KR101627575B1 - 미세 요철 패턴의 형성 방법 및 형성 장치, 전사용 기판의 제조 방법, 및 전사용 기판 - Google Patents

미세 요철 패턴의 형성 방법 및 형성 장치, 전사용 기판의 제조 방법, 및 전사용 기판 Download PDF

Info

Publication number
KR101627575B1
KR101627575B1 KR1020127025624A KR20127025624A KR101627575B1 KR 101627575 B1 KR101627575 B1 KR 101627575B1 KR 1020127025624 A KR1020127025624 A KR 1020127025624A KR 20127025624 A KR20127025624 A KR 20127025624A KR 101627575 B1 KR101627575 B1 KR 101627575B1
Authority
KR
South Korea
Prior art keywords
transfer substrate
substrate
peeling
mold
transfer
Prior art date
Application number
KR1020127025624A
Other languages
English (en)
Other versions
KR20130009983A (ko
Inventor
신이치로 오카다
쇼타로 오가와
Original Assignee
후지필름 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후지필름 가부시키가이샤 filed Critical 후지필름 가부시키가이샤
Publication of KR20130009983A publication Critical patent/KR20130009983A/ko
Application granted granted Critical
Publication of KR101627575B1 publication Critical patent/KR101627575B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/002Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/11Methods of delaminating, per se; i.e., separating at bonding face
    • Y10T156/1168Gripping and pulling work apart during delaminating
    • Y10T156/1195Delaminating from release surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/19Delaminating means
    • Y10T156/1928Differential fluid pressure delaminating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/19Delaminating means
    • Y10T156/1994Means for delaminating from release surface

Abstract

본 발명의 일실시형태에 의한 미세 요철 패턴의 형성 방법은 기판 상에 레지스트층이 형성된 전사용 기판의 레지스트층에 몰드의 미세 요철 패턴을 전사하여 상기 전사한 미세 요철 패턴을 경화하는 경화 공정과, 상기 전사한 미세 요철 패턴을 경화한 후 상기 전사용 기판과 상기 몰드를 박리하는 박리 공정을 구비하고, 상기 박리 공정은 상기 전사용 기판의 둘레 가장자리부를 고정한 상태에서 상기 전사용 기판의 기판 이면을 가압하여 상기 전사용 기판을 만곡 형상으로 휘게 하여 상기 전사용 기판의 휨에 의해 상기 전사용 기판과 상기 몰드의 박리를 개시하는 제 1 박리 공정과, 상기 전사용 기판의 휨이 복원되도록 상기 가압한 압력을 서서히 감소시킴으로써 상기 미세 요철 패턴 중 상기 제 1 박리 공정에서 박리되지 않은 미세 요철 패턴을 박리하는 제 2 박리 공정을 구비한다. 본 발명의 일실시형태에 의한 전사용 기판의 제조 방법은 상기 형성 방법에 의해 전사용 기판을 제조하는 것이다.

