 (ja) 1992-02-05 1999-03-08 東京エレクトロン株式会社 処理装置及び処理方法
US5244818A (en) 1992-04-08 1993-09-14 Georgia Tech Research Corporation Processes for lift-off of thin film materials and for the fabrication of three dimensional integrated circuits
US5545367A (en) 1992-04-15 1996-08-13 Soane Technologies, Inc. Rapid prototype three dimensional stereolithography
US5246880A (en) 1992-04-27 1993-09-21 Eastman Kodak Company Method for creating substrate electrodes for flip chip and other applications
JP3157605B2 (ja) 1992-04-28 2001-04-16 東京エレクトロン株式会社 プラズマ処理装置
US5371822A (en) 1992-06-09 1994-12-06 Digital Equipment Corporation Method of packaging and assembling opto-electronic integrated circuits
US5232874A (en) 1992-06-22 1993-08-03 Micron Technology, Inc. Method for producing a semiconductor wafer having shallow and deep buried contacts
US5376810A (en) 1992-06-26 1994-12-27 California Institute Of Technology Growth of delta-doped layers on silicon CCD/S for enhanced ultraviolet response
US5445195A (en) 1992-07-15 1995-08-29 Kim; Dae S. Automatic computer-controlled liquid dispenser
US5601641A (en) 1992-07-21 1997-02-11 Tse Industries, Inc. Mold release composition with polybutadiene and method of coating a mold core
US5250472A (en) 1992-09-03 1993-10-05 Industrial Technology Research Institute Spin-on-glass integration planarization having siloxane partial etchback and silicate processes
US5431777A (en) * 1992-09-17 1995-07-11 International Business Machines Corporation Methods and compositions for the selective etching of silicon
TW227628B (zh) * 1992-12-10 1994-08-01 Samsung Electronics Co Ltd
DE69405451T2 (de) * 1993-03-16 1998-03-12 Koninkl Philips Electronics Nv Verfahren und Vorrichtung zur Herstellung eines strukturierten Reliefbildes aus vernetztem Photoresist auf einer flachen Substratoberfläche
US5324683A (en) * 1993-06-02 1994-06-28 Motorola, Inc. Method of forming a semiconductor structure having an air region
JP2837063B2 (ja) * 1993-06-04 1998-12-14 シャープ株式会社 レジストパターンの形成方法
US5449117A (en) 1993-10-04 1995-09-12 Technical Concepts, L.P. Apparatus and method for controllably dispensing drops of liquid
US5776748A (en) 1993-10-04 1998-07-07 President And Fellows Of Harvard College Method of formation of microstamped patterns on plates for adhesion of cells and other biological materials, devices and uses therefor
US6776094B1 (en) 1993-10-04 2004-08-17 President & Fellows Of Harvard College Kit For Microcontact Printing
US5900160A (en) * 1993-10-04 1999-05-04 President And Fellows Of Harvard College Methods of etching articles via microcontact printing
US5512131A (en) 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US6180239B1 (en) * 1993-10-04 2001-01-30 President And Fellows Of Harvard College Microcontact printing on surfaces and derivative articles
NL9401260A (nl) * 1993-11-12 1995-06-01 Cornelis Johannes Maria Van Ri Membraan voor microfiltratie, ultrafiltratie, gasscheiding en katalyse, werkwijze ter vervaardiging van een dergelijk membraan, mal ter vervaardiging van een dergelijk membraan, alsmede diverse scheidingssystemen omvattende een dergelijk membraan.
