JP5438578B2 - 微細凹凸パターンの形成方法及び形成装置 - Google Patents

微細凹凸パターンの形成方法及び形成装置 Download PDF

Info

Publication number
JP5438578B2
JP5438578B2 JP2010075495A JP2010075495A JP5438578B2 JP 5438578 B2 JP5438578 B2 JP 5438578B2 JP 2010075495 A JP2010075495 A JP 2010075495A JP 2010075495 A JP2010075495 A JP 2010075495A JP 5438578 B2 JP5438578 B2 JP 5438578B2
Authority
JP
Japan
Prior art keywords
transfer substrate
mold
substrate
peeling
convex pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010075495A
Other languages
English (en)
Other versions
JP2011206977A (ja
Inventor
信一郎 岡田
正太郎 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010075495A priority Critical patent/JP5438578B2/ja
Priority to PCT/JP2011/057178 priority patent/WO2011122439A1/ja
Priority to US13/636,253 priority patent/US9272462B2/en
Priority to KR1020127025624A priority patent/KR101627575B1/ko
Publication of JP2011206977A publication Critical patent/JP2011206977A/ja
Application granted granted Critical
Publication of JP5438578B2 publication Critical patent/JP5438578B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/002Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/11Methods of delaminating, per se; i.e., separating at bonding face
    • Y10T156/1168Gripping and pulling work apart during delaminating
    • Y10T156/1195Delaminating from release surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/19Delaminating means
    • Y10T156/1928Differential fluid pressure delaminating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/19Delaminating means
    • Y10T156/1994Means for delaminating from release surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は微細凹凸パターンの形成方法及び形成装置並びに転写用基板に係り、特に転写後のレジスト層をモールドから微細凹凸パターンを損傷させることなく剥離するための剥離技術に関する。
近年、半導体製造におけるリソグラフィ工程においては、集積回路の高速、高集積化実現のため、露光工程で紫外線(KrF、ArF、F2レーザ)を利用したものが開発されている。今後は、更に短波長のEUV光(極端紫外光)を利用した技術開発が進んでいるが、装置コストが高価である等の問題がある。
また、これまで微細パターニングに利用されてきた電子ビーム露光技術では露光に長時間必要なため、現状では特殊用途の少量試作に利用されるのみであり、大量生産が求められる半導体製造などには応用できないという問題がある。
これら両方の問題(装置コスト、スループット)を解決する方法として、ポリマーを材料としてナノサイズの微細凹凸パターンを基板上に形成し、半導体、記録メディア、光学素子などの高機能デバイスを製造するナノインプリント技術が注目を集めている。
ナノインプリント法とは、電子ビーム露光などで微細凹凸パターンを形成したモールド(型)に、レジスト(樹脂材料)を塗布した基板を押付け、モールドの微細凹凸パターンをレジスト層に転写する方法である。
ナノインプリント技術の特徴としては、微細化による装置コストがEUV方式などと比較して安価であり、数十ナノサイズの微細凹凸パターン形状が転写可能であることが確認されている。
しかし、ナノインプリント技術では、基板上のレジスト層に微細凹凸パターンを転写した後、レジスト層とモールドとを剥離する際にレジスト層に転写された微細凹凸パターンが損傷を受け易いという剥離不良の問題がある。これは、ナノインプリント技術は微細凹凸パターンを形成するために、モールドとレジスト層とを接触させる転写工程を取ることによって生じる避けがたい根本的な問題である。
この剥離不良問題を改善するための対策は今までも幾つか提案されている。例えば特許文献1には、凹凸パターンのライン方向とモールドの剥離方向とのなす角度を調整することで、剥離時の凹凸パターンの破損を防止するパターン形成方法が開示されている。
また、特許文献2には、インプリンティング材料とモールドとの間の接着力よりも大きな戻り力を生むのに十分な変形を、モールドに隣接して形成する方法が記載されている。これにより、コンタクト・リソグラフィ・プロセスで使用されるインプリンティングの方法を改善できるとされている。
また、特許文献3には、モールドと樹脂とが接触したままの状態で、モールドが樹脂から離れる方向に移動し始めてから剥離するまでを、第1の状態と第2の状態とに分け、モールドと樹脂との間に作用する荷重変化率が第1の状態よりも第2の状態が小さくなるようにするデバイス製造方法が開示されている。これにより、高速な離型工程を実現し、優れたスループットを有するとされている。
特開2007−296683号公報 特表2009−517882号公報 特開2007−329367号公報
しかしながら、特許文献1〜3のいずれの剥離方法を採用しても、剥離不良問題を本質的に解決することができない。特に、モールドと転写用基板との剥離が終了する直前の剥離最終端での微細凹凸パターンの損傷や変形を解決することができない。
本発明は、このような事情に鑑みてなされたものであり、微細凹凸パターンを転写する側のモールドと、転写される側の転写用基板とを剥離する際に、転写用基板のレジスト層に転写された微細凹凸パターンが損傷を受けることを効果的に防止できるので、ナノサイズの微細凹凸パターンであっても高精度な微細凹凸パターンを形成することができる微細凹凸パターンの形成方法及び形成装置並びに転写用基板を提供することを目的とする。