Description

미세 요철 패턴의 형성 방법 및 형성 장치, 전사용 기판의 제조 방법, 및 전사용 기판{DEVICE FOR FORMING AND METHOD FOR FORMING MICRO-TEXTURED PATTERN, METHOD FOR PRODUCING TRANSFER SUBSTRATE, AND TRANSFER SUBSTRATE}
본 발명은 미세 요철 패턴의 형성 방법 및 형성 장치, 전사용 기판의 제조 방법, 전사용 기판에 관한 것이고, 특히 전사 후의 레지스트층을 몰드로부터 미세 요철 패턴을 손상시키지 않고 박리하기 위한 박리 기술에 관한 것이다.
최근, 반도체 제조에 있어서의 리소그래피 공정에 있어서는 집적 회로의 고속, 고집적화 실현을 위해 노광 공정에서 자외선(KrF, ArF, F2 레이저)을 이용한 것이 개발되어 있다. 최근은 더욱 단파장의 EUV광(극단 자외선광)을 이용한 기술 개발이 진행되고 있지만 EUV광을 이용한 장치는 장치 가격이 높은 등의 문제가 있다.
또한, 지금까지 미세 패터닝에 이용되어 온 전자빔 노광 기술에서는 노광에 장시간이 필요하다. 이로 인해, 전자빔 노광 기술은 현상황에서는 특수 용도의 반도체를 소량 시험 제작하기 위하여 이용될 뿐이며 반도체의 대량 생산 등에는 응용할 수 없다는 문제가 있다.
이들 양쪽의 문제[장치 가격, 스루풋(throughput)]을 해결하는 방법으로서 폴리머를 재료로 하여 나노 사이즈의 미세 요철 패턴을 기판 위에 형성하고, 반도체, 기록 미디어, 광학 소자 등의 고기능 디바이스를 제조하는 나노 임프린트 기술이 주목을 모으고 있다.
나노 임프린트법은 전자빔 노광 등으로 미세 요철 패턴을 형성한 몰드(금형)에 레지스트(수지 재료)를 도포한 기판을 압박하여 몰드의 미세 요철 패턴을 레지스트층에 전사하는 방법이다.
나노 임프린트 기술의 특징으로서는 미세화에 의한 장치 가격이 EUV 방식 등과 비교하여 염가이며, 수십 나노 사이즈의 미세 요철 패턴 형상이 전사 가능한 것이 확인되고 있다.
그러나, 나노 임프린트 기술에서는 기판 상의 레지스트층에 미세 요철 패턴을 전사한 후 레지스트층과 몰드를 박리할 때에 레지스트층에 전사된 미세 요철 패턴이 손상을 받기 쉽다는 박리 불량의 문제가 있다. 이것은 나노 임프린트 기술이 미세 요철 패턴을 형성하기 위하여 몰드와 레지스트층을 접촉시키는 전사 공정을 포함하고 있고, 상기 박리 불량 문제는 상기 전사 공정에 의해 기인하는 회피하기 어려운 근본적인 문제이다.
이 박리 불량 문제를 개선하기 위한 대책은 지금까지도 몇가지 제안되고 있다. 예를 들면, 특허문헌 1에는 요철 패턴의 라인 방향과 몰드의 박리 방향의 이루는 각도를 조정함으로써 박리시의 요철 패턴의 파손을 방지하는 패턴 형성 방법이 개시되어 있다.
또한, 특허문헌 2에는 임프린팅 재료와 몰드 사이의 접착력보다도 큰 복원력을 발생시키기 위한 충분한 변형을 몰드에 인접하여 형성하는 방법이 기재되어 있다. 이에 따라, 콘택트·리소그래피·프로세스에서 사용되는 임프린팅의 방법을 개선할 수 있다고 개시되어 있다.
또한, 특허문헌 3에는 몰드와 수지가 접촉하고 있는 상태에서 몰드가 수지로부터 이격되는 방향으로 이동하기 시작한 후 박리할 때까지를 제 1 상태와 제 2 상태로 분할하고 몰드와 수지 사이에 작용하는 하중 변화율이 제 1 상태보다도 제 2 상태가 작아지도록 하는 디바이스 제조 방법이 개시되어 있다. 이에 따라, 고속의 이형 공정을 실현하고 우수한 스루풋(throughput)을 갖는다고 개시되어 있다.
일본 특허 공개 제2007-296683호 공보 일본 특허 공표 제2009-517882호 공보 일본 특허 공개 제2007-329367호 공보
그러나, 특허문헌 1 내지 3 중 어느 박리 방법을 채용해도 박리 불량 문제를 본질적으로 해결할 수 없다. 특히, 몰드와 전사용 기판의 박리가 종료되기 직전의 박리 최종단에서의 미세 요철 패턴의 손상이나 변형을 방지할 수 없다.
본 발명은 이러한 사정을 감안하여 이루어진 것이며, 미세 요철 패턴을 전사하는 측의 몰드와 전사되는 측의 전사용 기판을 박리할 때에 전사용 기판의 레지스트층에 전사된 미세 요철 패턴이 손상을 받는 것을 효과적으로 방지할 수 있으므로 나노 사이즈의 미세 요철 패턴이라도 고정밀도의 미세 요철 패턴을 형성할 수 있는 미세 요철 패턴의 형성 방법 및 형성 장치, 전사용 기판의 제조 방법, 전사용 기판을 제공하는 것을 목적으로 한다.
본 발명의 제 1 실시형태에 의한 미세 요철 패턴의 형성 방법은 상기 목적을 달성하기 위하여 기판 상에 레지스트층이 형성된 전사용 기판의 레지스트층에 몰드의 미세 요철 패턴을 전사하여 상기 전사한 미세 요철 패턴을 경화하는 전사 공정과, 상기 전사한 미세 요철 패턴을 경화한 후 상기 전사용 기판과 상기 몰드를 박리하는 박리 공정을 구비하고, 상기 박리 공정은 상기 전사용 기판의 둘레 가장자리부를 고정한 상태에서 상기 전사용 기판의 기판 이면측을 가압하여 상기 전사용 기판을 만곡 형상으로 휘게하여 상기 전사용 기판의 휨에 의해 상기 전사용 기판과 상기 몰드의 박리를 개시하는 제 1 박리 공정과, 상기 전사용 기판의 휨이 복원되도록 상기 가압한 압력을 서서히 감소시킴으로써 상기 전사용 기판의 미세 요철 패턴 중 상기 제 1 박리 공정에서 박리되지 않은 미세 요철 패턴을 박리하는 제 2 박리 공정을 구비한다.
상기 제 1 실시형태에 의한 미세 요철 패턴의 형성 방법에 의하면, 제 1 박리 공정에 있어서 전사용 기판의 둘레 가장자리부를 고정한 상태에서 기판 이면측을 가압하여 전사용 기판을 만곡 형상으로 휘게 함으로써 몰드 외주단에 있어서 몰드에 대한 박리각을 전사용 기판에 부여할 수 있다. 이에 따라, 휨을 이용하여 전사용 기판 외주부의 미세 요철 패턴이 우선 박리된다.
이어서, 제 2 박리 공정에 있어서 기판 이면측을 가압한 압력을 서서히 감소시켜서 전사용 기판에 휨의 복원력을 작용시킨다. 이에 따라, 만곡 형상으로 휜 전사용 기판이 평판 형상으로 복원할려고 하여 전사용 기판의 중앙부를 향하여 박리력이 부여되어 가므로 제 1 박리 공정에서 박리되지 않은 전사용 기판 중앙부의 미세 요철 패턴이 박리된다.
즉, 가압에 의해 전사용 기판이 휘기 시작한 단계에서부터 휨의 복원력이 발생하고 있지만 이 단계에서는 가압력이 휨의 복원력보다도 크므로 휨은 증대된다. 이 휨을 이용하여 전사용 기판 외주부의 미세 요철 패턴을 박리한다(제 1 박리 공정). 그리고, 가압력을 서서히 감소시켜서 휨의 복원력이 가압력보다도 커지면 휨이 감소하여 휨이 복원되는 방향으로 진행된다. 이 휨의 복원을 이용하여 제 1 박리 공정에서 박리되지 않았던 전사용 기판 중앙부의 미세 요철 패턴을 박리한다(제 2 박리 공정).
이 때에, 제 2 박리 공정이 종료되는 직전에서는 몰드에는 박리 최종단(전사용 기판의 중심부)의 미세 요철 패턴만이 결합되어 있다. 따라서, 박리가 완료될 때에 큰 휨의 복원력(박리력)이 한번에 부여되면 박리 최종단의 미세 요철 패턴이 파손되거나 변형되거나 해버린다.
그러나, 본 실시형태에서는 전사용 기판을 가압한 압력을 서서히 감소시켜서 전사용 기판에 휨의 복원력(박리력)을 서서히 작용시킴으로써 작은 박리력으로 또한 낮은 박리 속도로 박리하도록 했다. 이에 따라, 제 2 박리 공정에 있어서 전사용 기판 중앙부의 미세 요철 패턴 특히 박리 최종단의 미세 요철 패턴이 파손되거나 변형되거나 할 일이 없다.
이에 따라, 전사용 기판의 레지스트층에 전사된 미세 요철 패턴이 손상을 받지 않도록 박리할 수 있다. 따라서, 나노 사이즈의 미세 요철 패턴이라도 고정밀도의 미세 요철 패턴을 형성할 수 있다.
상기 실시형태에 의한 미세 요철 패턴의 형성 방법에서는 상기 제 1 박리 공정에 있어서 상기 전사용 기판을 최대 휨량의 직전까지 휘게 하는 것이 바람직하다(제 2 실시형태). 이에 따라, 미세 요철 패턴이 파손되기 쉬운 박리 최종단의 미세 요철 패턴을 작은 박리력으로 또한 낮은 박리 속도로 박리할 수 있는 제 2 박리 공정에서 박리할 수 있다.
여기서, 최대 휨량은 전사용 기판 단체의 상태에서 가압력을 가했을 때의 전사용 기판의 휨량을 말한다. 제 1 박리 공정에서는 전사용 기판의 휨에 의해 전사용 기판의 외주부에 형성된 미세 요철 패턴이 몰드로부터 박리 가능하고 또한 전사용 기판에 휨의 복원력을 작용시켰을 때에 전사용 기판의 중앙부에 형성된 모든 미세 요철 패턴이 휨의 복원력에 의해 몰드로부터 박리되는 것이 가능한 휨량을 부여하는 것이 조건이다.
상기 실시형태에 의한 미세 요철 패턴의 형성 방법에서는 상기 제 1 박리 공정에 있어서 상기 전사용 기판의 휨에 따라 상기 몰드를 상기 전사용 기판으로부터 이간되는 방향으로 이동시키는 것이 바람직하다(제 3 실시형태). 이 경우, 전사용 기판이 휘는 힘에 의해 몰드를 종동적으로 슬라이드시켜도 또는 몰드를 구동 장치에 의해 강제적으로 소정량 이동시켜도 어떤 것이라도 좋다. 이에 따라, 휨에 의한 박리력을 전사용 기판에 대하여 균등하게 부여할 수 있으므로 전사용 기판 외주부의 미세 요철 패턴을 균등하게 박리할 수 있다. 특히, 몰드를 구동 장치에 의해 강제적으로 소정량 이동시킴으로써 기판 이면측의 가압에 의한 전사용 기판의 휨을 보조할 수 있으므로 스무드(smooth)한 휨을 실현시킬 수 있다.
상기 실시형태에 의한 미세 요철 패턴의 형성 방법에서는 상기 제 2 박리 공정에 있어서 상기 몰드를 움직이지 않도록 고정한 상태에서 상기 기판 이면측의 가압력을 서서히 감소시키는 것이 바람직하다(제 4 실시형태). 이에 따라, 휨의 복원력만이 박리력으로서 작용하므로 작은 박리력으로 또한 박리 최종단에서 박리 속도가 순간적으로 증대함이 없이 박리할 수 있다.