US5434107A (en) * 1994-01-28 1995-07-18 Texas Instruments Incorporated Method for planarization
DE4408537A1 (de) 1994-03-14 1995-09-21 Leybold Ag Vorrichtung für den Transport von Substraten
US5542605A (en) 1994-04-07 1996-08-06 Flow-Rite Controls, Ltd. Automatic liquid dispenser
US5453157A (en) 1994-05-16 1995-09-26 Texas Instruments Incorporated Low temperature anisotropic ashing of resist for semiconductor fabrication
WO1996004210A1 (fr) * 1994-08-04 1996-02-15 Hitachi Chemical Company, Ltd. Procede de production de verre de silice
US5686356A (en) 1994-09-30 1997-11-11 Texas Instruments Incorporated Conductor reticulation for improved device planarity
DE69509046T2 (de) * 1994-11-30 1999-10-21 Applied Materials, Inc. Plasmareaktoren zur Behandlung von Halbleiterscheiben
US5458520A (en) 1994-12-13 1995-10-17 International Business Machines Corporation Method for producing planar field emission structure
US5628917A (en) * 1995-02-03 1997-05-13 Cornell Research Foundation, Inc. Masking process for fabricating ultra-high aspect ratio, wafer-free micro-opto-electromechanical structures
US5843363A (en) 1995-03-31 1998-12-01 Siemens Aktiengesellschaft Ablation patterning of multi-layered structures
US5849209A (en) 1995-03-31 1998-12-15 Johnson & Johnson Vision Products, Inc. Mold material made with additives
US6342389B1 (en) 1995-04-10 2002-01-29 Roger S. Cubicciotti Modified phycobilisomes and uses therefore
GB9509487D0 (en) 1995-05-10 1995-07-05 Ici Plc Micro relief element & preparation thereof
US5820769A (en) 1995-05-24 1998-10-13 Regents Of The University Of Minnesota Method for making magnetic storage having discrete elements with quantized magnetic moments
US5948570A (en) 1995-05-26 1999-09-07 Lucent Technologies Inc. Process for dry lithographic etching
US5654238A (en) 1995-08-03 1997-08-05 International Business Machines Corporation Method for etching vertical contact holes without substrate damage caused by directional etching
US5849222A (en) 1995-09-29 1998-12-15 Johnson & Johnson Vision Products, Inc. Method for reducing lens hole defects in production of contact lens blanks
US6309580B1 (en) 1995-11-15 2001-10-30 Regents Of The University Of Minnesota Release surfaces, particularly for use in nanoimprint lithography
US20040036201A1 (en) * 2000-07-18 2004-02-26 Princeton University Methods and apparatus of field-induced pressure imprint lithography
US7758794B2 (en) 2001-10-29 2010-07-20 Princeton University Method of making an article comprising nanoscale patterns with reduced edge roughness
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
US6482742B1 (en) 2000-07-18 2002-11-19 Stephen Y. Chou Fluid pressure imprint lithography
US20040137734A1 (en) 1995-11-15 2004-07-15 Princeton University Compositions and processes for nanoimprinting
US6518189B1 (en) 1995-11-15 2003-02-11 Regents Of The University Of Minnesota Method and apparatus for high density nanostructures
US20030080471A1 (en) 2001-10-29 2003-05-01 Chou Stephen Y. Lithographic method for molding pattern with nanoscale features
US5669303A (en) * 1996-03-04 1997-09-23 Motorola Apparatus and method for stamping a surface
US6355198B1 (en) 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding
US20030179354A1 (en) 1996-03-22 2003-09-25 Nikon Corporation Mask-holding apparatus for a light exposure apparatus and related scanning-exposure method
JPH09283621A (ja) 1996-04-10 1997-10-31 Murata Mfg Co Ltd 半導体装置のt型ゲート電極形成方法およびその構造
US5942443A (en) * 1996-06-28 1999-08-24 Caliper Technologies Corporation High throughput screening assay systems in microscale fluidic devices
US5888650A (en) * 1996-06-03 1999-03-30 Minnesota Mining And Manufacturing Company Temperature-responsive adhesive article