願の微細凹凸パターンの形成方法は前記目的を達成するために、基板上にレジスト層が形成された転写用基板のレジスト層に、モールドの微細凹凸パターンを転写して硬化した後、前記転写用基板と前記モールドとを剥離する剥離工程を備えた微細凹凸パターンの形成方法において、前記剥離工程は、前記転写用基板の周縁部を固定した状態で前記転写用基板の基板裏面側を加圧して前記転写用基板を湾曲状に撓ませることにより、該撓みによって前記転写用基板と前記モールドとの剥離を開始する第1の剥離工程と、前記転写用基板の撓みが戻るように前記加圧した圧力を徐々に減少させることにより、前記転写用基板の微細凹凸パターンのうちの前記第1の剥離工程で剥離されなかった微細凹凸パターンを剥離する第2の剥離工程と、を備え、前記第1の剥離工程では、前記転写用基板の撓みに応じて前記モールドを前記転写用基板から離間する方向に移動させることを特徴とする。
そして、本願の微細凹凸パターンの形成方法は前記目的を達成するために、基板上にレジスト層が形成された転写用基板のレジスト層に、モールドの微細凹凸パターンを転写して硬化した後、前記転写用基板と前記モールドとを剥離する剥離工程を備えた微細凹凸パターンの形成方法において、前記剥離工程は、前記転写用基板の周縁部を固定した状態で前記転写用基板の基板裏面側を加圧して前記転写用基板を湾曲状に撓ませることにより、該撓みによって前記転写用基板と前記モールドとの剥離を開始する第1の剥離工程と、前記転写用基板の撓みが戻るように前記加圧した圧力を徐々に減少させることにより、前記転写用基板の微細凹凸パターンのうちの前記第1の剥離工程で剥離されなかった微細凹凸パターンを剥離する第2の剥離工程と、を備え、前記第2の剥離工程では、前記モールドを動かないように固定した状態で、前記基板裏面側の加圧力を徐々に減少させながら剥離することを特徴とする。
また、本願の微細凹凸パターンの形成方法は前記目的を達成するために、基板上にレジスト層が形成された転写用基板のレジスト層に、モールドの微細凹凸パターンを転写して硬化した後、前記転写用基板と前記モールドとを剥離する剥離工程を備えた微細凹凸パターンの形成方法において、前記剥離工程は、前記転写用基板の周縁部を固定した状態で前記転写用基板の基板裏面側を加圧して前記転写用基板を湾曲状に撓ませることにより、該撓みによって前記転写用基板と前記モールドとの剥離を開始する第1の剥離工程と、前記転写用基板の撓みが戻るように前記加圧した圧力を徐々に減少させることにより、前記転写用基板の微細凹凸パターンのうちの前記第1の剥離工程で剥離されなかった微細凹凸パターンを剥離する第2の剥離工程と、を備え、前記第1及び第2の剥離工程では、前記転写用基板に加わる荷重を測定し、前記測定された荷重に基づいて前記基板裏面側の圧力を制御することを特徴とする。
本発明の形成方法によれば、第1の剥離工程において、転写用基板の周縁部を固定した状態で基板裏面側を加圧して転写用基板を湾曲状に撓ませることにより、モールド外周端において、モールドに対する剥離角を転写用基板に付与することができる。これにより、撓みを利用して転写用基板外周部の微細凹凸パターンが先ず剥離する。
次に、第2の剥離工程において、基板裏面側を加圧した圧力を徐々に減少させて転写用基板に撓みの戻り力を作用させる。これにより、湾曲状に撓んだ転写用基板が平板状になろうとして転写用基板の中央部に向かって剥離力が付与されていくので、第1の剥離工程で剥離されなかった転写用基板中央部の微細凹凸パターンが剥離される。
即ち、加圧により転写用基板が撓み始めた段階から撓みの戻り力が生じているが、この段階では加圧力が撓みの戻り力よりも大きいので撓みは増大する。この撓みを利用して転写用基板外周部の微細凹凸パターンを剥離する(第1の剥離工程)。そして、加圧力を徐々に減少させて、撓みの戻り力が加圧力よりも大きくなると撓みが減少して撓みが戻る方向に進む。この撓みの戻りを利用して第1の剥離工程で剥離されなかった転写用基板中央部の微細凹凸パターンを剥離する(第2の剥離工程)。
このときに、第2の剥離工程が終了する直前では、モールドには剥離最終端(転写用基板の中心部)の微細凹凸パターンみが結合している。したがって、剥離が完了する際に大きな撓みの戻り力(剥離力)が一気に付与されると、剥離最終端の微細凹凸パターンが破損したり変形したりしてしまう。
しかし、本発明では、転写用基板を加圧した圧力を徐々に減少させて転写用基板に撓みの戻り力(剥離力)を徐々に作用させることにより、小さな剥離力で且つ低剥離速度で剥離するようにした。これにより、第2の剥離工程において、転写用基板中央部の微細凹凸パターン、特に剥離最終端の微細凹凸パターンが破損したり変形したりすることがない。
これにより、転写用基板のレジスト層に転写された微細凹凸パターンが損傷を受けないように剥離することができる。したがって、ナノサイズの微細凹凸パターンであっても高精度な微細凹凸パターンを形成することができる。
本発明の形成方法において、前記第1の剥離工程では、前記転写用基板の撓みに応じて前記モールドを前記転写用基板から離間する方向に移動させることが好ましい。この場合、転写用基板が撓む力でモールドを従動的にスライドさせても、あるいはモールドを駆動手段で強制的に所定量移動させても何れでもよい。これにより、撓みによる剥離力を転写用基板に対して均等に付与することができるので、転写用基板外周部の微細凹凸パターンを均等に剥離することができる。特に、モールドを駆動手段で強制的に所定量移動させることにより、基板裏面側の加圧による転写用基板の撓みを補助することができるので、スムーズな撓みを実現できる。
本発明の形成方法において、前記第2の剥離工程では、前記モールドを動かないように固定した状態で、前記基板裏面側の加圧力を徐々に減少させることが好ましい。これにより、撓みの戻り力のみが剥離力として作用するので、小さな剥離力で且つ剥離最終端で剥離速度が瞬間的に増大することなく剥離することができる。
本発明の形成方法において、前記第2の剥離工程で撓みの戻り力のみが剥離力として作用したのでは、剥離力を十分に得ることができない場合には、前記第1の剥離工程での移動に継続して転写用基板から離間する方向に移動させながら、前記基板裏面側の加圧力を徐々に減少させることが好ましい。
この場合、モールドの移動は0.1mm/秒以下の極めてゆっくりとした移動であることが好ましい。
本発明の形成方法において、前記第1及び第2の剥離工程では、前記転写用基板に加わる荷重を測定し、前記測定された荷重に基づいて前記加圧力を制御することが好ましい。これにより、剥離力を正確に把握しながら剥離を行うことができる。
また、基板裏面側を加圧する圧力をロードセルを用いないで制御する方法としては、加圧開始からの経過時間に基づいて制御する場合、加圧開始からのモールドの移動量に基づいて制御する場合、加圧開始からの転写用基板の撓み量に基づいて制御する場合がある。
これらの場合には、予め予備試験等により、経過時間と加圧力の関係、モールドの移動量と加圧力の関係、転写用基板の撓み量と加圧量との関係を求めておく必要がある。
願の微細凹凸パターンの形成装置は前記目的を達成するために、基板上にレジスト層が形成された転写用基板のレジスト層に、モールドの微細凹凸パターンを転写して硬化した後、前記転写用基板と前記モールドとを剥離する剥離装置を備えた微細凹凸パターンの形成装置において、前記剥離装置は、前記転写用基板の周縁部を固定する周縁部固定手段と、前記転写用基板の周縁部を固定した状態で前記転写用基板の基板裏面側を加圧して前記転写用基板を湾曲状に撓ませる加圧手段と、前記転写用基板の撓みが戻るように、前記加圧した圧力を徐々に減少させる圧力制御手段と、を備え、前記転写用基板に加わる荷重を測定する荷重センサーを有することを特徴とする。
本発明の形成装置においては、前記モールドを前記転写用基板から離間する方向に移動させる移動駆動手段を備えることが好ましい。但し、本発明は、移動駆動手段による強制的な移動に限らず、転写用基板が撓む撓み力によってモールドが転写用基板から離間する方向に移動する、いわゆる移動駆動手段をもたない従動的な移動も可能である。