상기 실시형태에 의한 미세 요철 패턴의 형성 방법에서는 상기 제 2 박리 공정에 의해 휨의 복원력만이 박리력으로서 작용한 것에서는 박리력을 충분히 얻을 수 없을 경우에는 상기 제 2 박리 공정에 있어서 상기 몰드를 상기 제 1 박리 공정에서의 이동에 계속하여 전사용 기판으로부터 이간되는 방향으로 이동시키면서 상기 기판 이면측의 가압력을 서서히 감소시키는 것이 바람직하다(제 5 실시형태).
이 경우, 몰드의 이동은 0.1㎜/초 이하의 매우 느리게 한 이동인 것이 바람직하다.
상기 실시형태에 의한 미세 요철 패턴의 형성 방법에서는 상기 제 2 박리 공정에 있어서 상기 기판 이면측의 가압력을 유지한 상태에서 상기 몰드를 상기 제 1 박리 공정에서의 이동에 계속하여 전사용 기판으로부터 이간되는 방향으로 이동시키면서 박리하는 것이 바람직하다(제 6 실시형태).
상기 실시형태에 의한 미세 요철 패턴의 형성 방법에서는 상기 제 1 및 제 2 박리 공정에 있어서 상기 전사용 기판에 가해지는 하중을 측정하고, 상기 측정된 하중에 의거하여 상기 가압력을 제어하는 것이 바람직하다(제 7 실시형태). 이에 따라, 박리력을 정확하게 파악하면서 박리를 행하는 것이 가능하다.
또한, 기판 이면측을 가압한 압력을 로드 셀을 이용하지 않고 제어하는 방법으로서는 가압 개시로부터의 경과 시간에 의거하여 제어할 경우(제 8 실시형태) 가압 개시로부터의 몰드의 이동량에 의거하여 제어할 경우(제 9 실시형태), 가압 개시로부터의 전사용 기판의 휨량에 의거하여 제어할 경우(제 10 실시형태)가 있다.
이들의 경우에는, 미리 예비 시험 등에서 의해 경과 시간과 가압력의 관계, 몰드의 이동량과 가압력의 관계, 전사용 기판의 휨량과 가압량의 관계를 구해 놓을 필요가 있다.
본 발명의 제 11 실시형태에 의한 미세 요철 패턴의 형성 장치는 상기 목적을 달성하기 위하여 기판 상에 레지스트층이 형성된 전사용 기판의 레지스트층에 몰드의 미세 요철 패턴을 전사하여 경화한 후 상기 전사용 기판과 상기 몰드를 박리하는 박리 장치를 구비하고, 상기 박리 장치는 상기 전사용 기판의 둘레 가장자리부를 고정하는 둘레 가장자리부 고정 부재와, 상기 전사용 기판의 둘레 가장자리부를 고정한 상태에서 상기 전사용 기판의 기판 이면측을 가압하여 상기 전사용 기판을 만곡 형상으로 휘게 하는 가압부와, 상기 전사용 기판의 휨이 복원되도록 상기 가압한 압력을 서서히 감소시키는 압력 제어부를 구비한다.
상기 제 11 실시형태는 본 발명을 장치로서 구성한 것이다.
상기 실시형태에 의한 미세 요철 패턴의 형성 장치는 상기 몰드를 상기 전사용 기판으로부터 이간되는 방향으로 이동시키는 이동 구동부를 구비하는 것이 바람직하다(제 12 실시형태). 단, 본 발명은 이동 구동부에 의한 강제적인 이동에 한정되지 않고 전사용 기판이 휘는 휨력에 의해 몰드가 전사용 기판으로부터 이간되는 방향으로 이동하는, 소위 이동 구동부를 갖지 않는 종동적인 이동도 가능하다.
또한, 상기 이동 구동부는 상기 몰드의 이동을 록킹하는 록킹 기구를 구비하는 것이 바람직하다(제 13 실시형태). 또한, 상기 전사용 기판에 가해지는 하중을 측정하는 하중 센서를 구비하는 것이 바람직하다(제 14 실시형태).
이들은 몰드를 이동 구동시키는 이동 구동부를 설치했을 경우에 대응하고 있다. 상기 제 12 내지 제 14 실시형태에 의하면 이동 구동부를 설치함으로써 몰드를 고정밀하게 이동시킬 수 있다.
본 발명의 제 15 실시형태에 의한 전사용 기판의 제조 방법은 상기 목적을 달성하기 위하여 상기 제 1 내지 제 10 실시형태 중 어느 하나에 의한 미세 요철 패턴의 형성 방법에 의해 상기 몰드의 미세 요철 패턴을 상기 전사용 기판에 전사한 후 상기 전사용 기판으로부터 상기 몰드를 박리함으로써 상기 전사용 기판을 제조하도록 한 것이다.
본원 청구항 16의 전사용 기판은 상기 목적을 달성하기 위하여 상기 제 1 내지 제 10 실시형태 중 어느 하나에 의한 미세 요철 패턴의 형성 방법에 의해 미세 요철 패턴이 박리되어서 제조된 것이다.
상기 전사용 기판은 상기 제 1 내지 제 10 실시형태 중 어느 하나에 의한 미세 요철 패턴의 형성 방법에 의해 제조되어 있으므로 나노 사이즈의 미세 요철 패턴이라도 고정밀도의 미세 요철 패턴을 가질 수 있다.
<발명의 효과>
상기 각 실시형태에 의한 미세 요철 패턴의 형성 방법 및 장치에 의하면 미세 요철 패턴을 전사하는 측의 몰드와 전사되는 측의 전사용 기판을 박리할 때에 전사용 기판의 레지스트층에 전사된 미세 요철 패턴이 손상을 받는 것을 효과적으로 방지할 수 있다. 따라서, 나노 사이즈의 미세 요철 패턴이라도 고정밀도의 미세 요철 패턴을 형성하는 것이 가능하다. 특히, 몰드와 전사용 기판의 박리가 종료되기 직전의 박리 최종단에서의 미세 요철 패턴의 손상이나 변형을 방지할 수 있다.
도 1a는 미세 요철 패턴을 전사하는 나노 임프린트의 스텝을 도시하는 공정도이다.
도 1b는 미세 요철 패턴을 전사하는 나노 임프린트의 스텝을 도시하는 공정도이다.
도 1c는 미세 요철 패턴을 전사하는 나노 임프린트의 스텝을 도시하는 공정도이다.
도 2a는 전사 공정에서 몰드와 전사용 기판이 합체된 합체물(워크)의 평면도이다.
도 2b는 도 2a의 2B-2B 단면도이다.
도 3a는 본 발명의 미세 요철 패턴의 형성 장치의 일례를 설명하는 전체 구성도(사시도)이다.
도 3b는 미세 요철 패턴의 워크 홀더 부분을 도시하는 도면(도 3a의 3B-3B 선의 일부 사시 단면도)이다
도 4는 미세 요철 패턴의 형성 장치의 제어계를 설명하는 설명도이다.
도 5는 본 발명에 있어서의 박리 방법과 일반적인 박리 방법의 공정을 도시하는 플로우차트이다.
도 6a는 최대 휨량을 설명하는 설명도이다.
도 6b는 최대 휨량을 설명하는 설명도이다.
도 7은 실시예에서 사용된 몰드의 미세 요철 패턴을 설명하는 설명도이다.
도 8은 종래의 일반적인 박리 방법(어시스트 가압 없음)에서의 하중 변화의 설명도이다.
도 9는 본 발명에 있어서의 박리 방법(어시스트 가압 있음)에서의 박리력 파형 해석도이다.
도 10은 본 발명에 있어서의 박리 방법(어시스트 가압 있음)에서의 하중 변화의 설명도이다.
도 11은 본 발명에 있어서의 박리 방법(어시스트 가압 있음)에서의 박리 최종 과정에서의 하중 거동을 설명하는 설명도이다.
도 12a는 종래의 일반적인 박리 방법으로 박리된 전사용 기판의 미세 요철 패턴의 상태를 설명하는 설명도이다.
도 12b는 종래의 일반적인 박리 방법으로 박리된 전사용 기판의 미세 요철 패턴의 상태를 설명하는 설명도이다.
도 13은 본 발명에 있어서의 박리 방법으로 박리된 전사용 기판의 미세 요철 패턴의 상태를 설명하는 설명도이다.
첨부된 도면에 따라 본 발명의 미세 요철 패턴의 형성 방법 및 형성 장치의 바람직한 실시형태를 상세하게 설명한다.
본 발명의 미세 요철 패턴의 형성 방법을 적용한 나노 임프린트의 각 공정, 박리 공정 및 박리 장치에 대하여 설명한다.
<몰드의 제작>
금속 재료에 반도체 미세 가공 기술을 이용하여 3차원 입체 가공을 행하여 도 1a에 도시한 바와 같이 미세 요철 패턴(10A)을 구비한 몰드(형)(10)를 형성한다. 이 경우, 금속 재료를 형성 가공하여 원판을 작성하고 원판의 표면에 형성된 패턴을 수지 재료에 전사 가공하여 수지 스탬퍼를 제작하고, 이 수지 스탬퍼를 몰드(10)로서 사용해도 좋다. 몰드(10)의 재료로서는 목적에 따라 적절히 선택할 수 있지만 금속, 석영, 수지 등을 알맞게 사용할 수 있다. 금속 재료로서는 Ni, Si 또는 SiO2, Cu, Cr, Pt 등을 사용할 수 있고, 수지 재료로서는 폴리에틸렌 테레프탈레이트, 폴리에틸렌 나프탈레이트, 폴리카보네이트, 불소 수지 등을 사용할 수 있다.
그리고, 제작한 몰드(10)의 미세 요철 패턴(10A)의 표면에 박리층을 피복하는 것이 바람직하다. 박리층은 후술하는 전사·경화 공정 후에 몰드(10)와 레지스트층(12)의 전사계면에서 박리시의 응력에 의한 불량이 작용하지 않게 박리할 수 있도록 미세 요철 패턴(10A)의 표면에 형성하는 것이 바람직하다. 박리층의 재료로서는 몰드(10)측에 부착, 결합하기 쉽고 레지스트층(12)측에 흡착되기 어렵다는 목적에 맞는 재료가 좋고 적절히 선택할 수 있다. 그 중에서도 레지스트층(12)측에 흡착되기 어렵다는 점에서 전기 음성도가 낮은 불소계 수지가 바람직하다.
박리층의 두께로서는 너무 두꺼우면 미세 요철 패턴(10A)이 변화되기 때문에 가능한 한 박층화하는 것이 바람직하고, 구체적으로는 5nm 이하가 바람직하고, 3nm 이하가 보다 바람직하다.
박리층의 형성 방법으로서는 박리층의 재료의 도포 또는 증착을 이용할 수 있다. 또한, 박리층을 형성한 후 베이킹 등에 의해 몰드(10)로의 밀착성을 향상시켜서 박리층 자체의 강도를 향상하는 것이 바람직하다.
상기와 같이 제작한 몰드(10)를 사용하여 도포 공정, 전사 공정 및 박리 공정을 행함으로써 전사용 기판(14)의 레지스트층(12)에 미세 요철 패턴(12A)을 형성한다.
[도포 공정]
도 1a에 도시한 바와 같이, 레지스트층(12)을 형성하는 수지 소재를 용매에 용해한 레지스트액을 기판(16)에 도포하여 기판(16) 상에 레지스트층(12)이 형성된 전사용 기판(14)을 형성한다. 레지스트층(12)을 형성하는 수지 소재로서는, 예를 들면, 열가소성 수지, 열경화성 수지 및 광경화성 수지를 바람직하게 사용할 수 있다. 또한, 기판(16)의 재료로서는, 예를 들면 유리 기판, Si 기판 등을 이용할 수 있다.
레지스트액을 기판(16) 상에 도포하는 방법으로서는 하기의 방법을 알맞게 사용할 수 있다.