US6074827A (en) * 1996-07-30 2000-06-13 Aclara Biosciences, Inc. Microfluidic method for nucleic acid purification and processing
CA2264908C (en) * 1996-09-06 2006-04-25 Obducat Ab Method for anisotropic etching of structures in conducting materials
US5858580A (en) 1997-09-17 1999-01-12 Numerical Technologies, Inc. Phase shifting circuit manufacture method and apparatus
US6228539B1 (en) 1996-09-18 2001-05-08 Numerical Technologies, Inc. Phase shifting circuit manufacture method and apparatus
JPH10123534A (ja) * 1996-10-23 1998-05-15 Toshiba Corp 液晶表示素子
US5895263A (en) * 1996-12-19 1999-04-20 International Business Machines Corporation Process for manufacture of integrated circuit device
US5983906A (en) 1997-01-24 1999-11-16 Applied Materials, Inc. Methods and apparatus for a cleaning process in a high temperature, corrosive, plasma environment
US5817579A (en) 1997-04-09 1998-10-06 Vanguard International Semiconductor Corporation Two step plasma etch method for forming self aligned contact
US5948470A (en) 1997-04-28 1999-09-07 Harrison; Christopher Method of nanoscale patterning and products made thereby
US5812629A (en) 1997-04-30 1998-09-22 Clauser; John F. Ultrahigh resolution interferometric x-ray imaging
US5926690A (en) * 1997-05-28 1999-07-20 Advanced Micro Devices, Inc. Run-to-run control process for controlling critical dimensions
US5974150A (en) 1997-09-30 1999-10-26 Tracer Detection Technology Corp. System and method for authentication of goods
US6150680A (en) 1998-03-05 2000-11-21 Welch Allyn, Inc. Field effect semiconductor device having dipole barrier
EP1060299A1 (en) * 1998-03-05 2000-12-20 Obducat AB Method of etching
JP3780700B2 (ja) 1998-05-26 2006-05-31 セイコーエプソン株式会社 パターン形成方法、パターン形成装置、パターン形成用版、パターン形成用版の製造方法、カラーフィルタの製造方法、導電膜の製造方法及び液晶パネルの製造方法
FI109944B (fi) 1998-08-11 2002-10-31 Valtion Teknillinen Optoelektroninen komponentti ja valmistusmenetelmä
US5907782A (en) * 1998-08-15 1999-05-25 Acer Semiconductor Manufacturing Inc. Method of forming a multiple fin-pillar capacitor for a high density dram cell
US6713238B1 (en) 1998-10-09 2004-03-30 Stephen Y. Chou Microscale patterning and articles formed thereby
US6218316B1 (en) * 1998-10-22 2001-04-17 Micron Technology, Inc. Planarization of non-planar surfaces in device fabrication
US6665014B1 (en) 1998-11-25 2003-12-16 Intel Corporation Microlens and photodetector
US6247986B1 (en) 1998-12-23 2001-06-19 3M Innovative Properties Company Method for precise molding and alignment of structures on a substrate using a stretchable mold
US6521536B1 (en) * 1999-01-11 2003-02-18 Micron Technology, Inc. Planarization process
US6274294B1 (en) 1999-02-03 2001-08-14 Electroformed Stents, Inc. Cylindrical photolithography exposure process and apparatus
US6565928B2 (en) * 1999-03-08 2003-05-20 Tokyo Electron Limited Film forming method and film forming apparatus
US6334960B1 (en) * 1999-03-11 2002-01-01 Board Of Regents, The University Of Texas System Step and flash imprint lithography
US6387783B1 (en) * 1999-04-26 2002-05-14 International Business Machines Corporation Methods of T-gate fabrication using a hybrid resist
JP2001058352A (ja) * 1999-06-14 2001-03-06 Dainippon Printing Co Ltd 密着転写方法および装置ならびに転写型
US6255022B1 (en) * 1999-06-17 2001-07-03 Taiwan Semiconductor Manufacturing Company Dry development process for a bi-layer resist system utilized to reduce microloading
EP1065567A3 (en) * 1999-06-29 2001-05-16 Applied Materials, Inc. Integrated critical dimension control
EP1072954A3 (en) * 1999-07-28 2002-05-22 Lucent Technologies Inc. Lithographic process for device fabrication
US6242363B1 (en) * 1999-08-11 2001-06-05 Adc Telecommunications, Inc. Method of etching a wafer layer using a sacrificial wall to form vertical sidewall