また、前記移動駆動手段は、前記モールドの移動をロックするロック機構を有することが好ましい。また、前記転写用基板に加わる荷重を測定する荷重センサを有することが好ましい。
これらは、モールドの移動駆動させる駆動手段を設けた場合であり、これによりモールドを精度良く移動することができる。
本発明の微細凹凸パターンの形成方法及び装置によれば、微細凹凸パターンを転写する側のモールドと、転写される側の転写用基板とを剥離する際に、転写用基板のレジスト層に転写された微細凹凸パターンが損傷を受けることを効果的に防止できる。したがって、ナノサイズの微細凹凸パターンであっても高精度な微細凹凸パターンを形成することができる。特に、モールドと転写用基板との剥離が終了する直前の剥離最終端での微細凹凸パターンの損傷や変形を防止することができる。
微細凹凸パターンを転写するナノインプリントのステップを示す工程図 転写工程でモールドと転写用基板とが合体した合体物(ワーク)の説明図 本発明の微細凹凸パターンの形成装置の一例を説明する全体構成図 微細凹凸パターンのワークホルダー部分を示す断面図 微細凹凸パターンの形成装置の制御系を説明する説明図 本発明における剥離方法と一般的な剥離方法の工程フローを説明する説明図 最大撓み量を説明する説明図 実施例で使用したモールドの微細凹凸パターンを説明する説明図 従来の一般的な剥離方法(アシスト圧無し)での荷重変化の説明図 本発明における剥離方法(アシスト加圧有り)での剥離力波形解析図 本発明における剥離方法(アシスト圧有り)での荷重変化の説明図 本発明における剥離方法(アシスト圧有り)での剥離最終過程での荷重挙動を説明する説明図 従来の一般的な剥離方法で剥離された転写用基板の微細凹凸パターンの状態を説明する説明図。 本発明における剥離方法で剥離された転写用基板の微細凹凸パターンの状態を説明する説明図。
添付図面に従って本発明の微細凹凸パターンの形成方法及び形成装置の好ましい実施の形態を詳細に説明する。
本発明の微細凹凸パターンの形成方法を適用したナノインプリントの各工程を説明しながら、本発明の特徴部分である剥離工程及び剥離装置について説明する。
〈モールドの製作〉
金属材料に、半導体微細加工技術を用いて三次元立体加工を行って、図1(A)に示すように、微細凹凸パターン10Aを備えたモールド(型)10を成形する。この場合、金属材料で原版を成形加工し、原版を樹脂材料に転写加工して樹脂スタンパを作製し、この樹脂スタンパをモールド10として使用してもよい。モールド10の材料としては、目的に応じて適宜選択できるが、金属、石英、樹脂等を好適に使用できる。金属材料としては、Ni、Si又はSiO2、Cu、Cr、Ptなどを使用でき、樹脂材料としてはポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、フッソ樹脂等を使用できる。
そして、作製したモールド10の微細凹凸パターン10Aの表面に剥離層を被覆することが好ましい。剥離剤は後記する転写・硬化工程後にモールド10とレジスト層12の転写界面で剥離時の応力による不良が作用せずに剥離できるように、微細凹凸パターン10Aの表面に形成することが好ましい。剥離剤材料としては、モールド側に付着、結合しやすく、レジスト層側に吸着しにくいという目的に合う材料がよく、適宜選択できる。中でもレジスト層側に吸着しにくいと言う点で、電気陰性度の低いフッ素系樹脂が好ましい。
剥離層の厚みとしては、厚過ぎると微細凹凸パターン10Aが変化するため、可能な限り薄層化することが好ましく、具体的には5nm以下が好ましく、3nm以下がより好ましい。
剥離層の形成方法としては、剥離剤の塗布又は蒸着を用いることができる。さらに、剥離層を形成した後、ベーキング等の手段によりモールド10への密着性を高め、剥離層自体の強度を向上することが好ましい。
上記の如く製作したモールド10を使用して、塗布工程、転写工程、剥離工程を行うことで転写用基板14のレジスト層12に微細凹凸パターン12Aを形成する。
[塗布工程]
図1(A)に示すように、レジスト層12を形成する樹脂素材を溶媒に溶解したレジスト液を基板16に塗布して、基板16上にレジスト層12が形成された転写用基板14を形成する。レジスト層12を形成する樹脂素材としては、例えば、熱可塑性樹脂、熱硬化性樹脂、及び光硬化性樹脂を好ましく使用できる。また、基板16の材料としては、例えばガラス基板、Si基板等を用いることができる。
レジスト液を基板16上に塗布する方法としては、下記の方法を好適に使用できる。
(1)インクジェットなどの液滴装置で基板上の適切な場所に滴下し、レジスト液自体の流動性により広げて基板16上に均一に塗布する。
(2)スピン塗布により、基板16を回転させることにより基板16上に滴下したレジスト液を広げて均一に塗布する。
(3)バーコータなどを用いて基板16上に均一に塗布する。
基板16上に塗布されるレジスト層12の厚さは、例えば、エリプソメーター等を用いた光学的な測定法、又は触針式段差計、原子間力顕微鏡(AFM)等の接触測定法等により計測できる。
[転写工程]
次に、図1(B)に示すように、転写用基板14のレジスト層12に、モールド10の微細凹凸パターン10Aを転写する。一般的に、モールド10を転写用基板14のレジスト層12に載せた重みだけでは、モールド10に形成された微細凹凸パターン10Aの凹部にレジスト層12のレジスト液が充填されないので、転写されない。そこで、モールド10の微細凹凸パターン10Aを転写用基板14のレジスト層12に転写するには、周囲の圧力条件を変化させて、強制的に充填することが必要となる。例えば次の充填方法を好適に使用できる。
(1)モールド10をレジスト層12に向けてプレス機などで加圧する。この場合、レジスト層12を加圧や加熱することでレジスト液を微細凹凸パターン10Aの凹部に一層充填し易くなる。
(2)レジスト液を基板16上に塗布後、レジスト層12の上にモールド10を載せて加熱・減圧の条件下に置く。これにより、微細凹凸パターン10Aの凹部に残った空気や気泡が除去されるので、レジスト液が凹部に充填される。
[硬化工程]
次に、モールド10の微細凹凸パターン10Aが転写されたレジスト層12を硬化する。これにより、図2に示すように、モールド10と転写用基板14とが合体した合体物20(以下、「ワーク20」と称する)が形成される。図2(A)はワーク20の縦断面図であり、図2(B)は上面図である。なお、本実施の形態では、ワーク20が円形状のもので説明するが、これに限定されるものではなく、例えば四角形状でもよい。
レジスト層12の硬化方法としては次の方法を好適に使用できる。
(1)光硬化性樹脂の場合は硬化開始剤の反応する波長帯域の硬化光をレジスト層12に照射することで硬化する。図1(B)は、光を通す透明なモールド10の裏面から硬化光を照射してレジスト層12を硬化する例である。
(2)溶剤に可溶なレジスト素材の場合は溶媒に溶解し、転写後に乾燥することで硬化する。
(3)熱可塑性の天然高分子の場合は、転写後にレジスト層12を冷却することで硬化する。
[剥離工程]
次に、図1(C)に示すように、転写用基板14とモールド10とを互いに剥離する。図1(C)は、転写用基板14を固定してモールド10を垂直方向上向きに引っ張ることによりモールド10と転写用基板14とを剥離する一般的な引っ張り剥離方法の例である。
かかる、剥離工程において、従来はレジスト層12に転写された微細凹凸パターン12Aが、モールド10を転写用基板14から剥離する際の剥離不良によって損傷したり変形したりするという問題があった。特に、転写される微細凹凸パターンがナノサイズの極めて細かい凹凸形状では、モールド10と転写用基板14とが剥離完了する直前の剥離最終端において損傷の度合いが大きかった。