(1) 잉크젯 등의 액적 장치에 의해 기판(16) 상의 적절한 장소에 적하하고 레지스트액 자체의 유동성에 의해 확산시켜 기판(16) 상에 균일하게 도포된다.
(2) 스핀 도포에 의해 기판(16)을 회전시킴으로써 기판(16) 상에 적하한 레지스트액을 확산시켜 균일하게 도포한다.
(3) 바 코터 등을 이용하여 기판(16) 상에 균일하게 도포한다.
기판(16) 상에 도포되는 레지스트층(12)의 두께는, 예를 들면 엘립소메터 등을 이용한 광학적인 측정법 또는 촉침식 단차계 또는 원자간력 현미경(atom force microscope :AFM) 등을 이용한 접촉 측정법 등에 의해 계측할 수 있다.
[전사 공정]
이어서, 도 1b에 도시한 바와 같이, 전사용 기판(14)의 레지스트층(12)에 몰드(10)의 미세 요철 패턴(10A)을 전사한다. 일반적으로, 몰드(10)를 전사용 기판(14)의 레지스트층(12)에 탑재한 무게만으로는 몰드(10)에 형성된 미세 요철 패턴(10A)의 오목부에 레지스트층(12)의 레지스트액이 충전되지 않으므로 전사되지 않는다. 따라서, 몰드(10)의 미세 요철 패턴(10A)을 전사용 기판(14)의 레지스트층(12)에 전사하기 위해서는 주위의 압력 조건을 변화시켜 강제적으로 충전하는 것이 필요하게 된다. 예를 들면 다음 충전 방법 (1) ~ (2)를 알맞게 사용할 수 있다.
(1) 몰드(10)를 레지스트층(12)을 향하여 프레스기 등으로 가압한다. 이 경우, 레지스트층(12)을 가압이나 가열함으로써 레지스트액을 미세 요철 패턴(10A)의 오목부에 한층 충전하기 쉽게 된다.
(2) 레지스트액을 기판(16) 상에 도포 후 레지스트층(12) 위에 몰드(10)를 탑재하여 가열·감압의 조건 하에 둔다. 이에 따라, 미세 요철 패턴(10A)의 오목부에 남은 공기나 기포가 제거되므로 레지스트액이 오목부에 충전된다.
[경화 공정]
이어서, 몰드(10)의 미세 요철 패턴(10A)이 전사된 레지스트층(12)을 경화한다. 이에 따라, 도 2a 및 도 2b에 도시한 바와 같이, 몰드(10)와 전사용 기판(14)이 합체된 합체물(20)(이하, 「워크(20)」라고 칭함)이 형성된다. 도 2a는 워크(20)의 평면도이며 도 2b은 도 2a의 2B-2B 단면도이다. 또한, 본 실시형태에서는 워크(20)가 원 형상인 것으로 설명되지만 이것에 한정되는 것은 아니고, 예를 들면 사각 형상이라도 좋다.
레지스트층(12)의 경화 방법으로서는 다음 방법 (1) ~ (3)을 알맞게 사용할 수 있다.
(1) 광경화성 수지의 경우는 경화 개시제가 반응하는 파장 대역의 경화광을 레지스트층(12)에 조사함으로써 경화한다. 도 1b는 광을 투과하는 투명한 몰드(10)의 이면으로부터 경화광을 조사하여 레지스트층(12)을 경화하는 예이다.
(2) 용제로 가용한 레지스트 소재의 경우는 용매에 용해하여 전사 후에 건조함으로써 경화한다.
(3) 열가소성의 천연 고분자의 경우는 전사 후에 레지스트층(12)을 냉각함으로써 경화한다.
[박리 공정]
이어서, 도 1c에 도시한 바와 같이 전사용 기판(14)과 몰드(10)를 서로 박리한다. 도 1c는 전사용 기판(14)을 고정하여 몰드(10)를 수직 방향 상향으로 인장함으로써 몰드(10)와 전사용 기판(14)을 박리하는 일반적인 인장 박리 방법의 예이다.
이러한 박리 공정에 있어서 종래는 레지스트층(12)에 전사된 미세 요철 패턴(12A)이 몰드(10)를 전사용 기판(14)으로부터 박리할 때의 박리 불량에 의해 손상되거나 변형되거나 하는 문제가 있었다. 특히, 전사되는 미세 요철 패턴이 나노 사이즈의 매우 작은 요철 형상에서는 몰드(10)와 전사용 기판(14)이 박리 완료되기 직전의 박리 최종단에 있어서 손상의 정도가 컸다.
따라서, 본 실시형태에서는 박리 공정으로서 전사용 기판(14)의 둘레 가장자리부를 고정한 상태에서 전사용 기판(14)의 기판 이면측을 가압하여 전사용 기판(14)을 만곡 형상으로 휘게 함으로써 상기 휨에 의해 전사용 기판(14)과 몰드(10)의 박리를 개시하는 제 1 박리 공정과, 기판 이면측을 가압한 압력을 서서히 감소시켜 전사용 기판(14)에 휨의 복원력을 작용시킴으로써 전사용 기판(14)의 미세 요철 패턴(12A) 중 제 1 박리 공정에서 박리되지 않았던 미세 요철 패턴(12A)을 박리하는 제 2 박리 공정을 행함으로써 상기 문제를 해결했다.
이하, 상기 제 1 및 제 2 박리 공정에서 전사용 기판(14)의 기판 이면측을 가압한 압력을 어시스트압이라고 칭하기로 한다.
이 경우, 제 1 박리 공정에서는 전사용 기판(14)이 만곡 형상으로 휨으로써 몰드(10)가 휨 전의 전사용 기판(14)의 기판면에 대하여 수직 방향으로 이동된다. 이 몰드(10)의 이동은 이동을 위한 이동 구동 장치를 이용하지 않고 전사용 기판(14)이 휘는 휨력에 의해 종동적으로 이동시키도록 해도 좋고, 또는 이동 구동 장치에 의해 강제적으로 이동시키도록 해도 좋다.
도 3a는 본 발명의 실시형태에 있어서의 이동 구동 장치를 구비한 박리 장치(21)의 일례를 도시하는 전체 구성도(사시도)이며, 도 3b는 워크 홀더(22)에 워크(20)를 세팅한 상태를 도시하는 단면도(도 3a의 3B-3B선 일부 사시 단면도)이다.
도 3a 및 도 3b에 도시한 바와 같이, 박리 장치(21)는 워크 홀더(22), 가압 장치(24) 및 이동 구동 장치(26)가 장치 프레임(30)에 조립되어 구성된다.
장치 프레임(30)에 있어서는 직사각형 형상의 기대(31)의 4 코너에 각각 지주(32, 32···)가 세워 설치되고, 지주(32) 위에 워크 홀더(22)를 지지하는 지지판(34)이 설치된다. 지지판(34)의 중앙부에는 둥근 구멍(34A)(도 4 참조)이 형성되고 둥근 구멍(34A)에 걸치도록 워크 홀더(22)가 지지판(34) 상에 지지된다.
워크 홀더(22)는 주로 원판 형상의 상판(36)과, 중앙부에 둥근 구멍(38A)이 형성된 도넛 형상의 하판(38)이 합쳐진 구조를 가짐과 아울러 하판(38)의 둥근 구멍(38A) 주위에는 워크(20)의 전사용 기판(14)을 수용하는 기판 수용면(38B)이 형성된다. 그리고, 박리 공정을 행하기 위해서는 몰드(10)와 전사용 기판(14)이 합체된 워크(20)를 워크 홀더(22)에 세팅한다. 이 경우, 몰드(10)를 하측으로 하여 전사용 기판(14)을 기판 수용면(38B)에 탑재한 후 전사용 기판(14)의 상면 둘레 가장자리부에 설치된 O 링(40)을 변형하도록 하여 상판(36)을 커버하고 도시 생략한 고정 부재에 의해 상판(36)과 하판(38)을 고정한다. 이에 따라, 전사용 기판(14)의 둘레 가장자리부가 고정됨과 아울러 전사용 기판(14)의 상면과, 상판(36)의 하면과, O 링(40)에 의해 둘러 싸여져 기밀 구조의 가압용 공간(42)이 형성된다.
이 가압용 공간(42)으로 가압 장치(24)에 의해 압축 공기가 취입된다. 가압 장치(24)에 있어서는 상판(36)의 내부에 가압용 공간(42)으로 압축 공기를 유동시키는 유로(24A)가 형성되어 유로(24A) 선단의 취출구(24B)가 가압용 공간(42)을 향하여 개구된다. 또한, 유로(24A)는 배관(44)에 의해 압력 제어 기구(45)(도 4 참조)를 통해 컴프레서(47)에 접속된다.
압력 제어 기구(45)는 컴프레서(47)로부터 가압 장치(24)로 공급되는 압축 공기량을 조정하여 가압용 공간(42)의 압력을 조정함과 아울러 가압용 공간(42)으로부터 압축 공기를 빼서 가압용 공간(42)의 압력을 감소시키는 2개의 기능을 갖는다. 그리고, 가압용 공간(42)에 압축 공기를 공급하면 전사용 기판(14)의 기판 이면측이 가압되어 전사용 기판(14)이 만곡 형상(아래로 볼록하게 만곡)으로 휜다. 또한, 본 실시형태에서는 가압용 공간(42)으로 압축 공기를 공급하여 전사용 기판(14)을 휘어지게 했지만 가압용 공간(42)으로 액체를 공급하는 것도 가능하다. 또한, 가압용 공간(42)으로 기체나 액체의 유체를 공급하는 구조 이외의 방법도 적용할 수 있다. 예를 들면, 전사용 기판(14)의 기판 이면측에, 소정 곡률의 접촉면을 가짐과 아울러 접촉면에 다수의 흡인 구멍을 갖는 고체물(도시 생략)을 설치한다. 그리고, 이 고체물의 접촉면을 전사용 기판(14)에 접촉시켜서 흡인함으로써 전사용 기판(14)을 만곡시키도록 해도 좋다.
상기와 같이, 워크 홀더(22)에 워크(20)를 세팅함으로써 몰드(10)의 하면은 하판(38)의 둥근 구멍(38A) 및 지지판(34)의 둥근 구멍(34A)을 통해 지지판(34)의 하면측으로 돌출된다. 이 몰드(10)의 하면을 이어서 설명하는 이동 구동 장치(26)의 흡착 헤드(50)가 흡착한다.
이동 구동 장치(26)는 몰드(10)의 하면을 흡착하는 흡착 헤드(50)와, 흡착 헤드(50)를 승강시키는 승강 장치(52)를 구비한다. 도 3a에는 승강 장치(52)의 상세한 구조를 도시하고 있지 않지만 나노 사이즈의 미세 요철 패턴 박리에서는 흡착 헤드(50)의 승강 스트로크는 보통 10㎜ 정도 있으면 좋고, 이 정도의 승강 스트로크를 정밀하게 승강 제어할 수 있는 장치라면 어떤 것이라도 좋다.
또한, 이동 구동 장치(26)에는 가압용 공간(42)에 압축 공기를 공급했을 때에 전사용 기판(14)에 가해지는 하중을 측정하는 로드 셀(54)(도 4 참조)이 설치된다. 즉, 가압용 공간(42)에 압축 공기를 공급하여 전사용 기판(14)이 만곡 형상(아래로 볼록하게 만곡)으로 휘면 휨력이 로드 셀(54)을 압박하고 이 압박력이 로드 셀(54)에 의해 하중으로서 측정된다.
도 4는 가압 장치(24)의 압력 제어 기구(45), 흡착 헤드(50)의 흡착 제어 기구(53), 흡착 헤드(50)의 온도 제어 기구(56), 및 이동 구동 장치(26)의 이동 제어 기구(57)의 일례를 도시하는 개략도이다.
도 4에 도시한 바와 같이, 압력 제어 기구(45)는 상기한 컴프레서(47)와 워크 홀더(22) 안에 형성된 취출구(24B)를 연결하는 배관(44)에 전자 밸브(48) 및 전공 변환 레귤레이터(46)가 설치되고, 이들 기기는 로드 셀(54)로 측정된 하중에 의거하여 시퀀서(55)에 의해 제어된다.
온도 제어 기구(56)는 흡착 헤드(50)에 내장된 히터(도시 생략)와, 히터 온도를 조정하는 온도 조절기(56A)가 설치되어 있다. 온도 조절기(56A)는 시퀀서(55)로 온도 상태를 피드백한다.
흡착 제어 기구(53)는 흡착 헤드(50)와 진공 펌프(58)를 연결시키는 진공 유로에 전자 밸브(60)와 압력 센서(62)가 설치되어 전자 밸브(60)는 시퀀서(55)에 의해 제어된다. 압력 센서(62)는 진공 도달도를 감시하고 있어 흡착의 유무의 신호를 시퀀서(55)로 출력한다. 시퀀서(55)는 압력 센서(62)로부터의 출력에 따라 흡착 이상 검지 및 박리 동작 개시의 제어를 행한다.
이동 제어 기구(57)에는 상기 승강 장치(52)를 구동하는 드라이버(64)가 설치된다. 드라이버(64)는 로드 셀(54)에 의해 측정된 하중에 의거하여 시퀀서(55)에 의해 제어된다.
또한, 터치 패널(66)은 시퀀서(55)에 접속되어 각종의 박리 조건 파라미터(흡착 헤드 구동 속도, 구동 스트로크, 어시스트압 설정값 등)의 입력을 수용함과 아울러 장치의 기동·정지의 지시의 입력의 수용, 이상 표시 등을 행한다. 또한, 로드 셀(54)은 로드 셀 컨트롤러(68)을 통해 시퀀서(55)에 접속된다.
이어서, 상기와 같이 구성된 미세 요철 패턴의 박리 장치(21)를 이용하여 박리 방법을 설명한다.
도 5는 박리 방법의 스텝을 도시하는 플로우차트이다. 또한, 도 5의 박리 스텝은 상기 실시형태에 의한 박리 방법을 적용한 박리 스텝과, 일반적인 인장 박리에 의한 박리 스텝을 선택할 수 있도록 되어 있다.
도 5에 도시한 바와 같이, 워크(20)를 워크 홀더(22)에 세팅한다(스텝 S-1). 즉, 몰드(10)를 하측으로 하여 전사용 기판(14)을 기판 수용면(38B)에 탑재한 후 전사용 기판(14)의 상면 둘레 가장자리부에 설치된 O 링(40)(둘레 가장자리부 고정 부재)을 찌부러지도록 해서 상판(36)을 커버하고, 도시 생략한 고정 부재(예를 들면, 볼트와 너트)로 상판(36)과 하판(38)을 고정한다. 이에 따라, 전사용 기판(14)은 워크 홀더(22)를 통해 장치 프레임(30)의 지지판(34)에 고정 지지된다.
이어서, 터치 패널(66) 위에서 몰드 흡착을 명령하는 「수동 SW」를 ON(스텝 S-2)하여 몰드(10)를 흡착 헤드(50)로 유지한다. 그리고, 기동 스위치를 ON함으로써 자동 시퀸스 제어가 개시되고 기동 경보음이 3초간 울린 후 순차 박리 스텝을 개시한다(스텝 S-3).
이어서, 흡착 헤드(50)의 온도가 설정 범위 내인지가 체크되어(스텝 S-4), 설정 온도 외(NO)이면 이상 정지의 스텝 S-5로 진행되어 박리 장치(21)가 정지한다. 그리고, 설정 온도 내(YES)이면 다음 스텝 S-6으로 진행된다. 흡착 헤드(50)의 설정 온도는 실온(예를 들면 20℃)∼60℃의 범위가 바람직하다. 실온(예를 들면 20℃)∼60℃의 범위이면 전사용 기판(14)의 탄력성이 커지므로 전사용 기판(14)을 만곡 형상으로 휘게 했을 때에 전사용 기판(14)의 미세 요철 패턴(12A)이 파손되기 어렵다. 또한, 60℃를 넘으면 전사용 기판(14)의 점착성이 높아져 박리하기 어려워진다.
스텝 S-6에서는 미리 터치 패널(66) 상에서 설정한 조건에 의거하여 어시스트 가압이 있는 방법(YES)으로 박리할지 어시스트 가압이 없는 방법(NO)으로 박리할지를 선택한다. 상기 실시형태에 의한 박리 방법을 행하기 위해서는 YES를 선택하여 다음 스텝 S-7로 진행된다.
스텝 S-7에서는 워크 홀더(22)의 가압용 공간(42)에 압축 공기를 보내는 동작이 ON으로 되어 전사용 기판(14)의 기판 이면측을 가압한다. 이에 따라, 전사용 기판(14)은 아래로 볼록한 만곡 형상의 휨이 발생되도록 하는 압력이 발생된다. 그러나, 이 시점에서는 흡착 헤드(50)는 아직 이동하지 않고 있으므로 로드 셀(54)에 압축 하중이 부가된다. 그리고, 배관(44) 상에 있는 압력 센서(도시 생략)로 어시스트압이 소정압에 도달했는지의 여부를 판단한다(스텝 S-8).
여기서, 최대 휨량(L)은 전사용 기판 단체의 상태에서 어시스트압(P)을 가했을 때의 전사용 기판(14)의 휨량(L)을 말한다. 제 1 박리 공정의 스트로크 설정은 다음 2개의 조건을 만족할 필요가 있다.
즉, 첫번째는 도 6a에 도시한 바와 같이 어시스트압(P)에 의한 전사용 기판(14)의 휨에 의해 전사용 기판(14)의 외주부에 형성된 미세 요철 패턴(12A)이 몰드(10)로부터 박리 가능할 것.
두번째는 도 6b에 도시한 바와 같이 어시스트압(P)을 감소시켜서 전사용 기판(14)에 휨의 복원력(BF)을 작용시켰을 때에 아직 박리되어 있지 않은 전사용 기판(14)의 중앙부에 형성된 모든 미세 요철 패턴(12A)이 휨의 복원력(BF)에 의해 몰드(10)로부터 박리 가능할 것.
또한, 전사용 기판(14)의 휨량이 지나치게 커지면 몰드(10)에 형성된 3차원의 미세 요철 패턴(10A)과 전사용 기판(14)에 전사된 3차원의 미세 요철 패턴(12A)이 박리시에 서로 간섭하는 정도가 커진다. 이에 따라, 박리시에 전사용 기판(14)의 미세 요철 패턴(12A)이 파괴되거나 변형되거나 하기 쉬워진다. 따라서, 제 1 박리 공정의 스트로크 설정은 상기 제 1 박리 공정의 스트로크 설정의 조건을 만족하는 범위 내에서 가능한 한 작게 하는 것이 바람직하다. 예를 들면, 6인치의 전사용 기판(14)의 경우에는 어시스트압은 0.02∼0.03㎫의 범위인 것이 바람직하다. 어시스트압이 0.02㎫ 미만에서는 휨의 복원력(BF)를 수용할 수 없다. 이에 따라, 전사용 기판(14)이 만곡 형상으로부터 평면 형상으로 한번에 변형되어 박리 동작을 한번에 완료해버리므로 미세 요철 패턴(12A)의 파손이나 변형이 생기기 쉽다. 또한, 어시스트압이 0.03MPa를 초과하여 커지면 전사용 기판(14)이 과도하게 휘게 되어 미세 요철 패턴(12A)의 파손이나 변형이 발생하기 쉬울 뿐만 아니라 최악의 경우에는 전사용 기판(14) 자체가 파손되어 버린다.
이어서, 도 5로 돌아가서, 어시스트압(P)이 소정압에 도달하면 로드 셀(54)에 의한 하중 측정이 개시됨(스텝 S-9)과 아울러 흡착 헤드(50)가 하강 이동을 개시한다(스텝 S-10). 이에 따라, 가압용 공간(42)에 축적되어 있는 어시스트압에 의해 전사용 기판(14)이 휘게 되므로 전사용 기판(14)의 외주부에 형성된 미세 요철 패턴(12A)은 전사용 기판(14)의 휨에 의해 몰드(10)로부터 박리된다. 이에 따라, 제 1 박리 공정이 종료된다(도 6a 참조). 이 경우, 흡착 헤드(50)의 이동 속도는 0.1㎜/초 이하인 것이 바람직하고, 0.05㎜/초 이하인 것이 보다 바람직하다. 흡착 헤드(50)의 하강 이동 속도가 0.1㎜/초를 초과하여 빨라지면 전사용 기판(14)이 급격하게 휘게 되므로 박리되는 전사용 기판(14) 외주부의 미세 요철 패턴(12A)이 파손되거나 변형되거나 하기 쉽다.
또한, 도 5의 스텝에서는 어시스트압이 소정압에 도달하면 흡착 헤드(50)가 하강하지만 상술한 바와 같이 흡착 헤드(50)를 이동시키기 위한 이동 구동 장치(26)를 설치하지 않고 전사용 기판(14)이 휘는 휨력에 의해 흡착 헤드(50)가 종동적으로 이동하도록 해도 좋다.
이어서, 흡착 헤드(50)의 하강 이동 스트로크가 제 1 박리 공정의 스트로크에 도달하면 하강 이동이 정지되고(스텝 S-11) 다음 스텝 S-12로 진행된다. 이 경우, 흡착 헤드(50)의 하강 이동이 정지한 후 즉시 스텝 S-12로 진행되어도 좋고 또는 정지한 후 소정 시간 정지 상태를 유지한 후 스텝 S-12로 진행되어도 좋다. 소정 시간 정지시킴으로써 제 1 박리 공정에서 박리 가능한 미세 요철 패턴(12A)을 확실하게 박리할 수 있다. 또한, 흡착 헤드(50)의 하강 이동을 정지시키는 기구로서는 기계적인 록킹 기구 또는 구동계가 가진 유지 기구 중 어느 것이라도 좋다.
스텝 S-12에서는 가압용 공간(42)으로부터 에어가 서서히 빠져서 전사용 기판(14)의 기판 이면측을 가압하는 어시스트압(P)의 감압이 개시된다. 그리고 어시스트압(P)을 서서히 작게 하면 휨의 복원력(BF)이 어시스트압(P)보다도 커졌을 때에 제 1 박리 공정에서는 박리되지 않았던 전사용 기판(14) 중앙부의 미세 요철 패턴(12A)이 몰드(10)로부터 박리된다(도 6b 참조). 어시스트압의 감압은 가압용 공간(42)의 압력이 대기압으로 복귀된 시점에서 종료된다(스텝 S-13). 이에 따라, 제 2 박리 공정이 종료되고 몰드(10)와 전사용 기판(14)의 박리가 완료되며 몰드(10)와 전사용 기판(14)이 분리된다.
마지막으로, 흡착 헤드(50)는 기계 원점으로 퇴피하고(스텝 S-14), 박리 정지 완료 부저가 울려 박리 자동 운전이 정지된다(스텝 S-15).
이 제 2 박리 공정에 있어서 가압용 공간(42)을 가압하고 있던 어시스트압(P)은 서서히 감소되므로 전사용 기판(14) 중앙부의 미세 요철 패턴(12A)이 한번에 박리될 일은 없어 작은 박리력에 의해 낮은 박리 속도로 서서히 박리되게 된다. 특히, 제 2 박리 공정이 종료되기 직전에서는 몰드(10)에는 박리 최종단(전사용 기판의 중심부)의 미세 요철 패턴(12A)만이 결합되어 있다. 따라서, 박리가 완료될 때에 큰 휨의 복원력(박리력)이 한번에 부여되면 박리 최종단의 미세 요철 패턴(12A)이 파손되어 버린다. 그러나, 작은 박리력에 의해 낮은 박리 속도로 서서히 박리됨으로써 박리 최종단의 미세 요철 패턴(12A)이 파손되거나 변형되거나 하는 것을 확실하게 방지할 수 있다.
따라서, 박리 최종단의 미세 요철 패턴(12A)의 박리와 같이, 몰드(10)에 대하여 접촉하는 부분이 적고 미세 요철 패턴(12A)에 박리 하중이 집중되기 쉬울 경우라도 미세 요철 패턴(12A)이 파손되거나 변형되거나 하지 않도록 박리할 수 있다.
또한, 본 실시형태에서는 몰드(10)를 정지한 상태에서 제 2 박리 공정을 행하도록 했지만 어시스트압(P)을 서서히 감소시켜서 휨의 복원력(BF)을 전사용 기판(14)에 작용시키면서 흡착 헤드를 계속되어 하강시키도록 해도 좋다. 이에 따라, 휨의 복원력(BF)에 부가하여 몰드(10)와 전사용 기판(14)을 서로 박리하는 방향으로 박리력(F)이 부여된다. 이 경우도, 흡착 헤드의 이동 속도는 0.1㎜/초 이하인 것이 바람직하고, 0.05㎜/초 이하인 것이 보다 바람직하다.
또한, 본 실시형태에서는 전사용 기판(14)의 기판 이면측의 압력을 로드 셀(54)의 측정값에 의거하여 제어하도록 했지만 가압 개시로부터의 경과 시간에 의거하여 가압력을 제어해도 좋다. 또한, 가압 개시로부터의 몰드(10)의 이동량에 의거하여 제어하거나 가압 개시로부터의 전사용 기판(14)의 휨량에 의거하여 제어하거나 해도 좋다. 이들의 경우에는 미리 예비 시험에 의해 상관 관계를 파악하여 조건을 설정할 필요가 있다.
한편, 스텝 S-6에 있어서 일반적인 인장 박리의 공정(NO)을 선택했을 경우에는 로드 셀(54)에 의한 하중 측정이 개시됨(스텝 S-16)과 아울러 흡착 헤드(50)가 하강 이동(스텝 S-17)하고 몰드(10)와 전사용 기판(14)이 서로 인장된다. 그리고, 몰드(10)와 전사용 기판(14)이 한번에 박리된다. 박리가 종료되면 흡착 헤드(50)의 하강 이동이 정지된다(스텝 S-18).
실시예 1
이어서, 본 발명의 실시예를 설명하지만 이 실시예에 한정되는 것이 아니다.
박리 시험은 나노 임프린트에 있어서 나노 사이즈의 미세 요철 패턴을 갖는 나노 임프린트용의 몰드(10)를 레지스트층(12)을 미리 도포한 전사용 기판(14)에 밀착시켜서 미세 요철 패턴을 전사용 기판(14)의 레지스트층(12)에 전사했다. 그리고, 전사 후의 박리 공정에 본 실시형태에 의한 박리 방법을 적용한 경우와 적용하지 않은 경우를 행하여 박리 후의 미세 요철 패턴(12A)의 상태를 관찰했다.
몰드(10)는 두께가 0.5㎜이고 4인치(100㎜) 직경의 원판 형상의 석영을 사용하고, 도 7의 모식도(사시도)에 도시한 바와 같이 라인 형상의 미세 요철 패턴이 평행하는 패턴 형상을 형성했다. 미세 요철 패턴(10A)의 단면 사이즈는 L/S폭 2㎛·높이 2㎛(애스펙트비 1)의 미세 요철이다. 그리고, 미세 요철 패턴(10A)을 형성한 면에는 이형액을 도포했다. 또한, 도 7에서는 라인 형상의 미세 요철 패턴이 복수개밖에 도시되어 있지 않지만 실제로는 다수개 있다.
또한, 전사용 기판(14)은 두께가 0.5㎜이고 6인치(150㎜) 직경의 원판 형상의 석영을 사용하고, 레지스트층(12)으로서 UV(자외선)경화 수지를 도포했다. 또한, 상기한 몰드(10) 및 전사용 기판(14)의 조건은 비교예 및 실시예 모두 동일하다.
이 전사 후의 몰드(10)와 전사용 기판(14)이 합체된 합체물인 워크(20)를 도3의 워크 홀더(22)에 세팅했다. 그리고, 도 5의 일반적인 박리 스텝 S-1∼S-6, 및 스텝 S-16∼S-18(비교예)과, 본 발명을 적용한 박리 스텝 S-1∼스텝 S-15(실시예)를 각각 행하였다.
[비교예]
도 8은 일반적인 인장 박리 방법의 스텝을 행하였을 때에 로드 셀(54)에 부가하는 경과 시간에 따른 하중 변화를 도시한 것이다. 횡축이 박리 개시로부터 종료까지의 경과 시간을 나타내고, 종축에 로드 셀(54)에 의해 측정되는 박리 하중을 나타낸다.
도 8에 도시한 바와 같이, 흡착 헤드(50)의 구동이 스타트하여 하강 이동을 개시한다. 이에 따라, 박리력이 서서히 증가하지만 이 단계에서는 몰드(10)와 전사용 기판(14)의 결합력이 박리력보다도 크므로 박리는 개시되지 않는다. 그리고, 박리력이 결합력보다도 커지면 박리가 서서히 개시되어 박리력이 결합력보다도 커졌을 때에 급격하게 박리 속도가 증가하여 몰드(10)와 전사용 기판(14)이 한번에 박리된다. 이에 따라, 박리가 완료되고 하중은 서서히 저하하여 제로가 된다. 또한, 박리가 종료되기 직전의 최종 박리 과정에 있어서의 하중은 도 8로부터 알 수 있는 바와 같이 20N이었다.
[실시예]
이어서, 본 발명을 적용한 박리 스텝에 대하여 설명한다.
실시예에서는 흡착 헤드(50)의 하강 이동 속도를 0.05㎜/초로 하고, 흡착 헤드(50)의 가열 조건을 46℃로 설정했다.
또한, 어시스트압(압축 공기의 공급 압력)을 0.025MPa로 설정함과 아울러 최대 휨량(L)을 1㎜로 했다. 어시스트압의 압력을 감압 조작은 실제로는 재현성의 관점으로부터 전공 변환 레귤레이터를 사용하는 편이 좋지만 본 실시예에서는 레큘레이터 밸브를 수동으로 일정 속도가 되도록 회전시켜 행하였다.
도 9는 어시스트 가압 있음에서의 박리력 파형 해석도이며, 도 10은 실제로 로드 셀(54)에 의해 측정된 하중 변화를 도시하는 도면이다. 횡축이 박리 개시로부터 종료까지의 경과 시간을 나타내고, 종축에 로드 셀(54)에 의해 측정되는 박리 하중을 나타낸다.
도 9 및 도 10에 도시한 바와 같이, 어시스트압을 부여한 후 하중이 급격하게 저하한 것은 워크 홀더(22)의 가압용 공간(42)이 가압되어 워크(20)가 로드 셀(54)을 압박하여 로드 셀(54)에 압축 하중(도 10의 하향의 하중)이 부가되었기 때문이다. 어시스트압이 소정압(최대 휨량을 달성하는 압력)에 도달한 후 흡착 헤드(50)를 하강 이동시키면 전사용 기판(14)이 만곡 형상으로 휘고 이 휨에 의해 제 1 박리 공정이 개시된다. 즉, 전사용 기판(14)의 휨에 의해 전사용 기판(14) 외주부에 있어서의 미세 요철 패턴(12A)이 박리된다. 이 때, 전사용 기판(14) 외주부가 몰드(10)로부터 박리될려고 하는 힘이 로드 셀(54)에 부가되므로 로드 셀(54)에는 인장 하중(도 10의 상향의 하중)이 부여된다. 전사용 기판(14)의 휨량이 최대 휨량(L)이 된 시점에서 흡착 헤드(50)의 하강 이동이 정지한다. 도 9 및 도 10에 도시한 바와 같이, 상향의 하중이 일단 평탄하게 된 부분이 최대 휨량(L)의 포인트이다.
이어서, 어시스트압을 서서히 감소시키면 전사용 기판(14)에는 휨의 복원력(BF)이 부여된다. 이에 따라, 제 2 박리 공정이 개시되어 제 1 박리 공정에서 박리되지 않았던 전사용 기판(14) 중앙부의 미세 요철 패턴(12A)이 몰드(10)로부터 작은 박리력으로 또한 낮은 박리 속도로 박리된다. 이에 따라, 몰드(10)와 전사용 기판(14)을 박리할 때에 전사용 기판(14)의 레지스트층(12)에 전사된 미세 요철 패턴(12A)이 손상을 받는 것을 효과적으로 방지할 수 있다.
도 11은 도 10에 있어서 제 2 박리 공정이 완료되기 직전의 박리 최종 과정에서의 하중 거동을 확대한 것이며 도 10의 환형으로 표시된 부분을 확대한 것이다. 도 11로부터 알 수 있는 바와 같이, 박리 최종 과정에 있어서 박리되는 박리 최종단(전사용 기판의 중심부)의 미세 요철 패턴(12A)에 가해지는 인장 하중은 2N이었다. 이와 같이, 본 실시형태에 의한 박리 방법은 도 8에 도시된 일반적인 인장 박리 방법에서의 박리 최종 과정에서의 인장 하중(20N)의 1/10까지 감소되어 있다.
[박리 후의 미세 요철 패턴의 파손 비교]
도 12a 및 도 12b는 상기 일반적인 박리 방법으로 박리한 전사용 기판(14)의 미세 요철 패턴(12A)을 전자 현미경으로 촬상한 SEM(scanning electron microscope) 사진이다.
도 12a로부터 알 수 있는 바와 같이, 미세 요철 패턴(12A)은 라인 형상으로 형성된 볼록 형상 라인이 수염 형상 부분(S)과 같이 부분적으로 벗겨져 있다. 아래로 드리워진 수염 형상 부분(S)을 제거하여 더욱 배율을 올려서 관찰하면 도 12b와 같이 볼록 형상 라인이 있는 부분(흰 부분)과 박리 제거되어 없어진 부분(검은 부분)이 존재하고 있다는 것을 알 수 있다.
이것에 대하여, 도 13은 본 발명의 박리 방법으로 박리한 전사용 기판(14)의 미세 요철 패턴(12A)이며 도 12a와 대비할 수 있다. 도 13로부터 알 수 있는 바와 같이, 라인 형상의 볼록 형상 라인이 전혀 박리 제거되어 있지 않아 미세 요철 패턴(12A)이 정밀하게 전사되어 있는 것을 알 수 있다.
10: 몰드 12: 레지스트층
14: 전사용 기판 16: 기판
20: 합체물(워크) 21: 박리 장치
22: 워크 홀더 24: 가압 장치
26: 이동 구동 장치 30: 장치 프레임
32: 지주 34: 지지판
36: 상판 38: 하판
40: O 링 42: 가압용 공간
44: 배관 45: 압력 제어 기구
46: 전공 변환 레귤레이터 47: 컴프레서
48: 전자 밸브 50: 흡착 헤드
52: 승강 장치 53: 흡착 제어 기구
56: 온도 제어 기구 57: 이동 제어 기구
58: 진공 펌프 60: 전자 밸브
62: 압력 센서 64: 드라이버
66: 터치 패널 68: 로드 셀 컨트롤러

Claims (20)

  1. 미세 요철 패턴의 형성 방법으로서:
    기판 상에 레지스트층이 형성된 전사용 기판의 레지스트층에 몰드의 미세 요철 패턴을 전사하여 상기 전사한 미세 요철 패턴을 경화하는 전사 공정과,
    상기 전사한 미세 요철 패턴을 경화한 후 상기 전사용 기판과 상기 몰드를 박리하는 박리 공정을 구비하고;
    상기 박리 공정은,
    상기 전사용 기판의 둘레 가장자리부를 고정한 상태에서 상기 전사용 기판의 레지스트층의 반대측인 기판 이면측을 가압하여 상기 전사용 기판을 만곡 형상으로 휘게 하여 상기 전사용 기판의 휨에 의해 상기 전사용 기판의 외주부와 상기 몰드의 박리를 개시하는 제 1 박리 공정과,
    상기 전사용 기판의 원래 형상을 복원하도록 상기 가압한 압력을 서서히 감소시킴으로써 상기 전사용 기판의 미세 요철 패턴 중 상기 제 1 박리 공정에서 박리되지 않은 상기 전사용 기판의 중앙부의 미세 요철 패턴을 박리하는 제 2 박리 공정을 구비하는 것을 특징으로 하는 미세 요철 패턴의 형성 방법.
  2. 제 1 항에 있어서,
    상기 제 1 박리 공정에서는 상기 전사용 기판을 최대 휨량의 직전까지 휘게 하며, 여기서 상기 최대 휨량은 전사용 기판 단체의 상태에서 가압력을 가했을 때의 전사용 기판의 휨량인 것을 특징으로 하는 미세 요철 패턴의 형성 방법.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 제 1 박리 공정에서는 상기 전사용 기판의 휨에 따라 상기 몰드를 상기 전사용 기판으로부터 이간되는 방향으로 이동시키는 것을 특징으로 하는 미세 요철 패턴의 형성 방법.
  4. 제 1 항 또는 제 2 항에 있어서,
    상기 제 2 박리 공정에서는 상기 몰드를 움직이지 않도록 고정한 상태에서 상기 기판 이면측의 가압력을 서서히 감소시키면서 박리하는 것을 특징으로 하는 미세 요철 패턴의 형성 방법.
  5. 제 3 항에 있어서,
    상기 제 2 박리 공정에서는 상기 몰드를 상기 제 1 박리 공정에서의 이동에 계속하여 상기 전사용 기판으로부터 이간되는 방향으로 이동시키면서 상기 기판 이면측의 가압력을 서서히 감소시켜 상기 몰드를 박리하는 것을 특징으로 하는 미세 요철 패턴의 형성 방법.
  6. 제 3 항에 있어서,
    상기 제 2 박리 공정에서는 상기 기판 이면측의 가압력을 유지한 상태에서 상기 몰드를 상기 제 1 박리 공정에서의 이동에 계속하여 상기 전사용 기판으로부터 이간되는 방향으로 이동시키면서 박리하는 미세 요철 패턴의 형성 방법.
  7. 제 1 항 또는 제 2 항에 있어서,
    상기 제 1 및 제 2 박리 공정에서는 상기 전사용 기판에 가해지는 하중을 측정하고,
    상기 측정된 하중에 의거하여 상기 기판 이면측의 압력을 제어하는 것을 특징으로 하는 미세 요철 패턴의 형성 방법.
  8. 제 1 항 또는 제 2 항에 있어서,
    상기 전사용 기판의 기판 이면측으로의 가압 개시로부터의 경과 시간에 의거하여 상기 기판 이면측의 압력을 제어하는 것을 특징으로 하는 미세 요철 패턴의 형성 방법.
  9. 제 1 항 또는 제 2 항에 있어서,
    상기 전사용 기판의 기판 이면측으로의 가압 개시로부터의 상기 몰드의 이동량에 의거하여 상기 기판 이면측의 압력을 제어하는 것을 특징으로 하는 미세 요철 패턴의 형성 방법.
  10. 제 1 항 또는 제 2 항에 있어서,
    상기 전사용 기판의 기판 이면측으로의 가압 개시로부터의 상기 전사용 기판의 휨량에 의거하여 상기 기판 이면측의 압력을 제어하는 것을 특징으로 하는 미세 요철 패턴의 형성 방법.
  11. 미세 요철 패턴의 형성 장치로서:
    기판 상에 레지스트층이 형성된 전사용 기판의 레지스트층에 몰드의 미세 요철 패턴을 전사하여 경화한 후 상기 전사용 기판과 상기 몰드를 박리하는 박리 장치를 구비하고;
    상기 박리 장치는,
    상기 전사용 기판의 둘레 가장자리부를 고정하는 둘레 가장자리부 고정 부재와,
    상기 전사용 기판의 둘레 가장자리부를 고정한 상태에서 상기 전사용 기판의 레지스트층의 반대측인 기판 이면측을 가압하여 상기 전사용 기판의 외주부와 상기 몰드가 박리되도록 상기 전사용 기판을 만곡 형상으로 휘게 하는 가압부와,
    상기 전사용 기판의 원래 형상을 복원하면서 상기 전사용 기판의 중앙부의 미세 요철 패턴이 분리도록 상기 가압한 압력을 서서히 감소시키는 압력 제어부를 구비하는 것을 특징으로 하는 미세 요철 패턴의 형성 장치.
  12. 제 11 항에 있어서,
    상기 몰드를 상기 전사용 기판으로부터 이간되는 방향으로 이동시키는 이동 구동부를 더 구비하는 것을 특징으로 하는 미세 요철 패턴의 형성 장치.
  13. 제 12 항에 있어서,
    상기 이동 구동부는 상기 몰드의 이동을 록킹하는 록킹 기구를 구비하는 것을 특징으로 하는 미세 요철 패턴의 형성 장치.
  14. 제 11 항 내지 제 13 항 중 어느 한 항에 있어서,
    상기 전사용 기판에 가해지는 하중을 측정하는 하중 센서를 더 구비하는 것을 특징으로 하는 미세 요철 패턴의 형성 장치.
  15. 제 1 항 또는 제 2 항에 기재된 미세 요철 패턴의 형성 방법에 의해 상기 몰드의 미세 요철 패턴을 상기 전사용 기판에 전사한 후 상기 전사용 기판으로부터 상기 몰드를 박리함으로써 상기 전사용 기판을 제조하는 것을 특징으로 하는 전사용 기판의 제조 방법.
  16. 제 1 항 또는 제 2 항에 기재된 미세 요철 패턴의 형성 방법에 의해 미세 요철 패턴이 박리되어 제조되는 것을 특징으로 하는 전사용 기판.
  17. 제 1 항에 있어서,
    상기 기판이면측을 가압하는 매체는 압축공기, 또는 가압용액체인 것을 특징으로 하는 미세 요철 패턴의 형성 방법.
  18. 제 1 항에 있어서,
    상기 기판이면측을 가압하는 압력은 0.02∼0.03㎫인 것을 특징으로 하는 미세 요철 패턴의 형성 방법.
  19. 제 11 항에 있어서,
    상기 기판이면측을 가압하는 매체는 압축공기, 또는 가압용액체인 것을 특징으로 하는 미세 요철 패턴의 형성 장치.
  20. 제 11 항에 있어서,
    기판이면측을 가압하는 압력은 0.02∼0.03㎫인 것을 특징으로 하는 미세 요철 패턴의 형성 장치.
KR1020127025624A 2010-03-29 2011-03-24 미세 요철 패턴의 형성 방법 및 형성 장치, 전사용 기판의 제조 방법, 및 전사용 기판 KR101627575B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010075495A JP5438578B2 (ja) 2010-03-29 2010-03-29 微細凹凸パターンの形成方法及び形成装置
JPJP-P-2010-075495 2010-03-29
PCT/JP2011/057178 WO2011122439A1 (ja) 2010-03-29 2011-03-24 微細凹凸パターンの形成方法及び形成装置並びに転写用基板の製造方法及び転写用基板

Publications (2)

Publication Number Publication Date
KR20130009983A KR20130009983A (ko) 2013-01-24
KR101627575B1 true KR101627575B1 (ko) 2016-06-07

Family

ID=44712148

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127025624A KR101627575B1 (ko) 2010-03-29 2011-03-24 미세 요철 패턴의 형성 방법 및 형성 장치, 전사용 기판의 제조 방법, 및 전사용 기판

Country Status (4)

Country Link
US (1) US9272462B2 (ko)
JP (1) JP5438578B2 (ko)
KR (1) KR101627575B1 (ko)
WO (1) WO2011122439A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5776266B2 (ja) * 2011-03-29 2015-09-09 大日本印刷株式会社 インプリント方法およびそれを実施するためのインプリント装置
JP6084055B2 (ja) * 2013-02-05 2017-02-22 東京応化工業株式会社 インプリントによるパターン形成方法
JP6029506B2 (ja) 2013-03-26 2016-11-24 富士フイルム株式会社 インプリント用下層膜形成組成物およびパターン形成方法
US10418235B2 (en) * 2015-09-17 2019-09-17 Milara Incorporated Systems and methods for forming electronic devices from nanomaterials
US10627715B2 (en) * 2016-10-31 2020-04-21 Canon Kabushiki Kaisha Method for separating a nanoimprint template from a substrate
US10809448B1 (en) * 2019-04-18 2020-10-20 Facebook Technologies, Llc Reducing demolding stress at edges of gratings in nanoimprint lithography
KR102365765B1 (ko) * 2020-07-09 2022-02-22 울산과학기술원 나노 트렌치 스위치
KR102599660B1 (ko) * 2021-04-16 2023-11-06 주식회사 나노엑스 곡면 임프린팅 장치 및 방법
CN113437195B (zh) * 2021-06-04 2022-07-05 季华实验室 一种微型器件转移装置及转移方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515625B2 (ja) * 2000-12-08 2010-08-04 大日本印刷株式会社 レンズシートの剥離方法及び剥離装置
US20060177535A1 (en) 2005-02-04 2006-08-10 Molecular Imprints, Inc. Imprint lithography template to facilitate control of liquid movement
KR101254042B1 (ko) 2005-01-31 2013-04-12 몰레큘러 임프린츠 인코퍼레이티드 기판 위에 배치된 고형화된 층으로부터 주형을 분리하는방법
US7636999B2 (en) * 2005-01-31 2009-12-29 Molecular Imprints, Inc. Method of retaining a substrate to a wafer chuck
US7635263B2 (en) 2005-01-31 2009-12-22 Molecular Imprints, Inc. Chucking system comprising an array of fluid chambers
US7798801B2 (en) 2005-01-31 2010-09-21 Molecular Imprints, Inc. Chucking system for nano-manufacturing
JP2007083626A (ja) * 2005-09-22 2007-04-05 Ricoh Co Ltd 微細構造転写装置
US7906058B2 (en) 2005-12-01 2011-03-15 Molecular Imprints, Inc. Bifurcated contact printing technique
JP5168815B2 (ja) 2006-04-28 2013-03-27 大日本印刷株式会社 パターンの形成方法
JP4810319B2 (ja) 2006-06-09 2011-11-09 キヤノン株式会社 加工装置及びデバイス製造方法
JP5328495B2 (ja) * 2009-06-04 2013-10-30 キヤノン株式会社 インプリント装置及び物品の製造方法

Also Published As

Publication number Publication date
KR20130009983A (ko) 2013-01-24
JP5438578B2 (ja) 2014-03-12
US20130207309A1 (en) 2013-08-15
JP2011206977A (ja) 2011-10-20
US9272462B2 (en) 2016-03-01
WO2011122439A1 (ja) 2011-10-06

Similar Documents

Publication Publication Date Title
KR101627575B1 (ko) 미세 요철 패턴의 형성 방법 및 형성 장치, 전사용 기판의 제조 방법, 및 전사용 기판
US8087922B2 (en) Imprint lithography with improved substrate/mold separation
US8678808B2 (en) Imprint apparatus and article manufacturing method
KR20140121869A (ko) 임프린트 장치 및 물품의 제조 방법
US7964135B2 (en) Method and apparatus for imprinting energy ray-setting resin, and discs and semiconductor devices with imprinted resin layer
KR101374001B1 (ko) 임프린트 장치 및 제품 제조 방법
JP6774178B2 (ja) 基板を処理する装置、及び物品の製造方法
WO2013042519A1 (ja) 光学素子の製造方法および表面加工装置
US10906293B2 (en) Method and device for embossing of a nanostructure
JP5822597B2 (ja) インプリント装置、及びそれを用いた物品の製造方法
JP5363165B2 (ja) 微細凹凸パターンの形成方法及び形成装置
JP7150535B2 (ja) 平坦化装置、平坦化方法及び物品の製造方法
JP2013207180A (ja) ナノインプリント方法およびナノインプリント装置並びにその方法を利用したパターン化基板の製造方法
JP7418127B2 (ja) 平坦化装置、平坦化方法及び物品の製造方法
JP7237519B2 (ja) 型を用いて基板上の組成物を成形する成形装置、成形方法、および物品の製造方法
JP2019046819A (ja) 型を用いて基板上の組成物を成形する成形装置及び物品の製造方法
US20230091051A1 (en) Imprint apparatus, imprint method, and article manufacturing method
JP2013105902A (ja) 型、それを用いたインプリント方法および物品の製造方法
JP2007290223A (ja) 基板シートの製造方法および剥離装置
TW202206253A (zh) 製造微結構及/或奈米結構之方法及裝置
KR101551772B1 (ko) Scil 공정용 레플리카 스탬프 및 이의 제조방법
KR100699270B1 (ko) 패턴형성장치
JP2021061328A (ja) 型を用いて基板上の組成物を成形する成形装置、成形方法、及び、物品製造方法
JP2016111213A (ja) ステージ装置、リソグラフィ装置及び物品の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20190515

Year of fee payment: 4