US6383928B1 (en) * 1999-09-02 2002-05-07 Texas Instruments Incorporated Post copper CMP clean
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US6329256B1 (en) 1999-09-24 2001-12-11 Advanced Micro Devices, Inc. Self-aligned damascene gate formation with low gate resistance
US6873087B1 (en) 1999-10-29 2005-03-29 Board Of Regents, The University Of Texas System High precision orientation alignment and gap control stages for imprint lithography processes
US6623579B1 (en) 1999-11-02 2003-09-23 Alien Technology Corporation Methods and apparatus for fluidic self assembly
JP3321129B2 (ja) * 1999-11-17 2002-09-03 富士通株式会社 立体構造物転写方法及びその装置
SE515607C2 (sv) * 1999-12-10 2001-09-10 Obducat Ab Anordning och metod vid tillverkning av strukturer
EP1251974B1 (en) 1999-12-23 2005-05-04 University of Massachusetts Methods for forming submicron patterns on films
US6498640B1 (en) 1999-12-30 2002-12-24 Koninklijke Philips Electronics N.V. Method to measure alignment using latent image grating structures
US6376379B1 (en) * 2000-02-01 2002-04-23 Chartered Semiconductor Manufacturing Ltd. Method of hard mask patterning
US6337262B1 (en) * 2000-03-06 2002-01-08 Chartered Semiconductor Manufacturing Ltd. Self aligned T-top gate process integration
US6387330B1 (en) 2000-04-12 2002-05-14 George Steven Bova Method and apparatus for storing and dispensing reagents
US7859519B2 (en) 2000-05-01 2010-12-28 Tulbert David J Human-machine interface
US6593240B1 (en) 2000-06-28 2003-07-15 Infineon Technologies, North America Corp Two step chemical mechanical polishing process
EP2264524A3 (en) * 2000-07-16 2011-11-30 The Board of Regents of The University of Texas System High-resolution overlay alignement methods and systems for imprint lithography
AU2001277907A1 (en) * 2000-07-17 2002-01-30 Board Of Regents, The University Of Texas System Method and system of automatic fluid dispensing for imprint lithography processes
US7211214B2 (en) * 2000-07-18 2007-05-01 Princeton University Laser assisted direct imprint lithography
US7635262B2 (en) 2000-07-18 2009-12-22 Princeton University Lithographic apparatus for fluid pressure imprint lithography
US20050037143A1 (en) 2000-07-18 2005-02-17 Chou Stephen Y. Imprint lithography with improved monitoring and control and apparatus therefor
US6326627B1 (en) 2000-08-02 2001-12-04 Archimedes Technology Group, Inc. Mass filtering sputtered ion source
KR100350811B1 (ko) * 2000-08-19 2002-09-05 삼성전자 주식회사 반도체 장치의 금속 비아 콘택 및 그 형성방법
US6629292B1 (en) 2000-10-06 2003-09-30 International Business Machines Corporation Method for forming graphical images in semiconductor devices
EP1352295B1 (en) * 2000-10-12 2015-12-23 Board of Regents, The University of Texas System Template for room temperature, low pressure micro- and nano-imprint lithography
US6879162B2 (en) 2000-11-07 2005-04-12 Sri International System and method of micro-fluidic handling and dispensing using micro-nozzle structures
WO2002047139A2 (en) * 2000-12-04 2002-06-13 Ebara Corporation Methode of forming a copper film on a substrate
US6632742B2 (en) 2001-04-18 2003-10-14 Promos Technologies Inc. Method for avoiding defects produced in the CMP process
US6620733B2 (en) 2001-02-12 2003-09-16 Lam Research Corporation Use of hydrocarbon addition for the elimination of micromasking during etching of organic low-k dielectrics
US6841483B2 (en) 2001-02-12 2005-01-11 Lam Research Corporation Unique process chemistry for etching organic low-k materials
US6387787B1 (en) 2001-03-02 2002-05-14 Motorola, Inc. Lithographic template and method of formation and use
US6955767B2 (en) 2001-03-22 2005-10-18 Hewlett-Packard Development Company, Lp. Scanning probe based lithographic alignment
US6517977B2 (en) * 2001-03-28 2003-02-11 Motorola, Inc. Lithographic template and method of formation and use
