TW202037769A - 單晶成長用坩堝、單晶製造方法及單晶 - Google Patents

單晶成長用坩堝、單晶製造方法及單晶 Download PDF

Info

Publication number
TW202037769A
TW202037769A TW108144119A TW108144119A TW202037769A TW 202037769 A TW202037769 A TW 202037769A TW 108144119 A TW108144119 A TW 108144119A TW 108144119 A TW108144119 A TW 108144119A TW 202037769 A TW202037769 A TW 202037769A
Authority
TW
Taiwan
Prior art keywords
single crystal
crucible
crystal growth
side wall
raw material
Prior art date
Application number
TW108144119A
Other languages
English (en)
Other versions
TWI743609B (zh
Inventor
川崎克己
平林潤
藤田実
井之口大輔
有馬潤
近藤牧雄
Original Assignee
日商Tdk股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Tdk股份有限公司 filed Critical 日商Tdk股份有限公司
Publication of TW202037769A publication Critical patent/TW202037769A/zh
Application granted granted Critical
Publication of TWI743609B publication Critical patent/TWI743609B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本發明係收容單晶成長用原料熔融液8並使其固化之單晶成長用坩堝5A,其具有:圍繞原料熔融液8之側壁部5s、及連續於側壁部5s並支持原料熔融液8之底部5b,側壁部5s於橫截面觀察時,於內側具有周長冗長性。側壁部5s於橫截面觀察時,於任一部位上成為於內側具有周長冗長之部位者,若於單晶成長後之冷卻步驟中單晶成長用坩堝5A被冷卻,則於橫截面觀察時,於內側周長冗長之部位向單晶成長用坩堝5A之外側擴展。