そこで、本発明では、剥離工程として、転写用基板14の周縁部を固定した状態で転写用基板14の基板裏面側を加圧して転写用基板14を湾曲状に撓ませることにより、該撓みによって転写用基板14とモールド10との剥離を開始する第1の剥離工程と、基板裏面側を加圧した圧力を徐々に減少させて転写用基板14に撓みの戻り力を作用させることにより、転写用基板14の微細凹凸パターン12Aのうちの第1の剥離工程で剥離されなかった微細凹凸パターン12Aを剥離する第2の剥離工程と、を行うことで解決した。
以下、上記の第1及び第2の剥離工程で転写用基板14の基板裏面側を加圧する圧力をアシスト圧と称することにする。
この場合、第1の剥離工程では、転写用基板14が湾曲状に撓むことによってモールド10が、撓む前の転写用基板14の基板面に対して垂直方向に移動する。このモールド10の移動は、移動のための移動駆動手段を用いずに転写用基板14が撓む撓み力で従動的に移動させるようにしてもよく、あるいは移動駆動手段によって強制的に移動させるようにしてもよい。
図3Aは本発明の実施の形態における移動駆動手段を備えた剥離装置21の一例を示す全体構成図であり、図3Bはワークホルダー22にワーク20をセットした状態の断面図である。
これらの図に示すように、剥離装置21は、ワークホルダー22、加圧手段24、移動駆動手段26が装置フレーム30に組み付けられて構成される。
装置フレーム30は、矩形状の基台31の4角にそれぞれ支柱32,32…が立設され、支柱32の上にワークホルダー22を支持する支持板34が設けられる。支持板34の中央部には丸孔34A(図4参照)が形成され、丸孔を跨ぐようにワークホルダー22が支持板34上に支持される。
ワークホルダー22は、主として、円板状の上板36と、中央部に丸孔38Aが形成されたドーナツ状の下板38とが合わさった構造を有すると共に、下板34Bの丸孔38A周囲には、ワーク20の転写用基板14を受ける基板受け面38Bが形成される。そして、剥離工程を行うには、モールド10と転写用基板14とが合体したワーク20をワークホルダー22にセットする。この場合、モールド10を下側にして転写用基板14を基板受け面38Bに載置した後、転写用基板14の上面周縁部に設けたオーリング40を潰すようにして上板36を被せ、図示しない固定手段で上板36と下板38とを固定する。これにより、転写用基板14の周縁部が固定されると共に、転写用基板14の上面と、上板36の下面と、オーリング40とで囲まれた気密構造の加圧用空間42が形成される。
この加圧用空間42に、加圧手段24により圧縮空気が吹き込まれる。加圧手段24は、上板36の内部に、加圧用空間42に圧縮空気を流す流路24Aが形成され、流路24A先端の吹出口24Bが加圧用空間42を臨んで開口される。また、流路24Aは、配管44により、圧力制御機構45(図4参照)を介してコンプレッサ47に接続される。
圧力制御機構45は、コンプレッサ47から加圧手段24に供給する圧縮空気量を調整して、加圧用空間42の圧力を調整すると共に、加圧用空間42から圧縮空気を抜いて、加圧用空間42の圧力を減少させる2つの機能を有する。そして、加圧用空間42に圧縮空気を供給すると、転写用基板14の基板裏面側が加圧されて、転写用基板14が湾曲状(下に凸に湾曲)に撓む。なお、本実施の形態では、加圧用空間42に圧縮空気を供給して転写用基板14を撓ませるようにしたが、加圧用空間42に液体を供給することも可能である。また、加圧用空間42に気体や液体の流体を供給する構造以外の方法も適用できる。例えば、転写用基板14の基板裏面側に、所定曲率の当接面を有すると共に、当接面に多数の吸引孔を有する固体物(図示せず)を設ける。そして、この固体物の当接面を転写用基板14に当接させて吸引することにより転写用基板14を湾曲させるようにしてもよい。
上記のように、ワークホルダー22にワーク20をセットすることにより、モールド10の下面は、下板38の丸孔38A及び支持板34の丸孔を介して支持板34の下面側に突出される。このモールド10の下面を、次に説明する移動駆動手段26の吸着ヘッド50が吸着する。
移動駆動手段26は、主として、モールド10の下面を吸着する吸着ヘッド50と、吸着ヘッド50を昇降させる昇降装置52とで構成される。図3(A)には、昇降装置52の詳細な構造を図示していないが、ナノサイズの微細凹凸パターンの剥離では、吸着ヘッド50の昇降ストロークは通常10mm程度あればよく、この程度の昇降ストロークを精密に昇降制御できる装置であればどのようなものでもよい。
また、移動駆動手段26には、加圧用空間42に圧縮空気を供給したときに転写用基板14に加わる荷重を測定するロードセル54(図4参照)が設けられる。即ち、加圧用空間42に圧縮空気を供給して転写用基板14が湾曲状(下に凸に湾曲)に撓むと、撓み力がロードセル54を押圧し、この押圧力がロードセル54によって荷重として測定される。
図4は、加圧手段24の圧力制御機構45、吸着ヘッド50の吸着制御機構53、吸着ヘッド50の温度制御機構56、及び移動駆動手段26の移動制御機構57の一例を示す概略図である。
図4に示すように、圧力制御機構45は、上記したコンプレッサ47とワークホルダー22内に設けた吹出口24Bとを繋ぐ配管44に、電磁弁48及び電空変換レギュレータ46が設けられ、これらの機器はロードセル54で測定された荷重に基づいてシーケンサ55により制御される。
温度制御機構56は、吸着ヘッド50に内蔵されたヒータ(図示せず)と、ヒータ温度を調整する温調器56Aとが設けられ、温調器56Aはシーケンサ55に温度状態をフィードバックする。
吸着制御機構53は、吸着ヘッド50と真空ポンプ58とを繋ぐ真空流路に電磁弁60と圧力センサ62とが設けられ、電磁弁60はシーケンサ55により制御される。圧力センサ62では真空到達度を監視しており、吸着の有り無しの信号をシーケンサ55に出力し、シーケンサ55で吸着異常検知、及び剥離動作開始の制御を行う。
移動制御機構57は、上記した昇降装置52を駆動するドライバ64が設けられ、ドライバ64はロードセル54で測定された荷重に基づいてシーケンサ55により制御される。
また、タッチパネル66はシーケンサ55に接続され、各種の剥離条件パラメータ(吸着ヘッド駆動速度、駆動ストローク、アシスト圧設定値等)の入力や、装置の起動・停止、異常表示等を行う。また、ロードセル54はロードセルコントローラ68を介してシーケンサ55に接続される。
次に、上記の如く構成された本発明における微細凹凸パターンの剥離装置21を用いて剥離方法を説明する。
図5は、剥離方法のステップを示したフロー図である。なお、図5の剥離ステップは、本発明における剥離方法を適用した剥離ステップと、一般的な引っ張り剥離による剥離ステップを選択できるようになっている。
図5に示すように、ワーク20をワークホルダー22にセットする(ステップ1)。即ち、モールド10を下側にして転写用基板14を基板受け面38Bに載置した後、転写用基板14の上面周縁部に設けたオーリング40(周縁部固定手段)を潰すようにして上板36を被せ、図示しない固定手段(例えばボルトとナット)で上板36と下板38とを固定する。これにより、転写用基板14はワークホルダー22を介して装置フレーム30の支持板34に固定支持される。
次に、タッチパネル66上で、モールド吸着を命令する「手動SW」をON(ステップ2)し、モールド10を吸着ヘッド50で保持する。剥離の開始は起動スイッチをONすることで自動シーケンス制御が開始し、起動警報音が3秒間鳴った後、順次剥離ステップを開始する(ステップ3)。
次に、吸着ヘッド50の温度が設定範囲内であるかがチェックされ(ステップ4)、設定温度外(NO)であれば異常停止のステップ5に進んで剥離装置21が停止する。そして、設定温度内(YES)であれば、次のステップ6に進む。吸着ヘッド50の設定温度は、室温(例えば20℃)〜60℃の範囲が好ましい。室温(例えば20℃)〜60℃の範囲であれば、転写用基板14の弾力性が大きくなるので、転写用基板14を湾曲状に撓ませたときに転写用基板14の微細凹凸パターン12Aが破損しにくい。また、60℃を超えると転写用基板14の粘着性が高くなって剥離しにくくなる。
ステップ6では、予めタッチパネル66上で設定した条件に基づいて、アシスト加圧が有る方法(YES)で剥離するか、アシスト加圧が無い方法(NO)で剥離するかを選択する。本発明における剥離方法を行うには、YESを選択して、次のステップ7に進む。
ステップ7では、ワークホルダー22の加圧用空間42に圧縮空気を送る動作がONになり、転写用基板14の基板裏面側を加圧する。これにより、転写用基板14は下に凸な湾曲状の撓みを生じようとする圧力が生じる。しかし、この時点では吸着ヘッド50は未だ移動していないので、ロードセル54に圧縮荷重が加わる。そして、配管44上にある圧力センサ(図示せず)でアシスト圧が所定圧に到達したか否かを判断する(ステップ8)。
ここで最大撓み量Lについて説明すると、転写用基板担体の状態でアシスト圧Pをかけたときの転写用基板の撓み量Lを言う。第1の剥離工程のストローク設定は、次の2つの条件を満足する必要がある。
即ち、1つ目は、図6(A)に示すように、アシスト圧Pによる転写用基板14の撓みにより転写用基板14の外周部に形成された微細凹凸パターン12Aがモールド10から剥離可能であること。
2つ目は、図6(B)に示すように、アシスト圧Pを減少させて転写用基板14に撓みの戻り力BFを作用させたときに、未だ剥離されていない転写用基板14の中央部に形成された全ての微細凹凸パターン12Aが撓みの戻り力BFによりモールド10から剥離可能であること。
なお、転写用基板14の撓み量が大きくなり過ぎると、モールド10に形成された3次元の微細凹凸パターン10Aと、転写用基板14に転写された3次元の微細凹凸パターン12Aとが剥離時に干渉し合う度合いが大きくなる。これにより、剥離時に転写用基板14の微細凹凸パターン12Aを破壊したり、変形させたりし易くなる。したがって、第1の剥離工程のストローク設定は、上記条件を満足する範囲内で、できるだけ小さくすることが好ましい。例えば、6インチの転写用基板14の場合には、アシスト圧は0.02〜0.03MPaの範囲であることが好ましい。アシスト圧が0.02MPa未満では、撓みの戻り力BFを受け止めることができない。これにより、転写用基板14が湾曲状から平面状に一気に変形して、剥離動作を一気に完了してしまうので、微細凹凸パターン12Aの破損や変形が生じ易い。また、アシスト圧が0.03MPaを超えて大きいと、転写用基板14を過度に撓ませることになり、微細凹凸パターン12Aの破損や変形が生じ易いだけでなく、最悪な場合には転写用基板14自体が破損してしまう。
次に、図5に戻って、アシスト圧Pが所定圧に到達したら、ロードセル54による荷重測定が開始される(ステップ9)と共に吸着ヘッド50が下降移動を開始する(ステップ10)。これにより、加圧用空間42に溜まっていたアシスト圧により転写用基板14が撓むので、転写用基板14の外周部に形成された微細凹凸パターン12Aは、転写用基板14の撓みによってモールド10から剥離される。これにより第1の剥離工程が終了する(図6(A)参照)。この場合、吸着ヘッド50の移動速度は、0.1mm/秒以下であることが好ましく、0.05mm/秒以下であることがより好ましい。吸着ヘッド50の下降移動速度が0.1mm/秒を超えて速くなると、転写用基板14が急激に撓むので、剥離される転写用基板14外周部の微細凹凸パターン12Aが破損したり変形したりし易い。
なお、図5のステップでは、アシスト圧が所定圧に到達したら、吸着ヘッド50が下降するが、上述したように、吸着ヘッド50を移動させるための移動駆動手段26をもたずに、転写用基板14が撓む撓み力によって吸着ヘッド50が従動的に移動するようにしてもよい。
次に、吸着ヘッド50の下降移動ストロークが第1の剥離工程のストロークに達したら下降移動が停止し(ステップ11)、次のステップ12に進む。この場合、吸着ヘッド50の下降移動が停止した後、直ちにステップ12に進んでもよく、あるいは停止した後、所定時間の停止状態で維持してからステップ12に進んでもよい。所定時間停止させることで、第1の剥離工程で剥離可能な微細凹凸パターン12Aを確実に剥離することができる。また、吸着ヘッド50の下降移動を停止させる機構としては、機械的なロック機構でも、駆動系のもつ保持機構のいずれでもよい。
ステップ12では、加圧用空間42からエアが徐々に抜かれ、転写用基板14の基板裏面側を加圧するアシスト圧Pの減圧が開始される。そして、アシスト圧Pを徐々に小さくすると、撓みの戻り力BFがアシスト圧Pよりも大きくなった時に、第1の剥離工程では剥離されなかった転写用基板14中央部の微細凹凸パターン12Aがモールド10から剥離される(図6(B)参照)。アシスト圧の減圧は、加圧用空間42の圧力が大気圧に戻った時点で終了する(ステップ13)。これにより、第2の剥離工程が終了し、モールド10と転写用基板14との剥離が完了し、モールド10と転写用基板14とが分離される。
最後に、吸着ヘッド50は機械原点に退避し(ステップ14)、剥離停止完了ブザーが鳴って剥離自動運転が停止する(ステップ15)。
この第2の剥離工程において、加圧用空間42を加圧していたアシスト圧Pは徐々に減少されるので、転写用基板14中央部の微細凹凸パターン12Aが一気に剥離されることはなく、小さな剥離力により低剥離速度で徐々に剥離されることになる。特に、第2の剥離工程が終了する直前では、モールド10には剥離最終端(転写用基板の中心部)の微細凹凸パターン12Aのみが結合している。したがって、剥離が完了する際に大きな撓みの戻り力(剥離力)が一気に付与されると、剥離最終端の微細凹凸パターン12Aが破損してしまう。しかし、小さな剥離力により低剥離速度で徐々に剥離されることにより、剥離最終端の微細凹凸パターン12Aが破損されたり変形されたりするのを確実に防止できる。
したがって、剥離最終端の微細凹凸パターン12Aの剥離のように、モールド10に対して接触する部分が少なく、微細凹凸パターン12Aに剥離荷重が集中し易い場合であっても、微細凹凸パターン12Aが破損したり、変形したりしないように剥離できる。
なお、本実施の形態では、モールド10を停止した状態で、第2の剥離工程を行うようにしたが、アシスト圧Pを徐々に減少させて撓みの戻り力BFを転写用基板14に作用させながら、吸着ヘッドを引き続き下降させるようにしてもよい。これにより、撓みの戻り力BFに加えてモールド10と転写用基板14とを互いに引き剥がす方向に剥離力Fが付与される。この場合も、吸着ヘッドの移動速度は、0.1mm/秒以下であることが好ましく、0.05mm/秒以下であることがより好ましい。
また、本実施の形態では、転写用基板14の基板裏側面の圧力を、ロードセル54の測定値に基づいて制御するようにしたが、加圧開始からの経過時間に基づいて加圧力を制御してもよい。また、加圧開始からのモールド10の移動量に基づいて制御したり、加圧開始からの転写用基板14の撓み量に基づいて制御したりしてもよい。これらの場合には、予め予備試験により相関関係を把握して条件を設定する必要がある。
一方、ステップ6において、一般の引っ張り剥離の工程(NO)を選択した場合には、ロードセル54による荷重測定が開始される(ステップ16)と共に、吸着ヘッド50が下降移動し(ステップ17)し、モールド10と転写用基板14とが互いに引っ張り合う。そして、モールド10と転写用基板14とが一気に剥離される。剥離が終了したら、吸着ヘッド50の下降移動が停止する(ステップ18)。
次に、本発明の実施例を説明するが、この実施例に限定されるものではない。
剥離試験は、ナノインプリントにおいて、ナノサイズの微細凹凸パターンを有するナノインプリント用のモールド10を、レジスト層12を予め塗布した転写用基板14に密着させて微細凹凸パターンを転写用基板14のレジスト層12に転写した。そして転写後の剥離工程に本発明を適用した場合と、適用しない場合とを行って、剥離後の微細凹凸パターン12Aの状態を観察した。
モールド10は、厚みが0.5mmで、4インチ(100mm)径の円板状の石英を使用し、図7の模式図に示すように、ライン状の微細凹凸パターンが平行するパターン形状を形成した。微細凹凸パターン10Aの断面サイズは、L/S幅2μm・高さ2μm(アスペクト比1)の微細凹凸である。そして、微細凹凸パターン10Aを形成した面には、離型液を塗布した。なお、図7ではライン状の微細凹凸パターンが複数本しか描かれていないが、実際には多数本ある。
また、転写用基板14は、厚みが0.5mmで、6インチ(150mm)径の円板状の石英を使用し、レジスト層12としてUV(紫外線)硬化樹脂を塗布した。なお、上記したモールド10及び転写用基板14の条件は、比較例及び実施例ともに同じである。
この転写後のモールド10と転写用基板14とが合体した合体物であるワーク20を、図3のワークホルダー22にセットした。そして、図5の一般的な剥離ステップ1〜6、及びステップ16〜18(比較例)と、本発明を適用した剥離ステップ1〜ステップ15(実施例)とをそれぞれ行った。
[比較例]
図8は、一般的な引っ張り剥離方法のステップを行ったときにロードセル54に加わる経時的な荷重変化を示したものである。横軸が剥離開始から終了までの経時時間を示し、縦軸にロードセル54で測定される剥離荷重を示す。
図8に示すように、吸着ヘッド50の駆動がスタートし、下降移動を開始する。これにより、剥離力が徐々に増加するが、この段階ではモールド10と転写用基板14との結合力が剥離力よりも大きいので、剥離は開始しない。そして、剥離力が結合力よりも大きくなると、剥離が徐々に開始され、剥離力が結合力よりも大きくなったときに急激に剥離速度が増加し、モールド10と転写用基板14とが一気に剥離される。これにより、剥離が完了し、荷重は徐々に低下してゼロになる。また、剥離が終了する直前の最終剥離過程における荷重は、図8から分かるように20Nであった。
[実施例]
次に、本発明を適用した剥離ステップについて説明する。
実施例では、吸着ヘッド50の下降移動速度を0.05mm/秒とし、吸着ヘッド50の加熱条件を46℃に設定した。
また、アシスト圧(圧縮空気の供給圧力)を0.025MPaに設定すると共に最大撓み量Lを1mmとした。アシスト圧の減圧操作は、実際には再現性の観点から電空変換レギュレータを使用する方がよいが、本実施例ではレギュレータバルブを手動で一定速度になるように回して行った。
図9は、アシスト加圧有りでの剥離力波形解析図であり、図10は実際にロードセル54で測定された荷重変化を示す図である。横軸が剥離開始から終了までの経時時間を示し、縦軸にロードセル54で測定される剥離荷重を示す。
図9及び図10に示すように、アシスト圧を付与した後、荷重が急激に低下したのは、ワークホルダー22の加圧用空間42が加圧されてワーク20がロードセル54を押圧し、ロードセル54に圧縮荷重(図10の下向きな荷重)が加わったためである。アシスト圧が所定圧(最大撓み量を達成する圧力)に到達した後、吸着ヘッド50を下降移動させると、転写用基板14が湾曲状に撓み、この撓みによって第1の剥離工程が開始する。即ち、転写用基板14の撓みによって、転写用基板14外周部における微細凹凸パターン12Aが剥離される。このとき、転写用基板14外周部がモールド10から剥がれようとする力がロードセル54に加わるので、ロードセル54には引っ張り荷重(図10の上向きな荷重)が付与される。転写用基板14の撓み量が最大撓み量Lになった時点で吸着ヘッド50の下降移動が停止する。図9及び図10で示すように、上向きの荷重が一旦平坦になった部分が最大撓み量Lのポイントである。
次に、アシスト圧を徐々に減少させると、転写用基板14には撓みの戻り力BFが付与される。これにより、第2の剥離工程が開始され、第1の剥離工程で剥離されなかった転写用基板14中央部の微細凹凸パターン12Aがモールド10から小さな剥離力で且つ低剥離速度で剥離される。これにより、モールド10と転写用基板14とを剥離する際に、転写用基板14のレジスト層12に転写された微細凹凸パターン12Aが損傷を受けることを効果的に防止できる。
図11は、図10において第2の剥離工程が完了する直前の剥離最終過程での荷重挙動を拡大したものであり、図10の丸で囲んだ部分を拡大した。図11から分かるように、剥離最終過程において剥離される剥離最終端(転写用基板の中心部)の微細凹凸パターン12Aに加わる引っ張り荷重は2Nであった。このように、本発明を適用した剥離方法は、図8で示した一般的な引っ張り剥離方法での剥離最終過程での引っ張り荷重(20N)の1/10まで減少していている。
[剥離後の微細凹凸パターンの破損比較]
図12は、上記の一般的な剥離方法で剥離した転写用基板14の微細凹凸パターン12Aを、電子顕微鏡で撮像したSEM写真である。
図12(A)から分かるように、微細凹凸パターン12Aは、ライン状に形成された凸状ラインが髭Sのように部分的に剥ぎ取られている。垂れ下がった髭Sを除去して更に倍率を上げて観察すると、図12(B)のように、凸状ラインがある部分(白い部分)と、剥ぎ取られて無くなった部分(黒い部分)とが存在していることが分かる
これに対して、図13は、本発明の剥離方法で剥離した転写用基板14の微細凹凸パターン12Aであり、図12(A)と対比することができる。図13から分かるように、ライン状の凸状ラインが全く剥ぎ取られておらず、微細凹凸パターン12Aが精密に転写されていることが分かる。
10…モールド、12…レジスト層、14…転写用基板、16…基板、20…合体物(ワーク)、21…剥離装置、22…ワークホルダー、24…加圧手段、26…移動駆動手段、30…装置フレーム、32…支柱、34…支持板、36…上板、38…下板、40…オーリング、42…加圧用空間、44…配管、45…圧力制御機構、46…電空変換レギュレータ、47…コンプレッサ、48…電磁弁、50…吸着ヘッド、52…昇降装置、53…吸着制御機構、56…温度制御機構、57…移動制御機構、58…真空ポンプ、60…電磁弁、62…圧力センサ、64…ドライバ、66…タッチパネル、68…ロードセルコントローラ

Claims (13)

  1. 基板上にレジスト層が形成された転写用基板のレジスト層に、モールドの微細凹凸パターンを転写して硬化した後、前記転写用基板と前記モールドとを剥離する剥離工程を備えた微細凹凸パターンの形成方法において、
    前記剥離工程は、
    前記転写用基板の周縁部を固定した状態で前記転写用基板の基板裏面側を加圧して前記転写用基板を湾曲状に撓ませることにより、該撓みによって前記転写用基板と前記モールドとの剥離を開始する第1の剥離工程と、
    前記転写用基板の撓みが戻るように前記加圧した圧力を徐々に減少させることにより、前記転写用基板の微細凹凸パターンのうちの前記第1の剥離工程で剥離されなかった微細凹凸パターンを剥離する第2の剥離工程と、を備え
    前記第1の剥離工程では、前記転写用基板の撓みに応じて前記モールドを前記転写用基板から離間する方向に移動させることを特徴とする微細凹凸パターンの形成方法。