US6541360B1 (en) * 2001-04-30 2003-04-01 Advanced Micro Devices, Inc. Bi-layer trim etch process to form integrated circuit gate structures
US6534418B1 (en) * 2001-04-30 2003-03-18 Advanced Micro Devices, Inc. Use of silicon containing imaging layer to define sub-resolution gate structures
US6964793B2 (en) 2002-05-16 2005-11-15 Board Of Regents, The University Of Texas System Method for fabricating nanoscale patterns in light curable compositions using an electric field
JP2002348680A (ja) 2001-05-22 2002-12-04 Sharp Corp 金属膜パターンおよびその製造方法
US6847433B2 (en) 2001-06-01 2005-01-25 Agere Systems, Inc. Holder, system, and process for improving overlay in lithography
TW488080B (en) 2001-06-08 2002-05-21 Au Optronics Corp Method for producing thin film transistor
TWI285279B (en) 2001-06-14 2007-08-11 Himax Tech Ltd Liquid crystal display panel having sealant
US7049049B2 (en) 2001-06-27 2006-05-23 University Of South Florida Maskless photolithography for using photoreactive agents
US20030017424A1 (en) * 2001-07-18 2003-01-23 Miri Park Method and apparatus for fabricating complex grating structures
SG169225A1 (en) 2001-07-25 2011-03-30 Univ Princeton Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
US6678038B2 (en) 2001-08-03 2004-01-13 Nikon Corporation Apparatus and methods for detecting tool-induced shift in microlithography apparatus
WO2003035932A1 (en) 2001-09-25 2003-05-01 Minuta Technology Co., Ltd. Method for forming a micro-pattern on a substrate by using capillary force
US6716767B2 (en) * 2001-10-31 2004-04-06 Brewer Science, Inc. Contact planarization materials that generate no volatile byproducts or residue during curing
JP2003202584A (ja) 2002-01-08 2003-07-18 Toshiba Corp 液晶表示装置
US6621960B2 (en) 2002-01-24 2003-09-16 Oplink Communications, Inc. Method of fabricating multiple superimposed fiber Bragg gratings
US7455955B2 (en) * 2002-02-27 2008-11-25 Brewer Science Inc. Planarization method for multi-layer lithography processing
US7117583B2 (en) 2002-03-18 2006-10-10 International Business Machines Corporation Method and apparatus using a pre-patterned seed layer for providing an aligned coil for an inductive head structure
US7223350B2 (en) 2002-03-29 2007-05-29 International Business Machines Corporation Planarization in an encapsulation process for thin film surfaces
US6783717B2 (en) 2002-04-22 2004-08-31 International Business Machines Corporation Process of fabricating a precision microcontact printing stamp
US6849558B2 (en) 2002-05-22 2005-02-01 The Board Of Trustees Of The Leland Stanford Junior University Replication and transfer of microstructures and nanostructures
EP1511632B1 (en) * 2002-05-27 2011-11-02 Koninklijke Philips Electronics N.V. Method and device for transferring a pattern from a stamp to a substrate
US20030224116A1 (en) 2002-05-30 2003-12-04 Erli Chen Non-conformal overcoat for nonometer-sized surface structure
US6926929B2 (en) 2002-07-09 2005-08-09 Molecular Imprints, Inc. System and method for dispensing liquids
MY164487A (en) * 2002-07-11 2017-12-29 Molecular Imprints Inc Step and repeat imprint lithography processes
US7019819B2 (en) * 2002-11-13 2006-03-28 Molecular Imprints, Inc. Chucking system for modulating shapes of substrates
US6908861B2 (en) 2002-07-11 2005-06-21 Molecular Imprints, Inc. Method for imprint lithography using an electric field
US6900881B2 (en) 2002-07-11 2005-05-31 Molecular Imprints, Inc. Step and repeat imprint lithography systems
US7442336B2 (en) * 2003-08-21 2008-10-28 Molecular Imprints, Inc. Capillary imprinting technique
US7077992B2 (en) * 2002-07-11 2006-07-18 Molecular Imprints, Inc. Step and repeat imprint lithography processes