Description

單晶成長用坩堝、單晶製造方法及單晶
本發明係關於一種單晶成長用坩堝、單晶製造方法及單晶。
氧化鎵(Ga2 O3 )係具有比作為寬能隙半導體而已知之碳化矽(SiC:帶隙=約3.3 eV)、或氮化鎵(GaN:帶隙=約3.4 eV)更大之帶隙(約4.8 eV)之半導體。可期待氧化鎵於應用於電子裝置中之情形時,具有高耐壓、高輸出及低損耗等優異之裝置特性。
氧化鎵已確認有自α(Alpha)至ε(Epsilon)之5種多晶型。於該等多晶型中,單斜晶系之β(Beta)相自室溫至熔點(約1800℃)穩定,可自氧化鎵熔融液成長為β相氧化鎵(以下,將β相氧化鎵記作β-Ga2 O3 )之單晶。
作為大型且高品質之β-Ga2 O3 單晶之成長方法,已知有EFG(Edge-defined Film-fed Growth,限邊餵膜生長)法(參照專利文獻1)。於以EFG法進行結晶成長之情形時,需要用以保持原料熔融液之坩堝及用以界定結晶形狀之模具。作為坩堝及模具,希望為如下之材料,該材料係具有超過作為β-Ga2 O3 熔點之約1800℃之高熔點,於1800℃前後之高溫下,不具有自β-Ga2 O3 奪取氧之程度之較大還原力者。
滿足該等條件之材料有限,以同等用途使用之材料實質上僅有Ir(銥)。Ir亦於1800℃前後之溫度下,於超過數%之氧分壓下進行氧化。另一方面,β-Ga2 O3 於1800℃前後之溫度下,於10%以下之氧分壓下產生失氧之分解反應。即,於將Ir製成坩堝或模具而使用之EFG法中,於為了抑制Ir氧化,將氧分壓降至數%以下而進行結晶成長之情形時,於生長之β-Ga2 O3 結晶中,存在氧不足下生長之氧化物結晶中多發之高密度之氧缺陷。就氧缺陷作為n型雜質而起作用,生成高濃度供體而言,難以對供體濃度進行精密控制。
作為克服此種問題之方法,揭示有根據將Pt-Rh系合金用於坩堝中之垂直布里基曼(VB)法進行β-Ga2 O3 單晶之成長(參照專利文獻2及非專利文獻1)。垂直布里基曼(VB,Vertical Bridgman Method)法或垂直梯度凝固(VGF,Vertical Gradient Freeze Method)法係預先向坩堝內填充原料,於以坩堝上部為高溫、坩堝下部為低溫之方式所形成之溫度梯度下,藉由以坩堝底部或者以設置於坩堝底部之籽晶作為起點使原料熔融液凝固而獲得單晶之方法。
於VB法或VGF法中,結晶形狀由坩堝形狀界定,結晶成長中無需進行形狀控制。因此,可於低溫度梯度下成長,可獲得高品質之結晶。圖13中,示出於VB法中通用之單晶成長用坩堝50之形狀。單晶成長用坩堝50具備側壁部5s與底部5b。將於單晶成長用坩堝50內生長之結晶自剛成長後之高溫狀態,以底面及側面與單晶成長用坩堝50接觸之狀態冷卻至室溫並回收。
自300 K至1300 K之β-Ga2 O3 之線熱膨脹率於a軸方向為1.9×10-6 /K,於b軸及c軸方向為5.9×10-6 /K(參照非專利文獻2及非專利文獻3)。另一方面,Pt-30%Ph合金自0℃至1500℃之線熱膨脹率為約11×10-6 /K(參照非專利文獻4)。圖14中示出非專利文獻2~4所記載之Pt-Rh系合金及β-Ga2 O3 於高溫中之線熱膨脹率。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利3679097號公報 [專利文獻2]日本專利特開2017-193466號公報 [非專利文獻]
[非專利文獻1]K.干川(Hoshikawa)及其他5人,「於氣體環境中使用垂直布里基曼法之β-Ga2 O3 單晶之成長」(Growth of β-Ga2 O3 single crystals using vertical Bridgman method in ambient air),晶體成長雜誌(Journal of Crystal Growth),愛斯唯爾(Elsevier),2016年8月,Vol.447,p.36-41 [非專利文獻2]恩卡納西翁 G.維洛拉(Encarnacion G. Villora)及其他4人,「高亮度白色LED、LD用β-Ga2 O3 與單晶螢光體及下一代電力元件用β-Ga2 O3 電位」(β-Ga2 O3 and single-crystal phosphors for high-brightness white LEDs & LDs, and β-Ga2 O3 potential for next generation of power devices),國際光學工程學會會刊(Proceedings of SPIE),(國際光學工程學會)SPIE,2014年4月8日,Vol.8987:「氧化物系材料及元件5」(Oxide-based Materials and Devices V) [非專利文獻3]法比奧 奧蘭迪(Fabio Orlandi)及其他4人,「β-Ga2 O3 單晶之熱膨脹係數」(Thermal expansion coefficients of β-Ga2 O3 single crystals),應用物理快報(Applied Physics Express),日本應用物理學會(The Japan Society of Applied Physics),2015年11月,Volume 8,Number 11,111101 [非專利文獻4]B.巴特(Barter)及其他2人,「鉑-銠合金之熱膨脹」(Thermal Expansion of Rhodium-Platinum Alloys),鉑族金屬評論(Platinum Metals Review),莊信萬豐公開股份有限公司(Johnson Matthey Plc),1960年10月,volume 4,Issue 4,p.138-140
[發明所欲解決之問題]
然而,於以Pt-30%Rh製坩堝進行β-Ga2 O3 單晶之成長之情形時,因坩堝之熱膨脹率係單晶之熱膨脹率之約2~6倍,故於冷卻步驟中之坩堝之收縮率比單晶之收縮率還大。於坩堝內部存在之單晶於冷卻中持續受到因坩堝收縮所產生之壓力。施加於單晶之因坩堝收縮所產生之應力成為單晶中產生裂痕及單晶之結晶性降低之原因。
根據上述非專利文獻1,使用Pt-Rh合金坩堝利用VB法而成長之β-Ga2 O3 單晶之表面平滑,可見光澤。於非專利文獻1中,記載有成長後之結晶未與坩堝附著之方面。由於無附著現象,若非為單晶與坩堝之間之應力起作用,則單晶容易自坩堝脫附。
然而,於結晶成長後之冷卻步驟中,施加了自坩堝之因坩堝收縮所產生之應力之狀態下,單晶被較強地緊固,因摩擦而難以自坩堝中取出。為將單晶自坩堝中回收,就不得不破壞坩堝,因每次結晶成長都要破壞高價之貴金屬製坩堝,故單晶之成長成本將大幅地增加。
本發明係可解決上述課題者,其目的在於:提供一種減緩冷卻之坩堝收縮時施加於成長之單晶之應力之單晶成長用坩堝、單晶製造方法及以該單晶製造方法製造之單晶。 [解決課題之技術手段]
本發明之一態樣係一種單晶成長用坩堝,其係收容單晶成長用原料熔融液並使其固化者,且具備:圍繞原料熔融液之側壁部、及連續於側壁部並支持原料熔融液之底部,側壁部於橫截面觀察時,於內側具有周長冗長性。
根據該構成,由於一種單晶成長用坩堝,其係收容單晶成長用原料熔融液並使其固化者,且具備:圍繞原料熔融液之側壁部、及連續於側壁部並支持原料熔融液之底部,側壁部於橫截面觀察時,於內側具有周長冗長性,因此,側壁部於橫截面觀察時,於任一部位上成為於內側具有周長冗長之部位者,若於單晶成長後之冷卻步驟中單晶成長用坩堝被冷卻,則於橫截面觀察時,因於周長冗長之部位向單晶成長用坩堝之外側擴展,故可減緩被冷卻之單晶成長用坩堝收縮時施加於成長之單晶之應力。
又,本發明之其他側面係一種單晶成長用坩堝,其係收容單晶成長用原料熔融液並使其固化者,且具備:圍繞原料熔融液之側壁部、及連續於側壁部並支持原料熔融液之底部,側壁部於橫截面觀察時,具有反曲點。
根據該構成,由於一種單晶成長用坩堝,其係收容單晶成長用原料熔融液並使其固化者,且具備:圍繞原料熔融液之側壁部、及連續於側壁部並支持原料熔融液之底部,側壁部於以水平面之剖面觀察時,具有反曲點,因此,側壁部於橫截面觀察時,於任一部位上成為具有自內側向外側彎曲之部位者,若於單晶成長後之冷卻步驟中單晶成長用坩堝被冷卻,則於橫截面觀察時,由於自單晶成長用坩堝之內側向外側彎曲之部位向單晶成長用坩堝之外側擴展,故可減緩被冷卻之單晶成長用坩堝收縮時施加於成長之單晶之應力。
於該等之情形時,側壁部於橫截面觀察時,可具有凹部。
根據該構成,由於側壁部於橫截面觀察時具有凹部,故若於單晶成長後之冷卻步驟中單晶成長用坩堝被冷卻,則凹部向單晶成長用坩堝之外側擴展,故而可減緩被冷卻之單晶成長用坩堝收縮時施加於成長之單晶之應力。
又,側壁部於橫截面觀察時,可由圓滑之閉合曲線構成。
根據該構成,由於側壁部於橫截面觀察時,由圓滑之閉合曲線構成,故於對於存在於單晶成長用坩堝內部之單晶之側面,單晶成長用坩堝之側壁部向周方向移動時,單晶成長用坩堝之側壁部之形狀並不成為移動之障礙,可順利移動。因此,將單晶成長用坩堝之側壁部與單晶之側面之間部分地產生之應力傳至全體而能夠緩和應力之可能性提昇。
又,側壁部可具有自底部向上方擴大之錐形。
根據該構成,由於側壁部具有自底部向上方擴大之錐形,故更容易將成長之單晶自單晶成長用坩堝中取出。
又,側壁部及底部包含Pt及Pt-Rh系合金中之任一者,原料熔融液可用以成長β-Ga2 O3 系單晶。
根據該構成,側壁部及底部包含Pt及Pt-Rh系合金中之任一者,原料熔融液係用以成長β-Ga2 O3 系單晶者,即便於單晶成長用坩堝與單晶之熱膨脹率之差異較大時,亦可減緩被冷卻之單晶成長用坩堝收縮時施加於成長之單晶之應力。
又,側壁部之厚度可為1 mm以下。
根據該構成,由於側壁部之厚度為1 mm以下,故若於單晶成長後之冷卻步驟中單晶成長用坩堝被冷卻,則側壁部之一部分易於向坩堝之外側擴展,因此,可更加減緩冷卻之單晶成長用坩堝收縮時施加於成長之單晶之應力。
又,本發明之另一態樣係一種單晶製造方法,其係使用上述本發明之一態樣及其他側面之單晶成長用坩堝進行單晶之成長者。
又,本發明之又一態樣係一種單晶,其係利用上述本發明之另一態樣之單晶製造方法製造者。 [發明之效果]
根據本發明之一態樣及其他態樣之單晶成長用坩堝、單晶製造方法及單晶,可減緩被冷卻之單晶成長用坩堝收縮時施加於成長之單晶之應力。
以下,使用圖式對本發明之實施形態進行詳細說明。本發明者藉由對用於VB法或VGF法之單晶成長用坩堝之形狀悉心鑽研,找出了結晶成長後因冷卻而導致之由單晶成長用坩堝之收縮所產生之應力不施加於存在於單晶成長用坩堝內部之結晶之方法。基於該見解完成了本發明之實施形態。
(成長裝置之構成例) 於本發明之第1實施形態之β-Ga2 O3 結晶之成長裝置中,於用於結晶成長之單晶成長用坩堝之材料中,使用Pt-Rh系合金材料。本發明之第1實施形態之單晶成長用坩堝如下所述。圖1中示出成長第1實施形態之β-Ga2 O3 之單晶成長裝置1之構成例。圖1示出通過單晶成長裝置1之單晶成長用坩堝5A中心軸之面之剖面構成圖。該單晶成長裝置1係於氧化氣體環境(大氣中)中,利用VB法(垂直布里基曼法)成長β-Ga2 O3 結晶之裝置。
於單晶成長裝置1中,沿著腔室2之內壁設置有隔熱材料3。於被隔熱材料3包圍之內部空間中,設置有加熱器4、單晶成長用坩堝5A及保持單晶成長用坩堝5A之坩堝保持器6。坩堝保持器6藉由坩堝承軸7自底部被支持。
於單晶成長用坩堝5A之內部中,收納有籽晶10及堆積於籽晶10上部之原料9。於單晶成長用坩堝5A中,收容單晶成長用原料熔融液8並使其固化。單晶成長用坩堝5A具備圍繞原料熔融液8之側壁部5s、及連續於側壁部5s並支持原料熔融液8之底部5b。於單晶成長用坩堝5A之周圍設置有未圖示之熱電偶等測溫構件,可於結晶成長中計測籽晶10附近之溫度、單晶成長用坩堝5A之上部及下部之溫度等。
坩堝承軸7可藉由未圖示之驅動機構而上下驅動,於單晶成長中,可連續地控制相對於加熱器4之單晶成長用坩堝5A之相對位置。坩堝承軸7藉由以軸線為中心之旋轉,可於加熱器4內部使單晶成長用坩堝5A旋轉。希望隔熱材料3、坩堝保持器6及坩堝承軸7為氧化鋁製或者為具有至2000℃左右之耐熱性之氧化鋯製。
藉由加熱器4加熱單晶成長用坩堝5A。單晶成長用坩堝5A內部之溫度需要達到β-Ga2 O3 熔點(約1800℃)以上之溫度,較多應用電阻加熱法或者高頻加熱法。希望加熱器4可藉由複數個溫度控制系統控制上下方向之溫度分佈,藉由加熱器4及隔熱材料3之配置、形狀,於單晶成長中,單晶成長用坩堝5A內可形成上方高溫且下方低溫之溫度分佈。
(單晶成長製程之說明) 使用圖2(A)~(G)對β-Ga2 O3 單晶之成長步驟即單晶製造方法進行說明。首先,於單晶成長用坩堝5A內配置β-Ga2 O3 之籽晶10,於其上方填充原料9(圖2(B))。單晶成長用坩堝5A於加熱前,暫時地相對於加熱器4充分下降至下方,爐內溫度達到熔點附近及在熔點前後時,使其上升。
藉由設置於單晶成長用坩堝5A附近之加熱器4而加熱,達到β-Ga2 O3 熔點附近之約1800℃之單晶成長用坩堝5A內之溫度分佈橫跨β-Ga2 O3 之熔點,以上部側為熔點以上之溫度、下部側為熔點以下之溫度之方式被控制(圖2(A))。
由於若單晶成長用坩堝5A上升,則自其內部所收納之原料9之上部會進入與熔點相比高溫之區域,故自原料9之上部開始融解,變成原料熔融液8(圖2(C))。單晶成長用坩堝5A內所收納之籽晶10之上部達到熔點區域,籽晶10上端於已融解階段時單晶成長用坩堝5A之上升停止。此時,由於位於籽晶10上方之原料9全部位於與熔點相比較高之區域,故原料9全部變為原料熔融液8之狀態(圖2(D))。
其次,若以特定下降速度開始單晶成長用坩堝5A之降下,則自原料熔融液8之下部會緩緩地固化。此時,原料熔融液8始終與籽晶10或者沿著籽晶10之結晶方位而單晶化之部分以相接之狀態而析出,固化部分作為沿著籽晶10之結晶方位之單晶11而生長(圖2(E))。
至原料熔融液8全體固化為止,下降單晶成長用坩堝5A,單晶成長結束後(圖2(F)),降低加熱器4之輸出,爐內最高溫度降低至低於β-Ga2 O3 熔點之狀態。最終爐內溫度降至室溫,回收成長之單晶,但於直至室溫之冷卻時,希望將單晶成長用坩堝5A之位置移動至溫度梯度較少之上方之區域,實施所需時間退火處理,降低因成長中之溫度分佈所導致之結晶內之殘留應力(圖2(G))。
(關於單晶成長用坩堝之形狀) (關於單晶成長用坩堝之側壁部之周長冗長性) 使用圖3、圖4、圖5(A)、圖5(B)及圖5(C),對單晶成長用坩堝5之側面部s之周長冗長性進行說明。圖3係示出第1實施形態之單晶成長用坩堝5A之概略立體圖,圖4係示出單晶成長用坩堝5之水平截面形狀之立體圖,圖5(A)、圖5(B)及圖5(C)係俯視圖。如圖3所示,單晶成長用坩堝5A具備圍繞原料熔融液8之側壁部5s、及連續於側壁部5s並支持原料熔融液8之底部5b。如下所述,側壁部5s於橫截面觀察時具有凹部D。
如圖4所示,於橫穿單晶11之水平面S上,界定水平面S上之坩堝截面區域C。如圖5(A)所示,於包含坩堝截面區域C之水平面S上之閉合曲線L之中,如圖5(B)所示,將閉合曲線L之周長最短之閉合曲線設為閉合曲線Lmin,將此時之周長設為lmin。如圖5(C)所示,將示出坩堝截面區域C之邊界之閉合曲線R之周長設為r。將r成為比lmin長之狀態,閉合曲線R位於閉合曲線Lmin內側者定義為側壁部5s於橫截面觀察時於內側具有周長冗長性。
於本實施形態中,原料9為熔點以上之溫度範圍,側壁部5s於橫截面觀察時,於內側具有周長冗長性。即便於單晶成長用坩堝5A之熱膨脹率比於內部成長之單晶11之熱膨脹率大,於單晶成長後之冷卻步驟中,單晶成長用坩堝5A之收縮超過單晶11之收縮之情形時,因於內側具有周長冗長性之狀態下,側壁部5s之周長有向外側擴展而收縮之餘地,故不施加對單晶11之壓縮應力。進而,於本實施形態中,即便原料9為未達熔點之溫度範圍,冷卻中產生對側壁部5s周長之擴展,但並未完全擴展而周長冗長性殘存。
因此,於單晶成長後之冷卻步驟中,可抑制因應力所導致之單晶11之結晶性降低。進而,因於室溫下,自單晶成長用坩堝5A中取出單晶11時,與單晶成長用坩堝5A與單晶11之間之收縮相伴之應力未起作用,故摩擦阻力較少,可並不破壞單晶成長用坩堝5A而容易地回收單晶11。
(關於單晶成長用坩堝之側壁部之反曲點) 使用圖5(C)對單晶成長用坩堝5之側壁部5s之反曲點進行說明。如圖5(C)所示,於本實施形態中,以閉合曲線R界定之側壁部5s於橫截面觀察時具有反曲點P。反曲點P係指於水平面S上之閉合曲線R上,曲率之正及負之符號發生變化,曲率為0之點。由於側壁部5s於橫截面觀察時,於具有反曲點P之狀態下,於橫截面觀察時,自單晶成長用坩堝5A之內側向外側彎曲之部位向單晶成長用坩堝5A之外側擴展,故不施加對單晶11之壓縮應力。因此,可抑制因應力而導致之單晶11之結晶性降低,可並不破壞單晶成長用坩堝5A而容易地回收單晶11。
(關於凹部) 如圖5(C)所示,將於連結界定側壁部5s之閉合曲線R中之2點之線段之至少一部分位於閉合曲線R外側之情形時定義為側壁部5s於橫截面觀察時,具有凹部D。於本實施形態中,作為賦予單晶成長用坩堝5A之側壁部5s之內側以周長冗長性及反曲點P之方法,對以單晶成長用坩堝5A之側壁部5s與水平面S之交點確定之閉合曲線R賦予凹部D。
因藉由於單晶成長用坩堝5A之側壁部5s設置凹部D,凹部D可向單晶成長用坩堝5A之外側擴展,故不施加對單晶11之壓縮應力。因此,可抑制因應力所導致之單晶11之結晶性降低,可並不破壞單晶成長用坩堝5A而容易地回收單晶11。又,藉由擴展至外側之凹部D,冷卻後之側壁部5s之內表面與單晶11之側面之間產生空間。藉由向該空間插入較薄且扁平狀之治具並平行地向單晶11之側面挪動,會易於分離單晶11與單晶成長用坩堝5A。
(關於圓滑度) 於本實施形態中,單晶成長用坩堝5A之側壁部5s於橫截面觀察時,由圓滑之閉合曲線R構成。使用圖6(A)及圖6(B),使用以閉合曲線R之函數r(θ)所表示之情形,對單晶成長用坩堝5A之側壁部5s之水平方向之截面形狀進行說明。此處,角度θ表示相對於水平面S上之任意方向之角度。將自單晶成長用坩堝之中心形成角度θ之方向之半徑設為r。將於該函數具有導數dr/dθ,該導數連續之情形時定義為側壁部5s於橫截面觀察時,由圓滑之閉合曲線構成。
圖6(A)示出側壁部5s於橫截面觀察時由圓滑之閉合曲線構成之例。圖6(B)示出側壁部5s於橫截面觀察時未由圓滑之閉合曲線構成之例。進而,將自圖6(A)及圖6(B)之二者之形狀求得之各自導數以角度表示之例示於圖7中。圖7之實線所表示之曲線示出圖6(A)之圓滑形狀之閉合曲線之導數。另一方面,圖7之虛線所表示之曲線示出圖6(B)之不圓滑形狀之閉合曲線之導數。
由圖7可知,實線以連續之線而表示。另一方面,虛線於θ為±45°之位置上分離,不連續。因此,以導數連續性可定義單晶成長用坩堝5A之側壁部5s之水平截面形狀是否圓滑。
只要單晶成長用坩堝5A之側壁部5s於橫截面觀察時,由圓滑之閉合曲線構成,則於相對於存在於單晶成長用坩堝5A之內部之單晶11之側面,單晶成長用坩堝5A之側壁部5s向圓周方向移動時,單晶成長用坩堝5A之側壁部5s之形狀不會成為移動之障礙,可順利移動。因此,將單晶成長用坩堝5A之側壁部5s與單晶11之側面之間部分產生之應力傳至全體而能夠緩和應力之可能性提昇。
(關於錐形) 如圖1及圖3所示,本實施形態之單晶成長用坩堝5A之側壁部5s具有自底部5b向上方擴大之錐形。側壁部5s自底部5b於側壁部5s上端之範圍內,以1~3°之角度向外側擴大。藉此,更容易將成長之單晶11自單晶成長用坩堝5A中取出。
(關於單晶成長用坩堝之材質及成長之單晶) 於本實施形態中,單晶成長用坩堝5A包含鉑及鉑-銠合金中之任一者,希望銠之重量比為20%以上,更希望具有30%之組成。另一方面,原料熔融液8係用以成長β-Ga2 O3 系之單晶11者。於本實施形態中,即便單晶成長用坩堝5A與單晶11之熱膨脹率之差異較大時,亦能夠減緩冷卻之單晶成長用坩堝5A收縮時施加於成長之單晶11上之應力。
(關於單晶成長用坩堝之側壁部之厚度) 於本實施形態中,單晶成長用坩堝5A之側壁部5s之厚度為1 mm以下。側壁部5s之厚度希望為0.5 mm以下,更希望為0.2 mm以下。於本實施形態中,若側壁部5s之厚度為1 mm以下則較薄,於單晶成長後之冷卻步驟中,若單晶成長用坩堝5A冷卻則由於側壁部5s之凹部D等易於向單晶成長用坩堝5A之外側擴展,故可更加減緩被冷卻之單晶成長用坩堝5A收縮時施加於成長之單晶11之應力。
於本實施形態中,由於一種單晶成長用坩堝5A,其係收容單晶成長用原料熔融液8並使其固化者,且具有:圍繞原料熔融液8之側壁部5s、及連續於側壁部5s並支持原料熔融液8之底部5b,側壁部5s於橫截面觀察時,於內側具有周長冗長性,故側壁部5s於橫截面觀察時,於任一部位上成為於內側具有周長冗長之部位者,若於單晶成長後之冷卻步驟中單晶成長用坩堝5A被冷卻,則於橫截面觀察時,於內側周長冗長之部位向單晶成長用坩堝5A之外側擴展,從而可減緩被冷卻之單晶成長用坩堝5A收縮時施加於成長之單晶11之應力。
又,於本實施形態中,由於一種單晶成長用坩堝5A,其係收容單晶成長用原料熔融液8並使其固化者,且具有:圍繞原料熔融液8之側壁部5s、及連續於側壁部5s並支持原料熔融液8之底部5b,側壁部5s於水平面之截面觀察時具有反曲點P,故側壁部5s於橫截面觀察時,於任一部位上成為具有自內側向外側彎曲之部位者,若於單晶成長後之冷卻步驟中單晶成長用坩堝5A被冷卻,則於橫截面觀察時,自內側向外側彎曲之部位向單晶成長用坩堝5A之外側擴展,從而可減緩被冷卻之單晶成長用坩堝5A收縮時施加於成長之單晶11之應力。
又,根據本實施形態,由於側壁部5s於橫截面觀察時具有凹部D,故若於單晶成長後之冷卻步驟中單晶成長用坩堝5A被冷卻,則由於凹部D向單晶成長用坩堝5A之外側擴展,故可減緩被冷卻之單晶成長用坩堝5A收縮時施加於成長之單晶11之應力。
又,根據本實施形態,由於側壁部5s於橫截面觀察時由圓滑之閉合曲線R構成,故相對於存在於單晶成長用坩堝5A內部之單晶11之側面,單晶成長用坩堝5A之側壁部5s向圓周方向移動時,單晶成長用坩堝之側壁部5s之形狀並不會成為移動之障礙,可順利移動。因此,將單晶成長用坩堝5A之側壁部5s與單晶11之側面之間部分產生之應力傳至全體而能夠緩和應力之可能性提昇。
又,根據本實施形態,由於側壁部5s具有自底部5b向上方擴大之錐形,故更容易將成長之單晶11自單晶成長用坩堝5A中取出。
又,根據本實施形態,由於側壁部5s及底部5b包含Pt及Pt-Rh系合金中之任一者,原料熔融液係用以成長β-Ga2 O3 系單晶者,故即便於單晶成長用坩堝5A與單晶11之熱膨脹率之差異較大時,亦可減緩被冷卻之單晶成長用坩堝5A收縮時施加於成長之單晶11之應力。
又,根據本實施形態,由於側壁部5s之厚度為1 mm以下,故若於單晶成長後之冷卻步驟中單晶成長用坩堝5A被冷卻,則側壁部5s之一部分易於向單晶成長用坩堝5A之外側擴展,從而可減緩被冷卻之單晶成長用坩堝5A收縮時施加於成長之單晶11之應力。
(變形例) 以下,對本發明之第2實施形態進行說明。如圖8所示,於本實施形態之單晶成長用坩堝5B中,側壁部5s於橫截面觀察時具有複數個凹部D,具有複數對反曲點P。於圖8之例中,側壁部5s於橫截面觀察時,具有8個凹部D,具有8對反曲點P。複數個凹部D具有相同形狀。複數個凹部D及複數對反曲點P於側壁部5s上以相等間距配置。於本實施形態中,因於橫截面觀察時,複數個凹部D及複數對反曲點P於側壁部5s上以相等間距配置,故可於側壁部5s之全周上更均勻地減緩被冷卻之單晶成長用坩堝5A收縮時施加於成長之單晶11之應力。
以上對本發明之實施形態進行了說明,但本發明並不限定於上述實施形態,可以各種形態實施。例如,除上述實施形態以外,尚有側壁部5s於橫截面觀察時,於內側具有周長冗長性之態樣;側壁部5s於橫截面觀察時,具有反曲點P之態樣;且可適當變更凹部D之位置及凹部D之數量。
(實驗例) 以下藉由實施例對本發明之實施形態進行說明,但本發明之實施形態並不僅限於以下之實施例。使用圖1所表示之單晶成長裝置1,利用VB法成長β-Ga2 O3 單晶。於本實驗例中,使用如圖9所示之以Ph含量20 wt%之Pt-Rh系合金,利用厚度0.5 mm之薄板加工製作而成之單晶成長用坩堝5A。單晶成長用坩堝5A之直徑約為100 mm,側壁部5s之上下方向之長度為150 mm。側壁部5s具有自底部5b向上方以約2°之角度擴大之錐形。
如圖9所示,1個凹部D自單晶成長用坩堝5A之中心於90°之範圍內配置於側壁部5s上。凹部D之中央部由以自單晶成長用坩堝5A之中心56.57 mm之位置為中心之曲率半徑為30 mm之曲線構成。凹部D之兩端部各自由曲率半徑為10 mm之曲線構成。
單晶成長用坩堝5A於成長前,於大氣中藉由約1200℃之退火實施退火處理,成為若對側面施力則容易變形之狀態。於單晶成長用坩堝5A之底部5b上設置成為單晶11之生長核之籽晶10。籽晶10為直徑5 mm、長度約為20 mm之圓柱形,於單晶成長用坩堝5A內以圓柱直立之方式配置。以圓柱上面成為單斜晶系之β-Ga2 O3 之(100)面即a面之方式選擇結晶方位。
將粉末之氧化鎵填充至模具內,使用壓製機以約10 kgf/mm2 之壓力進行壓縮成形。進而,壓縮成形之氧化鎵粉末於1450℃下煅燒6小時。所獲得之燒結體之密度約為4.2。直徑約為100 mm,厚度為30 mm之燒結體4分為中心角90°之扇型,作為原料9堆積於單晶成長用坩堝5A之內側。
按照上述(單晶成長製程之說明)之順序,進行單晶11之成長。於本實驗例中,如圖10(A)所示,於單晶成長用坩堝5A之內部之β-Ga2 O3 之原料9融解而處於原料熔融液8之狀態時,藉由原料熔融液8之液壓,單晶成長用坩堝5A之水平截面形狀以不變形之方式,坩堝外周壓住治具12抵接於單晶成長用坩堝5A之凹部D。
於結晶成長結束後,即坩堝05內部之原料熔融液8完全固化後,於進行冷卻步驟之前,如圖10(B)所示,將坩堝外周壓住治具12自凹部D除去。藉此,於形成於單晶成長用坩堝5A上之凹部D之前方產生空間,單晶成長用坩堝5A於凹部D之位置上可向外側擴展。
將結晶成長後、進入冷卻步驟之前之狀態示於圖11(A)中,將結束冷卻步驟後之狀態示於圖11(B)中。若自經過單晶成長製程,冷卻至室溫之單晶成長裝置1將單晶成長用坩堝5A回收,則如圖11(B)所示,於單晶成長用坩堝5A之凹部D中,側壁部5s與單晶11之間產生了間隙13。
因於冷卻步驟中產生之單晶成長用坩堝5A之熱收縮作為應力未將單晶11緊固,故若向間隙13中插入條狀治具,使其沿著單晶11之側面移動,可並無較大阻力而挪動治具,隨著治具移動,單晶成長用坩堝5A及單晶11並不固接而容易地剝離。自單晶成長用坩堝5A之開口部相離,更深地插入治具,對單晶11之側面全體進行同樣之剝離操作後,若使單晶成長用坩堝5A之開口部向下,很小心地搖晃單晶成長用坩堝5A之全體,則單晶11會因自重而自單晶成長用坩堝5A掉落,完成回收單晶11。
於利用治具插入之剝離操作中,單晶成長用坩堝5A之形狀上多處產生若干變形,但均為輕微者,故能夠以利用成形之修復來復原單晶11成長前之形狀。確認無龜裂等,作為容器未洩漏,單晶成長用坩堝5A之內部進行酸洗後,單晶成長用坩堝5A於下一次單晶11之成長中被再利用。進行共10次相同操作之單晶成長,結果全部10次均獲得了側面無裂痕之單晶11。
(比較例) 與實驗例相同,使用單晶成長裝置1,利用VB法進行β-Ga2 O3 單晶之成長。如圖13所示,單晶成長用坩堝50之側壁部5s之橫截面形狀大致為正圓,若除去使用了於側壁部5s上未設置凹部D之單晶成長用坩堝50之方面,其他方面上以與實驗例相同條件進行單晶11之成長。因於側壁部5s上未形成凹部D,故於單晶成長用坩堝50之內部存在原料熔融液8之狀態下,省略將坩堝外周壓住治具12抵至單晶成長用坩堝50之側壁部5s上之作業、及進行冷卻步驟之前將坩堝外周壓住治具12自單晶成長用坩堝50之側壁部5s卸除之作業。
若自經過單晶成長製程,冷卻至室溫之單晶成長裝置1中回收單晶成長用坩堝50,則單晶成長用坩堝50之側壁部5s與單晶11之間無間隙13而密接。因於冷卻步驟中產生之單晶成長用坩堝50之熱收縮作為應力將單晶11緊固,故若勉強將條狀治具硬塞進單晶11與單晶成長用坩堝50之側壁部5s之間,則自單晶成長用坩堝50之開口部產生了龜裂。即便單晶成長用坩堝50之開口部變形,條狀治具之前端部進入單晶11與單晶成長用坩堝50之側壁部5s之間,亦未使龜裂擴大,難以使其沿著單晶11之側面挪動。
結果未能於不破壞單晶成長用坩堝50之情況下將單晶11取出,單晶成長用坩堝50不可再利用。又,確認了取出之單晶11之側面上有複數個裂痕。
(結晶性之比較) 對根據上述實驗例及比較例而成長之單晶之結晶性評價如下。
(結晶性之評價) 對於成長之單晶11之結晶性之評價藉由結晶配向性及缺陷密度之測定而進行。評價之前,自成長之單晶11以主表面成為(100)面之方式切出約1 cm角、厚度約0.4 mm之薄片作為評價用之基板,將正面及背面之主表面製作成經鏡面研磨之單晶基板。兩主表面進而利用使用了膠體二氧化矽之CMP(Chemical Mechanical Polishing,化學機械拋光法),以除去了加工變質層之狀態而完工。關於評價用基板,自單晶11之中央部製作4片,自單晶之外周之約1 cm內側之位置,於實驗例中製作7片,於比較例中製作8枚,將各自之平均值及偏差作為評價值。
(結晶配向性) 成長之單晶11之結晶性使用RIGAKU公司製造之SmartLab(商品名),測定X射線搖擺曲線(XRC,X-ray Rocking Curve)之半頻寬(FWMH,Full-Width Half Maximum)。測定中,將二晶之Ge(220)用作單光儀,將單色化之X射線(CuKα1:λ=1.5405 Å)之(400)面之繞射藉由ω掃描評價結晶之配向性。
(缺陷密度) 利用使用了熱磷酸(85 wt%H3PO4:140℃)之化學蝕刻測定缺陷密度。由於基板表面附近存在缺陷之部分與不存在缺陷之部分相比,蝕刻速度變大,故藉由蝕刻,基板表面上以凹處(腐蝕坑)之形式出現。測定於[010]方向伸長之長度數μm~數百μm之線狀凹坑每單位面積之密度,作為缺陷密度而進行評價。
(結晶性之評價結果) 圖12(A)及圖12(B)中示出按照上述實驗例及比較例成長之單晶之結晶性之評價結果。圖12(A)示出X射線搖擺曲線之測定結果,圖12(B)示出熱磷酸蝕刻之結果。實驗例之結果以黑圓(●)繪製,比較例之結果以白圓(○)繪製,進而,根據將評價用基板自單晶切出之場所,分為內側及外側而進行圖示。
於圖12(A)中所表示之X射線搖擺曲線之測定結果中,於實驗例之測定結果中,結晶之內側與外側並無較大差別,半峰全幅值(FWHM)均低於100 arcsec。另一方面,比較例中之成長之單晶11與實驗例中之成長之單晶11相比,整體半峰全幅值較大,於外側更顯著地表現出該傾向。其原因在於:外側之搖擺曲線可見波峰分流現象而使得半峰全幅值之平均值以及偏差變大。
於圖12(B)中所表示之熱磷酸蝕刻結果中,於實驗例中之成長之單晶11中,單晶11之內側及外側之變化較少,腐蝕坑密度之平均值低於1500/cm2 。另一方面,比較例中之成長之單晶11之腐蝕坑密度與實驗例中之成長之單晶11相比,整體較高,其中於外側為高密度。與實驗例相比,於比較例中,帶狀之凹坑高密度區域較多,較多分佈於外側。
如上所述,於X射線搖擺曲線測定及熱磷酸蝕刻之腐蝕坑密度測定結果之二者中,根據本實驗例之單晶成長方法,確認於結晶外側之結晶性高品質化之效果。 [產業上之可利用性]
根據本發明之實施形態之單晶成長用坩堝、單晶製造方法及單晶,可減緩被冷卻之單晶成長用坩堝收縮時施加於成長之單晶之應力。
1:單晶成長裝置 2:腔室 3:隔熱材料 4:加熱器 5A、5B:單晶成長用坩堝 5b:底部 5s:側壁部 6:坩堝保持器 7:坩堝承軸 8:原料熔融液 9:原料 10:籽晶 11:單晶 12:坩堝外周壓住治具 13:間隙 50:單晶成長用坩堝 S:水平面 C:坩堝截面區域 Lmin:閉合曲線 R:閉合曲線 P:反曲點 D:凹部
圖1係示出第1實施形態之單晶成長裝置之構成例之圖。 圖2(A)係示出單晶之成長製程中之高度與溫度之關係之曲線圖,圖2(B)、(C)、(D)、(E)、(F)及(G)係示出單晶之成長製程之圖。 圖3係示出第1實施形態之單晶成長用坩堝之形狀之概略立體圖。 圖4係說明單晶成長用坩堝之側壁部之周長冗長性之概略立體圖。 圖5(A)、(B)及(C)係說明單晶成長用坩堝之側壁部之周長冗長性之俯視圖。 圖6(A)及(B)係說明單晶成長用坩堝之側壁部圓滑度之圖。 圖7係根據有無導數連續性說明圓滑度之圖。 圖8係示出第2實施形態之單晶成長用坩堝之側壁部之俯視圖。 圖9係示出實驗例中所使用之單晶成長用坩堝之側壁部之俯視圖。 圖10(A)係示出實驗例中之單晶成長中之單晶成長用坩堝之橫截面之圖,圖10(B)係示出實驗例中之冷卻中之單晶成長用坩堝之橫截面之圖。 圖11(A)係示出實驗例中之於結晶冷卻前之單晶成長用坩堝之橫截面之圖,圖11(B)係示出實驗例中之於結晶冷卻後之單晶成長用坩堝之橫截面之圖。 圖12(A)係示出實驗例及比較例中之單晶之結晶配向性之圖表,圖12(B)係示出實驗例及比較例中之單晶之缺陷密度之圖表。 圖13係示出通用之單晶成長用坩堝之形狀之概略立體圖。 圖14係示出Pt-Rh合金、β-Ga2 O3 於高溫下之熱膨脹率之圖。
5A:單晶成長用坩堝
5b:底部
5s:側壁部
D:凹部

Claims (9)

  1. 一種單晶成長用坩堝,其係收容單晶成長用原料熔融液並使其固化者,且具備: 圍繞上述原料熔融液之側壁部、及 連續於上述側壁部並支持上述原料熔融液之底部, 上述側壁部於橫截面觀察時,於內側具有周長冗長性。
  2. 一種單晶成長用坩堝,其係收容單晶成長用原料熔融液並使其固化者,且具備: 圍繞上述原料熔融液之側壁部、及 連續於上述側壁部並支持上述原料熔融液之底部, 上述側壁部於橫截面觀察時,具有反曲點。
  3. 如請求項1或2之單晶成長用坩堝,其中上述側壁部於橫截面觀察時,具有凹部。
  4. 如請求項1至3中任一項之單晶成長用坩堝,其中上述側壁部於橫截面觀察時,由圓滑之閉合曲線構成。
  5. 如請求項1至4中任一項之單晶成長用坩堝,其中上述側壁部具有自上述底部向上方擴大之錐形。
  6. 如請求項1至5中任一項之單晶成長用坩堝,其中上述側壁部及上述底部包含Pt及Pt-Rh系合金中之任一者,上述原料熔融液係用以成長β-Ga2 O3 系單晶者。
  7. 如請求項1至6中任一項之單晶成長用坩堝,其中上述側壁部之厚度為1 mm以下。
  8. 一種單晶製造方法,其係使用如請求項1至7中任一項之單晶成長用坩堝進行單晶成長者。
  9. 一種單晶,其係利用如請求項8之單晶製造方法所製造者。
TW108144119A 2018-12-04 2019-12-03 單晶成長用坩堝、單晶製造方法及單晶 TWI743609B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-227084 2018-12-04
JP2018227084A JP7155968B2 (ja) 2018-12-04 2018-12-04 単結晶育成用ルツボ及び単結晶製造方法

Publications (2)

Publication Number Publication Date
TW202037769A true TW202037769A (zh) 2020-10-16
TWI743609B TWI743609B (zh) 2021-10-21

Family

ID=70974755

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108144119A TWI743609B (zh) 2018-12-04 2019-12-03 單晶成長用坩堝、單晶製造方法及單晶

Country Status (5)

Country Link
US (1) US11946155B2 (zh)
JP (1) JP7155968B2 (zh)
CN (1) CN113195800A (zh)
TW (1) TWI743609B (zh)
WO (1) WO2020116458A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113445125B (zh) * 2021-07-14 2024-01-23 同济大学 一种坩埚下降法生长氧化镓体单晶的生长装置及其方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312506A (en) * 1987-06-15 1994-05-17 Mitsui Mining Company, Limited Method for growing single crystals from melt
US5123996A (en) * 1991-01-28 1992-06-23 At&T Bell Laboratories Crystal growth method and apparatus
JP3787888B2 (ja) * 1996-02-28 2006-06-21 住友電気工業株式会社 結晶の育成方法及び育成用ルツボ
JP2000143383A (ja) * 1998-11-12 2000-05-23 Hitachi Cable Ltd 化合物半導体単結晶の製造方法
US6423136B1 (en) * 2000-03-20 2002-07-23 Carl Francis Swinehart Crucible for growing macrocrystals
JP4778188B2 (ja) * 2002-02-13 2011-09-21 Jx日鉱日石金属株式会社 化合物半導体単結晶の製造方法
JP3679097B2 (ja) 2002-05-31 2005-08-03 株式会社光波 発光素子
JP4168796B2 (ja) * 2003-03-20 2008-10-22 三菱マテリアル株式会社 単結晶引上装置用坩堝及び単結晶引上装置
JP3818311B1 (ja) * 2005-03-23 2006-09-06 住友電気工業株式会社 結晶育成用坩堝
JP4799536B2 (ja) * 2007-12-14 2011-10-26 ジャパンスーパークォーツ株式会社 大径のシリコン単結晶インゴット中のピンホール欠陥の低減を可能とする大径シリコン単結晶インゴット引上げ用高純度石英ガラスルツボ
KR100980822B1 (ko) * 2007-12-17 2010-09-10 (주)아이블포토닉스 압전성 단결정 성장 방법
JP2009215112A (ja) * 2008-03-11 2009-09-24 Hitachi Cable Ltd 結晶成長用ルツボ及びそれを用いて成長させた半導体単結晶
JP2011251891A (ja) * 2010-05-06 2011-12-15 Sumitomo Electric Ind Ltd 単結晶の製造方法および単結晶製造用るつぼ
JP2012017239A (ja) * 2010-12-22 2012-01-26 Covalent Materials Corp ルツボ構造
JP5904079B2 (ja) * 2012-10-03 2016-04-13 信越半導体株式会社 シリコン単結晶育成装置及びシリコン単結晶育成方法
JP6060755B2 (ja) * 2013-03-18 2017-01-18 住友金属鉱山株式会社 サファイア単結晶育成用坩堝およびその製造方法
JP2014205587A (ja) * 2013-04-11 2014-10-30 住友電気工業株式会社 結晶成長用るつぼおよび結晶の製造方法
CN105220223A (zh) * 2014-07-02 2016-01-06 攀时(上海)高性能材料有限公司 用于晶体培养的坩埚
JPWO2016059790A1 (ja) * 2014-10-17 2017-06-29 新日鐵住金株式会社 溶液成長法によるSiC単結晶の製造装置、及びそれに用いられる坩堝
JP6403057B2 (ja) * 2014-10-21 2018-10-10 国立大学法人信州大学 β−Ga2O3結晶の製造方法および製造装置
EP3042986A1 (en) * 2015-01-09 2016-07-13 Forschungsverbund Berlin e.V. Method for growing beta phase of gallium oxide (ß-Ga2O3) single crystals from the melt contained within a metal crucible by controlling the partial pressure of oxygen.
JP6726910B2 (ja) 2016-04-21 2020-07-22 国立大学法人信州大学 酸化ガリウム結晶の製造装置および酸化ガリウム結晶の製造方法
JP6633455B2 (ja) * 2016-05-30 2020-01-22 京セラ株式会社 坩堝
JP2018177552A (ja) * 2017-04-04 2018-11-15 住友金属鉱山株式会社 単結晶育成用坩堝
DE102018113417A1 (de) * 2018-06-06 2019-12-12 Netzsch - Gerätebau Gesellschaft mit beschränkter Haftung Messanordnung und Verfahren für eine thermische Analyse einer Probe

Also Published As

Publication number Publication date
WO2020116458A1 (ja) 2020-06-11
CN113195800A (zh) 2021-07-30
JP7155968B2 (ja) 2022-10-19
US11946155B2 (en) 2024-04-02
JP2020090403A (ja) 2020-06-11
TWI743609B (zh) 2021-10-21
US20220056611A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
JP5633732B2 (ja) サファイア単結晶の製造方法およびサファイア単結晶の製造装置
TWI729118B (zh) 氧化鎵結晶之製造裝置及氧化鎵結晶之製造方法
JP2011057482A (ja) サファイア単結晶の製造装置
TWI743609B (zh) 單晶成長用坩堝、單晶製造方法及單晶
JP2018150198A (ja) 大口径ScAlMgO4単結晶並びにその育成方法及び育成装置
JP6344374B2 (ja) SiC単結晶及びその製造方法
JP2010260747A (ja) 半導体結晶の製造方法
JP2018145081A (ja) 高性能Fe−Ga基合金単結晶製造方法
CN113774484A (zh) 氧化镓晶体生长方法及生长氧化镓晶体的组合坩埚
JP2010248003A (ja) SiC単結晶の製造方法
JP2015140291A (ja) サファイア単結晶育成用坩堝およびこの坩堝を用いたサファイア単結晶の製造方法
JP2016132599A (ja) サファイア単結晶製造装置、及びサファイア単結晶の製造方法
TWI806990B (zh) 磷化銦單晶體及磷化銦單晶基板
CN111902573B (zh) 砷化镓单晶和砷化镓单晶基板
JP2016169112A (ja) サファイア単結晶の製造方法
JP2003347608A (ja) 熱電素子用結晶体及びその製造方法並びに熱電素子の製造方法
JP2020105069A (ja) 酸化ガリウム結晶の製造装置および酸化ガリウム結晶の製造方法
JP5682492B2 (ja) 混晶単結晶育成用の種結晶およびその製造方法
JP6400946B2 (ja) Si‐Ge系固溶体単結晶の製造方法
JP2014201515A (ja) 単結晶の製造方法
JP2004269274A (ja) 半導体単結晶成長用容器及び化合物半導体単結晶の製造方法
JP2006001771A (ja) GaAs多結晶及びその製造方法と製造炉
JP2016147767A (ja) 単結晶育成用坩堝、単結晶製造装置、単結晶の製造方法
JPH04167421A (ja) 半導体単結晶の製造装置
JPH03153594A (ja) 半導体単結晶製造装置