  2. 基板上にレジスト層が形成された転写用基板のレジスト層に、モールドの微細凹凸パターンを転写して硬化した後、前記転写用基板と前記モールドとを剥離する剥離工程を備えた微細凹凸パターンの形成方法において、
    前記剥離工程は、
    前記転写用基板の周縁部を固定した状態で前記転写用基板の基板裏面側を加圧して前記転写用基板を湾曲状に撓ませることにより、該撓みによって前記転写用基板と前記モールドとの剥離を開始する第1の剥離工程と、
    前記転写用基板の撓みが戻るように前記加圧した圧力を徐々に減少させることにより、前記転写用基板の微細凹凸パターンのうちの前記第1の剥離工程で剥離されなかった微細凹凸パターンを剥離する第2の剥離工程と、を備え、
    前記第2の剥離工程では、前記モールドを動かないように固定した状態で、前記基板裏面側の加圧力を徐々に減少させながら剥離することを特徴とする微細凹凸パターンの形成方法。
  3. 前記第2の剥離工程では、前記モールドを動かないように固定した状態で、前記基板裏面側の加圧力を徐々に減少させながら剥離することを特徴とする請求項1に記載の微細凹凸パターンの形成方法。
  4. 前記第2の剥離工程では、前記モールドを前記第1の剥離工程での移動に継続して転写用基板から離間する方向に移動させながら、前記基板裏面側の加圧力を徐々に減少させながら剥離することを特徴とする請求項に記載の微細凹凸パターンの形成方法。
  5. 前記第2の剥離工程では、前記基板裏面側の加圧力を保持した状態で、前記モールドを前記第1の剥離工程での移動に継続して転写用基板から離間する方向に移動させながら剥離することを特徴とする請求項に記載の微細凹凸パターンの形成方法。
  6. 前記第1及び第2の剥離工程では、前記転写用基板に加わる荷重を測定し、
    前記測定された荷重に基づいて前記基板裏面側の圧力を制御することを特徴とする請求項1〜の何れか1に記載の微細凹凸パターンの形成方法。
  7. 基板上にレジスト層が形成された転写用基板のレジスト層に、モールドの微細凹凸パターンを転写して硬化した後、前記転写用基板と前記モールドとを剥離する剥離工程を備えた微細凹凸パターンの形成方法において、
    前記剥離工程は、
    前記転写用基板の周縁部を固定した状態で前記転写用基板の基板裏面側を加圧して前記転写用基板を湾曲状に撓ませることにより、該撓みによって前記転写用基板と前記モールドとの剥離を開始する第1の剥離工程と、
    前記転写用基板の撓みが戻るように前記加圧した圧力を徐々に減少させることにより、前記転写用基板の微細凹凸パターンのうちの前記第1の剥離工程で剥離されなかった微細凹凸パターンを剥離する第2の剥離工程と、を備え、
    前記第1及び第2の剥離工程では、前記転写用基板に加わる荷重を測定し、
    前記測定された荷重に基づいて前記基板裏面側の圧力を制御することを特徴とする微細凹凸パターンの形成方法。
  8. 前記転写用基板の基板裏面側への加圧開始からの経過時間に基づいて前記基板裏面側の圧力を制御することを特徴とする請求項1〜の何れか1に記載の微細凹凸パターンの形成方法。
  9. 前記転写用基板の基板裏面側への加圧開始からの前記モールドの移動量に基づいて前記基板裏面側の圧力を制御することを特徴とする請求項1〜の何れか1に記載の微細凹凸パターンの形成方法。
  10. 前記転写用基板の基板裏面側への加圧開始からの前記転写用基板の撓み量に基づいて前記基板裏面側の圧力を制御することを特徴とする請求項1〜の何れか1に記載の微細凹凸パターンの形成方法。
  11. 基板上にレジスト層が形成された転写用基板のレジスト層に、モールドの微細凹凸パターンを転写して硬化した後、前記転写用基板と前記モールドとを剥離する剥離装置を備えた微細凹凸パターンの形成装置において、
    前記剥離装置は、
    前記転写用基板の周縁部を固定する周縁部固定手段と、
    前記転写用基板の周縁部を固定した状態で前記転写用基板の基板裏面側を加圧して前記転写用基板を湾曲状に撓ませる加圧手段と、
    前記転写用基板の撓みが戻るように、前記加圧した圧力を徐々に減少させる圧力制御手段と、を備え
    前記転写用基板に加わる荷重を測定する荷重センサーを有することを特徴とする微細凹凸パターンの形成装置。
  12. 前記モールドを前記転写用基板から離間する方向に移動させる移動駆動手段を備えたことを特徴とする請求項11に記載の微細凹凸パターンの形成装置。
  13. 前記移動駆動手段は、前記モールドの移動をロックするロック機構を有することを特徴とする請求項12に記載の微細凹凸パターンの形成装置。
JP2010075495A 2010-03-29 2010-03-29 微細凹凸パターンの形成方法及び形成装置 Active JP5438578B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010075495A JP5438578B2 (ja) 2010-03-29 2010-03-29 微細凹凸パターンの形成方法及び形成装置
PCT/JP2011/057178 WO2011122439A1 (ja) 2010-03-29 2011-03-24 微細凹凸パターンの形成方法及び形成装置並びに転写用基板の製造方法及び転写用基板
US13/636,253 US9272462B2 (en) 2010-03-29 2011-03-24 Minute convexo-concave pattern forming method and forming device, and transfer substrate producing method and transfer substrate
KR1020127025624A KR101627575B1 (ko) 2010-03-29 2011-03-24 미세 요철 패턴의 형성 방법 및 형성 장치, 전사용 기판의 제조 방법, 및 전사용 기판

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075495A JP5438578B2 (ja) 2010-03-29 2010-03-29 微細凹凸パターンの形成方法及び形成装置

Publications (2)

Publication Number Publication Date
JP2011206977A JP2011206977A (ja) 2011-10-20
JP5438578B2 true JP5438578B2 (ja) 2014-03-12

Family

ID=44712148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075495A Active JP5438578B2 (ja) 2010-03-29 2010-03-29 微細凹凸パターンの形成方法及び形成装置

Country Status (4)

Country Link
US (1) US9272462B2 (ja)
JP (1) JP5438578B2 (ja)
KR (1) KR101627575B1 (ja)
WO (1) WO2011122439A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5776266B2 (ja) * 2011-03-29 2015-09-09 大日本印刷株式会社 インプリント方法およびそれを実施するためのインプリント装置
JP6084055B2 (ja) * 2013-02-05 2017-02-22 東京応化工業株式会社 インプリントによるパターン形成方法
JP6029506B2 (ja) 2013-03-26 2016-11-24 富士フイルム株式会社 インプリント用下層膜形成組成物およびパターン形成方法