US6932934B2 (en) 2002-07-11 2005-08-23 Molecular Imprints, Inc. Formation of discontinuous films during an imprint lithography process
US6916584B2 (en) 2002-08-01 2005-07-12 Molecular Imprints, Inc. Alignment methods for imprint lithography
US7071088B2 (en) * 2002-08-23 2006-07-04 Molecular Imprints, Inc. Method for fabricating bulbous-shaped vias
US6936194B2 (en) 2002-09-05 2005-08-30 Molecular Imprints, Inc. Functional patterning material for imprint lithography processes
US8349241B2 (en) * 2002-10-04 2013-01-08 Molecular Imprints, Inc. Method to arrange features on a substrate to replicate features having minimal dimensional variability
US20040065252A1 (en) * 2002-10-04 2004-04-08 Sreenivasan Sidlgata V. Method of forming a layer on a substrate to facilitate fabrication of metrology standards
US6833325B2 (en) 2002-10-11 2004-12-21 Lam Research Corporation Method for plasma etching performance enhancement
US6980282B2 (en) 2002-12-11 2005-12-27 Molecular Imprints, Inc. Method for modulating shapes of substrates
US7750059B2 (en) 2002-12-04 2010-07-06 Hewlett-Packard Development Company, L.P. Polymer solution for nanoimprint lithography to reduce imprint temperature and pressure
US6871558B2 (en) * 2002-12-12 2005-03-29 Molecular Imprints, Inc. Method for determining characteristics of substrate employing fluid geometries
WO2004054784A1 (en) 2002-12-13 2004-07-01 Molecular Imprints, Inc. Magnification corrections employing out-of-plane distortions on a substrate
US7113336B2 (en) 2002-12-30 2006-09-26 Ian Crosby Microlens including wire-grid polarizer and methods of manufacture
WO2004086471A1 (en) 2003-03-27 2004-10-07 Korea Institute Of Machinery & Materials Uv nanoimprint lithography process using elementwise embossed stamp and selectively additive pressurization
JP4185808B2 (ja) * 2003-05-09 2008-11-26 Tdk株式会社 インプリント装置およびインプリント方法
TWI228638B (en) 2003-06-10 2005-03-01 Ind Tech Res Inst Method for and apparatus for bonding patterned imprint to a substrate by adhering means
US7150622B2 (en) * 2003-07-09 2006-12-19 Molecular Imprints, Inc. Systems for magnification and distortion correction for imprint lithography processes
US7790231B2 (en) * 2003-07-10 2010-09-07 Brewer Science Inc. Automated process and apparatus for planarization of topographical surfaces
JP2005053214A (ja) * 2003-07-22 2005-03-03 Meiki Co Ltd 樹脂成形品の成形装置および成形方法
US7090716B2 (en) * 2003-10-02 2006-08-15 Molecular Imprints, Inc. Single phase fluid imprint lithography method
US20050106321A1 (en) * 2003-11-14 2005-05-19 Molecular Imprints, Inc. Dispense geometery to achieve high-speed filling and throughput
JP4322096B2 (ja) 2003-11-14 2009-08-26 Tdk株式会社 レジストパターン形成方法並びに磁気記録媒体及び磁気ヘッドの製造方法
US20050189676A1 (en) 2004-02-27 2005-09-01 Molecular Imprints, Inc. Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography
US20050276919A1 (en) 2004-06-01 2005-12-15 Molecular Imprints, Inc. Method for dispensing a fluid on a substrate
US20050270516A1 (en) 2004-06-03 2005-12-08 Molecular Imprints, Inc. System for magnification and distortion correction during nano-scale manufacturing
US7673775B2 (en) 2004-06-25 2010-03-09 Cristian Penciu Apparatus for mixing and dispensing fluids
US20060017876A1 (en) * 2004-07-23 2006-01-26 Molecular Imprints, Inc. Displays and method for fabricating displays
US7105452B2 (en) 2004-08-13 2006-09-12 Molecular Imprints, Inc. Method of planarizing a semiconductor substrate with an etching chemistry
US7547504B2 (en) * 2004-09-21 2009-06-16 Molecular Imprints, Inc. Pattern reversal employing thick residual layers
US7244386B2 (en) * 2004-09-27 2007-07-17 Molecular Imprints, Inc. Method of compensating for a volumetric shrinkage of a material disposed upon a substrate to form a substantially planar structure therefrom