US10418235B2 (en) * 2015-09-17 2019-09-17 Milara Incorporated Systems and methods for forming electronic devices from nanomaterials
US10627715B2 (en) 2016-10-31 2020-04-21 Canon Kabushiki Kaisha Method for separating a nanoimprint template from a substrate
US10809448B1 (en) * 2019-04-18 2020-10-20 Facebook Technologies, Llc Reducing demolding stress at edges of gratings in nanoimprint lithography
KR102365765B1 (ko) * 2020-07-09 2022-02-22 울산과학기술원 나노 트렌치 스위치
KR102599660B1 (ko) * 2021-04-16 2023-11-06 주식회사 나노엑스 곡면 임프린팅 장치 및 방법
CN113437195B (zh) * 2021-06-04 2022-07-05 季华实验室 一种微型器件转移装置及转移方法
CN118163335A (zh) * 2024-04-19 2024-06-11 山东锦东工程材料有限公司 热塑性玻璃纤维增强板的热压成型方法及热压成型机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515625B2 (ja) * 2000-12-08 2010-08-04 大日本印刷株式会社 レンズシートの剥離方法及び剥離装置
US7636999B2 (en) 2005-01-31 2009-12-29 Molecular Imprints, Inc. Method of retaining a substrate to a wafer chuck
US7798801B2 (en) 2005-01-31 2010-09-21 Molecular Imprints, Inc. Chucking system for nano-manufacturing
US20060177535A1 (en) 2005-02-04 2006-08-10 Molecular Imprints, Inc. Imprint lithography template to facilitate control of liquid movement
WO2006083518A2 (en) 2005-01-31 2006-08-10 Molecular Imprints, Inc. Chucking system for nano-manufacturing
US7635263B2 (en) 2005-01-31 2009-12-22 Molecular Imprints, Inc. Chucking system comprising an array of fluid chambers
JP2007083626A (ja) * 2005-09-22 2007-04-05 Ricoh Co Ltd 微細構造転写装置
US7906058B2 (en) 2005-12-01 2011-03-15 Molecular Imprints, Inc. Bifurcated contact printing technique
JP5168815B2 (ja) 2006-04-28 2013-03-27 大日本印刷株式会社 パターンの形成方法
JP4810319B2 (ja) 2006-06-09 2011-11-09 キヤノン株式会社 加工装置及びデバイス製造方法
JP5328495B2 (ja) * 2009-06-04 2013-10-30 キヤノン株式会社 インプリント装置及び物品の製造方法

Also Published As

Publication number Publication date
KR101627575B1 (ko) 2016-06-07
WO2011122439A1 (ja) 2011-10-06
JP2011206977A (ja) 2011-10-20
US20130207309A1 (en) 2013-08-15
US9272462B2 (en) 2016-03-01
KR20130009983A (ko) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5438578B2 (ja) 微細凹凸パターンの形成方法及び形成装置
US7964135B2 (en) Method and apparatus for imprinting energy ray-setting resin, and discs and semiconductor devices with imprinted resin layer
JP2007083626A (ja) 微細構造転写装置
KR20140030145A (ko) 나노임프린팅 방법 및 나노임프린팅 방법을 실행하기 위한 나노임프린팅 장치
JP6774178B2 (ja) 基板を処理する装置、及び物品の製造方法
US20130224322A1 (en) Method For Cleaning Fine Pattern Surface Of Mold, And Imprinting Device Using Same
US10906293B2 (en) Method and device for embossing of a nanostructure
KR20200051493A (ko) 평탄화층 형성 장치 및 물품 제조 방법
WO2011114855A1 (ja) シート状モールド移送位置決め装置
WO2011111546A1 (ja) シート状モールド位置検出装置、転写装置および転写方法
JP5397054B2 (ja) ナノインプリント方法およびナノインプリント装置
JP5822597B2 (ja) インプリント装置、及びそれを用いた物品の製造方法
WO2011114854A1 (ja) 転写装置
JP7150535B2 (ja) 平坦化装置、平坦化方法及び物品の製造方法
JP5363165B2 (ja) 微細凹凸パターンの形成方法及び形成装置
JP2019186347A (ja) 加工装置、インプリント装置、平坦化装置、および加工方法
JP5540628B2 (ja) ナノインプリントパターン形成方法
JP2013207180A (ja) ナノインプリント方法およびナノインプリント装置並びにその方法を利用したパターン化基板の製造方法
JP2012227430A (ja) ナノインプリント装置及び離型方法
JP2013251560A (ja) ナノインプリント方法
Kim et al. Development of a very large-area ultraviolet imprint lithography process
JP2014069339A (ja) スタンパ、スタンパ製造装置及びその製造方法並びに微細構造転写方法
JP5931650B2 (ja) 転写装置および転写方法
JP7237519B2 (ja) 型を用いて基板上の組成物を成形する成形装置、成形方法、および物品の製造方法
JP2021151720A (ja) 平坦化装置、平坦化方法及び物品の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5438578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250