JP5198071B2 (ja) * 2004-12-01 2013-05-15 モレキュラー・インプリンツ・インコーポレーテッド インプリントリソグラフィ・プロセスにおける熱管理のための露光方法
US7357876B2 (en) * 2004-12-01 2008-04-15 Molecular Imprints, Inc. Eliminating printability of sub-resolution defects in imprint lithography
US7281919B2 (en) 2004-12-07 2007-10-16 Molecular Imprints, Inc. System for controlling a volume of material on a mold
US20060177532A1 (en) 2005-02-04 2006-08-10 Molecular Imprints, Inc. Imprint lithography method to control extrusion of a liquid from a desired region on a substrate
US20060177535A1 (en) 2005-02-04 2006-08-10 Molecular Imprints, Inc. Imprint lithography template to facilitate control of liquid movement
JP4787993B2 (ja) * 2005-04-22 2011-10-05 株式会社日立製作所 インプリント方式の転写印刷方法、および転写印刷版
JP4596981B2 (ja) * 2005-05-24 2010-12-15 株式会社日立ハイテクノロジーズ インプリント装置、及び微細構造転写方法
US7316554B2 (en) * 2005-09-21 2008-01-08 Molecular Imprints, Inc. System to control an atmosphere between a body and a substrate
JP2007083626A (ja) * 2005-09-22 2007-04-05 Ricoh Co Ltd 微細構造転写装置
JP2007134368A (ja) * 2005-11-08 2007-05-31 Nikon Corp パターン転写装置、露光装置及びパターン転写方法
US7803308B2 (en) 2005-12-01 2010-09-28 Molecular Imprints, Inc. Technique for separating a mold from solidified imprinting material
US7670530B2 (en) 2006-01-20 2010-03-02 Molecular Imprints, Inc. Patterning substrates employing multiple chucks
MY144847A (en) 2005-12-08 2011-11-30 Molecular Imprints Inc Method and system for double-sided patterning of substrates
US7802978B2 (en) 2006-04-03 2010-09-28 Molecular Imprints, Inc. Imprinting of partial fields at the edge of the wafer
KR20090003153A (ko) 2006-04-03 2009-01-09 몰레큘러 임프린츠 인코퍼레이티드 다수의 필드와 정렬 마크를 갖는 기판을 동시에 패턴화하는방법
US8142850B2 (en) 2006-04-03 2012-03-27 Molecular Imprints, Inc. Patterning a plurality of fields on a substrate to compensate for differing evaporation times
US7547398B2 (en) 2006-04-18 2009-06-16 Molecular Imprints, Inc. Self-aligned process for fabricating imprint templates containing variously etched features

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI411523B (zh) * 2009-09-30 2013-10-11 Canon Kk 壓印設備和製造產品的方法

Also Published As

Publication number Publication date
KR20080071151A (ko) 2008-08-01
EP1954472A1 (en) 2008-08-13
EP2413189A1 (en) 2012-02-01
JP5236484B2 (ja) 2013-07-17
JP5543502B2 (ja) 2014-07-09
KR20130065741A (ko) 2013-06-19
EP1954472A4 (en) 2009-01-07
KR101375132B1 (ko) 2014-03-17
KR101340922B1 (ko) 2013-12-13
WO2007064386A1 (en) 2007-06-07
US7906058B2 (en) 2011-03-15
TW200722273A (en) 2007-06-16
JP2009517882A (ja) 2009-04-30
JP2012094901A (ja) 2012-05-17
US20070126150A1 (en) 2007-06-07

Similar Documents

Publication Publication Date Title
TWI310730B (en) Technique for separating a mold from solidified imprinting material
US7803308B2 (en) Technique for separating a mold from solidified imprinting material
JP4563181B2 (ja) 基板の面曲がりを使用する倍率補正
TWI302228B (en) A chucking system and method for modulating shapes of substrates
JP5139421B2 (ja) 厚さが変化するテンプレート
JP6538695B2 (ja) パーシャルフィールドインプリントのための非対称的なテンプレート形状の調節
JP2015149484A (ja) 引っ込んだ支持特徴部を有するチャッキングシステム
TW201018570A (en) Inner cavity system for nano-imprint lithography
TW200405138A (en) Method and system for imprint lithography using an electric field
US9437414B2 (en) Pattern forming device and semiconductor device manufacturing method
JP2008501244A (ja) 基板支持システム及び方法
KR20210020795A (ko) 평탄화 공정, 장치 및 물품 제조 방법
JP5725042B2 (ja) 成形型、ウェハーレンズ及び光学レンズの製造方法
KR20220048928A (ko) 척 조립체, 평탄화 공정, 장치 및 물품 제조 방법
TWI322754B (en) Method for expelling gas positioned between a substrate and a mold
US20240045347A1 (en) Imprinting method, imprint apparatus and article manufacturing method
JP6540848B2 (ja) ナノインプリント用テンプレート
TWI414418B (zh) 壓印微影術系統及方法
TW202401144A (zh) 製造物品的平面化程序、設備及方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees