RU2698711C2 - Составы полимеров для носослёзной стимуляции - Google Patents

Составы полимеров для носослёзной стимуляции Download PDF

Info

Publication number
RU2698711C2
RU2698711C2 RU2016137744A RU2016137744A RU2698711C2 RU 2698711 C2 RU2698711 C2 RU 2698711C2 RU 2016137744 A RU2016137744 A RU 2016137744A RU 2016137744 A RU2016137744 A RU 2016137744A RU 2698711 C2 RU2698711 C2 RU 2698711C2
Authority
RU
Russia
Prior art keywords
hydrogel
nasal
tip
hydration
volume percent
Prior art date
Application number
RU2016137744A
Other languages
English (en)
Other versions
RU2016137744A (ru
RU2016137744A3 (ru
Inventor
Джеймс Дональд ЛОУДИН
Амитава Гупта
Джон УАРДЛ
Кристофер Уильям СТИВЕРС
Ананд ДОРАЙСУАМИ
Мэри Дворак КРИСТ
Ф. Ричард КРИСТ
Original Assignee
Окулив, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Окулив, Инк. filed Critical Окулив, Инк.
Publication of RU2016137744A publication Critical patent/RU2016137744A/ru
Publication of RU2016137744A3 publication Critical patent/RU2016137744A3/ru
Application granted granted Critical
Publication of RU2698711C2 publication Critical patent/RU2698711C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0546Nasal electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0456Specially adapted for transcutaneous electrical nerve stimulation [TENS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/125Intrinsically conductive polymers comprising aliphatic main chains, e.g. polyactylenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0492Patch electrodes
    • A61N1/0496Patch electrodes characterised by using specific chemical compositions, e.g. hydrogel compositions, adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49885Assembling or joining with coating before or during assembling

Abstract

Группа изобретений относится к области медицины и раскрывает электропроводящий гидрогель для электрической стимуляции ткани носа или придаточной пазухи, способ стимулирования слезных желез с применением электропроводящего гидрогеля и устройство назальной стимуляции, содержащее электропроводящий гидрогель. Электропроводящий гидрогель представляет собой полимерный состав, приготовленный в процессе УФ поперечного сшивания. Гидрогели могут содержаться в устройствах назальной стимуляции в качестве компонента, который электрически стимулирует слезные железы для улучшения выработки слезной жидкости и лечения сухости глаз. 3 н. и 8 з.п. ф-лы, 5 табл., 20 пр., 30 ил.

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
[0001] Эта заявка заявляет приоритет согласно предварительной патентной заявке США № 61/944340, поданной 25 февраля 2014 года, предварительной патентной заявке США № 62/027139, поданной 21 июля 2014 года, предварительной патентной заявке США № 62/035221, поданной 8 августа 2014 года, и предварительной патентной заявке США № 62/067350, поданной 22 октября 2014 года. Каждое из вышеперечисленных изобретений включено в данный документ во всем объеме посредством ссылки.
ОБЛАСТЬ ТЕХНИКИ
[0002] Описанные в контексте настоящего изобретения составы полимеров обеспечивают электрический контакт между электродом и тканью носа или придаточной пазухи. В частности, описаны составы гидрогелей, которые перекрёстно сшиты с использованием УФ (ультрафиолетового) излучения. Также описаны способы изготовления гидрогелей и способы лечения сухости глаз с помощью устройств назальной стимуляции, содержащих гидрогели.
УРОВЕНЬ ТЕХНИКИ
[0003] Заболевание сухости глаз является одним из самых известных во всем мире состоянием глаз, для которого не существует стойкого выздоровления. Например, было подсчитано, что в настоящее время средняя годовая стоимость лечения заболевания сухости глаз доходит до 850$ на человека (Yu, J., Andre, C.V., and Fairchild, C.J. “The economic burden of dry eye disease in the United States: a decision tree analysis.” Cornea 30 4 (2011): 379-387). Эпидемиологические оценки регулярности частоты возникновения заболевания сухости глаз варьируются в широких пределах, в зависимости от наблюдаемых симптомов. Например, Friedman сообщает, что частота возникновения заболевания сухости глаз в мировом масштабе находится в диапазоне от 5% до 35% (Friedman, N. “Impact of dry eye disease and impact on quality of life.” Current Opinion in Ophthalmology 21 (2010): 310-316).
[0004] Современные способы лечения включают использование лубрикантов (например, гидроксиметил и карбоксипропил целлюлозы натрия, известных в общем как искусственные слёзы), противовоспалительных препаратов (например, кортикостероиды и иммуномодуляторы, такие как циклоспорин), препаратов слёзного удержания (например, окклюдер слёзных точек), а также лечение лежащих в их основе причин, таких как дисфункции мейбомиевых желёз, патологии века и т.д. Эти методы лечения рекомендуются, чтобы имело место улучшение от лёгкой до умеренной выраженности качества жизни пациента. Например, офтальмологическая вставка Lacrisert® (Aton Phama, Lawrenceville, NJ), гидроксипропилцеллюлозная офтальмологическая вставка, размещаемая в слепом мешке нижнего века, показала улучшение оценки индекса болезни в глазной поверхности на 21%, подсчитанного McDonald, et al. (McDonald, M.B., D’Aversa, Perry H.D., et al. “Hydroxypropyl cellulose ophthalmic inserts (Lacrisert) reduce the signs and symptoms of dry eye syndrome.” Trans Am Ophthalmol Soc 107 (2009): 214-222). Тем не менее, эти методы лечения часто требуют нескольких введений в день, и, как правило, не устраняют долгосрочное повреждение поверхности глаза, часто вызываемое введением химического вещества. Например, известно, что консерванты (например, хлорид бензалкония) могут привести к повреждению поверхности глаза и вызывают раздражение.
[0005] Соответственно, было бы целесообразным развитие альтернативных методов лечения синдрома «сухого глаза». В частности, могут быть эффективными методы лечения, не предполагающие длительного применения лекарственной терапии. Также могут быть желательны методы лечения с упрощенными режимами введения.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0006] В контексте настоящего изобретения описаны составы полимеров, способствующие электрической стимуляции ткани носа или придаточной пазухи. Полимерные составы могут образовывать гидрогели, получаемые в процессе поперечного сшивания с использованием УФ или видимого света. В некоторых областях применения гидрогели могут быть включены в качестве одного из компонентов устройств (называемых здесь и далее устройствами назальной стимуляции или назо-стимулирующими устройствами), которые электрически стимулируют слёзные железы через назальный или синусовый афферентный нерв у пациентов, страдающих от сухости глаз, чтобы улучшить выработку слёзной жидкости. Назальные стимуляторы могут использоваться для лечения сухости глаз различной этиологии. Например, они могут использоваться для лечения сухости глаз, вызванной возрастом, гормональным дисбалансом, побочными эффектами от лекарственных препаратов, а также заболеваниями, такими как синдром Шегрена, волчанка, склеродермия, заболевания щитовидной железы и т.д.
[0007] Как правило, полимерные составы могут образовывать электропроводящие гидрогели, состоящие из различных мономеров. Мономеры могут быть одинаковыми или отличающимися. Составы электропроводящего гидрогеля могут содержать первый мономер; второй мономер; и фотосенсибилизатор. Использование акрилового мономера, силанового мономера, акрилового мономера с концевыми силановыми группами и/или акрилового мономера с концевыми силоксановыми группами в качестве первого мономера или единственного мономерного компонента состава может быть эффективным. Электропроводящий гидрогель будет, как правило, иметь одно или более свойств, адаптирующих его к применению вместе с устройством назальной стимуляции. В некоторых случаях электропроводящий гидрогель является гидрогелем с высоким содержанием воды, как описано ниже. В контексте настоящего изобретения и всюду термины "состав", "полимерный состав", "состав гидрогеля", "состав электропроводящего гидрогеля", "гидрогель" и "электропроводящий гидрогель" могут относиться к составам, содержащим мономеры и смеси мономеров, до или после того, как они были отверждены, в зависимости от контекста, в котором используется термин. Следует понимать, что отвержденные или неотвержденные составы в равной степени содержат мономеры или смесь мономеров.
[0008] Способы получения электропроводящих гидрогелей также описаны в контексте настоящего изобретения. Как правило, процесс может включать этапы смешивания первого мономера, второго мономера и фотосенсибилизатора для приготовления состава, где первый мономер является акрилатным мономером; и облучение состава УФ излучением для поперечного сшивания состава. Состав может быть поперечно сшит ковалентными связями или ионными связями для образования гидрогеля.
[0009] Также в контексте настоящего изобретения описаны способы изготовления устройств назальной стимуляции, включая придание формы проводящему гидрогелю, например, для образования выпуклости, что может улучшить прикосновение гидрогеля к слизистой оболочке носа, и прикрепление сборки наконечника с или без сформованного гидрогеля к базовой части устройств назальной стимуляции. Способы придания формы гидрогелю дополнительно описаны ниже и могут включать погружение сборки наконечника в гидрогель, использование сборки наконечника для зачерпывания ею гидрогеля, заливку в форму или формирование отливкой гидрогеля или наливание гидрогеля в сборку наконечника через расположенный в ней проём. Сборки наконечника, содержащие сформованный гидрогель, могут храниться в распределяющей кассете для последующего крепления к базовой части устройства назальной стимуляции, как описано ниже.
[0010] К тому же в контексте настоящего изобретения описаны способы стимулирования носовой полости или слёзных желез, включающие помещение ответвления устройства назальной стимуляции вплотную к носовой ткани или ткани придаточной пазухи, при этом ответвление имеет дистальный конец и электропроводящий гидрогель, расположенный на дистальном конце; и приведение в действие устройства назальной стимуляции, чтобы обеспечить электрическое стимулирование носовой ткани или ткани придаточной пазухи. Электропроводящий гидрогель, как правило, используется для улучшения электрического контакта между устройством назальной стимуляции и носовой тканью или тканью придаточной пазухи. Эти способы могут быть использованы для лечения сухости глаз.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
[0011] На Фиг. 1 проиллюстрировано типовое устройство назальной стимуляции, имеющее регулируемую пару стимулирующих электродов.
[0012] На Фиг. 2 проиллюстрирован вид сверху компонента одноразового использования другого типового устройства назальной стимуляции, содержащего пару пружиноподобных электродов, главным образом закрытых светонепроницаемой втулкой.
[0013] На Фиг. 3A-3C проиллюстрированы типовые конфигурации электропроводящего полимера, предусмотренного в компоненте одноразового использования устройства назальной стимуляции. На Фиг. 3A проиллюстрирован перспективный вид стимулирующего электрода, окруженного светонепроницаемой полимерной втулкой. На Фиг. 3B проиллюстрирован вид в поперечном разрезе стимулирующего электрода по Фиг. 3A, показывающий электропроводящий полимер, расположенный во внутренней части наконечника. На Фиг. 3B проиллюстрирован стилизованный вид стимулирующего электрода по Фиг. 3A, где проводящий полимер образует оболочку вокруг дистального конца полимерной втулки.
[0014] На Фиг. 4 проиллюстрирована типовая одноразовая заливочная форма, используемая для формовки гидрогелевого компонента устройства назальной стимуляции.
[0015] На Фиг. 5 проиллюстрирован типовой процесс сборки компонента одноразового использования.
[0016] На Фиг. 6 проиллюстрирована структурная формула типовых акриловых мономеров с концевыми силановыми и силоксановыми группами.
[0017] На Фиг. 7 проиллюстрирована предложенная морфология SB5 гидрогелевого отвержденного состава для образования электрического контакта на наконечнике устройства назальной стимуляции.
[0018] На Фиг. 8A-8C проиллюстрированы типовые способы придания формы гидрогелю, содержащемуся в наконечнике устройства назальной стимуляции. На Фиг. 8A проиллюстрирован способ погружения для придания формы гидрогелю. На Фиг. 8B проиллюстрирован способ зачерпывания для придания формы гидрогелю. На Фиг. 8C проиллюстрирован гидрогелевый наконечник, в котором часть наконечника была замаскирована во время распыления диэлектрика для обеспечения проводящей части.
[0019] На Фиг. 9A-9I проиллюстрированы типовые способы придания формы гидрогелю посредством заливки в форму, а затем нарезки.
[0020] На Фиг. 10A-10C проиллюстрированы типовые способы дозирования и устройства дозирования для придания формы гидрогелю.
[0021] На Фиг. 11A-11C проиллюстрированы типовые структуры и способы, которые могут использоваться, чтобы помочь в управлении дозированием гидрогеля.
[0022] На Фиг. 12A-12D проиллюстрирован типовой способ заливки в формы и формирования отливкой для придания формы гидрогелю.
[0023] На Фиг. 13 проиллюстрирован типовой тонкостенный наконечник, способный удерживать большие объемы гидрогеля.
[0024] На Фиг. 14A-14D проиллюстрирована конструкция типовой сборки наконечника и способ прикрепления конструкции к вилке устройства назальной стимуляции.
[0025] На Фиг. 15A-15C проиллюстрирован типовой способ, при котором гидрогелевая преформа содержится в сборке наконечника, а затем увлажняется.
[0026] На Фиг. 16A-16D проиллюстрированы типовые конструкции сборки наконечника и способы применения, которые включают шарнирное соединение.
[0027] На Фиг. 17A-17E проиллюстрирована типовая распределяющая кассета и способ изготовления сборки наконечника.
[0028] На Фиг. 18A-18D проиллюстрирован типовой способ прикрепления сборок наконечника к базовой части с использованием распределяющей кассеты по Фиг. 17A-17E.
[0029] На Фиг. 19A-19C проиллюстрирован типовой инструмент и способ удаления сборки наконечника из базовой части.
[0030] На Фиг. 20A-20B проиллюстрированы дополнительные типовые конструкции сборок наконечника и способы их комплектации.
[0031] На Фиг. 21A-21B проиллюстрированы скорости извлечения мономеров ДМА и NВП для гидрогеля SB1.
[0032] На Фиг. 22A-22B проиллюстрированы скорости извлечения мономера NВП и метанола для гидрогеля SB2.
[0033] На Фиг. 23A-23B представлены данные, относящиеся к гидратации гидрогелей SB1 и SB2 как функциональная зависимость от электрического сопротивления.
[0034] На Фиг. 24A-24B представлены данные, относящиеся к гидратации гидрогелей SB2 и SB3 как функциональная зависимость от электрического сопротивления.
[0035] На Фиг. 25 представлены данные, относящиеся к гидратации гидрогелей SB4A и SB4B как функциональная зависимость от электрического сопротивления.
[0036] На Фиг. 26A-26B представлены данные, относящиеся к объемному расширению гидрогелей SB2 и SB3 вследствие гидратации.
[0037] На Фиг. 27A-27B представлены данные, относящиеся к объемному расширению гидрогелей SB4A и SB4B вследствие гидратации.
[0038] На Фиг. 28A-28C проиллюстрированы скорости извлечения мономеров ДМА и NВП, а также метанола для гидрогеля SB5.
[0039] На Фиг. 29 представлены данные, относящиеся к гидратации гидрогеля SB5 как функциональная зависимость от электрического сопротивления.
[0040] На Фиг. 30A-30C представлены данные, относящиеся к объемному расширению гидрогеля SB5 вследствие гидратации.
ПОДРОБНОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
[0041] Полимерные составы, описанные в контексте настоящего изобретения – это, как правило, гидрогели, которые могут использоваться для улучшения электрического контакта между электродом устройства назальной стимуляции и тканью носа или придаточной пазухи, как упоминалось выше. Соответственно, гидрогели являются биологически совместимыми и образованы такими, чтобы не раздражать и не царапать ткани носа и придаточной пазухи. Как правило, гидрогели также образованы таким образом, чтобы они не разбились или не сломались в процессе вкладывания или использования, и имеют умеренную адгезию к ткани носа или придаточной пазухи, чтобы минимизировать контактное сопротивление, нагревание, и повреждение от нагревания при контакте с тканью. Гидрогели могут быть изготовлены посредством поперечного сшивания различных мономеров с использованием УФ или видимого света. Устройство назальной стимуляции может содержать компонент одноразового использования и пригодный для повторного использования компонент. Компонент одноразового использования может, как правило, содержать пару стимулирующих электродов и электропроводящий гидрогель, а пригодный для повторного использования компонент содержит источник электрической энергии для стимулирующих электродов. Тем не менее в некоторых случаях устройство назальной стимуляции может быть сделано полностью одноразовым.
Составы электропроводящего гидрогеля
[0042] Электропроводящие гидрогели (“проводящие гидрогели”) могут содержать любой мономер, который способен обеспечивать состав, подходящий для использования с тканью носа или придаточной пазухи, и подходящий для улучшения электрического контакта между устройством назальной стимуляции, например, ручным устройством назальной стимуляции, и тканью носа или придаточной пазухи. Состав, как правило, готовят посредством УФ поперечного сшивания мономеров, как описано ниже. В некоторых вариантах в составах предусмотрены электропроводящие акрилат/метакрилат/винил гидрогели. В других вариантах в составах предусмотрены электропроводящие силикон-акрилат гидрогели.
[0043] В одном варианте токопроводящий гидрогелевый состав может содержать первый мономер; второй мономер; и фотосенсибилизатор, причём первый мономер является акрилатным мономером. В контексте настоящего изобретения акрилатный мономер может быть монофункциональным мономером, бифункциональным мономером, трифункциональным мономером, или их прекурсором или производным.
[0044] Примеры монофункциональных мономеров, которые могут содержаться в составах, включают, не ограничиваясь только ими: акриловую кислоту, бутилакрилат, бутилметакрилат, 2-хлорэтилвиниловый эфир, этилакрилат, 2-этилгексилакрилат, фурфурилакрилат, глицеринмонометакрилат, гидроксиэтилметакрилат, метакриловую кислоту, метоксиполиэтиленгликоль диметакрилат, метоксиполиэтиленгликоль моноакрилат и аминоэтилметакрилат.
[0045] Бифункциональные мономеры, которые могут использоваться в составах, включают, не ограничиваясь только ими: диэтиленгликоль диакрилат, этиленгликоль диметакрилат, неопентилгликоль диакрилат, полиэтиленгликоль диакрилат, полиэтиленгликоль ди-метакрилат, триэтиленгликоль диакрилат и N,N’-диметилен бисакриламид.
[0046] Что касается трифункционального мономера, примеры включают, не ограничиваясь только ими: пентаэритрита триакрилат, пропоксилированного гликоля триакрилат, триметилпропана триакрилат и триметилол пропана триметакрилат.
[0047] Первый мономер и второй мономер могут быть или могут не быть мономерами одного типа. Примеры вторых мономеров включают, не ограничиваясь только ими: диметилакриламид, глицидиловый метакрилат, N-винилпирролидон и 1,4-бутандиола диакрилат.
[0048] Силановые или силоксановые мономеры также могут применяться для образования электропроводящего гидрогеля. Как правило, подходящие силоксановые мономеры содержат группу -O-Si. В одном варианте силановые метакрилатные мономеры содержатся в составах проводящего гидрогеля в качестве первого и/или второго мономера. Например, могут использоваться метакрилоксипропилтрис (триметилсилокси) силан, метакрилоксиметилтрис (триметилсилокси) силан, метакрилоксипропилбис (триметилсилокси) силанол, 3-метоксипропилбис(триметилсилокси) метил силан, метакрилоксипентаметилдисилоксан, метакрилоксипропилтриметокси силан, и метакрилоксипропилтрис (метоксиэтокси) силан мономеры. В следующих вариантах могут использоваться акриловые мономеры с концевыми силановыми и силоксановыми группами, например, как проиллюстрировано на Фиг. 6. Эти акриловые мономеры с концевыми силановыми и силоксановыми группами включают, но не ограничиваются только ими: триметилсилил метакрилат, 2 (триметилсилилокси)этил метакрилат, 3-(триметоксисилил)пропил метакрилат и (3-метакрилоилоксипропил)трис(триметилсилокси)силан. В некоторых случаях может быть эффективным включение 3-метакрилоксипропил трис(триметил силокси)силана в гидрогели. Винил замещенные силановые мономеры также могут использоваться в гидрогелевых составах. В контексте настоящего изобретения силановый мономер может содержать группу –SiR, где R может быть водородом, или метильной или алкильной группой.
[0049] Гидрогели, содержащие силоксановые мономеры, могут сохранять впитанную ими воду в течение более длительного контакта с воздухом, и таким образом, сохраняют свою электропроводность в течение более длительного периода времени. Мольная доля силоксановых групп в силиконовых гидрогелях может находиться в диапазоне от около 5% до около 20%. Если используется силановая группа, то мольная доля силановых групп в гидрогелях может находиться в диапазоне от около 5% до около 20%.
[0050] Проводящие гидрогели могут быть образованы в процессе УФ поперечного сшивания. В этом случае, как правило, в составе содержится фотосенсибилизатор. Фотосенсибилизаторами могут быть любые химические соединения, которые разлагаются на свободные радикалы при воздействии света, например, УФ-излучения, имеющего длину волны в диапазоне от около 350 нм до около 450 нм. Свободные радикалы инициируют полимеризацию для образования поперечно сшитых гидрогелей. В одном варианте фотосенсибилизатор инициирует полимеризацию с раскрытием кольца. В другом варианте, фотосенсибилизатор инициирует катионную полимеризацию. В следующем варианте фотосенсибилизатор инициирует полимеризацию посредством тиол-ен реакции.
[0051] В составах, описанных в контексте настоящего изобретения, может использоваться любой подходящий фотосенсибилизатор. Например, фотосенсибилизатор может быть выбран из группы, содержащей: ацилфосфиноксиды (АФО), бисацилфосфиноксиды (БАФО), 2,2-диметокси-1,2-дифенилэтан-1-он (фотосенсибилизатор Igracure®), простые эфиры бензоина, бензильные кетали, альфа-диалкоксиацетофеноны, альфа-гидроксиалкилфеноны, альфа-амино алкилфеноны, бензофеноны, тиоксантоны и их комбинации и производные. В некоторых случаях может быть целесообразно включить в состав фотосенсибилизатор ацилфосфиноксид или бисацилфосфиноксид.
[0052] Могут использоваться ацилфосфиноксидные фотосенсибилизаторы, включающие, но не ограниченные только ими: 2,4,6-триметилбензоил-дифенилфосфиноксид (TMДФO); бензоил-дифенилфосфиноксид (БДФO); 2,4,6-триметилбензоил-метокси-фенилфосфиноксид (TMMФO); фталоил-бис(дифенилфосфиноксид (ФБДФO)); тетрафтортерефталоил-бис(дифенилфосфиноксид) (TФБДФO); 2,6-дифтор бензоил-дифенилфосфиноксид (ДФДФO); (1-нафтоил)дифенилфосфиноксид (НДФO); и их комбинации. В одном варианте целесообразным фотосенсибилизатором является 2,4,6-триметилбензоил-дифенилфосфин оксид (TMДФO).
[0053] Бисацилфосфиноксидные фотосенсибилизаторы, которые могут использоваться, включают, но не ограничиваются только ими: бис(2,4,6-триметилбензоил)-фенилфосфин оксид (БTMФO); бис(2,6-диметоксибензоил)-2,4,4-триметил-пентилфосфин оксид; 1-гидрокси-циклогексил-фенил-кетон; и их комбинаций.
[0054] Проводящие гидрогели, описанные в контексте настоящего изобретения, дополнительно могут содержать подходящий разбавитель. Подходящими разбавителями могут быть: глицерин, изопропанол, полиэтиленгликоль, вода, метанол и их комбинации. В Таблице 1 показан типовой перечень мономеров, фотосенсибилизаторов (например, УФ инициаторов) и разбавителей, которые могут использоваться для создания проводящих гидрогелей.
Таблица 1. Типовой перечень состава мономеров, разбавителей и УФ инициаторов.
Монофункциональные
мономеры
Бифункциональные
мономеры
Трифункциональные
мономеры
Силановые и силоксановые
мономеры
УФ инициаторы Разбавители
Акриловая кислота Этиленгликоль диметакрилат Пентаэритритол триакрилат Триметил силил
метакрилат
Irgacure 189 (Ciba/BASF) Вода
Метакриловая кислота Полиэтиленгликоль диакрилат (200-1500) Триметил-
пропан триакрилат
2(триметилсилилокси)
Этил метакрилат
Irgacure 819 (Ciba/BASF) Изопропанол
Метокси полиэтиленгликоль моноакрилат (300-550) Неопентилгликоль диакрилат Пропоксилированный гликоль триакрилат 3(триметоксисилил) пропил метакрилат Irgacure 1173 (Ciba/BASF) Полиэтиленгликоль
Метокси полиэтиленгликоль диметакрилат Диэтиленгликоль диакрилат Триметилол
Пропан
триметакрилат
3(метакрилоилокси пропил) трис (триметилсилокси силан) Люцирин ТПО (BASF) Глицерин
Гидроксиэтил метакрилат Триэтиленгликоль диакрилат Метанол
Фурфурил акрилат N,N’ диметилен бисакриламид
Глицерил
монометакрилат
Полиэтиленгликоль
ди-метакрилат
[0055] В некоторых вариантах монофункциональные мономеры выбраны из Таблицы 1 и содержат не более чем 80% и не менее чем 30% моль/моль состава перед добавлением разбавителей. В других вариантах бифункциональные мономеры выбраны из Таблицы 1 и содержат не более чем 25% и не менее чем 5% моль/моль состава перед добавлением разбавителей. В следующих вариантах трифункциональные мономеры выбраны из Таблицы 1 и содержат от около 0,0 до около 5,0 моль/100 моль состава перед добавлением разбавителей.
[0056] Электропроводящие гидрогели будут, как правило, иметь одно или более свойств, адаптирующих их к применению вместе с устройством назальной стимуляции. Например, такие характеристики, как удельное электрическое сопротивление, максимальный уровень гидратации, предел прочности при растяжении (удлинение при разрыве), модуль Юнга, температура стеклования и густота поперечных связей могут регулироваться для приспосабливания токопроводящего гидрогеля к использованию вместе с устройством назальной стимуляции.
[0057] Удельное электрическое сопротивление токопроводящего гидрогеля может находиться в диапазоне от около 50 до около 2,000 Ом⋅см или от около 150 до около 800 Ом⋅см. В одном варианте удельное электрическое сопротивление находится в диапазоне от около 400 до около 800 Ом⋅см. В другом варианте удельное электрическое сопротивление находится в диапазоне от около 200 до около 600 Ом⋅см. В следующем варианте удельное электрическое сопротивление находится в диапазоне от около 150 до около 500 Ом⋅см. Альтернативно, удельное электрическое сопротивление может находиться в диапазоне от около 550 до около 600 Ом⋅см.
[0058] Что касается других характеристик токопроводящего гидрогеля, то максимальный уровень гидратации может находиться в диапазоне от около 35% до около 80% по массе, а предел прочности при растяжении (удлинение при разрыве) может находиться в диапазоне от около 35% и 150% или от около 35% до около 100%, при 30% относительной влажности. В контексте настоящего изобретения уровень гидратации определяется как (Wгидратированный полимер – Wсухой полимер)/Wгидратированный полимер). Пределы модуля Юнга проводящего гидрогеля могут находиться в диапазоне от около 0,1 до около 1,5 МПа или от около 0,1 до около 1,0 МПа. Температура стеклования токопроводящего гидрогеля может находиться в диапазоне от около 5 до около 65 градусов по Цельсию в сухом состоянии. Более того, густота поперечных связей может находиться в диапазоне от около 0,01 до около 0,10 моль/моль.
[0059] Составы проводящего гидрогеля могут содержать наполнители для улучшения одного или более из указанных: механических свойств, косметического внешнего вида, электрических свойств и стоимости. Подходящие наполнители могут содержать, не ограничиваясь только ими: диоксид кремния, оксид алюминия, диоксид титана, полиэтиленовые микросферы, углеродную сажу, нановолокна, наночастицы, а также их комбинации.
[0060] Составы проводящего гидрогеля могут являться однородным материалом, или они могут содержать многофазную смесь или блок-сополимер с относительно гидрофобными и относительно гидрофильными областями, претерпевшими микрофазное разделение.
[0061] К тому же данные составы проводящего гидрогеля могут содержать аддитивы, которые растворимы или присутствуют в диспергированном виде в полимерном материале. Эти аддитивы могут содержать гидрофильные молекулы, клеточные молекулярные структуры, агенты модифицирования поверхности или амфифильные молекулы. Типовые амфифильные молекулы включают, не ограничиваясь только ими: целлюлозу, декстран, гидроксипропилцеллюлозу, гидроксиметилцеллюлозу, гиалуроновую кислоту, гиалуронат натрия, хитин, хитозан, производные краунэфира и их комбинации.
[0062] Результативно способствующими электрическому контакту между устройством назальной стимуляции и тканью носа или придаточной пазухи могут быть составы проводящего гидрогеля, обладающие следующими характеристиками:
• Удельное электрическое сопротивление в диапазоне от 200-800 Ом⋅см, удлинение при разрыве больше чем 50% в режиме растяжения, и уровень гидратации в диапазоне 25-80% (уровень гидратации выражается как коэффициент равновесного набухания, Wh/WG X 100, где Wh - это масса воды в состоянии равновесия при определенной температуре, и WG - это масса гидратированного геля, измеренная в аналогичных условиях);
•Удельное электрическое сопротивление в полностью гидратированном состоянии находится в диапазоне от 300 до 500 Ом⋅см;
• Коэффициент равновесного набухания находится в диапазоне 35-65%;
• Уровень гидратации, который не изменяется более чем приблизительно на 10% (или от 5,0 до 30 г, если сравнивать массу гидрогеля до и после гидратации), в течение более 15 часов непрерывного воздействия воздуха в помещении при температуре 25 градусов по Цельсию, при относительной влажности воздуха не менее 30%;
• Модуль Юнга находится в диапазоне от 0,10 до 10 МПа в полностью гидратированном состоянии, а температура стеклования сухого геля находится в диапазоне от 5 до 65 градусов по Цельсию; или
• Густота поперечных связей находится в диапазоне от 0,01 до 0,10 моль/моль.
[0063] Некоторые варианты проводящих материалов могут содержать полиэтилен или полипропиленовые полимеры, заполненные сажей или частицами металла. Другие варианты могут содержать проводящие полимеры, такие как полифениленсульфид, полианилин и полипиррол. Также рассматриваются ионопроникающие варианты, такие как гидрофильные, поперечно сшитые структуры. Однако в некоторых случаях электропроводящий гидрогель может быть нейтральными и содержать гидрофобные сегменты или области в гидрофильной структуре. В дополнительных вариантах проводящий гидрогель может содержать боковые ионные группы, некоторые из которых обеспечивают ионное или электростатическое поперечное сшивание. Эффективным может быть токопроводящий гидрогель, который является биологически совместимым, гидрофильным, с поперечно сшитой структурой, содержащей гидрофобные сегменты, и который имеет температуру стеклования в диапазоне от 5 до 65 градусов по Цельсию и удлинение при разрыве в диапазоне от 50% до 150%.
[0064] В дополнительных вариантах для проводящих гидрогелей может быть эффективным высокое содержание воды, например, 60% или больше, рассчитанное по следующей формуле: процентное содержание воды = (Wгидратированного геля – Wсухого геля)/(Wгидратированного геля) x 100, где W - это масса. В некоторых вариантах, содержание воды может находиться в диапазоне от около 60% до около 99%, от около 60% до около 95%, от около 60% до около 90%, от около 60% до около 85%, от около 60% до около 80%, от около 60% до около 75%, от около 60% до около 70% или от около 60% до около 70%. В целом, более низкий предел - это количество воды, абсорбированной таким образом, чтобы в гидрогеле сохранялось высокое содержание воды после нескольких часов выдержки на воздухе при комнатной температуре и при умеренных уровнях относительной влажности. На значение верхнего предела содержания воды может оказывать влияние необходимость иметь механическую прочность, включающую более чем около 0,1 МПа модуля упругости при растяжении и более 50% удлинения при разрыве.
[0065] Типовые проводящие гидрогели с высоким содержанием воды могут содержать поперечно сшитые структуры, включающие мономеры, такие как акриламид, метакриламид, диметилакриламид или их комбинации. В одном варианте гидрогель с высоким содержанием воды содержит полидиметилакриламид, поперечно сшитый персульфатом калия.
[0066] В другом варианте гидрогель с высоким содержанием воды может содержать ионный coмономер, включающий, но не ограниченный только ими: акрилат натрия, акрилат цинка, акрилат кальция или их комбинации. Ионный сомономер может использоваться в диапазоне концентраций от нуля до около 20 мольных процентов. Гидрогели с использованием ионного сомономера могут иметь процентное содержание воды 99% или более.
[0067] Модуль упругости гидрогелей с высоким содержанием воды, как правило, находится в диапазоне от около 0,001 до 0,01 МПа. При применении с устройствами назальной стимуляции, упомянутыми в контексте данного изобретения, гидрогелям может потребоваться более высокий уровень поперечного сшивания, чтобы минимальный модуль упругости составил около 0,1 МПа. Дополнительное поперечное сшивание может быть обеспечено посредством добавления coмономера N,N’-диэтил бис-акриламида к гидрогелевому составу. Сoмономер N,N’ диэтилбис-акриламида может быть добавлен в количестве в пределах от около 0,5% до около 2,0%, или от около 0,5% до около 1,0% по массе состава. Типовые составы проводящего гидрогеля с высоким пропусканием воды представлены ниже в Таблице 2.
Таблица 2. Составы электропроводящего гидрогеля с высоким содержанием воды
Мономер Концентрация Функциональное назначение
N,N' Диметила акриламид 50-90% Мономер и сшиватель
N,N' Диметила бисакриламид 0,5-2,0% Сшиватель
Акрилат натрия 0-10% Мономер
Акрилат цинка 0-10% Мономер
Полиэтиленгликоля диакрилат 0-10% Сшиватель
Гидропероксид кумила 0-1% Инициатор
Персульфат калия 0-1% Инициатор
[0068] В некоторых вариантах может быть целесообразно включать гидрофильные группы в проводящие гидрогели, чтобы гидрогели образовывали относительно стойкий комплекс с молекулами воды, повышая таким образом энергию активации процесса дегидратации в молекулярной структуре гидрогелевого каркаса и уменьшая скорость высыхания (или обезвоживания) гидрогелей. Например, в гидрогели в качестве гидрофильного аддитива могут включаться полисахариды, поскольку они биологически совместимы, сильно связывают воду и могут быть химически зафиксированы на каркасе гидрогеля. Полисахариды, которые могут быть использованы, включают, но не ограничиваясь только ими: сульфат декстрана, гиалуроновая кислота, гиалуронат натрия, гидроксиметилцеллюлоза, хитозан, альгинат натрия, а также их комбинации. Если применяется полисахаридный аддитив, то он может быть включен в гидрогели в количестве, находящемся в диапазоне от около 0,5% до около 20%, от около 0,5% до около 15%, от около 0,5% до около 10% или от около 0,5% до около 5% по массе состава. Полисахаридный аддитив может быть добавлен к мономерному составу или встроен в решетку в ходе процесса гидрирования.
[0069] Скорость высыхания гидрогеля также может быть существенно снижена посредством включения гидратирующего агента или гидратирующей среды в состав гидрогеля. Например, пропиленгликоль и его полимеры могут включаться в качестве гидратирующего агента. Вдобавок к этому в качестве гидратирующей среды могут использоваться смеси пропиленгликоля и воды. Включение смеси пропиленгликоля и воды в состав гидрогеля может привести к уменьшению имеющейся на поверхности гидрогеля воды, и, как следствие, испаренной с поверхности гидрогеля.
[0070] Пропиленгликоль и вода могут комбинироваться в различных количествах или соотношениях в гидратирующей среде. В некоторых вариантах гидратирующие смеси могут содержать пропиленгликоль в количестве от около 5 до около 85 объёмных процентов, от около 5 до около 80 объёмных процентов, от около 5 до около 75 объёмных процентов, от около 5 до около 70 объёмных процентов, от около 5 до около 65 объёмных процентов, от около 5 до около 60 объёмных процентов, от около 5 до около 55 объёмных процентов, от около 5 до около 50 объёмных процентов, от около 5 до около 45 объёмных процентов, от около 5 до около 40 объёмных процентов, от около 5 до около 35 объёмных процентов, от около 5 до около 30 объёмных процентов, от около 5 до около 25 объёмных процентов, от около 5 до около 20 объёмных процентов, от около 5 до около 15 объёмных процентов или от около 5 до около 10 объёмных процентов. В других вариантах гидратирующие смеси могут содержать пропиленгликоль в количестве от около 20 до около 50 объёмных процентов или от около 20 до около 35 объёмных процентов. В дополнительных вариантах гидратирующие смеси могут содержать пропиленгликоль в количестве около 5 объёмных процентов, около 10 объёмных процентов, около 15 объёмных процентов, около 20 объёмных процентов, около 25 объёмных процентов, около 30 объёмных процентов, около 35 объёмных процентов, около 40 объёмных процентов, около 45 объёмных процентов, около 50 объёмных процентов, около 55 объёмных процентов, около 60 объёмных процентов, около 65 объёмных процентов, около 70 объёмных процентов, около 75 объёмных процентов, около 80 объёмных процентов или около 85 объёмных процентов.
[0071] Остальную часть гидратирующей смеси может составлять вода или, в некоторых случаях, могут включаться другие компоненты. Гидратирующие смеси могут содержать воду в количестве от около 15 до около 95 объёмных процентов. Например, гидратирующие смеси могут содержать воду в количестве около 15 объёмных процентов, около 20 объёмных процентов, около 25 объёмных процентов, около 30 объёмных процентов, около 35 объёмных процентов, около 40 объёмных процентов, около 45 объёмных процентов, около 50 объёмных процентов, около 55 объёмных процентов, около 60 объёмных процентов, около 65 объёмных процентов, около 70 объёмных процентов, около 75 объёмных процентов, около 80 объёмных процентов, около 85 объёмных процентов, около 90 объёмных процентов или около 95 объёмных процентов. Также вместо воды может использоваться солевой раствор и содержаться в тех же количествах, что и описанные для воды.
[0072] Типовые гидратирующие смеси могут содержать пропиленгликоль и воду (или солевой раствор) в следующих количествах: около 5 объёмных процентов пропиленгликоля и около 95 объёмных процентов воды; около 10 объёмных процентов пропиленгликоля и около 90 объёмных процентов воды; около 15 объёмных процентов пропиленгликоля и около 85 объёмных процентов воды; около 20 объёмных процентов пропиленгликоля и около 80 объёмных процентов воды; около 25 объёмных процентов пропиленгликоля и около 75 объёмных процентов воды; около 30 объёмных процентов пропиленгликоля и около 70 объёмных процентов воды; около 35 объёмных процентов пропиленгликоля и около 65 объёмных процентов воды; около 40 объёмных процентов пропиленгликоля и около 60 объёмных процентов воды; около 45 объёмных процентов пропиленгликоля и около 55 объёмных процентов воды; около 50 объёмных процентов пропиленгликоля и около 50 объёмных процентов воды; около 55 объёмных процентов пропиленгликоля и около 45 объёмных процентов воды; около 60 объёмных процентов пропиленгликоля и около 40 объёмных процентов воды; около 65 объёмных процентов пропиленгликоля и около 35 объёмных процентов воды; около 70 объёмных процентов пропиленгликоля и около 30 объёмных процентов воды; около 75 объёмных процентов пропиленгликоля и около 25 объёмных процентов воды; около 80 объёмных процентов пропиленгликоля и около 20 объёмных процентов воды; или около 85 объёмных процентов пропиленгликоля и около 15 объёмных процентов воды. Типовые гидратирующие среды, приведенные ниже в Таблице 3, могут быть целесообразными в гидрогелях, которые используются в качестве электрических контактов в устройствах назальной стимуляции.
Таблица 3. Типовые гидратирующие среды
Figure 00000001
[0073] Гидрогели, описанные в контексте настоящего изобретения, как правило, имеют период функциональной производительности и период времени высыхания. Как правило, период функциональной производительности является периодом времени, в течение которого гидрогели могут использоваться без существенной потери функционального назначения (например, полное сопротивление гидрогеля не поднимается выше чем около 2500 Ом). Период времени высыхания, как правило, является максимальным периодом времени использования гидрогеля, причем в конце периода функциональное назначение гидрогеля, например, стимулирующая функция, существенно снижена. Было бы целесообразно максимизировать период функциональной производительности и период высыхания для гидрогелевых наконечников устройств назальной стимуляции, описанных в контексте настоящего изобретения, чтобы, например, продлить их срок годности. В Таблице 4 приводятся периоды функциональной производительности, периоды высыхания и сопротивления для четырёх типовых гидрогелевых наконечников. В составе SB5, описанном в Примере 15, содержатся все четыре гидрогеля, но дополнительно содержится пропиленгликолевая гидратирующая среда, имеющая пропиленгликоль в количестве, варьирующем от около 35 объёмных процентов до около 50 объёмных процентов.
Таблица 4. Типовые периоды функциональной производительности, периоды времени высыхания и сопротивления.
Figure 00000002
[0074] В Таблице 4 показано, что посредством варьирования количества или соотношения пропиленгликоля в гидратирующей среде срок годности гидрогелевого наконечника может быть специально приспособлен к желаемой отметке. Например, если устройство назальной стимуляции предназначено для использования за один день, целесообразно включить 35 объёмных процентов (об.%) пропиленгликолевой гидратирующей среды для формирования гидрогелевого наконечника. Гидрогели, будут ли они содержать гидратирующий агент или гидратирующую среду, или они не будут содержать гидратирующий агент или гидратирующую среду, могут быть соответствующим образом откалиброваны, сформованы, отлиты и т.п., чтобы образовался электрический контакт устройства назальной стимуляции. Например, гидрогели могут входить в комплект как часть вилки устройства назальной стимуляции, как правило, на наконечнике вилки. Хотя было описано использование гидратирующих сред в гидрогелевых наконечниках назального стимулирования или стимулирования придаточных пазух, следует понимать, что они могут использоваться в гидрогелях и для других применений.
[0075] Как указано выше, проводящие гидрогели могут содержаться в вилках или наконечниках устройств назальной стимуляции и использоваться для улучшения электрического соединения между устройством назальной стимуляции и тканью носа или придаточной пазухи. Некоторые примеры таких вилок или наконечников устройства назальной стимуляции представлены в Заявке США, серийный номер 14/256915 (США Номер публикации 2014/0316485), озаглавленной “NASAL STIMULATION DEVICES AND METHODS,” поданной 18 апреля 2014 года, содержание которой включено в данный документ посредством ссылки в полном объеме (проводящие гидрогели в Заявке США, серийный номер 14/256915 названы гидрогелевыми электродами). Устройство назальной стимуляции может быть скомпоновано так, чтобы содержать компонент одноразового использования, который съёмно крепится к многократно используемому компоненту или корпусу. Типовой компонент одноразового использования проиллюстрирован на Фиг. 1. На этой фигуре одноразовый блок (100) состоит из пары ответвлений или вилок (102, 106), содержащих электроды (не показаны), которые регулируются в боковом направлении, и которые также могут вращаться или поворачиваться для изменения угла между ними. Каждый электрод выполнен в виде металлического стержня, заключенного в полимерную втулку (104). Каждая втулка (104) заканчивается в прорези (108, 110), чтобы быть заполненной электропроводящим полимером (например, гидрогелем), образующим электрический контакт между электродом и тканью носа или придаточной пазухи.
[0076] В альтернативном варианте, как проиллюстрировано на Фиг. 2, одноразовый блок (200) имеет пару ответвлений или вилок (202, 204), которые содержат светонепроницаемую полимерную втулку (206), заключающую в себе электроды (не показаны). Светонепроницаемая полимерная втулка может быть выполнена с возможностью полностью или частично покрывать электроды. В этом варианте втулка (206) и электроды сделаны гибкими и подобно пружине. Их гибкость предназначена для варьирования размещения по ширине носа и угловой ориентации, предпочтительной для отдельного пользователя. Аналогично Фиг. 1, электропроводящий гидрогель может быть расположен на наконечнике вилок (202, 204), чтобы функционировать в качестве электрического контакта между электродом и тканью носа или придаточной пазухи.
[0077] На Фиг. 3A-3C представлены типовые конфигурации токопроводящего гидрогеля при использовании вместе с устройством назальной стимуляции. На Фиг. 3 проиллюстрирована полимерная втулка (300) в виде светонепроницаемой трубки, внутреннее пространство которой окружает несущий электрод. В этом варианте втулка (300) заканчивается в прорези, заполненной проводящим полимером, который обеспечивает электрический контакт между электродом и тканью носа или придаточной пазухи. Как иллюстрирует вид поперечного сечения по Фиг. 3B, полимер (302) заполняет прорезь (304) и образует слегка выступающую цилиндрическую поверхность для оптимального контакта с тканью носа. С практической точки зрения значимо, чтобы полимер легко поддавался давлению, чтобы он мог соответствовать контурам носовой полости, которая выстлана слизистой оболочкой плоского эпителия, ткань которого затем становится цилиндрическим столбчатым респираторным эпителием. Полость обеспечивает дренаж для пазух носа и носослезного протока, и, следовательно, представляет собой весьма влажную и мокрую среду. (Анатомия человеческого носа, Википедия). В примере, проиллюстрированном на Фиг. 3В, проводящий полимер образует оболочку (306) вокруг конца втулки (300), заполняя прорезь и распространяясь вниз по втулке, чтобы соприкоснуться с электродом.
Способ изготовления электропроводящих гидрогелей
[0078] Способ получения электропроводящих гидрогелей, описанный в контексте настоящего изобретения, как правило, включает данные этапы: смешивание первого мономера, второго мономера и фотосенсибилизатора для приготовления состава, при этом первый мономер является акрилатным мономером; и облучение состава УФ-излучением для поперечного сшивания состава. Мономеры могут быть такими, как представлены выше, например, перечислены в Таблице 1. В некоторых вариантах токопроводящий гидрогель поперечно сшит ковалентными связями. В других вариантах гидрогель поперечно сшит ионными связями. В гидрогелях с гидрофильными и гидрофобными областями, гидрофобные области могут образовывать оболочку вокруг гидрофильного ядра, формируя структуру ядро-оболочка. Гидрогель с высоким содержанием воды (например, 50-70%) с гидрофобной оболочкой может высыхать медленней, чем гидрогель без гидрофобной оболочки и таким образом может сохранять свою электропроводность в течение более длительного периода, когда оставлен на воздухе в промежутке между использованиями.
[0079] В некоторых вариантах поверхность гидрогеля может быть модифицирована для того, чтобы развить относительно более гидрофильную поверхность с целью дополнительно уменьшить сопротивление кожи при контакте с носовой тканью. Модификация поверхности может потребоваться для гидрогелей, имеющих развитую гидрофобную оболочку, приводящую их поверхность к гидрофобности. В данной заявке поверхность, как правило, считается гидрофобной, если её угол контакта с водой (неподвижной каплей) превышает 80 градусов, в то время как гидрофильной она считается, как правило, если угол контакта меньше чем 30 градусов. Модификация поверхности может быть достигнута несколькими способами. Один из способов заключается в обработке образованного гидрогеля плазмой низкого давления, полученной с использованием ВЧ-разряда или микроволнового разряда. Подходящие плазменные материалы включают: воздух, кислород и пары воды. Этот способ, как полагают, вызывает химическую модификацию молекул на поверхности, образуя гидроксильные группы, которые делают поверхность гидрофобной. Другой способ состоит в нанесении гидрофильного полимера посредством плазменной полимеризации, включая плазмохимическое газофазное осаждение (ПХГФО) или плазмостимулированное газофазное осаждение (ПСГФО). Подходящие материалы для нанесения с использованием способа плазменной полимеризации включают ГЭМА или ГМА. Еще один способ модификации поверхности, применимый к гидрогелеям с силоксановыми группами на поверхности (например, гидрогелю SB5, описанному в Примерах 15-19 ниже), включает химическую активацию поверхности, например, посредством обработки поверхности водным раствором гидроксида натрия (1-10% вес/вес), её промывание для удаления непрореагировавшей щелочи, а затем её реагирование с гидроксильными или завершенными аминогруппами молекулами, такими как полиэтиленгликоль. В еще одном способе модификация поверхности может состоять из добавления поверхностно-активного вещества в состав гидрогеля, который мигрирует к поверхности в результате полимеризации. Поверхностно-активным веществом является амфифильная молекула, которая выводит гидрофильный конец на поверхность гидрогеля. Типовые поверхностно-активные вещества включают додецилсульфат натрия, соли полиуроновой кислоты, Тритон Х-80 и т.д. В альтернативном варианте поверхность гидрогеля может быть модифицирована, например, чтобы она стала более гидрофильной, посредством включения в состав гидратирующей среды. Типовые гидратирующие среды описаны выше.
[0080] Составы проводящего гидрогеля могут быть приготовлены для отверждения до нуля или до низкого коэффициента теплового расширения твердого вещества, которые разрабатываются с разбавителями в той же весовой фракции, как коэффициент равновесного набухания гидрогеля при полном отверждении. Весовое отношение разбавителей к смеси мономера и фотосенсибилизатора может составлять от около 35% до около 70%. Типовые разбавители, которые могут быть использованы, перечислены в Таблице 1. Эти разбавители растворимы в воде, билогически совместимые и имеют вязкость менее 100 сСт при 25 градусах по Цельсию.
[0081] Процесс отверждения может быть побужден любой подходящей длиной волны света. В некоторых вариантах процесс отверждения побуждается посредством облучения УФ-светом в диапазоне длин волн от около 350 нм до около 450 нм и катализируется одним или более фотосенсибилизаторами, выбранными из Таблицы 1. Также могут использоваться другие фотосенсибилизаторы, как описано выше. Например, могут использоваться ацилфосфиноксиды и бисацилфосфиноксиды, которые являются биологически совместимыми и которые поглощают длинноволновое ультрафиолетовое излучение.
[0082] В Таблице 5 представлен типовой перечень составов проводящего гидрогеля, которые были отверждены при облучении УФ-светом в диапазоне длин волн от 300 нм до 480 нм, например, 350 нм - 450 нм, при температуре в диапазоне от 10 до 65 градусов по Цельсию, предпочтительно 25 - 45 градусов по Цельсию, и в течение периода времени от 10 секунд до 30 минут, например, 1 минута - 15 минут, и с использованием 2,4,6-триметилбензоил-дифенилфосфиноксида (ТМДФО) в качестве фотосенсибилизатора.
Таблица 5. Типовые составы проводящего гидрогеля.
Состав* Содержание воды (%)**
1 ГЭМА/ДМА 700CL 34
2 ГМА/ДМА 700CL НИ
3 100% МАК/ДМА 700CL 44
4 ГЭМА/ГМА/ДМА 700CL 42
5 ГЭМА/
ГЭМА10/ДМА 700CL
44
6 ГЭМА/ДМАА/ДМА(700)
Сшиватель
50
7 ГЭМА/ГМА/БДДА CL 41
8 ГЭМА10/ГЭМА/БДДА CL 39
9 ГЭМА/ДМАА/ДМА(700)
Сшиватель
57
10 NВП/ДМАА/ГЭМА 50
11 NВП/ДМАА/ГЭМА 69
12 NВП/ДМАА/ГЭМА 78
13 NВП/ДМАА/ГЭМА 77
14 NВП/ДМАА/ГЭМА с глицериновым разбавителем 77
15 NВП/ДМАА/ГЭМА 70
16 NВП/ДМАА/ГЭМА с глицериновым разбавителем 78
17 ГЭМА/МЭМА/ПЭГ разбавитель 34
18 ГЭМА/МАК/ДМА 700/вода/ПЭГ400 НИ
19 ГЭМА/МАК/ДМА 700/вода/ПЭГ400 20
*ГЭМА=гидроксиэтил метакрилат; ДМА=диметилакриламид; ГМА=глицерина монометакрилат; МАК=метакриловая кислота; ДМАА=диметилацетамид; БДДА=1,4-бутандиол диакрилат; NVP=N-винилпирролидон; МЭМА=метоксиэтил метакрилат; ГЭМА10 = полиэтокси (10) этилметакрилат;
**НИ=не измеряется.
[0083] Другие типовые составы проводящего гидрогеля представлены в Примерах 1-7 и 15. Основываясь на данных экспериментов, проведенных с этими гидрогелевыми составами, целесообразным может быть гидрогель, который демонстрирует высокую гидратацию с минимальным увеличением массы и ростом (т.е. набуханием/объёмным расширением). Объёмное расширение гидрогеля посредством набухания обычно приводит к последствиям, которые могут потребовать уравновешивания. Например, набухание усиливает электропроводность, делает гидрогель более гидрофильным и, таким образом, более комфортным при контакте с кожей, а также уменьшает контактное сопротивление. Тем не менее, более высокая степень набухания также делает гидрогель более липким и менее надежным, и, следовательно, более склонным к поломке во время применения тока, а также увеличивает скорость высыхания (хотя количество воды, оставшееся после определенного периода высыхания зависит как от скорости высыхания, так и от изначального содержания воды). Принимая эти эффекты во внимание, типовые составы (например, составы SB4A и SB4B) могут включать разбавитель, который представляет собой инертный растворитель, образующий гидрогель, имеющий значительный коэффициент набухания (или поглощения воды), но который не увеличивается в объёме при гидратации, так как впитываемую воду заменяет разбавитель, предоставляющий меньшее изменение объёма при гидратации и набухание в воде. Например, могут быть целесообразны гидрогелевые составы, представленные в Примере 6 (гидрогелевый состав SB4A) и Примере 7 (гидрогелевый состав SB4B), содержащие акриловые завершенные силоксаном мономеры. Гидрогелевые составы SB4A и SB4B продемонстрировали высокий уровень гидратации при минимальном увеличении в объёме, как это видно из данных, приведенных в Примере 14. Силикон-гидрогелевый состав, приведенный в Примере 15 (гидрогелевый состав SB5), который проявляет повышенное поперечное сшивание благодаря включению триметоилолпропантриметакрилата, продемонстрировал нулевое объёмное расширение, как видно из данных, приведенных в Примере 18. В целом, данные, приведенные в Примерах 16-19, указывают на то, что состав SB5 (SB5) может быть целесообразным, когда образован в виде гидрогелевого наконечника устройства назальной стимуляции. Было показано, что при гидратации состав SB5 увеличился в объёме гораздо меньше предыдущих составов (например, SB1 и SB2), и выступил менее чем на 0,5 мм за пределы наконечника, когда гидрогель был полностью гидратирован. Кроме того, сопротивление было менее 600 Ом, что вполне укладывается в требования, и оно не превысило 1000 Ом после сушки в течение 8 часов. Результаты также показали, что состав SB5 был достаточно извлечен и гидратирован таким образом, чтобы быть готовым к использованию через 12-24 часов извлечения в солевом растворе при температуре 55 градусов по Цельсию. Тем не менее гидрофобная природа его поверхности приводит к увеличению контактного сопротивления, особенно при контакте с частями ткани носа, которые особенно увлажнены. Эту проблему можно решить посредством модификации гидрофильной поверхности или добавления гидратирующей среды, как было описано выше. Гидрогель с возможностью высокого уровня поглощения воды (т.е. высокой гидратацией), как правило, будет более электропроводящим. Такие параметры, как скорость извлечения мономера и электрическое сопротивление, могут быть измерены, а полученные значения используются для маркировки уровня гидратации гидрогелей, как представлено в примерах 8-12, 16 и 17. Добавление разбавителя, как показано в Примере 9, не проявляется во влиянии на гидратацию гидрогеля, но может повлиять на скорость отверждения.
Способы изготовления
[0084] В контексте настоящего изобретения также описаны различные способы изготовления. Эти процессы могут включать различные способы отверждения гидрогелевых составов, различные способы придания подходящей формы гидрогелю и различные способы сборки гидрогеля на наконечнике назального стимулятора. Способы изготовления могут быть применимы при формировании гидрогелевого контакта одноразовым снабженным вилкой участком назального стимулятора, проиллюстрированным на Фиг. 2, или гидрогелевых контактов вилок/наконечников назального стимулятора, имеющих альтернативные конфигурации, такие как у вилок/наконечников назального стимулятора, описанного в Заявке США, серийный номер 14/256915 (США Номер публикации 2014/0316485), озаглавленной “NASAL STIMULATION DEVICES AND METHODS”, поданной 18 апреля 2014 года, содержание которой было ранее включено в данный документ посредством ссылки в полном объеме (проводящие гидрогели в Заявке США, серийный номер 14/256915 названы гидрогелевыми электродами). В целом, могут быть целесообразными способы изготовления, которые способствуют варьируемости размеров и хранению сформованного гидрогеля. Кроме того, могут быть целесообразными способы изготовления, при которых увеличивается объём гидрогеля на наконечнике электрода назального стимулятора, поскольку это могло бы привести к меньшему высыханию гидрогеля. Также могут быть целесообразными способы изготовления, специально приспособленные к тому, чтобы гидрогель образовывал выпуклость на дистальном конце электрода назального стимулятора.
[0085] В одном варианте отверждения гидрогелевого состава используются одноразовые заливочные формы, например, как проиллюстрировано на Фиг. 4. В одноразовых заливочных формах образуется сплошная оболочка состава проводящего гидрогеля вокруг втулки, в то время как пространство внутри прорези и втулки заполняется только рядом с электродом. Как отмечено на фигуре, трубка может быть изготовлена из недорогого биологически совместимого, технологичного материала, который является прозрачным для УФ-излучения, например, полиэтилена, поливинилиденфторида (ПВДФ), полипропилена (не поглощающие УФ сорта), полистирола, АБС и т.п. Как правило, трубка открыта на одном конце и закрыта на другом конце, а также может иметь внутренний диаметр около 6,0 мм, длину около 14 мм и толщину стенки в диапазоне от около 0,20 до около 1,0 мм. В других вариантах внутренний диаметр трубки может находится в диапазоне от около 3,0 до около 10 мм, а длина находится в диапазоне от около 5,0 мм до около 20 мм.
[0086] Одноразовые заливочные формы могут быть изготовлены литьем под давлением как раз во время использования в процессе отверждения. На Фиг. 5 можно отследить проиллюстрированные типовую сборку и процесс отверждения, чтобы перемещать детали и сборочные узлы и автоматически устанавливать их в заданное положение. В этом процессе электроды, имеющие форму стержней, пружин или тонкой пленки, собраны во втулках, которые изготовлены отдельно литьем под давлением. Предварительно собранный электрод и сборка втулки могут быть инвентаризационно описаны и предоставлены до окончательного процесса сборки, проиллюстрированного на Фиг. 5, или же они могут быть собраны в оперативном режиме, как проиллюстрировано на Фиг. 5.
[0087] Проводящие гидрогелевые составы могут содержаться в герметичных контейнерах, которые светонепроницаемы и изолированы от воздуха. Также составы могут быть деаэрированы перед загрузкой в контейнер. В некоторых вариантах одноразовые заливочные формы изготавливаются литьем под давлением в оперативном режиме и сберегаются в полуфабрикатах. Предпочтительно избегать длительного хранения одноразовых заливочных форм, поскольку при длительном хранении в заливочные формы могут попадать частицы пыли, после чего требуется промывать или очищать одноразовые заливочные формы перед использованием. Вслед за этим электродный сборочный узел помещается внутри одноразовой заливочной формы и точно определенный объём гидрогелевого состава высвобождается в одноразовую заливочную форму. Затем одноразовую заливочную форму перемещают к станции, в которой размещены источники излучения для того, чтобы обеспечить равномерное излучение на всех сторонах одноразовой заливочной формы. Температуру контролируют посредством пропускания азота через станцию, в которой также сохраняется в бескислородной среде отверждающая смесь. В этом случае диапазон температур отверждения составляет 30-45 градусов по Цельсию, а диапазон времени отверждения от около 1 до около 15 минут. Сборочный узел затем удаляют из одноразовой заливочной формы, а одноразовую заливочную форму после отверждения выбрасывают.
[0088] В некоторых вариантах может выполняться извлечение из формы посредством применения быстрого охлаждающего импульса, например, при кратковременном погружении в воду при температуре 0 градусов по Цельсию. Электродный сборочный узел, содержащий оболочку гидрогеля, затем можно погружать в деионизированную воду в течение 2-24 часов для удаления не вступивших в реакцию мономеров и разбавителя. Температура деионизированной воды может находиться в диапазоне от около 35 до около 50 градусов по Цельсию или от около 10 до около 40 градусов по Цельсию. Электродный сборочный узел, называемый также одноразовое устройство, затем вынимают из воды, быстро сушат для удаления избытка воды, затем упаковывают в герметичное саше, чтобы подготовить к стерилизации.
[0089] Также в контексте настоящего изобретения описаны альтернативные способы изготовления, чтобы образовывать подходящую форму гидрогеля для использования с назальным стимулирующим устройством. В некоторых вариантах способ включает технологии нанесения покрытия методом погружения и распылением. Например, наконечник вилки(ок) (800) назального стимулятора можно многократно погружать вверхи и вниз (по направлению стрелок) в гидрогель (802), как проиллюстрировано на Фиг. 8A, или вилка(и) используются для зачерпывания гдрогеля (802) под углом, как проиллюстрировано на Фиг. 8B. В контексте данного изобретения, вязкость гидрогеля можно регулировать, чтобы углубление (804) внутри вилки (800) заполнялось гидрогелем после погружения или зачерпывания. Кроме того, в составе гидрогеля может содержаться праймер, чтобы помочь сцеплению гидрогеля с вилкой при погружении или зачерпывании. Толщину слоя гидрогеля можно контролировать такими факторами, как скорость подъема/опускания вилки во время погружения или зачерпывания, температура и/или вязкость гидрогеля. Вязкость гидрогеля может быть отрегулирована, чтобы она была достаточно высокой для обеспечения эффекта памяти формы до окончательного отверждения. После нанесения покрытия методом погружения или зачерпывания, отверждение гидрогеля на наконечнике вилки может выполняться с использованием УФ-света (как описано выше) или термическими методами. Следует понимать, что могут быть реализованы многократные циклы погружения/ отверждения. Далее, можно скрыть один или более участков гидрогелевого наконечника, чтобы можно было наложить изоляционный слой (806), например, посредством распыления или прилипания к гидрогелевому наконечнику (800), чтобы покрыть и изолировать те части наконечника (800), которые не должны быть проводящими, как проиллюстрировано на Фиг. 8C. Изолирующий слой может содержать любой подходящий диэлектрик, например, непроводящий полимер. После наложения диэлектрика, например, посредством распыления или прилипания, скрытый участок (808) наконечника (800) будет проводящим. В альтернативном варианте если защита не используется, можно управлять ориентацией гидрогелевого наконечника таким образом, чтобы только изолированные участки опрыскивались или выставлялись.
[0090] Также сначала гидрогелю моно придать форму, а затем поместить на кончик проводника, например, наконечник вилки назального стимулятора. При использовании таких способов, сформованный участок гидрогеля может быть сделан заранее, а затем гидратирован в основной массе, и/или очищен от избытка разбавителя и/или избытка непрореагировавшего мономера в основной массе, храниться в качестве сборочного узла гидрогеля/проводника до гидратации, или храниться в процессе гидратации (т.е. храниться, оставаясь в солевом растворе).
[0091] Придание формы гидрогелю может осуществляться любым подходящим способом. В одном варианте гидрогелевый состав заливают в лоток, а затем в состав помещаются проводники. Затем состав отверждают, чтобы сформировать лист гидрогеля, и листу придается форма посредством вырезания с использованием лазерной высечки, пресса, ножа и т.д. Вырезанный гидрогель может называться гидрогелевой преформой. В случае необходимости, отвержденному гидрогелю также можно придать форму, содержащую выпуклость. В альтернативном варианте гидрогелевый состав может быть залит в лоток, содержащий отдельные заливочные формы или полости, имеющие желаемую форму, например выпуклость. Форма гидрогеля, образованная посредством отдельных заливочных форм или полостей, также может называться гидрогелевой преформой. В некоторых случаях обрезание и заливка в форму могут быть использованы в комбинации таким образом, чтобы гидрогель нарезался на заливаемые в форму преформы.
[0092] Более конкретно и как проиллюстрировано на Фиг. 9A-9I, гидрогелевая смесь (1) сперва заливается в лоток (2). Как проиллюстрировано на Фиг. 9B, лоток (2) может быть скомпонован с содержанием отдельных заливочных форм или полостей (3), в которые заливается гидрогель (1). Затем в гидрогель (1) перед отверждением могут быть помещены проводники (4). Проводники могут иметь любую подходящую форму и быть изготовлены из любого подходящего проводящего материала. Например, как проиллюстрировано на Фиг. 9C, проводники могут быть выполнены в виде металлической плоски (5) с отверстиями (7), в виде спиральной пружины (6) или провода, который изогнут/выполнен в форме, например, петли (8), и т.д. Эти конфигурации проводника могут быть целесообразны для создания механического замка между гидрогелем и проводником. В некоторых случаях металлическая полоска (5) выполнена без отверстий.
[0093] Помещение проводников в состав гидрогеля может включать использование конструктивных особенностей установки или удерживания. Конструктивные особенности установки и удерживания также могут помочь при введении проводников в гидрогель на требуемую глубину. Например, как проиллюстрировано на Фиг. 9D, конец проводника (4) может быть помещен на лоток с помощью конструктивной особенности установки, выполненной в виде штифта (9) или кармана (10). Также конец проводника (4) может быть размещен с помощью конструктивной особенности удерживания, такой как пластина (11), которая оборудована над лотком (2), как проиллюстрировано на Фиг. 9E. В таких случаях пластина (11) может быть выполнена с возможностью удерживания проводников, основываясь на их конфигурации, например, проводник может иметь больший фрагмент (12) на одном из своих концов, иметь изогнутый/искривленный фрагмент (13) или иметь скрепление или неподвижную посадку (14) с пластиной (11). После помещения проводников в гидрогель, гидрогель отверждают в соответствии с одним из способов, описанных в контексте настоящего изобретения. Если гидрогель отлит/отвержден в лист, то гидрогелю впоследствии может быть придана желаемая форма, например, с использованием лазерной высечки, пресса, ножа и т.д. Компонент, созданный формовкой (элемент 16 на Фиг. 9G), посредством высечки или отливки, может называться как сборочный узел проводник-гидрогель (элемент 17 на Фиг. 9G).
[0094] Как проиллюстрировано на Фиг. 9G, сборочный узел проводник-гидрогель (17) может быть впоследствии гидратирован и храниться в водной среде до дальнейшей сборки наконечника устройства назальной стимуляции, или его можно хранить в сухом виде для последующей обработки. В соответствии с одним вариантом, проиллюстрированным на Фиг. 9H, комплектация сборочного узла проводник-гидрогель (17) в прессованную заливкой часть (20) для создания окончательной сборки наконечника может включать опускание сборочного узла (17) в полую ось (21) прессованной заливкой части (20) так, чтобы гидрогель (16) остался на ступенчатом участке (22) внутри оси (21). В контексте данного изобретения проводник (4) может быть изогнут/искривлен в месте, где он выходит из оси (21), например, для создания механического замка между сборочным узлом (17) и прессованной заливкой частью (20). Со ссылкой на Фиг. 9I, колпачок (24) также может включаться в качестве детали прессованной заливкой части (20) посредством, например, механизма, подобного шарнирному соединению (23).
[0095] Гидрогель также может быть введен в наконечник устройства назальной стимуляции посредством управляемого наливания гидрогелевого состава, например, посредством компьютерного числового программного управления (ЧПУ) или робототехникой, или вручную, непосредственно в углубление сборки наконечника. Контролируемое дозирование может быть достигнуто за счет механизмов наклона для обеспечения вертикального выравнивания проёма, или с использованием направляющих, но не ограничивается ими. Следует понимать, что могут быть использованы другие подходящие управляемые процессы дозирования. Управляемый способ дозирования может быть целесообразным для управления размером выпуклости гидрогелевого наконечника.
[0096] В одном варианте наклон в процессе дозирования может быть целесообразным при управлении введением гидрогеля в наконечник устройства. Например, как проиллюстрировано на Фиг. 10A, участок наконечника (25) может быть отклонен в процессе дозирования состава гидрогеля (26) от дозирующего устройства (28). Величина наклона может изменяться, и может находиться в диапазоне от около 5 до около 45 градусов. Величина наклона может быть продиктована конфигурацией заполняемого проёма. В целом, устройство назальной стимуляции будет наклоняться таким образом, чтобы стенки проёма находились на одинаковом расстоянии вокруг вертикальной осевой линии отверстия, тем самым позволяя силе тяжести в равной степени распределять жидкий гидрогелевый состав. Например, если осевая линия заполняемого проёма в 45 градусах от осевой линии, устройство назального стимулятора наклоняется (поворачивается) на 45 градусов. Наклон, как правило, может быть осуществлен с использованием механизмов наклона, таких как штифты, ролики и/или пластины и т.д. На Фиг. 10B проиллюстрировано, как отклоняющий ролик (27) может быть использован для наклона участка наконечника (25) после того, как гидрогелевый состав был дозирован и отвержден. После дозирования гидрогелевого состава в один наконечник участка наконечника (25), состав отверждается и отклоняющий ролик (27) перемещается, чтобы наклонить участок наконечника (25) в противоположном направлении. Механизмы наклона в целом наклоняют приспособления (например, плоские поверхности, такие как пластины), на которые были размещены участки наконечника, чтобы выставить каждую полость к распределителю, так как полость обращена внутрь на нормальную ориентацию (когда участок наконечника размещается на приспособлении), и для распределения отверстие в участках наконечника должно быть обращено по направлению вверх. В некоторых случаях приспособление также может иметь выравнивающие штифты, которые дополняют отверстия, предусмотренные в базовой части назального стимулятора.
[0097] Один или более из участков наконечника могут наклоняться в процессе распределения. Например, как проиллюстрировано на Фиг. 10C, распределитель гидрогеля (28) содержит множество распределяющих наконечников (29) и множество участков наконечников (25), размещенных на пластине (30). Скользящие контакты (не показаны), присоединенные к нескольким роликам (31), используются для наклона множества участков наконечника (25). Пластина (30) также может перемещаться назад и вперед в направлении стрелок, для достижения движения колебания/наклона.
[0098] В другом варианте одна или более направляющих, расположенных в или на части участка наконечника, может функционировать для управления дозированием гидрогеля, посредством допускания наклона или изгибания участка наконечника таким образом, что полость, по существу, перпендикулярна к дозатору гидрогеля. Направляющими могут быть рейки и/или прорези/пазы, которые взаимодействуют с соответствующей конструкцией или очертаниями на приспособлении, чтобы обратимо прикрепить участок наконечника к приспособлению и наклонить или изогнуть участок наконечника так, чтобы могла быть заполнена полость. Например, как проиллюстрировано на Фиг. 11A-11C, в участке наконечника (33) может быть предусмотрена внутренняя прорезь (32) (Фиг. 11A), рейка или паз (34) могут быть предусмотрены во внутреннем канале (35) участка наконечника (33) или на наружной поверхности (36) участка наконечника (33) (Фиг. 11B), или прорезь (37) может быть предусмотрена на кончике (38) участка наконечника (33), аналогично комбинации замка и ключа (Фиг. 11C).
[0099] В еще одном дополнительном варианте гидрогелю участка наконечника можно придать форму с использованием процесса отливки. В данном случае гидрогель выливают в заливочную форму, содержащую вогнутую полость требуемой формы, а затем дают ему затвердеть. Некоторые варианты заливочной формы могут быть скомпонованы, как проиллюстрировано на Фиг. 12A. Как проиллюстрировано на фигуре, заливочная форма (39) содержит базовый блок (44), пластины коромысла (42), болты (43) и пружины сжатия (45). Базовый блок (44) содержит одну или более поверхностей отливки (41), выполненных с возможностью формировать выпуклость в гидрогелевом наконечнике (т.e. выпуклость поверхности отливки). Выпуклость поверхности отливки, как правило, будет иметь тот же радиус, что и дистальный конец участка наконечника (см. элемент 48 на Фиг. 12B), и содержит такую же выемку, как выемка (40) для создания выпуклости в процессе отливки. Пластины коромысла (42) прижимают и прикрепляют участки наконечника (см. Фиг. 12 C) к базовому блоку (44) с использованием болтов (43) и пружин сжатия (45). Пластины коромысла могут быть сделаны из материала, который пропускает УФ-свет, например, акрилового материала. Высота болтов (43) может регулироваться, чтобы управлять степенью сжатия, сообщаемой пластиной (42). В частности, как проиллюстрировано на Фиг. 12B-12D, изготовление гидрогелевого наконечника отливкой может включать предоставление снабженного вилкой одноразового наконечника (46) с проёмами (47) и ориентирующего дистальные концы (48) таким образом, что проёмы (47) повернуты к поверхности отливки (41) базового блока (44) заливочной формы (39) (Фиг. 12B). Дистальные концы (48) снабженного вилкой наконечника (46) затем прикрепляются к базовому блоку (44) посредством затягивания болтов (43) так, что пластины коромысла (42) плотно прижимаются к базовому блоку (44) (Фиг. 12 C). Опять же наконечники (46) загружаются в заливочную форму с проёмами, обращенными к поверхности отливки. УФ-отверждаемый гидрогель, описанный в контексте настоящего изобретения, затем может быть введен через канал (49) в одноразовый наконечник (46), который гидравлически соединен с дистальными концами (48) таким образом, что доставляет гидрогель к проёмам и поверхности отливки (Фиг. 12C). Как было указано выше, поверхность отливки содержит углубление для формирования выпуклости в гидрогеле. После того как состав гидрогеля введен в участок наконечника (46), может быть применен УФ-свет для отверждения гидрогеля. Пластины коромысла или базовый блок могут быть сделаны из материала, который пропускает УФ-свет. Типовой УФ-пропускающий материал содержит стекло. Здесь УФ-свет может пропускаться через базовый блок (44) и дистальный конец (48). Пластины коромысла (42) затем раскрепляют, чтобы дистальные концы (48) можно было удалить из базового блока (44). Как проиллюстрировано на Фиг. 12D, полученный гидрогель, образованный в процессе отливки, имеет выпуклость (50), выступающую из проёма (47). Несмотря на то, что на Фиг. 12A-12D проиллюстрированы одиночные заливочные формы, следует понимать, что может быть скомпонована и применяться объединенная совокупность заливочных форм для крупномасштабного производства.
[00100] Некоторые способы изготовления включают уменьшение толщины стенки на конце участков наконечника, чтобы объём гидрогеля на участках наконечника мог быть увеличен. В одном варианте это осуществляется посредством заливки в форму наконечника из одного компонента и с использованием процесса и материала микро-заливки. При использовании этого процесса, например, толщина стенки участка наконечника может быть уменьшена от толщины А (показана между стрелками слева) до толщины B (показана между стрелками справа) на Фиг. 13, чтобы таким образом увеличить объем внутри конца наконечника. Другие способы могут включать этапы, которые создают соотношение большого объема к площади поверхности для поддержания необходимого уровня гидратации гидрогеля.
Способы сборки наконечника
[00101] Способы сборки участка наконечника устройства назальной стимуляции дополнительно описаны в контексте настоящего изобретения. Эти способы сборки могут сочетаться и подбираться с различными способами придания формы гидрогелю, как описано выше. Данные способы также могут использоваться, чтобы скомпоновать участок одноразового наконечника, проиллюстрированного на Фиг. 2, или участки наконечников, имеющие другие компоновки. В некоторых вариантах может потребоваться только частичная сборка участков наконечников, перед добавлением к ним гидрогеля. В целом, способы сборки включают этапы, при которых гидрогель закрепляется внутри участка наконечника механически (например, посредством гидратирования после помещения гидрогеля в насадку, неподвижной посадки, завинчивания и т.д.), или химически (например, эпоксидной смолой, биоадгезивовом, ультразвуком и т.д.).
[00102] В вариантах, где гидрогелевый состав дозируется в проём участка наконечника, насадка может содержать электрод (51), имеющий дистальный конец (59), который является запрессованной в колпачок (52) деталью и гибкий, хрупкий или пружинный проксимальный конец (60), содержащий ответвления (61), как проиллюстрировано на Фиг. 14A. Электрод (51) может содержать прорезь (53), функционирующую для обеспечения механического удерживания гидрогеля внутри углубления (элемент 54 на Фиг. 14B) сборки наконечника (элемент 55 на Фиг. 14B). В частично собранном состоянии, как представлено на Фиг. 14B, гидрогель может быть введен с использованием системы налива и способом, описанным выше, в углубление (54) через проём (56). Здесь формирование гидрогелевой выпуклости может контролироваться поверхностным натяжением и/или вязкостью неотвержденного гидрогеля.
[00103] После отверждения гидрогеля сборка наконечника может прикрепляться к устройству назальной стимуляции, как проиллюстрировано на Фиг. 14C. Со ссылкой на Фиг. 14C, сборка наконечника (55) прикрепляется к остальной части участка одноразового наконечника с помощью фиксирующего блока (57) на дистальном конце гибкой трубки (58) (внутри вилки стимулирующего устройства), имеющей держатель насадки (62b) с наклонной поверхностью (62). Электрод (51) сборки наконечника (55) вдавливается по направлению стрелки, чтобы вынуждать его следовать за наклонной поверхностью (62). Гибкая/хрупкая природа электродных ответвлений (61) позволяет им резко переходить в исходное состояние к их первоначальной конфигурация, когда полностью вставлен, по существу, окружаемый ими держатель насадки (62b). Электродные ответвления (61) могут быть выполнены с возможностью необратимо деформироваться при вытягивании вверх по направлению стрелки и отсоединяться от держателя насадки (62b), так что сборка наконечника не может быть использована повторно, что проиллюстрировано на Фиг. 14 D.
[00104] В вариантах, где гидрогель предварительно сформирован с использованием, например, любого из способов, описанных выше, гидрогель может быть предварительно сформирован в виде цилиндра (63), имеющего прорезь (64) для приёма электрода (65), как проиллюстрировано на Фиг. 15A. В данном случае гидрогель является негидратированной преформой, которая гидратируется после того, как сборка наконечника полностью укомплектована. Следует понимать, что гидрогелевая преформа может или не может быть промыта от избытка непрореагировавшего мономера перед объединением со сборкой наконечника. В процессе гидратации гидрогелевая преформа (63) в целом будет набухать по направлению стрелок, заполнять открытые пространства и расширяться через проём (66) для создания стимулирующей (контактной) поверхности (67). Кроме того, учитывая, что зазор между электродом (65) и прорезью (64) мал, электрод, как правило, полностью вступает в контакт с гидрогелем в начальной стадии гидратации (например, по прошествии 20% гидратации). Это эффективная безопасная особенность, поскольку она гарантирует, что когда пациент использует устройство назальной стимуляции, вся поверхность электрода проводит электрический ток. Угловая прорезь (68) на внешней стороне сборки наконечника напротив проёма (66) может использоваться для выравнивания и сопряжения сборки наконечника с соответствующей конструкцией в распределяющей кассете во время производственного процесса, как описано ниже.
[00105] В других вариантах, гидрогелевая преформа может быть размещена в сборке наконечника, содержащей шарнирное соединение, например, гибкий шарнир. Например, как проиллюстрировано на Фиг. 16A, сборка наконечника (69) может быть скомпонована так, чтобы содержать первую сторону (70), имеющую углубление (77a) для размещения гидрогелевой преформы (не показана), проём (71), позволяющий гидрогелевой преформе расширяться, канал (72) для скользящего контактирования электрода (не показан) и отверстие (73). Первая сторона (70) присоединяется ко второй стороне (74) гибким шарнирным соединением (75). Вторая сторона (74) содержит углубление (77b), конический выступ (76), который принимается отверстием (73), когда вторая сторона (74) складывается поверх первой стороны (70) для контакта в гибком шарнирном соединении (75). Конический выступ (76) и отверстие (73) имеют неподвижную посадку и могут быть спаяны вместе перед гидратацией гидрогелевой преформы. В другом примере сборка наконечника может содержать отклоняемый электрод (78), способный отклоняться в направлении стрелок, что позволяет установить гидрогелевую преформу (79) в сборку наконечника, как проиллюстрировано на Фиг. 16B. Здесь электрод содержит отверстие (73) для приёма конического выступа (76), когда первая (70) и вторая (74) стороны вращаются в гибком шарнирном соединении (75) для смыкания сторон. Вместо конического выступа и отверстия, стороны также могут скрепляться вместе с использованием гребневой и канавковой конфигурации. Например, как проиллюстрировано на Фиг. 16C, гнездовая сужающаяся канавка (80) может быть выполнена с возможностью неподвижной посадки со штыревым сужающимся гребнем (81). Другие варианты сборки наконечника проиллюстрированы на Фиг. 16D и содержат удерживающую гидрогель планку (82), помогающую прикрепить гидрогель внутри наконечника и/или гибкого шарнирного соединения (84) углубленного внутри прорези (83), предусмотренной в поверхности наконечника, чтобы помочь предотвратить царапанье тканей носа.
[00106] В способах изготовления также может применяться использование распределяющей кассеты для компоновки больших партий сборки наконечника. Упаковка большими партиями может уменьшить количество упаковочных материалов и объём, что удобно для конечного пользователя. Типовая распределяющая кассета представлена на Фиг. 17A-17F. Со ссылкой на Фиг. 17A, распределяющая кассета (90) может содержать кассетный корпус (85) имеющий проксимальный конец (86) и дистальный конец (87), и блок выравнивания (88), присоединенный к проксимальному концу (86), а также пружину с постоянным коэффициентом упругости (89). Множество сборок наконечника (91) могут храниться в кассетном корпусе (85) и удерживаться на месте с помощью пружины с постоянным коэффициентом упругости (89), которая толкает наконечники (91) противоположно блоку выравнивания (88). В пружине с постоянным коэффициентом упругости (89) предусмотрено множество отверстий (93), которые расположены с интервалами друг от друга на расстояние, равное длине одной сборки наконечника (91). Если распределяющая кассета (90) находится в состоянии покоя, то шпиндель (92) блока выравнивания (88) не контактирует с отверстием (93) в пружине с постоянным коэффициентом упругости (89). Как более подробно представлено на Фиг. 17B, если распределяющая кассета находится в состоянии покоя, то пружина (94) в своем нефиксированном состоянии выталкивает шпиндель (92) из отверстия (93) в пружине с постоянным коэффициентом упругости (89), и пружина с постоянным коэффициентом упругости (89) толкает наконечники (91) (см. Фиг. 17A) назад по направлению к поверхности (95) блока выравнивания (88). Если распределяющая кассета приводится в действие пользователем для прикрепления наконечника (91) к остальному устройству назальной стимуляции (не показано), как проиллюстрировано на Фиг. 17C, то блок выравнивания (88) разжимается, чтобы сжать пружину (94) и дать возможность шпинделю (92) войти в контакт с отверстием (93) пружины с постоянным коэффициентом упругости, чтобы сбросить усилие, приложенное пружиной с постоянным коэффициентом упругости (89) по отношению к наконечнику (91), пока наконечник прикрепляется. Также может быть предусмотрен тампон (96) для удерживания запаса влаги в распределяющей кассете, чтобы гидрогель в наконечниках (91) не высыхал преждевременно. Тампон (96) может быть насыщен жидкостью, такой как солевой раствор. Как было описано ранее, сборка наконечника может содержать прорезь (97) (как проиллюстрировано на Фиг. 17D), выполнен с возможностью контактирования с дополнительной структурой кассетного корпуса (99) таким образом, что можно управлять угловым выравниванием электродов. Например, как проиллюстрировано на Фиг. 17E, прорези (97) в наконечниках (91) входят в контакт с фланцами (98) кассетного корпуса (99).
[00107] Некоторые варианты способа изготовления объединяют электрод и держатель наконечника, проиллюстрированные на Фиг. 14C, с распределяющей кассетой, описанной по Фиг. 17A-17C, как проиллюстрировано на Фиг. 18A-18D. Сперва блок выравнивания (88) сжимается в направлении по стрелке (Фиг. 18A), чтобы выставить новую сборку наконечника (91), которую может достичь снабженная вилкой часть (101) устройства назальной стимуляции (103) (Фиг. 18B). Электрод (105) выравнивается, чтобы прикрепиться к соединителю (не показан) в вилке (101). Далее, устройство (103) и вилки (101) продвигаются через отверстия доступа (107) в блоке выравнивания (88), пока не прикрепится наконечник (не показан), как описано в Фиг. 14C. После прикрепления, устройство (103) может быть вытянуто из блока выравнивания (88) и сжимающее усилие на блок выравнивания (88) может быть ослаблено по направлению стрелки, как проиллюстрировано на Фиг. 18D.
[00108] Если необходимо отсоединить наконечник, можно применить инструмент для снятия наконечника, как проиллюстрировано на Фиг. 19A-19C. Со ссылкой на Фиг. 19A, сборки наконечника (91) могут быть вставлены в углубление (111) инструмента для снятия наконечника (113), напоминающего зажим. Затем инструмент для снятия (113) может быть сдавлен, чтобы сжать сборки наконечника (91) внутри инструмента для извлечения (113), как проиллюстрировано на Фиг. 19B. При сохранении силы сжатия, устройство (103) может быть отделено от инструмента для снятия наконечника (113), чтобы отсоединить устройство (103) от сборок наконечников (91), как проиллюстрировано на Фиг. 19C.
[00109] В других вариантах способы изготовления включают этапы, в которых гибкая базовая часть прикрепляется к жёсткой сборке наконечника. Например, как проиллюстрировано на Фиг. 20A, могут быть предусмотрены колпачки (115) на гидрогелевых преформах (117). Жёсткие, вытянутые электроды (119) могут протягиваться от колпачков (115) для продвижения через гибкую базу (121). Сегменты (123), содержащие проемы (125), прикреплены к гибкой базе (121). Как проиллюстрировано на фигуре, сегменты (123) имеют открытую вершину (127), чтобы в неё могли загружаться гидрогелевые преформы (117). После продвижения электродов (119) в гибкую основу (121), к гибкой основе могут быть прикреплены колпачки (115), например, сваркой. В другом примере, проиллюстрированном на Фиг. 20B, гибкая основа (121) скомпонована с содержанием конических концов (129), которые принимают дополнительные структуры (131) возле дистального конца (133) вытянутых электродов (119).
Способы применения
[00110] Способы стимулирования ткани носа или придаточной пазухи (и слезных желез) также описаны в контексте настоящего изобретения. В одном варианте способ содержит размещение ответвления устройства назальной стимуляции вплотную к носовой ткани или ткани придаточной пазухи, причём ответвление имеет дистальный конец и электропроводящий гидрогель, расположенный на дистальном конце; и приведение в действие устройства назальной стимуляции, чтобы обеспечить электрическое стимулирование носовой ткани или ткани придаточной пазухи, где электропроводящий гидрогель используется для улучшения электрического контакта между устройством назальной стимуляции и тканью носа или придаточной пазухи. Как указано выше, токопроводящий гидрогель может содержать первый мономер; второй мономер; и сенсибилизатор, при этом первый мономер является акрилатным мономером, а электропроводящий гидрогель имеет одно или более свойств, адаптирующих его к применению вместе с устройством назальной стимуляции. Токопроводящий гидрогель может содержать мономеры, разбавители, фотосенсибилизаторы и другие компоненты, описанные в контексте настоящего изобретения, например, компоненты, представленные в Таблице 1 и Таблице 3. Опять же составы подвергаются УФ-излучению для образования поперечно-сшитого, токопроводящего гидрогеля. Проводящие гидрогели, используемые в этих способах, могут включать те, которые перечислены в Таблицах 2 и 5.
[00111] В общем случае, если стимулируются один или более назальных или пазуховых афферентов (тройничные афференты в противоположность обонятельным афферентам), в ответ активируется слезотечение с помощью назо-слезного рефлекса. Эта стимуляция может использоваться для лечения различных видов сухости глаз, включая (но не ограничиваясь только ими), хроническую сухость глаз, эпизодическую сухость глаз, сезонную сухость глаз. Для того чтобы обеспечить непрерывное облегчение симптомов сухости глаз, может понадобиться носослезная стимуляция от одного до пяти раз в день. В некоторых случаях стимуляция может использоваться в качестве профилактического средства для лечения пользователей, которые могут быть подвержены повышенному риску развития сухости глаз, например пациентов, перенесших хирургию глаза, такую как лазерная коррекция зрения и хирургия катаракты. В других случаях стимуляция может использоваться для лечения глазной аллергии. Например, увеличение выработки слез может вымывать аллергены и другие воспалительные медиаторы из глаз. В некоторых случаях стимуляция может выполнятся с возможностью побуждать место скопления нервных путей, которые активируются во время аллергической реакции (например, путем доставки стимулирующего сигнала непрерывно в течение длительного периода времени). Это может привести к рефлекторному скоплению, которое может подавлять реакцию, которую пользователь обычно имеет на аллергены.
Примеры
[00112] Следующие примеры дополнительно иллюстрируют составы проводящего гидрогеля, раскрытые в контексте настоящего изобретения, и не должны быть истолкованы как ограничивающие его объем.
Пример 1. Способ изготовления электропроводящего гидрогеля для использования вместе с устройством назальной стимуляции
[00113] В круглодонную лабораторную колбу, обернутую алюминиевой фольгой и снабженной магнитной мешалкой, ввести первый мономер, второй мономер и фосенсибилизатор. Также могут быть добавлены дополнительные мономеры (например, мономер третьего или четвертого типа и т.д.) и/или разбавитель. Закрепить колбу на верхней части магнитной мешалки/нагревателя, который укомплектован линией продувки азотом. После включения магнитной мешалки и продувки азотом, перемешивать содержимое колбы в течение пяти минут до образования смеси мономеров. Пока мономеры смешиваются, вставить втулки назального устройства (например, втулку (300), проиллюстрированную на Фиг. 3A-3C) в одноразовые заливочные формы (например, как проиллюстрировано на Фиг. 4), имеющие проёмы или створки, которые открываются, чтобы впустить УФ-свет. Эти втулки должны быть ориентированы в заливочных формах вертикально. Затем втянуть мономерную смесь из колбы в шприц и покрыть шприц фольгой. Присоединить иглу, например, тупоконечную иглу 30-го калибра, к шприцу. Вставить иглу во втулку и заполнить втулку мономерной смесью. Далее, открыть створки и облучать заливочные формы УФ-светом в течение около трех минут. После этого повернуть заливочные формы горизонтально со створками наружной стороной вверх и облучать заливочные формы УФ-светом в течение около семи минут. Охладить заливочные формы, прежде чем удалять из них втулки.
Пример 2. Приготовление силикон-гидрогеля, содержащего метакрилоксипропил трис(триметоксисилокси)силан и разбавитель метанол.
[00114] В круглодонную лабораторную колбу, обернутую алюминиевой фольгой и снабженной магнитной мешалкой, были добавлены следующие компоненты:
ЭГДМА (этиленгликольдиметакрилат) (0,081 г)
NВП (N-винилпироллидон) (2,179 г)
ГМА (глицерилмонометакрилат) (1,112 г)
ДМА (диметилакриламид) (3,917 г)
Метакрилоксипропил трис (триметоксисилокси) силан (2,712 г)
Люцирин (ТПО) (0,081 г)
Метанол (2,88 г).
[00115] Колбу зажали на вершине магнитной мешалки/нагревателя, укомплектованной линией продувки азотом. Затем содержимое колбы перемешивали в течение пяти минут с образованием смеси мономеров. Пока мономеры перемешивались, были приготовлены втулки назального устройства и одноразовые заливочные формы, как описано в Примере 1. После этого смесь мономеров втянули в шприц, ввели во втулки и облучили, как описано в Примере 1. Заливочные формы охладили, прежде чем удалить из них втулки.
Пример 3. Силикон-гидрогель SB1
[00116] Состав силикон-гидрогеля SB1 был приготовлен и прессован заливкой во втулки, как описано в Примере 1. Компоненты гидрогеля SB1 представлены ниже. Разбавитель не включался в состав SB1 гидрогеля.
Figure 00000003
Пример 4. Силикон-гидрогель SB2
[00117] Силикон-гидрогель SB2 был приготовлен как и в Примере 1. Компоненты гидрогеля SB2 представлены ниже. В состав SB2 гидрогеля был включен разбавитель метанол.
Figure 00000004
Пример 5. Силикон-гидрогель SB3
[00118] Силикон-гидрогель SB3 был приготовлен и прессован заливкой во втулки, как и в Примере 1. Компоненты гидрогеля SB3 представлены ниже. Состав SB3 гидрогеля включает разбавитель метанол, а мономеры ГЭМА были заменены мономерами ЭГДМА, которые являются более гидрофильными, чем мономеры ГЭМА.
Figure 00000005
Пример 6. Силикон-гидрогель SB4A
[00119] Силикон-гидрогель SB4А был приготовлен и прессован заливкой во втулки, как и в Примере 1. Компоненты гидрогеля SB4А представлены ниже. Состав SB4А гидрогеля включает разбавитель метанол и два разных акриловых завершенных силоксаном мономера.
Figure 00000006
Пример 7: Силикон-гидрогель SB4B
[00120] Силикон-гидрогель SB4B был приготовлен и прессован заливкой во втулки, как и в Примере 1. Компоненты гидрогеля SB4B представлены ниже. Состав SB4B гидрогеля также включает разбавитель метанол и два разных акриловых завершенных силоксаном мономера.
Figure 00000007
Пример 8. Измерение гидратации гидрогеля SB1 как функциональной зависимости от скорости извлечения мономеров
[00121] После отверждения гидратация состава гидрогеля SB1 измерялась как функциональная зависимость от скорости извлечения непрореагировавших мономеров ДМА и NВП, как показано ниже. Состав был погружен в солевой раствор (NaCl в деионизированной воде, 0,9% масс/масс) с использованием 3,5 мл солевого раствора на втулку, содержащую около 60 мг полимера на втулку. Температура поддерживалась постоянной при 55°С, и раствор встряхивали в шейкере-инкубаторе при 100 об/мин. Извлечение проводили в течение 1, 2, 3, 4, 6, 8, 12 и 24 часов, при этом солевой экстрагент заменяется свежим солевым раствором после каждого периода. Процесс извлечения удаляет непрореагировавшие примеси из полимера, а также позволяет ему пройти гидратацию. Полагают, что электрическое сопротивление зависит от уровня гидратации полимера.
[00122] Экстракты были проанализированы с использованием ГХ-МС-хроматографии, на ГХ Agilent 7890A с масс-селективным квадрупольным детектором Agilent 5975C, мониторингом N-винилпирролидона (NВП), диметилакриламида (ДМА). Итоговые ионные хроматограммы были записаны на каждом элюате, а пики идентифицированы с использованием чистого NВП, ДМА и метанола в качестве эталонов.
[00123] Приблизительно через час извлечения (термины извлечение и гидратация используются взаимозаменяемо в данной заявке), коэффициент извлечения для состава гидрогеля SB1 составил около 170 мкг/ч для ДМА и около 450 мкг/ч для NВП.
Пример 9. Измерение гидратации гидрогеля SB2 как функциональной зависимости от скорости извлечения мономеров
[00124] После отверждения, гидратация состава гидрогеля SB2 измерялась как функциональная зависимость от скорости извлечения непрореагировавших мономеров NВП, как проиллюстрировано на Фиг. 22А и как описано в Примере 8, и как функциональная зависимость скорости извлечения метанола, как проиллюстрировано на Фиг. 22B. Приблизительно через час после отверждения, коэффициент извлечения для состава гидрогеля SB2 составил около 1150 мкг/ч для NВП, который был значительно выше, чем полученный с составом гидрогеля SB1. Как было отмечено выше, разница между составами SB1 и SB2 в том, что SB2 содержит разбавитель метанол. Присутствие разбавителя существенно ускоряет извлечение непрореагировавших мономеров из SB2, как показано с помощью относительных скоростей извлечения NВП из SB2 и SB1 (1150 мкг/ч в сравнении с 450 мкг/ч). Тем не менее присутствие разбавителя также снижает скорость отверждения SB2 по отношению к SB1 посредством уменьшения эффективных мольных долей каждого из мономеров (данные не показаны).
Пример 10. Измерение гидратации гидрогеля SB1 и SB2 как функциональной зависимости от электрического сопротивления
[00125] После отверждения, гидратация составов гидрогеля SB1 и SB2 измерялась как функциональная зависимость от электрического сопротивления в течение 72 часов периода извлечения (мономерное извлечение представляет собой процесс, который помогает полной гидратации гидрогеля). Электрическое сопротивление измерялось с использованием набора мультиметра для считывания в режиме последовательного сопротивления. Один вывод тестёра входит в контакт с пружиной эталонной втулки, а другой - с пружиной тестируемой втулки. Измерение сопротивления считывали в течение 30 секунд. Сопротивление контура, т.e. сопротивление за вычетом тестируемой втулки, было оценено в 2кОм. "Сопротивление втулки", как указано в Примерах, означает значения сопротивления, специальные для втулки, т.е. за вычетом 2кОм.
[00126] Из приведенных на Фиг. 23A и 23 данных видно, что для обоих гидрогелевых составов электрическое сопротивление является высоким (приблизительно от 145 до 175 кОм) после первого часа гидратации/извлечения, но поскольку гидрогель становится более гидратированным, сопротивление падает (т.е. они становятся более проводящими). Данные после 8 часов гидратации не были нанесены, учитывая очень низкие значения.
Пример 11. Измерение гидратации гидрогелей SB2 и SB3 как функциональной зависимости от электрического сопротивления
[00127] После отверждения, гидратация составов гидрогеля SB2 и SB3 измерялась как функциональная зависимость от электрического сопротивления в течение периода от одного до 8 часов и периода от четырех до 72 часов, как описано в Примере 10. Данные, проиллюстрированные на Фиг. 24A и 24B, показывают, что гидратация продолжается в течение длительного периода (в данном случае 72 часа). Эти гидрогели были еще пригодными для использования после 8 часов гидратации (они все еще были проводящими). Кроме того, масса геля SB3 значительно выше, чем у SB2 после гидратации. Следует отметить, что, хотя масса геля SB3 выше, чем у SB2, высота геля ниже для SB3. Это обусловлено присутствием диюлента.
Пример 12. Измерение гидратации гидрогелей SB4A и SB4B как функциональной зависимости от электрического сопротивления
[00128] После отверждения, гидратация составов гидрогеля SB4A и SB4B измерялась как функциональная зависимость от электрического сопротивления в течение 144 часов. Проиллюстрированные на Фиг. 25 данные также показывают, что гидрогели остаются увлажненными в течение длительного периода времени, и становятся более проводящими по мере увеличения гидратации.
Пример 13. Объемное расширение SB2 и SB3 гидрогелей вследствие гидратации
[00129] Масса и высота SB2 и SB3 образцов гидрогеля, полученных методом полива, измерялись для определения набухания гидрогелей в зависимости от гидратации. Значения измерений проиллюстрированы на Фиг. 26A и 26B. Замена ГЭМА мономеров ЭГДМА мономерами в SB3 сделала его более гидрофильным, что привело к увеличению поглощения воды по отношению к SB2, и, таким образом, большей массе.
Пример 14. Объемное расширение SB4A и SB4B гидрогелей вследствие гидратации
[00130] Масса и высота гидрогелей SB4A и SB4B измерялись и сравнивались с гидрогелем SB3 для определения набухания гидрогелей в зависимости от гидратации, как проиллюстрировано на Фиг. 27A и 27B. Гидрогели SB4A и SB4B, которые продемонстрировали высокую гидратацию (см. Пример 12), разбухли меньше, чем более гидрофильный гидрогель SB3. Таким образом, для гидрогелей SB4A и SB4B была достигнута более высокая проводимость с меньшим набуханием/объёмным расширением.
Пример 15. Силикон-гидрогель SB5
[00131] Состав силикон-гидрогеля SB5 был приготовлен и прессован заливкой во втулки, как описано в Примере 1. Компоненты гидрогеля SB5 представлены ниже. В состав гидрогеля SB5 был включен разбавитель метанол.
Figure 00000008
[00132] В составе SB5 был выбран УФ-инициатор, дифенил (2,4,6-триметилбензоил) фосфиноксид (CAS # 75980 60-8, Lucirin TPO), поскольку он способен быть активирован УФ-излучением в диапазоне длин волн 400-450 нм, связь, которая передается материалом втулки (Versaflex OM3060-1, стирол-этилен/бутилен-стирольный сополимер). Добавление триметилолпропан триметакрилата увеличивает густоту поперечных связей и делает смесь более устойчивой к высыханию.
Пример 16. Измерение гидратации гидрогеля SB5 как функциональной зависимости от извлечения мономеров
[00133] После отверждения, гидратация состава гидрогеля SB5 была измерена как функциональная зависимость от скорости извлечения непрореагировавших мономеров ДМА и NВП и метанола, как проиллюстрировано на Фиг. 28A-28C и как аналогично описано в Примере 8. Вкратце, экстракты были проанализированы с использованием ГХ-МС-хроматографии, на ГХ Agilent 7890A с масс-селективным квадрупольным детектором Agilent 5975C, мониторингом N-винилпирролидона (NВП), диметилакриламида (ДМА) и метанола (MeOH). Итоговые ионные хроматограммы были записаны на каждом элюате, и пики идентифицированы с использованием чистого NВП, ДМА и метанола в качестве эталонов. Данные, представленные на графиках проиллюстрировано на Фиг. 28A-28C, показывают, что самая быстрая скорость извлечения метанола сопровождается тем самым ДМА. Извлечение NВП наиболее медленное. Скорость извлечения зависит исключительно от растворимости каждого соединения в солевом растворе при температуре гидратации (55 градусов Цельсия), поскольку набухание гидрогелевого каркаса одинаково во всех случаях. Как представлено на графиках, скорости извлечения всех соединений, по всей видимости, достигают низкого выравнивания после 24 часов гидратации. Основываясь на этих результатах, был сделан вывод о том, что гидрогель SB5 был готов к использованию после 24 часов гидратации.
Пример 17. Измерение гидратации гидрогеля SB5 как функциональной зависимости от электрического сопротивления
[00134] После отверждения гидратация составов гидрогеля SB5 измерялась как функциональная зависимость от электрического сопротивления в продолжение разных периодов извлечения, аналогично тому, как описано в Примерах 10-12. Как проиллюстрировано на Фиг. 29, электрическое сопротивление значительно снизилось при гидратации, вызванной извлечением с солевым раствором. Электрическое сопротивление гидрогеля SB5 достигло уровня более 0,6 кОм после 12 часов извлечения и нижнего выравнивания приблизительно после 24 часов извлечения.
Пример 18. Объемное расширение гидрогеля SB5 вследствие гидратации
[00135] Масса и высота (объёмное расширение) образцов гидрогеля SB5, полученных методом полива, измерялись для определения набухания гидрогелей в зависимости от гидратации (и продолжительности извлечения). Ссылаясь на таблицу данных на Фиг. 30A, при 48 часах рассчетный процент гидратации (определяется как 100*(M48 часов – M0 часов)/M48 часов, где M - масса в граммах) SB5 (42-05) составляет около 35,5%, что значительно меньше, чем у SB1 (42-01) и SB2 (42-02). Пониженная процентная доля гидратации может быть связана с повышенной плотностью сшивания и повышенной гидрофобностью SB5 по отношению к SB1 и SB2. Таким образом, преимуществами гидрогеля SB5 может быть то, что он способен достичь уровня электрической проводимости, достаточного для выполнения своей электрической функции, в то же время имеет относительно низкий уровень гидратации, и это улучшает его обрабатываемость. Повышенная плотность сшивания также вызывает повышение температуры стеклования негидратированного каркаса гидрогеля (данные не показаны). Эти изменения в составе гидрогеля SB5 по отношению к гидрогелям SB1 и SB2 могут улучшить его время высыхания и его устойчивость к усилиям сдвига, индуцируемым трением с тканью носа.
[00136] Ссылаясь на график зависимости массы геля от продолжительности гидратации представленный на Фиг. 30B, гидрогель SB5 достигает порога гидратации при около 24 часах извлечения, в отличие от гидрогелей SB1 и SB2, в которых гидратация продолжала увеличивать массу геля вплоть до около 72 часов (см., например, данные SB2 в Примере 13). Это согласуется с более низкой процентной долей гидратации SB5.
[00137] На Фиг. 30C представлен график зависимости объемного расширения геля от продолжительности гидратации, который иллюстрирует данные, полученные при записи увеличения высоты гидрогеля SB5, полученной из оптических фотографий гидратированных втулок. Эти данные указывают на то, что высота геля достигла порогового выравнивания приблизительно после около 24 часов извлечения, в отличие от гидрогелей SB1 и SB2, которые продолжали показывать повышение высоты геля до и после 72 часов извлечения физиологическим раствором в одинаковых условиях (см., например, данные SB2 в Примере 13).
[00138] В целом, данные для гидрогеля SB5 показали, что равновесное содержание воды в нем составляло около 35%. Обратимся к Примеру 15, в этом составе использовался метанол (разбавитель) в количестве около 39,9%. Эти значения указывают на то, что гидрогель SB5 является гидрогелем с нулевым объёмным расширением. Данные, представленные по объёмному росту в высоту геля, показывают увеличение от 5,0 мм (измерено до гидратации) до 5,2 мм (после завершения гидратации в течение около 24 часов), что указывает на то, что увеличение приблизительно на 4% обусловлено дополнительным комплексообразованием молекул воды с помощью полимерного каркаса по отношению к метанолу.
Пример 19. Контактный угол состава силикон-гидрогеля SB5
[00139] Контактный угол гидрогеля SB5, используемый в качестве электрического контакта на кончике устройства назальной стимуляции, был измерен посредством помещения 1 мкл деионизированной воды на его поверхность, и затем фотографирования капли с использованием объективов микроскопа Leica M-80, имеющего цифровую камеру L80nmnm, а также имеющего программу оптического захвата LAS версии 4.3.0. Контактный угол был оценен по фотографии. Измерение повторили с использованием электрического контактного наконечника, который был гидратирован посредством погружения в деионизированную воду на 30 минут непосредственно перед измерением. Контактный угол был измерен, чтобы он составлял 90 градусов в обоих случаях. Эти результаты указывают на то, что поверхность SB5 является гидрофобной, даже при том что общая масса геля является сильногидрофильной. Таким образом, гидрогель SB5 по-видимому имеет сложную полимерную морфологию, состоящую из гидрофильного ядра и гидрофобной поверхности, например, как проиллюстрировано на Фиг. 7.
Пример 20. Биологическая совместимость гидрогелевого состава SB5
[00140] Как показано ниже, для определения биологической совместимости гидрогеля проводились MEM исследования на гидрогелевых образцах SB5, гидратированных в солевом растворе в течение 12 и 24 часов при температуре 55 градусов Цельсия. Исследования были выполнены Acta Laboratories, Inc., в соответствии с USP 36/NF 31 Приложение 2, (87) Biological Activity Tests, InVitro, Elution Test.
KS5 14043 12 часов
Результаты элюирования
Функциональная среда % Внутрицитоплаз-матических гранул Конфлюирующий монослой % Окружающих и свободно связанных % Клеточного лизиса Оценка Реакционная способность
Образец №1 100 (+) 0 0 0 Отсутствует
Образец №2 100 (+) 0 0 0 Отсутствует
Реагентный контроль №1 100 (+) 0 0 0 Отсутствует
Реагентный контроль №2 100 (+) 0 0 0 Отсутствует
Отрицательная контрольная проба №1 100 (+) 0 0 0 Отсутствует
Отрицательная контрольная проба №2 100 (+) 0 0 0 Отсутствует
Положительная контрольная проба №1 0 (-) 0 100 4 Сильная
Положительная контрольная проба №2 0 (-) 0 100 4 Сильная
KS5 14043 24 часа
Результаты элюирования
Функциональная среда % Внутрицитоплаз-матических гранул Конфлюирующий монослой % Окружающих и свободно сязанных % Клеточного лизиса Оценка Реакционная способность
Образец №1 100 (+) 0 0 0 Отсутствует
Образец №2 100 (+) 0 0 0 Отсутствует
Реагентный контроль №1 100 (+) 0 0 0 Отсутствует
Реагентный контроль №2 100 (+) 0 0 0 Отсутствует
Отрицательная контрольная проба №1 100 (+) 0 0 0 Отсутствует
Отрицательная контрольная проба №2 100 (+) 0 0 0 Отсутствует
Положительная контрольная проба №1 0 (-) 0 100 4 Сильная
Положительная контрольная проба №2 0 (-) 0 100 4 Сильная

Claims (23)

1. Электропроводящий гидрогель для электрического стимулирования ткани носа, содержащий:
глицерилмонометакрилат,
триметилолпропантриметакрилат,
диметилакриламид,
N-винилпирролидон,
2,4,6-триметилбензоилдифенилфосфин оксид и
метанол.
2. Электропроводящий гидрогель по п. 1, дополнительно содержащий гидратирующую среду.
3. Электропроводящий гидрогель по п. 2, где гидратирующая среда содержит пропиленгликоль.
4. Электропроводящий гидрогель по п. 1, дополнительно содержащий 3-метакрилоксипропил трис(триметилсилокси)силан.
5. Способ стимулирования слезных желез, включающий:
расположение ответвления устройства назальной стимуляции вплотную к носовой ткани или ткани придаточной пазухи, при этом ответвление имеет дистальный конец и электропроводящий гидрогель по любому из пп. 1-4, размещенный на дистальном конце; и
приведение в действие устройства назальной стимуляции, чтобы обеспечить электрическое стимулирование ткани носа или придаточной пазухи.
6. Способ по п. 5, где электрическое стимулирование применяют для лечения сухости глаз.
7. Способ по п. 6, где сухость глаз представляет собой хроническую сухость глаз, эпизодическую сухость глаз или сезонную сухость глаз.
8. Способ по п. 5, где электрическое стимулирование применяют для лечения сухости глаз, вызванной возрастом, гормональным дисбалансом, побочными эффектами от лекарственных препаратов, синдромом Шегрена, волчанкой, склеродермией или заболеваниями щитовидной железы; глазной аллергии.
9. Способ по п. 5, где электрическое стимулирование применяют в качестве профилактического средства после лазерной коррекции зрения или хирургии катаракты.
10. Способ по п. 6, где электрическое стимулирование проводят от одного до пяти раз в день.
11. Устройство назальной стимуляции, содержащее:
многоразовый корпус;
одноразовый компонент, съёмно прикрепленный к многоразовому корпусу и содержащий ответвление, имеющее дистальный конец, отходящий от многоразового корпуса, когда прикреплен к нему;
электрод, размещенный внутри ответвления; и
электропроводящий гидрогель по любому из пп. 1-4 на дистальном конце ответвления.
RU2016137744A 2014-02-25 2015-02-24 Составы полимеров для носослёзной стимуляции RU2698711C2 (ru)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201461944340P 2014-02-25 2014-02-25
US61/944,340 2014-02-25
US201462027139P 2014-07-21 2014-07-21
US62/027,139 2014-07-21
US201462035221P 2014-08-08 2014-08-08
US62/035,221 2014-08-08
US201462067350P 2014-10-22 2014-10-22
US62/067,350 2014-10-22
PCT/US2015/017379 WO2015130707A2 (en) 2014-02-25 2015-02-24 Polymer formulations for nasolacrimal stimulation

Publications (3)

Publication Number Publication Date
RU2016137744A RU2016137744A (ru) 2018-03-29
RU2016137744A3 RU2016137744A3 (ru) 2019-03-12
RU2698711C2 true RU2698711C2 (ru) 2019-08-29

Family

ID=53881227

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016137744A RU2698711C2 (ru) 2014-02-25 2015-02-24 Составы полимеров для носослёзной стимуляции

Country Status (12)

Country Link
US (4) US9770583B2 (ru)
EP (2) EP3689338A1 (ru)
JP (2) JP6604963B2 (ru)
CN (2) CN106470673B (ru)
AU (1) AU2015223184B2 (ru)
CA (1) CA2940533A1 (ru)
ES (1) ES2812752T3 (ru)
MX (2) MX2016011118A (ru)
RU (1) RU2698711C2 (ru)
SA (1) SA516371733B1 (ru)
WO (1) WO2015130707A2 (ru)
ZA (1) ZA201605563B (ru)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9821159B2 (en) 2010-11-16 2017-11-21 The Board Of Trustees Of The Leland Stanford Junior University Stimulation devices and methods
US20140228875A1 (en) 2013-02-08 2014-08-14 Nidus Medical, Llc Surgical device with integrated visualization and cauterization
EP2967817B1 (en) 2013-03-12 2021-03-10 Oculeve, Inc. Implant delivery devices and systems
AU2014253754C1 (en) 2013-04-19 2015-07-30 Oculeve, Inc. Nasal stimulation devices and methods
US20150031946A1 (en) 2013-07-24 2015-01-29 Nidus Medical, Llc Direct vision cryosurgical probe and methods of use
US9687288B2 (en) 2013-09-30 2017-06-27 Arrinex, Inc. Apparatus and methods for treating rhinitis
CN106470673B (zh) 2014-02-25 2020-01-31 奥库利维公司 用于鼻泪刺激的聚合物制剂
US9763743B2 (en) 2014-07-25 2017-09-19 Arrinex, Inc. Apparatus and method for treating rhinitis
EP3673952A1 (en) 2014-07-25 2020-07-01 Oculeve, Inc. Stimulation patterns for treating dry eye
EP3209371A4 (en) 2014-10-22 2018-10-24 Oculeve, Inc. Implantable nasal stimulator systems and methods
EP3209370A4 (en) 2014-10-22 2018-05-30 Oculeve, Inc. Contact lens for increasing tear production
US9737712B2 (en) 2014-10-22 2017-08-22 Oculeve, Inc. Stimulation devices and methods for treating dry eye
KR20180096493A (ko) 2015-02-25 2018-08-29 디시전 사이선씨즈 메디컬 컴패니, 엘엘씨 음향 신호 전송 접촉매질 및 결합 매체
EP3310433A1 (en) 2015-06-16 2018-04-25 The Regents of The University of Colorado, A Body Corporate Nasolacrimal implants and related methods for tear stimulation
WO2017062690A1 (en) * 2015-10-06 2017-04-13 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Moisture permeable hydrogel composite materials
US10426958B2 (en) 2015-12-04 2019-10-01 Oculeve, Inc. Intranasal stimulation for enhanced release of ocular mucins and other tear proteins
EP3413822B1 (en) 2016-02-11 2023-08-30 Arrinex, Inc. Device for image guided post-nasal nerve ablation
US10252048B2 (en) 2016-02-19 2019-04-09 Oculeve, Inc. Nasal stimulation for rhinitis, nasal congestion, and ocular allergies
WO2017192572A1 (en) * 2016-05-02 2017-11-09 Oculeve, Inc. Intranasal stimulation for treatment of meibomian gland disease and blepharitis
EP3471638A4 (en) 2016-06-15 2020-03-11 Arrinex, Inc. DEVICES AND METHOD FOR TREATING A SIDE SURFACE OF A NASAL CAVE
US11253312B2 (en) 2016-10-17 2022-02-22 Arrinex, Inc. Integrated nasal nerve detector ablation-apparatus, nasal nerve locator, and methods of use
CN110022755A (zh) 2016-12-02 2019-07-16 奥库利维公司 用于干眼症预测和治疗建议的设备和方法
AU2017376132A1 (en) 2016-12-12 2019-07-11 Neuronoff, Inc. Electrode curable and moldable to contours of a target in bodily tissue and methods of manufacturing and placement and dispensers therefor
US11278356B2 (en) 2017-04-28 2022-03-22 Arrinex, Inc. Systems and methods for locating blood vessels in the treatment of rhinitis
CN111065359A (zh) 2017-06-16 2020-04-24 埃斯库莱泰克股份有限公司 热反应性聚合物及其用途
US11318066B2 (en) 2018-02-26 2022-05-03 Olympic Ophthalmics, Inc. Handheld device with vibrational cantilever member for treatment of disorders
TW202003609A (zh) * 2018-03-23 2020-01-16 日商資生堂股份有限公司 使用芯-冕型聚合物粒子之化妝料用原料及水中油型乳化化妝料
WO2019218063A1 (en) * 2018-05-16 2019-11-21 Gl Chemtec Vision Inc. Hydrogel polymers
CN109456444B (zh) * 2018-10-22 2021-03-16 西南交通大学 一种用于组织修复的黏附导电水凝胶的制备方法
US20200155830A1 (en) * 2018-11-16 2020-05-21 ALLERGAN / Oculeve Nasal neurostimulation device with electrically conductive plastic electrode
WO2020219705A1 (en) * 2019-04-23 2020-10-29 Allan Wegner Semi-rigid acoustic coupling articles for ultrasound diagnostic and treatment applications
CN112023114A (zh) * 2019-06-03 2020-12-04 上海禾思凯尔医疗科技有限公司 一种用于泪小管栓塞手术的泪小管阻芯材料及其制备方法
US11065461B2 (en) 2019-07-08 2021-07-20 Bioness Inc. Implantable power adapter
US11807700B2 (en) 2020-08-17 2023-11-07 Saudi Arabian Oil Company Electro-responsive hydrogel for reservoir and downhole application
WO2024020160A1 (en) * 2022-07-20 2024-01-25 Texas Heart Institute Tool and method for cardiac ablation using hydrogel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498681A (en) * 1993-01-28 1996-03-12 Pilkington Barnes Hind, Inc. Material for use in the manufacture of polymeric articles
US5800685A (en) * 1996-10-28 1998-09-01 Cardiotronics Systems, Inc. Electrically conductive adhesive hydrogels
US20050137276A1 (en) * 2003-12-18 2005-06-23 Kimberly-Clark Worldwide, Inc. Electrically conductive adhesive hydrogels with solubilizer
WO2012139063A2 (en) * 2011-04-07 2012-10-11 Oculeve, Inc. Stimulation devices and methods
US20130270491A1 (en) * 2012-04-17 2013-10-17 Ik-Ro PARK Conductive hydrogel and method of preparing the same

Family Cites Families (425)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2525381A (en) 1947-09-25 1950-10-10 Tower Paul Contact-type electrode holder
US2512882A (en) 1949-08-17 1950-06-27 R G Truesdale Co Inc Serum inoculator
US3620219A (en) 1969-05-07 1971-11-16 Donald E Barker Facial nerve stimulator
US3709228A (en) 1971-01-07 1973-01-09 D Barker Apparatus for facial stimulation
FR2210298A5 (ru) 1972-12-08 1974-07-05 Commissariat Energie Atomique
USD257495S (en) 1979-05-29 1980-11-04 Hot Shot Products Co. Housing for an electric cattle prod
US4684362A (en) 1981-03-12 1987-08-04 Holt James J Method for collecting nasal secretions
US4520825A (en) 1982-04-30 1985-06-04 Medtronic, Inc. Digital circuit for control of gradual turn-on of electrical tissue stimulators
US4495676A (en) 1982-08-02 1985-01-29 Hartmetz Ii Gerald J Apparatus for electrically stimulating an animal carcass
CH677883A5 (ru) 1982-11-15 1991-07-15 Symtonic Sa
US4539988A (en) 1983-07-05 1985-09-10 Packaging Corporation International Disposable automatic lancet
US5025807A (en) 1983-09-14 1991-06-25 Jacob Zabara Neurocybernetic prosthesis
US4590942A (en) 1984-02-17 1986-05-27 Biosonics, Inc. Apparatus and method for inhibiting nasal secretions
DE3501095A1 (de) 1985-01-15 1986-07-17 Gerd Prof. Dr. 8520 Erlangen Kobal Verfahren zur messung von sensorischen qualitaeten und einrichtung zur durchfuehrung des verfahrens
JPS61203935A (ja) 1985-03-07 1986-09-09 日石三菱株式会社 網膜電図測定用電極
US4628933A (en) 1985-07-23 1986-12-16 Michelson Robin P Method and apparatus for visual prosthesis
NZ214348A (en) 1985-11-27 1988-07-28 Walker T H & Sons Ltd Electrically stunning animals through nose and neck contacts
US4868154A (en) 1986-02-19 1989-09-19 Eye Research Institute Of Retina Foundation Stimulation of tear secretion with melanocyte stimulating hormones
US4777954A (en) 1986-06-30 1988-10-18 Nepera Inc. Conductive adhesive medical electrode assemblies
US4706680A (en) 1986-06-30 1987-11-17 Nepera Inc. Conductive adhesive medical electrode assemblies
US4957480A (en) 1988-02-02 1990-09-18 Universal Health Products, Inc. Method of facial toning
US4926880A (en) 1988-11-08 1990-05-22 Microcurrents Method for relieving sinus and nasal congestion utilizing microcurrents
US4988358A (en) 1988-12-28 1991-01-29 Eppley Barry L Method for promoting hard tissue growth and repair in mammals
US5259373A (en) 1989-05-19 1993-11-09 Puritan-Bennett Corporation Inspiratory airway pressure system controlled by the detection and analysis of patient airway sounds
RU1799577C (ru) 1989-08-17 1993-03-07 Межотраслевой научно-технический комплекс "Микрохирургия глаза" Способ улучшени зрительных функций при заболевани х зрительного нерва и сетчатки и устройство дл его осуществлени
US5078733A (en) 1990-04-12 1992-01-07 Eveleigh Robert B Pacifier for premature newborns
US5090422A (en) 1990-04-19 1992-02-25 Cardiac Pacemakers, Inc. Implantable electrode pouch
US5099829A (en) 1990-04-25 1992-03-31 Wu An Chuan Massage device good for eyes
US5342410A (en) 1990-10-05 1994-08-30 Eric Braverman Apparatus and method for increasing the amplitude of P300 waves in the human brain
US5072724A (en) 1990-11-23 1991-12-17 Joseph Marcus Vibrational liquid-wave stimulating therapy mask apparatus for facial health and beauty care
US5533470A (en) 1991-07-05 1996-07-09 Rose; Andrew F. Electronic nose-clip with solar cell
US5640978A (en) 1991-11-06 1997-06-24 Diolase Corporation Method for pain relief using low power laser light
US5193539A (en) 1991-12-18 1993-03-16 Alfred E. Mann Foundation For Scientific Research Implantable microstimulator
US6063079A (en) 1995-06-07 2000-05-16 Arthrocare Corporation Methods for electrosurgical treatment of turbinates
US5352445A (en) 1992-05-07 1994-10-04 Lavaux Joseph E Lavaux tear test lacrimal equilibration time (LET)
US5514131A (en) 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
US5360438A (en) 1993-01-26 1994-11-01 Fisher Mary R Method and device for improving cranial nerve function to improve muscle function and thereby overcome visual/perceptual dysfunction
US5345948A (en) 1993-04-08 1994-09-13 Donnell Jr Francis E O Method of performing translactrimal laser dacryocystorhinostomy
US5545617A (en) 1993-11-12 1996-08-13 The Schepens Eye Research Institute, Inc. Therapeutic regulation of abnormal conjunctival goblet cell mucous secretion
US5713833A (en) 1994-01-26 1998-02-03 Milligan; Lee John Septum nerve stimulator
CA2181982C (en) 1994-01-31 1999-07-06 Attilio Apollonio Method of cast molding toric contact lenses
IL108772A0 (en) 1994-02-24 1994-05-30 Amcor Ltd Treatment of rhinitis by biostimulative illumination
AUPM982694A0 (en) 1994-12-02 1995-01-05 University Of Queensland, The Iontophoresis method and apparatus
US5643336A (en) 1995-01-09 1997-07-01 Lopez-Claros; Marcelo Enrique Heating and cooling pad
US5735817A (en) 1995-05-19 1998-04-07 Shantha; T. R. Apparatus for transsphenoidal stimulation of the pituitary gland and adjoining brain structures
US5640764A (en) 1995-05-22 1997-06-24 Alfred E. Mann Foundation For Scientific Research Method of forming a tubular feed-through hermetic seal for an implantable medical device
US5571101A (en) 1995-05-25 1996-11-05 Ellman; Alan G. Electrosurgical electrode for DCR surgical procedure
US5707400A (en) 1995-09-19 1998-01-13 Cyberonics, Inc. Treating refractory hypertension by nerve stimulation
US5607461A (en) 1995-10-20 1997-03-04 Nexmed, Inc. Apparatus and method for delivering electrical stimulus to tissue
DE19549297C2 (de) 1995-12-22 1998-07-02 Guenter Stielau Verfahren und Vorrichtung zur Beeinflussung der menschlichen Psyche
WO1997029802A2 (en) 1996-02-20 1997-08-21 Advanced Bionics Corporation Improved implantable microstimulator and systems employing the same
US5900407A (en) 1997-02-06 1999-05-04 Inspire Pharmaceuticals, Inc. Method of treating dry eye disease with uridine triphosphates and related compounds
US6549800B1 (en) 1996-04-25 2003-04-15 Johns Hopkins Unversity School Of Medicine Methods for in vivo magnetic resonance imaging
EP0920614B1 (en) 1996-08-23 2005-05-11 Osteobiologics, Inc. Handheld materials tester
US5697957A (en) 1996-08-29 1997-12-16 Pacesetter Ab Adaptive method and apparatus for extracting an evoked response component from a sensed cardiac signal by suppressing electrode polarization components
US6544193B2 (en) 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
US7460911B2 (en) 1997-02-26 2008-12-02 Alfred E. Mann Foundation For Scientific Research System and method suitable for treatment of a patient with a neurological deficit by sequentially stimulating neural pathways using a system of discrete implantable medical devices
US7799337B2 (en) 1997-07-21 2010-09-21 Levin Bruce H Method for directed intranasal administration of a composition
US6458157B1 (en) 1997-08-04 2002-10-01 Suaning Gregg Joergen Retinal stimulator
US6020445A (en) * 1997-10-09 2000-02-01 Johnson & Johnson Vision Products, Inc. Silicone hydrogel polymers
WO1999021556A1 (en) 1997-10-29 1999-05-06 J-Med Pharmaceuticals, Inc. Antihistamine/decongestant regimens for treating rhinitis
US6083251A (en) 1997-11-13 2000-07-04 Shindo; Kohei Eye treatment method and apparatus
FR2771297B1 (fr) 1997-11-25 2000-02-11 Pierre Andre Jacques Bige Sonde bicanaliculaire pour le traitement du larmoiement de l'oeil
US6050999A (en) 1997-12-18 2000-04-18 Keravision, Inc. Corneal implant introducer and method of use
US5935155A (en) 1998-03-13 1999-08-10 John Hopkins University, School Of Medicine Visual prosthesis and method of using same
US6324429B1 (en) 1998-05-08 2001-11-27 Massachusetts Eye And Ear Infirmary Chronically implantable retinal prosthesis
US6036891A (en) * 1998-05-11 2000-03-14 Pharmacia & Upjohn Polymerizable hydrophilic ultraviolet light absorbing monomers
CA2336190A1 (en) 1998-07-06 2000-01-13 Advanced Bionics Corporation Implantable stimulator system and method for treatment of urinary incontinence
US6035236A (en) 1998-07-13 2000-03-07 Bionergy Therapeutics, Inc. Methods and apparatus for electrical microcurrent stimulation therapy
US6272382B1 (en) 1998-07-31 2001-08-07 Advanced Bionics Corporation Fully implantable cochlear implant system
US6240316B1 (en) 1998-08-14 2001-05-29 Advanced Bionics Corporation Implantable microstimulation system for treatment of sleep apnea
NZ510107A (en) 1998-09-04 2003-03-28 Wolfe Res Pty Ltd Medical implant system
US7346389B1 (en) 1998-09-24 2008-03-18 Newsome David A Dilation enhancer with pre-medicated contact lenses
US6275737B1 (en) 1998-10-14 2001-08-14 Advanced Bionics Corporation Transcutaneous transmission pouch
US5948006A (en) 1998-10-14 1999-09-07 Advanced Bionics Corporation Transcutaneous transmission patch
US6564102B1 (en) 1998-10-26 2003-05-13 Birinder R. Boveja Apparatus and method for adjunct (add-on) treatment of coma and traumatic brain injury with neuromodulation using an external stimulator
US6208902B1 (en) 1998-10-26 2001-03-27 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy for pain syndromes utilizing an implantable lead and an external stimulator
US7076307B2 (en) 2002-05-09 2006-07-11 Boveja Birinder R Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders
US6366814B1 (en) 1998-10-26 2002-04-02 Birinder R. Boveja External stimulator for adjunct (add-on) treatment for neurological, neuropsychiatric, and urological disorders
US6205359B1 (en) 1998-10-26 2001-03-20 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy of partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator
US6329485B1 (en) * 1998-12-11 2001-12-11 Bausch & Lomb Incorporated High refractive index hydrogel compositions for ophthalmic implants
GB2345010B (en) 1998-12-17 2002-12-31 Electrosols Ltd A delivery device
AU772100B2 (en) 1999-02-08 2004-04-08 Cochlear Limited Offset coils for radio frequency transcutaneous links
WO2000052466A2 (en) 1999-03-05 2000-09-08 University Of Miami Measurement of tear fluorescein clearance
DE60042155D1 (de) 1999-03-24 2009-06-18 Second Sight Medical Prod Inc Retinale farbprothese zur wiederherstellung des farbsehens
US6178352B1 (en) 1999-05-07 2001-01-23 Woodside Biomedical, Inc. Method of blood pressure moderation
US6200626B1 (en) * 1999-05-20 2001-03-13 Bausch & Lomb Incorporated Surface-treatment of silicone medical devices comprising an intermediate carbon coating and graft polymerization
US7177690B2 (en) 1999-07-27 2007-02-13 Advanced Bionics Corporation Implantable system having rechargeable battery indicator
US6516227B1 (en) 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US6237604B1 (en) 1999-09-07 2001-05-29 Scimed Life Systems, Inc. Systems and methods for preventing automatic identification of re-used single use devices
US6368324B1 (en) 1999-09-24 2002-04-09 Medtronic Xomed, Inc. Powered surgical handpiece assemblies and handpiece adapter assemblies
US6853946B2 (en) 1999-11-05 2005-02-08 Adam Cohen Air flow sensing and control for animal confinement system
EP1110509A1 (en) 1999-12-21 2001-06-27 Tomaso Vercellotti Surgical device for bone surgery
US6885888B2 (en) 2000-01-20 2005-04-26 The Cleveland Clinic Foundation Electrical stimulation of the sympathetic nerve chain
US20040039401A1 (en) 2000-03-31 2004-02-26 Chow Alan Y. Implant instrument
US6277855B1 (en) 2000-04-21 2001-08-21 Inspire Pharmaceuticals, Inc. Method of treating dry eye disease with nicotinic acetylcholine receptor agonists
US6284765B1 (en) 2000-04-27 2001-09-04 The University Of North Texas Health Science Center At Fort Worth (+) naloxone and epinephrine combination therapy
CN1440256A (zh) 2000-05-08 2003-09-03 布雷恩斯盖特有限公司 通过刺激蝶腭神经节改善bbb和脑部血流性质的方法及装置
US7146209B2 (en) 2000-05-08 2006-12-05 Brainsgate, Ltd. Stimulation for treating eye pathologies
US7117033B2 (en) 2000-05-08 2006-10-03 Brainsgate, Ltd. Stimulation for acute conditions
US6853858B2 (en) 2000-05-08 2005-02-08 Brainsgate, Ltd. Administration of anti-inflammatory drugs into the central nervous system
US20020035358A1 (en) 2000-05-09 2002-03-21 Ming Wang Pulsed electromagnetic field therapy for treatment of corneal disorders and injuries
US6327504B1 (en) 2000-05-10 2001-12-04 Thoratec Corporation Transcutaneous energy transfer with circuitry arranged to avoid overheating
US6592860B1 (en) * 2000-05-30 2003-07-15 Soluble Systems, Llc Composition and applicator for topical substance delivery
US6526318B1 (en) 2000-06-16 2003-02-25 Mehdi M. Ansarinia Stimulation method for the sphenopalatine ganglia, sphenopalatine nerve, or vidian nerve for treatment of medical conditions
EP1166820B1 (en) 2000-06-19 2009-09-30 Medtronic, Inc. Implantable medical device with external recharging coil
US6505077B1 (en) 2000-06-19 2003-01-07 Medtronic, Inc. Implantable medical device with external recharging coil electrical connection
US6871099B1 (en) 2000-08-18 2005-03-22 Advanced Bionics Corporation Fully implantable microstimulator for spinal cord stimulation as a therapy for chronic pain
US6535766B1 (en) 2000-08-26 2003-03-18 Medtronic, Inc. Implanted medical device telemetry using integrated microelectromechanical filtering
US6539253B2 (en) 2000-08-26 2003-03-25 Medtronic, Inc. Implantable medical device incorporating integrated circuit notch filters
US6658301B2 (en) 2000-09-13 2003-12-02 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California Method and apparatus for conditioning muscles during sleep
US6895279B2 (en) 2000-09-15 2005-05-17 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California Method and apparatus to treat disorders of gastrointestinal peristalsis
US6405079B1 (en) 2000-09-22 2002-06-11 Mehdi M. Ansarinia Stimulation method for the dural venous sinuses and adjacent dura for treatment of medical conditions
US6652095B2 (en) 2000-11-17 2003-11-25 Hsiao-Ching Tung Orthokeratology and bi-focal contact lens
US20050251061A1 (en) 2000-11-20 2005-11-10 Schuler Eleanor L Method and system to record, store and transmit waveform signals to regulate body organ function
JP2002159340A (ja) 2000-11-28 2002-06-04 Ya Man Ltd 美顔装置
AU2002228319A1 (en) 2001-01-30 2002-08-12 Saliwizer Itd. System and method for electrical stimulation of salivation
EP1234553A1 (de) 2001-02-14 2002-08-28 Boris-Wolfgang Hochleitner Bioartifizielles Gerät
JP4781576B2 (ja) 2001-02-28 2011-09-28 株式会社ニデック 眼内埋め込み型視覚刺激装置
NO313683B1 (no) 2001-03-21 2002-11-18 Turid Bergersen Anordning for akupressurisk behandling
US6907293B2 (en) 2001-03-30 2005-06-14 Case Western Reserve University Systems and methods for selectively stimulating components in, on, or near the pudendal nerve or its branches to achieve selective physiologic responses
US6701189B2 (en) 2001-03-30 2004-03-02 Neurocontrol Corporation Systems and methods for performing prosthetic or therapeutic neuromuscular stimulation using a universal external controller accommodating different control inputs and/or different control outputs
US6662052B1 (en) 2001-04-19 2003-12-09 Nac Technologies Inc. Method and system for neuromodulation therapy using external stimulator with wireless communication capabilites
US7369897B2 (en) 2001-04-19 2008-05-06 Neuro And Cardiac Technologies, Llc Method and system of remotely controlling electrical pulses provided to nerve tissue(s) by an implanted stimulator system for neuromodulation therapies
WO2002086105A1 (en) 2001-04-20 2002-10-31 Chiron Corporation Delivery of polynucleotide agents to the central nervous sysstem
US6907295B2 (en) 2001-08-31 2005-06-14 Biocontrol Medical Ltd. Electrode assembly for nerve control
US20050113510A1 (en) * 2001-05-01 2005-05-26 Feldstein Mikhail M. Method of preparing polymeric adhesive compositions utilizing the mechanism of interaction between the polymer components
AT411150B (de) 2001-05-25 2003-10-27 Nova Technical Res Gmbh Einrichtung zum einbringen von stoffen
US6537265B2 (en) 2001-06-08 2003-03-25 Health Research, Inc. Method for nasal application of a medicinal substance
US6792314B2 (en) 2001-06-18 2004-09-14 Alfred E. Mann Foundation For Scientific Research Miniature implantable array and stimulation system suitable for eyelid stimulation
US7054692B1 (en) 2001-06-22 2006-05-30 Advanced Bionics Corporation Fixation device for implantable microdevices
US7031776B2 (en) 2001-06-29 2006-04-18 Optobionics Methods for improving damaged retinal cell function
US20050004625A1 (en) 2001-06-29 2005-01-06 Chow Alan Y. Treatment of degenerative retinal disease via electrical stimulation of surface structures
US7331984B2 (en) 2001-08-28 2008-02-19 Glaukos Corporation Glaucoma stent for treating glaucoma and methods of use
US7778711B2 (en) 2001-08-31 2010-08-17 Bio Control Medical (B.C.M.) Ltd. Reduction of heart rate variability by parasympathetic stimulation
US7885709B2 (en) 2001-08-31 2011-02-08 Bio Control Medical (B.C.M.) Ltd. Nerve stimulation for treating disorders
US7974693B2 (en) 2001-08-31 2011-07-05 Bio Control Medical (B.C.M.) Ltd. Techniques for applying, configuring, and coordinating nerve fiber stimulation
US7778703B2 (en) 2001-08-31 2010-08-17 Bio Control Medical (B.C.M.) Ltd. Selective nerve fiber stimulation for treating heart conditions
US6792312B2 (en) 2001-09-06 2004-09-14 Medtronic, Inc. Connector module having internal weld plates
US20030062050A1 (en) 2001-10-01 2003-04-03 Bruno Schmidt Anti-snoring devices and methods
US6829508B2 (en) 2001-10-19 2004-12-07 Alfred E. Mann Foundation For Scientific Research Electrically sensing and stimulating system for placement of a nerve stimulator or sensor
US6562036B1 (en) 2001-12-10 2003-05-13 Ellman Alan G Electrosurgical electrode for rhinoplasty
JP2003210513A (ja) 2002-01-23 2003-07-29 Nidek Co Ltd 眼科用治療装置
JP3838933B2 (ja) * 2002-03-19 2006-10-25 積水化成品工業株式会社 高分子ハイドロゲル電極
JP4413626B2 (ja) 2002-03-27 2010-02-10 シーブイアールエックス, インコーポレイテッド 連結電極による循環系反射制御用デバイスおよび方法
US6641799B2 (en) 2002-04-03 2003-11-04 Nos Spray, Inc. Nasal spray for decongesting nasal passages
US7142909B2 (en) 2002-04-11 2006-11-28 Second Sight Medical Products, Inc. Biocompatible bonding method and electronics package suitable for implantation
US6974533B2 (en) 2002-04-11 2005-12-13 Second Sight Medical Products, Inc. Platinum electrode and method for manufacturing the same
US7645262B2 (en) 2002-04-11 2010-01-12 Second Sight Medical Products, Inc. Biocompatible bonding method and electronics package suitable for implantation
US6604528B1 (en) 2002-04-22 2003-08-12 Lloyd P. Duncan Acid reflux and snoring device
US20060004423A1 (en) 2002-05-09 2006-01-05 Boveja Birinder R Methods and systems to provide therapy or alleviate symptoms of chronic headache, transformed migraine, and occipital neuralgia by providing rectangular and/or complex electrical pulses to occipital nerves
US8204591B2 (en) 2002-05-23 2012-06-19 Bio Control Medical (B.C.M.) Ltd. Techniques for prevention of atrial fibrillation
US8036745B2 (en) 2004-06-10 2011-10-11 Bio Control Medical (B.C.M.) Ltd. Parasympathetic pacing therapy during and following a medical procedure, clinical trauma or pathology
WO2003101535A1 (en) 2002-06-03 2003-12-11 Med-El Elektromedizinische Geraete Gmbh Implantable device with flexible interconnect to coil
US7069084B2 (en) 2002-06-14 2006-06-27 Seefit Incorporated Method and apparatus for preventing and treating eyelid problems
US7860570B2 (en) 2002-06-20 2010-12-28 Boston Scientific Neuromodulation Corporation Implantable microstimulators and methods for unidirectional propagation of action potentials
US20040147973A1 (en) 2002-06-27 2004-07-29 Hauser Robert G. Intra cardiac pacer and method
US6904868B2 (en) 2002-07-12 2005-06-14 Robert S. Block Interactive mobile food dispenser
MXPA05002841A (es) 2002-09-18 2005-05-27 Oculex Pharm Inc Metodo y aparato de administracion de implantes oculares.
US7169163B2 (en) 2002-09-30 2007-01-30 Bruce Becker Transnasal method and catheter for lacrimal system
EP1551499A1 (en) 2002-10-04 2005-07-13 Microchips, Inc. Medical device for neural stimulation and controlled drug delivery
US7349741B2 (en) 2002-10-11 2008-03-25 Advanced Bionics, Llc Cochlear implant sound processor with permanently integrated replenishable power source
JP2006515999A (ja) 2002-11-14 2006-06-15 ブレインズゲート リミティド 刺激のための外科用ツール及び技法
US7024241B1 (en) 2002-12-05 2006-04-04 Pacesetter, Inc. Pacing pulse waveforms that support simultaneous intracardiac signal sensing and analysis
TR200202651A2 (tr) 2002-12-12 2004-07-21 Met�N�Tulgar VücutÁdışındanÁdirekÁtedaviÁsinyaliÁtransferliÁÁbeyinÁpili
US7264859B2 (en) * 2002-12-19 2007-09-04 Kimberly-Clark Worldwide, Inc. Lubricious coating for medical devices
US20050048099A1 (en) 2003-01-09 2005-03-03 Allergan, Inc. Ocular implant made by a double extrusion process
US7228184B2 (en) 2003-02-22 2007-06-05 Chester Heath Viral-inhibiting method
US7321795B2 (en) 2003-03-24 2008-01-22 Les Bogdanowicz Compositions for electric stimulation of the eye
WO2004091453A1 (en) 2003-04-15 2004-10-28 Eyeborn (Proprietary) Limited An orbital implant applicator
US20060074450A1 (en) 2003-05-11 2006-04-06 Boveja Birinder R System for providing electrical pulses to nerve and/or muscle using an implanted stimulator
US7317947B2 (en) 2003-05-16 2008-01-08 Medtronic, Inc. Headset recharger for cranially implantable medical devices
MXPA06000239A (es) 2003-07-10 2006-04-07 Science Medicus Inc Regulacion de las glandulas endocrinas y exocrinas por medio de senales neuro-electricas codificadas.
US7725176B2 (en) 2003-07-10 2010-05-25 Schuler Eleanor L Method and system for regulation of endocrine and exocrine glands by means of neuro-electrical coded signals
JP2005052461A (ja) 2003-08-06 2005-03-03 Pop Denshi Kk 生体への電流印加装置
CN1253147C (zh) * 2003-08-13 2006-04-26 复旦大学 一种超多孔水凝胶复合物,其制备方法及其在药剂学中的应用
ES2243116B1 (es) 2003-09-22 2007-02-01 Josep Duran Von Arx Estimulador nasal.
US7225032B2 (en) 2003-10-02 2007-05-29 Medtronic Inc. External power source, charger and system for an implantable medical device having thermal characteristics and method therefore
DE10353000A1 (de) 2003-11-13 2005-06-16 Physiomed Elektromedizin Ag Vorrichtung zur Elektrotherapie
WO2005060984A1 (en) 2003-12-12 2005-07-07 Yee Richard W Method and apparatus for preventing and treating eyelid problems
AU2005205853B2 (en) 2004-01-22 2011-01-27 2249020 Alberta Ltd. Method of routing electrical current to bodily tissues via implanted passive conductors
US8055347B2 (en) 2005-08-19 2011-11-08 Brainsgate Ltd. Stimulation for treating brain events and other conditions
US20050203600A1 (en) 2004-03-12 2005-09-15 Scimed Life Systems, Inc. Collapsible/expandable tubular electrode leads
US7993381B2 (en) 2004-04-01 2011-08-09 Mac Beam, Inc. Method and apparatus for treating the body
US7571007B2 (en) 2004-04-12 2009-08-04 Advanced Neuromodulation Systems, Inc. Systems and methods for use in pulse generation
US7654997B2 (en) * 2004-04-21 2010-02-02 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US7359751B1 (en) 2004-05-05 2008-04-15 Advanced Neuromodulation Systems, Inc. Clinician programmer for use with trial stimulator
US7402175B2 (en) 2004-05-17 2008-07-22 Massachusetts Eye & Ear Infirmary Vision prosthesis orientation
US7330762B2 (en) 2004-06-07 2008-02-12 Neuro And Cardiac Technologies, Llc Method and system for providing pulsed electrical stimulation to provide therapy for erectile/sexual dysfunction, prostatitis, prostatitis pain, and chronic pelvic pain
US20050268472A1 (en) 2004-06-07 2005-12-08 Bourilkov Jordan T Shaving systems
WO2006007402A2 (en) * 2004-06-16 2006-01-19 University Of Massachusets Poly (lactid acid) copolymer hydrogels and related methods of drug delivery
US20090299418A1 (en) 2004-08-23 2009-12-03 Brainsgate Ltd. Concurrent bilateral spg modulation
US20090099623A1 (en) 2004-09-13 2009-04-16 Neuronix Ltd. Systems and methods for treatment of medical conditions related to the central nervous system and for enhancing cognitive functions
US7641688B2 (en) 2004-09-16 2010-01-05 Evera Medical, Inc. Tissue augmentation device
GB2418143B (en) 2004-09-21 2010-03-17 Can Do Corp Ltd Apparatus for behaviour modification
US7247692B2 (en) * 2004-09-30 2007-07-24 Johnson & Johnson Vision Care, Inc. Biomedical devices containing amphiphilic block copolymers
WO2006045075A1 (en) 2004-10-20 2006-04-27 Boston Scientific Limited Leadless cardiac stimulation systems
US7650186B2 (en) 2004-10-20 2010-01-19 Boston Scientific Scimed, Inc. Leadless cardiac stimulation systems
US7497836B2 (en) 2004-10-22 2009-03-03 General Patent Llc Germicidal method for treating or preventing sinusitis
CN100574700C (zh) * 2004-10-28 2009-12-30 桑特拉医学公司 使用水凝胶对分析物取样和分析的系统和方法
US20060095077A1 (en) 2004-10-29 2006-05-04 Tronnes Carole A Expandable fixation structures
US8489189B2 (en) 2004-10-29 2013-07-16 Medtronic, Inc. Expandable fixation mechanism
US20090264966A1 (en) 2004-11-02 2009-10-22 Pixeloptics, Inc. Device for Inductive Charging of Implanted Electronic Devices
EP1652552B1 (en) 2004-11-02 2008-09-17 Sydney Biotech Pty. Ltd. Extraocular device
US7547447B2 (en) 2004-11-15 2009-06-16 Doheny Eye Institute Bioartificial lacrimal gland
US20060107958A1 (en) 2004-11-22 2006-05-25 Sleeper Geoffrey P Adjustable sealing nasal cannula
EP1671670A1 (fr) 2004-12-14 2006-06-21 STX Sprl Appareil pour l'electro-inhibition des muscles de la face
US20070250119A1 (en) 2005-01-11 2007-10-25 Wicab, Inc. Systems and methods for altering brain and body functions and for treating conditions and diseases of the same
US8109981B2 (en) 2005-01-25 2012-02-07 Valam Corporation Optical therapies and devices
US20120053648A1 (en) 2005-02-08 2012-03-01 Rolf Neher Systems and methods for smoking cessation.
US20070248930A1 (en) 2005-02-17 2007-10-25 Biolux Research Ltd. Light therapy apparatus and methods
US8224444B2 (en) 2005-02-18 2012-07-17 Bio Control Medical (B.C.M.) Ltd. Intermittent electrical stimulation
JP4597702B2 (ja) 2005-02-24 2010-12-15 ピジョン株式会社 口唇閉鎖具
US20070060954A1 (en) 2005-02-25 2007-03-15 Tracy Cameron Method of using spinal cord stimulation to treat neurological disorders or conditions
US7555345B2 (en) 2005-03-11 2009-06-30 Medtronic, Inc. Implantable neurostimulator device
US7565204B2 (en) 2005-03-24 2009-07-21 Alfred E. Mann Foundation For Scientific Research Implantable device for controlling received power by a power receiving unit therein
US8082033B2 (en) 2005-04-13 2011-12-20 The Cleveland Clinic Foundation System and method for providing a waveform for stimulating biological tissue
US20090156581A1 (en) 2005-04-15 2009-06-18 Board Of Trustrees Of Michigan State University Aminergic pharmaceutical compositions and methods
US20060235430A1 (en) 2005-04-15 2006-10-19 Intralens Vision, Inc. Corneal implant injector assembly and methods of use
JP2006311917A (ja) 2005-05-09 2006-11-16 Shozo Terauchi 低周波電気刺激装置
US7551958B2 (en) 2005-05-24 2009-06-23 Cardiac Pacemakers, Inc. Safety control system for implantable neural stimulator
US7947076B2 (en) 2005-06-03 2011-05-24 Medtronic Xomed, Inc. Nasal valve treatment method and apparatus
US20060276738A1 (en) 2005-06-06 2006-12-07 Becker Bruce B Lacrimal drainage bypass device and method
US8204607B2 (en) 2005-06-09 2012-06-19 Medtronic, Inc. Implantable medical lead
US7792591B2 (en) 2005-06-09 2010-09-07 Medtronic, Inc. Introducer for therapy delivery elements
US8606362B2 (en) 2005-07-08 2013-12-10 Boston Scientific Neuromodulation Corporation Current output architecture for an implantable stimulator device
DE102005032989A1 (de) 2005-07-14 2007-01-25 Imi Intelligent Medical Implants Ag Extraokulares Epiretinal-Implantat
US8083787B2 (en) 2005-07-18 2011-12-27 Tearscience, Inc. Method and apparatus for treating meibomian gland dysfunction
WO2013003594A2 (en) 2011-06-28 2013-01-03 Tearscience, Inc. Methods and systems for treating meibomian gland dysfunction using radio-frequency energy
US7981095B2 (en) 2005-07-18 2011-07-19 Tearscience, Inc. Methods for treating meibomian gland dysfunction employing fluid jet
US9962558B2 (en) 2005-08-05 2018-05-08 Gholam A. Peyman Methods to regulate polarization and enhance function of cells
US20070031341A1 (en) 2005-08-08 2007-02-08 Dimauro Thomas M Methods of delivering therapeutics to the brain
JP2007044323A (ja) 2005-08-11 2007-02-22 Nidek Co Ltd 視覚再生補助装置
US8005526B2 (en) 2005-08-31 2011-08-23 The Regents Of The University Of Michigan Biologically integrated electrode devices
US7805202B2 (en) 2005-09-30 2010-09-28 Boston Scientific Neuromodulation Corporation Implantable electrodes and insertion methods and tools
US8676324B2 (en) 2005-11-10 2014-03-18 ElectroCore, LLC Electrical and magnetic stimulators used to treat migraine/sinus headache, rhinitis, sinusitis, rhinosinusitis, and comorbid disorders
US7729758B2 (en) 2005-11-30 2010-06-01 Boston Scientific Neuromodulation Corporation Magnetically coupled microstimulators
US7444181B2 (en) 2005-12-14 2008-10-28 Boston Scientific Neuromodulation Corporation Techniques for sensing and adjusting a compliance voltage in an implantable stimulator device
AU2007204602A1 (en) 2006-01-16 2007-07-19 Continence Control Systems International Pty Limited A stimulator for the control of a bodily function
EP1979023B1 (en) 2006-01-17 2015-07-22 Transcend Medical, Inc. Glaucoma treatment device
US7725195B2 (en) 2006-02-16 2010-05-25 Imthera Medical, Inc. RFID-based apparatus, system, and method for therapeutic treatment of obstructive sleep apnea
US8118752B2 (en) 2006-02-16 2012-02-21 The Board Of Trustees Of The University Of Illinois Apparatus and methods for mapping retinal function
IES20060134A2 (en) 2006-02-23 2007-09-05 Sensor Technologies And Device Biomedical surface electrode
US20070219600A1 (en) 2006-03-17 2007-09-20 Michael Gertner Devices and methods for targeted nasal phototherapy
US20070237797A1 (en) 2006-03-28 2007-10-11 Gholam A. Peyman Neural Conduit Agent Dissemination
US20070250135A1 (en) 2006-04-21 2007-10-25 Bartz-Schmidt Karl U Compound subretinal prostheses with extra-ocular parts and surgical technique therefore
US20070255333A1 (en) 2006-04-28 2007-11-01 Medtronic, Inc. Neuromodulation therapy for perineal or dorsal branch of pudendal nerve
US9314369B2 (en) 2006-05-15 2016-04-19 Tearscience, Inc. System for inner eyelid treatment of meibomian gland dysfunction
US20070299462A1 (en) 2006-06-23 2007-12-27 Becker Bruce B Nasolacrimal system irrigation and dilatation tool
US20070276314A1 (en) 2006-05-26 2007-11-29 Becker Bruce B Nasolacrimal duct probing, intubating and irrigating device
CA2659829A1 (en) 2006-05-26 2007-12-06 Bruce B. Becker Nasolacrimal system surgical tool and method
US8231218B2 (en) * 2006-06-15 2012-07-31 Coopervision International Holding Company, Lp Wettable silicone hydrogel contact lenses and related compositions and methods
US8311634B2 (en) 2006-06-16 2012-11-13 Second Sight Medical Products Inc. Apparatus and method for electrical stimulation of human retina
US20070299420A1 (en) 2006-06-23 2007-12-27 Minu, L.L.C. Delivery of an agent using iontophoresis
US8080047B2 (en) 2006-08-01 2011-12-20 Mesure Technology Co., Ltd. Light therapy device
US8295529B2 (en) 2006-08-28 2012-10-23 Bcinet, Inc. Gaming headset with integrated microphone and adapted for olfactory stimulation
JP2008055000A (ja) 2006-08-31 2008-03-13 Nidek Co Ltd 視覚再生補助装置
PT2064337E (pt) 2006-09-20 2012-07-26 Genzyme Corp Sistema à base de facs e proteína repórter para o desenvolvimento de elevado desempenho de proteínas terapêuticas
US8249723B2 (en) 2006-09-27 2012-08-21 Huntington Medical Research Institutes Apparatus and method for treating obstructive sleep apnea
US20080082057A1 (en) 2006-09-29 2008-04-03 Korb Donald R Method and apparatus for diagnosing meibomian gland dysfunction
US20080082131A1 (en) 2006-10-03 2008-04-03 Myriam Ivette Llanos Facial Nerve Stimulator (FNS)
DE102006048819A1 (de) 2006-10-10 2008-04-17 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Vorrichtung mit einem Grundkörper
AU2007313319B2 (en) 2006-10-13 2012-03-22 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
CA2666420C (en) 2006-10-18 2014-01-28 Boston Scientific Neuromodulation Corporation Multi-electrode implantable stimulator device with a single current path decoupling capacitor
US10856904B2 (en) 2006-11-30 2020-12-08 Medtronic, Inc. Flexible introducer
CA2674877C (en) 2007-01-09 2016-03-15 Fovea Pharmaceuticals Apparatus for intra-ocular injection
DE102007002783A1 (de) * 2007-01-18 2008-08-07 Bayer Materialscience Ag Hydrogele aus hydrophilen Polyurethan(meth)acrylaten
AR064985A1 (es) 2007-01-22 2009-05-06 E Vision Llc Lente electroactivo flexible
US20080183242A1 (en) 2007-01-29 2008-07-31 Nidek Co., Ltd. Electrical stimulation method for vision improvement
JP4970069B2 (ja) 2007-01-30 2012-07-04 株式会社ニデック 視覚再生補助装置
US8755896B2 (en) 2007-02-05 2014-06-17 University Of Southern California Treatment of consumption disorders with biostimulation
US9861809B2 (en) 2007-02-16 2018-01-09 Second Sight Medical Products, Inc. Flexible circuit electrode array with wire or film support
RU2338492C1 (ru) 2007-02-21 2008-11-20 Андрей Анатольевич Бессонов Способ лечения недостаточности слезопродукции при синдроме сухости глаза
US7949403B2 (en) 2007-02-27 2011-05-24 Accelerated Care Plus Corp. Electrical stimulation device and method for the treatment of neurological disorders
GB2448183A (en) 2007-04-05 2008-10-08 Optinose As Nasal powder delivery device
US20080269648A1 (en) 2007-04-30 2008-10-30 Ultra License Holdings, Inc. Method for increasing saliva and tear production with ultrasound
WO2008143955A2 (en) 2007-05-14 2008-11-27 The Regents Of The University Of Colorado Laser fusion of tissue layers
SE531172C2 (sv) 2007-05-16 2009-01-13 Rhinomed Ab Vibrationsanordning avsedd att användas i kroppskaviteter, företrädesvis i näshålan
US8032222B2 (en) * 2007-06-19 2011-10-04 Loushin Michael K H Device for electrically and mechanically stimulating a compartment in a body
US7758190B2 (en) 2007-06-20 2010-07-20 Tearscience, Inc. Tear film measurement
US7676276B2 (en) 2007-07-02 2010-03-09 Manuel L Karell Stimulator combined with an intranasal respiratory method and device for improved breathing
US8145322B1 (en) 2007-07-19 2012-03-27 Second Sight Medical Products, Inc. Flexible circuit electrode array device and a method for backside processing of a flexible circuit electrode device
ES2602989T3 (es) 2007-07-20 2017-02-23 Boston Scientific Neuromodulation Corporation Sistema de estimulación para controlar el orden de reclutamiento neuronal y el efecto clínico
WO2009018172A2 (en) 2007-07-27 2009-02-05 Second Sight Medical Products Implantable device for the brain
WO2009018518A1 (en) 2007-08-02 2009-02-05 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Methods and systems for achieving a physiological response by pudendal nerve stimulation and bockade
US8088120B2 (en) 2007-09-05 2012-01-03 Maya Worsoff Method and apparatus for alleviating nasal congestion
WO2009035571A2 (en) 2007-09-07 2009-03-19 Qlt Plug Delivery, Inc Lacrimal implant detection
US8315689B2 (en) 2007-09-24 2012-11-20 MRI Interventions, Inc. MRI surgical systems for real-time visualizations using MRI image data and predefined data of surgical tools
US8019419B1 (en) 2007-09-25 2011-09-13 Dorin Panescu Methods and apparatus for leadless, battery-less, wireless stimulation of tissue
US8357767B2 (en) * 2007-10-03 2013-01-22 Polynovo Biomaterials Limited High modulus polyurethane and polyurethane/urea compositions
CA2697822A1 (en) 2007-10-09 2009-04-16 Imthera Medical, Inc. Apparatus, system, and method for selective stimulation
US7873421B2 (en) 2007-10-23 2011-01-18 Manuel L Karell Nasal dilator adapted to provide electrical stimulation
DE112008003180T5 (de) 2007-11-26 2011-03-03 Micro-Transponder, Inc., Dallas Implantierbare Transpondersysteme und -verfahren
AU2008329724B2 (en) 2007-11-26 2011-10-13 Microtransponder Inc. Transfer coil architecture
US8457757B2 (en) 2007-11-26 2013-06-04 Micro Transponder, Inc. Implantable transponder systems and methods
GB2456002A (en) * 2007-12-31 2009-07-01 William M Hung A method for the manufacture of silicone hydrogel contact lenses in which filler material is introduced, the lens formed and the filler extracted.
US8165694B2 (en) 2008-01-29 2012-04-24 Boston Scientific Neuromodulation Corporation Thermal management of implantable medical devices
USD617443S1 (en) 2008-02-06 2010-06-08 Tearscience, Inc. Eye treatment goggles
USD614303S1 (en) 2008-02-06 2010-04-20 Tearscience, Inc. Eye treatment apparatus
USD613408S1 (en) 2008-02-06 2010-04-06 Tearscience, Inc. Eye treatment head gear
EP2259843B1 (en) 2008-03-20 2012-08-29 IMI Intelligent Medical Implants AG Power supply for a retina implant
US7832355B2 (en) 2008-04-01 2010-11-16 Frances Kay Mills Animal feeder
US8543211B2 (en) 2008-04-10 2013-09-24 ElectroCore, LLC Methods and apparatus for deep brain stimulation
US7846124B2 (en) 2008-05-07 2010-12-07 Becker Bruce B Punctal anchor for lacrimal stent, introducer tool and method
US8855777B2 (en) 2008-05-09 2014-10-07 Medtronic, Inc. Programming techniques for peripheral nerve field stimulation
WO2009137119A1 (en) 2008-05-09 2009-11-12 Medtronic, Inc. Peripheral nerve field stimulation control
WO2009142743A1 (en) * 2008-05-20 2009-11-26 Cantimer, Inc. Methods, systems and devices for analyzing a surfactant-treated biological fluid sample
DE102008002228A1 (de) 2008-06-05 2009-12-10 Biotronik Crm Patent Ag Langgestrecktes Implantat mit externer Energieeinkopplung
US8626306B2 (en) 2008-06-12 2014-01-07 Second Sight Medical Products, Inc. Visual prosthesis for control of spatiotemporal interactions
ITRM20080309A1 (it) 2008-06-12 2009-12-13 Massimo Filippello Metodo di trattamento oculare per la prevenzione della presbiopia e del glaucoma e mezzi per effettuare tale trattamento
NL2001698C2 (en) 2008-06-18 2009-12-22 Nasophlex B V Cardioverter / defibrillator.
NL2001697C2 (en) 2008-06-18 2009-12-22 Nasophlex B V Nose stimulator for producing a stimulation signal to a nose.
US8945086B2 (en) 2008-07-01 2015-02-03 Bruce Becker Retrobulbar needle and methods of use
WO2010006053A1 (en) 2008-07-08 2010-01-14 Qlt Plug Delivery, Inc. Lacrimal implant body including comforting agent
WO2010027743A1 (en) 2008-08-25 2010-03-11 Alpha Synergy Development, Inc. Pharmaceutical compositions and methods for the treatment of dry eye
JP2010051562A (ja) 2008-08-28 2010-03-11 Tohoku Univ 生体の深部刺激方法及び生体深部の刺激装置
US8398628B2 (en) 2008-09-19 2013-03-19 Avedro, Inc. Eye therapy system
JP2012504472A (ja) 2008-10-01 2012-02-23 アヴェドロ・インコーポレーテッド 眼治療システム
US8271098B2 (en) 2008-10-22 2012-09-18 Advanced Neuromodulation Systems, Inc. Method for processing electrodes for stimulation lead
US8448273B2 (en) 2008-10-29 2013-05-28 Smartsilk Corporation Inc. Pillow and cover for a pillow
US20100114273A1 (en) * 2008-10-30 2010-05-06 Philip Edward Muccio Electrode for functional electrical stimulation
KR20110106866A (ko) * 2008-12-05 2011-09-29 셈프러스 바이오사이언시스 코퍼레이션 비-파울링, 항-미생물성, 항-혈전형성성 그라프트-프롬 조성물
EP2373234A1 (en) 2008-12-16 2011-10-12 Aardvark Medical, Inc. Methods and systems for delivery of fluids, aerosols and acoustic energy to tissue surfaces, cavities and obstructed passages such as intranasal ostia
USD614774S1 (en) 2008-12-18 2010-04-27 Tearscience, Inc. Ocular imaging apparatus
EP2376188A1 (en) 2008-12-19 2011-10-19 Neurodan A/S Bursts of electrical pulses in the treatment of pelvic disorders by electrical nerve stimulation
WO2010075479A2 (en) 2008-12-22 2010-07-01 Integrated Sensing Systems, Inc. Wireless dynamic power control of an implantable sensing device and methods therefor
US8412336B2 (en) 2008-12-29 2013-04-02 Autonomic Technologies, Inc. Integrated delivery and visualization tool for a neuromodulation system
US8235932B2 (en) 2009-01-09 2012-08-07 Becker Bruce B Side-by-side lacrimal intubation threader and method
US8494641B2 (en) 2009-04-22 2013-07-23 Autonomic Technologies, Inc. Implantable neurostimulator with integral hermetic electronic enclosure, circuit substrate, monolithic feed-through, lead assembly and anchoring mechanism
US9233254B2 (en) 2009-02-17 2016-01-12 Boston Scientific Neuromodulation Corporation Selectable boost converter and charge pump for compliance voltage generation in an implantable stimulator device
WO2010099818A1 (en) 2009-03-03 2010-09-10 Ao Technology Ag Thermoreversible polysaccharide hydrogel
CN101503491B (zh) * 2009-03-10 2011-11-30 海昌隐形眼镜有限公司 一种高透氧氟硅氧烷水凝胶接触镜材料及其制备方法
US20100280509A1 (en) 2009-04-02 2010-11-04 Avedro, Inc. Eye Therapy System
US9155885B2 (en) 2009-04-24 2015-10-13 Medtronic, Inc. Incontinence therapy
WO2010141831A1 (en) 2009-06-05 2010-12-09 Aciex Therapeutics, Inc. Ophthalmic formulations, methods of manufacture, and methods of using same
US20100318159A1 (en) 2009-06-12 2010-12-16 Boston Scientific Neuromodulation Corporation Miniature remote controller for implantable medical device
CA2768849A1 (en) 2009-07-21 2011-01-27 Leonard V. Covello Devices and methods for minimally invasive access to sinuses and treatment of sinusitis
JP5578540B2 (ja) 2009-07-31 2014-08-27 株式会社ニデック 視覚再生補助装置及び視覚再生補助装置の製造方法
US8283890B2 (en) 2009-09-25 2012-10-09 Bard Peripheral Vascular, Inc. Charging station for battery powered biopsy apparatus
AU2009222439B2 (en) 2009-09-28 2011-07-21 Cochlear Limited Method and circuitry for measurement and control of stimulation current
MX2012004052A (es) 2009-10-05 2012-08-23 Univ California Dispositivos, sistemas y metodos implantables de forma extracraneal para el tratamiento de desordenes neuropsiquiatricos.
USD638128S1 (en) 2009-10-06 2011-05-17 Tearscience, Inc. Ocular device design
US8571677B2 (en) 2009-10-21 2013-10-29 Medtronic, Inc. Programming techniques for stimulation with utilization of case electrode
IL202462A0 (en) 2009-12-02 2010-06-30 Feldman Joseph Device for treatment of rhinitis by biostimulative illumination
US8622993B2 (en) 2009-12-18 2014-01-07 Healthpartners Research Foundation Device and method for delivering therapeutic substances to the maxillary sinus of a patient
US8620442B2 (en) 2010-01-27 2013-12-31 Second Sight Medical Products, Inc. Multi-electrode integration in a visual prosthesis
US20110202121A1 (en) 2010-02-16 2011-08-18 Shin-Heng Wen Electrical nerve stimulator
EP2536766A1 (en) * 2010-02-18 2012-12-26 Dow Corning Corporation Siloxane surface-modified hydrogel and hydrogel microparticle compositions
US8447403B2 (en) 2010-03-05 2013-05-21 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
TWM389271U (en) 2010-03-23 2010-09-21 Guo-Ren Ye Healthcare eyeglasses
WO2011137298A2 (en) 2010-04-30 2011-11-03 Second Sight Medical Products,Inc. Improved biocompatible bonding method
US8364272B2 (en) 2010-04-30 2013-01-29 Medtronic, Inc. Brain stimulation programming
US9522980B2 (en) * 2010-05-06 2016-12-20 Johnson & Johnson Vision Care, Inc. Non-reactive, hydrophilic polymers having terminal siloxanes and methods for making and using the same
US8968783B2 (en) * 2010-05-27 2015-03-03 Covidien Lp Hydrogel implants with varying degrees of crosslinking
EP2575941B1 (en) 2010-06-04 2018-03-28 The Goverment Of The United States Of America As Represented By The Secretary Of Health And Human Services, Centers For Disease Control And Nasal aerosol delivery system
JP5711363B2 (ja) 2010-06-16 2015-04-30 カーディアック ペースメイカーズ, インコーポレイテッド 自動神経刺激滴定掃引
WO2012006278A2 (en) * 2010-07-05 2012-01-12 Reluceo, Inc. Degradable superabsorbent polymers
JP2012115545A (ja) 2010-12-02 2012-06-21 Nidek Co Ltd 生体組織用刺激回路
JP5776165B2 (ja) 2010-11-05 2015-09-09 株式会社ニデック 生体組織用刺激回路
US9937355B2 (en) 2010-11-08 2018-04-10 Zoll Medical Corporation Remote medical device alarm
AU2011328900B2 (en) 2010-11-16 2015-03-19 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for treatment of dry eye
US9821159B2 (en) * 2010-11-16 2017-11-21 The Board Of Trustees Of The Leland Stanford Junior University Stimulation devices and methods
US20120133887A1 (en) 2010-11-30 2012-05-31 Optovue, Inc. Tear film and tear meniscus dynamics with time-lapse optical coherence tomography
US9364674B2 (en) 2010-11-30 2016-06-14 Ian A. Cook Pulse generator for cranial nerve stimulation
US20110081333A1 (en) 2010-12-10 2011-04-07 Shantha Totada R Apparatus and system for treatment and prevention of bags under eyes
US8706233B2 (en) 2011-01-28 2014-04-22 Medtronic, Inc. Stimulation therapy including substantially simultaneous bilateral stimulation
US20120232615A1 (en) 2011-03-07 2012-09-13 Giancarlo Barolat Modular Limb Peripheral Nerve Stimulation System and Method of Use
WO2012134505A1 (en) 2011-03-28 2012-10-04 Neurostream Technologies General Partnership System and method for treating apnea using evoked swallow
JP5419174B2 (ja) 2011-03-28 2014-02-19 国立大学法人 新潟大学 嚥下誘発装置
ES2898062T3 (es) 2011-05-13 2022-03-03 Saluda Medical Pty Ltd Aparato para controlar un estímulo neuronal
US8944052B2 (en) 2011-05-26 2015-02-03 Ivan Osorio Apparatus and methods for delivery of therapeutic agents to mucous or serous membrane
US20120316557A1 (en) 2011-06-08 2012-12-13 Tyco Healthcare Group Lp Septoplasty Instrument
US8986301B2 (en) 2012-06-13 2015-03-24 Aerin Medical Inc. Methods and devices to treat nasal airways
WO2012174161A1 (en) 2011-06-14 2012-12-20 Aerin Medical, Inc. Devices for treating nasal airways
US20120330376A1 (en) 2011-06-27 2012-12-27 Equine OrthoCare, LLC Systems and methods for making and using electrical stimulation systems for providing therapy to large animals
ES2634646T3 (es) 2011-08-26 2017-09-28 Louis Scerbo Aparato de rejuvenecimiento facial
US8965511B2 (en) 2011-08-30 2015-02-24 Valencia Technologies Corporation Implantable electroacupuncture system and method for reducing hypertension
US8996125B2 (en) 2011-09-23 2015-03-31 Valencia Technologies Corporation Implantable electroacupuncture system and method for treating cardiovascular disease
US9173811B2 (en) 2011-09-29 2015-11-03 Valencia Technologies Corporation Implantable electroacupuncture system and method for treating depression and similar mental conditions
WO2013055940A2 (en) 2011-10-11 2013-04-18 Duke University Non-regular electrical stimulation patterns for treating neurological disorders
USD681839S1 (en) 2011-12-16 2013-05-07 Micromode Medical Limited Electrostimulation device
EP2790635B1 (en) 2011-12-16 2016-04-27 Chordate Medical AB Ans stimulation
US9724230B2 (en) 2012-01-04 2017-08-08 Sight Sciences, Inc. Dry eye treatment apparatus and methods
US9549966B2 (en) 2012-02-21 2017-01-24 Massachusetts Eye & Ear Infirmary Inflammatory eye disorders
US9314399B2 (en) 2012-03-06 2016-04-19 Valencia Technologies Corporation Implantable electroacupuncture system and method for treating dyslipidemia and obesity
US20130253387A1 (en) 2012-03-08 2013-09-26 Sonitec, LLC Vibratory energy systems and methods for occluded body cavities
US20130261706A1 (en) 2012-03-30 2013-10-03 Neuropace, Inc. Systems and methods for applying rapid sequential electrode stimulation
US20130274824A1 (en) 2012-04-17 2013-10-17 The Ohio State University Neuromodulatory method for treating chronic rhinosinusitis
EP2844338A1 (en) 2012-04-17 2015-03-11 The Ohio State University Neuromodulatory method for treating chronic or refractory rhinitis
JP5927014B2 (ja) * 2012-04-18 2016-05-25 Hoya株式会社 湿潤性表面を有するシリコーンハイドロゲルソフトコンタクトレンズ
JP6070828B2 (ja) 2012-04-27 2017-02-01 ボストン サイエンティフィック ニューロモデュレイション コーポレイション 埋込可能刺激デバイスでパルスを生成するためのタイミングチャネル回路
WO2013165697A1 (en) 2012-04-30 2013-11-07 Vigilant Medical Solutions, Inc. Indirect and non-invasive trigeminal neuromodulation for the treatment of disease
WO2013166353A1 (en) 2012-05-04 2013-11-07 Alcon Research, Ltd. Method for diagnosing dry eye and meibomian gland disease using meibomian secretions
US9700721B2 (en) 2012-05-14 2017-07-11 Autonomic Technologies, Inc. Stimulation method for treatment of ocular conditions
US20120323214A1 (en) 2012-05-16 2012-12-20 Totada R Shantha Alzheimer's disease treatment with multiple therapeutic agents delivered to the olfactory region through a special delivery catheter and iontophoresis
US10232184B2 (en) 2012-05-18 2019-03-19 The Guy P. Curtis And Frances L. Curtis Trust Extracorporeal unit for inspecting the insulation of an electrical wire of an implanted medical device
US20120234332A1 (en) 2012-06-01 2012-09-20 Shantha Totada R Snoring and obstructive sleep apnea prevention and treatment device
US9968297B2 (en) 2012-06-14 2018-05-15 Medibotics Llc EEG glasses (electroencephalographic eyewear)
WO2014153218A1 (en) 2013-03-14 2014-09-25 Tyler Perryman Laura Devices and methods for treating craniofacial pain
WO2014084958A1 (en) 2012-11-30 2014-06-05 Novartis Ag Sensors for triggering electro-active ophthalmic lenses
EP2928550B1 (en) 2012-12-07 2023-06-07 Medtronic, Inc. Minimally invasive implantable neurostimulation system
US9174049B2 (en) 2013-01-27 2015-11-03 ElectroCore, LLC Systems and methods for electrical stimulation of sphenopalatine ganglion and other branches of cranial nerves
US10238534B2 (en) 2013-03-07 2019-03-26 Novartis Ag Systems and processes for eye moisturizing during ocular surgery
WO2014138709A1 (en) 2013-03-08 2014-09-12 Oculeve, Inc. Devices and methods for treating dry eye in animals
EP2967817B1 (en) 2013-03-12 2021-03-10 Oculeve, Inc. Implant delivery devices and systems
AU2014253754C1 (en) 2013-04-19 2015-07-30 Oculeve, Inc. Nasal stimulation devices and methods
US20140371565A1 (en) 2013-06-14 2014-12-18 University Of Houston System Accommodation stimulation and recording device
CN103467652B (zh) * 2013-09-03 2015-08-26 东南大学 一种水凝胶接触镜及其制备方法
CN106470673B (zh) 2014-02-25 2020-01-31 奥库利维公司 用于鼻泪刺激的聚合物制剂
AU358535S (en) 2014-04-18 2014-11-03 Oculeve Nasal stimulator device
US10317702B2 (en) 2014-06-13 2019-06-11 Verily Life Sciences Llc Failsafe operation of eye-mountable device
EP3673952A1 (en) 2014-07-25 2020-07-01 Oculeve, Inc. Stimulation patterns for treating dry eye
SG11201701018PA (en) 2014-08-10 2017-03-30 Autonomix Medical Inc Ans assessment systems, kits, and methods
US10201451B2 (en) 2014-08-29 2019-02-12 Camras Vision Inc. Device and method for reducing intraocular pressure
US9699436B2 (en) 2014-09-16 2017-07-04 Microsoft Technology Licensing, Llc Display with eye-discomfort reduction
US9737712B2 (en) 2014-10-22 2017-08-22 Oculeve, Inc. Stimulation devices and methods for treating dry eye
EP3209370A4 (en) 2014-10-22 2018-05-30 Oculeve, Inc. Contact lens for increasing tear production
EP3209371A4 (en) 2014-10-22 2018-10-24 Oculeve, Inc. Implantable nasal stimulator systems and methods
IL293029B2 (en) 2015-03-16 2023-06-01 Magic Leap Inc Augmented reality signal oximeter
EP3310433A1 (en) 2015-06-16 2018-04-25 The Regents of The University of Colorado, A Body Corporate Nasolacrimal implants and related methods for tear stimulation
US10426958B2 (en) 2015-12-04 2019-10-01 Oculeve, Inc. Intranasal stimulation for enhanced release of ocular mucins and other tear proteins
US10252048B2 (en) 2016-02-19 2019-04-09 Oculeve, Inc. Nasal stimulation for rhinitis, nasal congestion, and ocular allergies
WO2017192572A1 (en) 2016-05-02 2017-11-09 Oculeve, Inc. Intranasal stimulation for treatment of meibomian gland disease and blepharitis
AU2017366730A1 (en) 2016-12-01 2019-05-16 Oculeve, Inc. Extranasal stimulation devices and methods
CN110022755A (zh) 2016-12-02 2019-07-16 奥库利维公司 用于干眼症预测和治疗建议的设备和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498681A (en) * 1993-01-28 1996-03-12 Pilkington Barnes Hind, Inc. Material for use in the manufacture of polymeric articles
US5800685A (en) * 1996-10-28 1998-09-01 Cardiotronics Systems, Inc. Electrically conductive adhesive hydrogels
US20050137276A1 (en) * 2003-12-18 2005-06-23 Kimberly-Clark Worldwide, Inc. Electrically conductive adhesive hydrogels with solubilizer
WO2012139063A2 (en) * 2011-04-07 2012-10-11 Oculeve, Inc. Stimulation devices and methods
US20130270491A1 (en) * 2012-04-17 2013-10-17 Ik-Ro PARK Conductive hydrogel and method of preparing the same

Also Published As

Publication number Publication date
RU2016137744A (ru) 2018-03-29
EP3110405A2 (en) 2017-01-04
JP2017509747A (ja) 2017-04-06
CA2940533A1 (en) 2015-09-03
US20210069496A1 (en) 2021-03-11
US20150238754A1 (en) 2015-08-27
EP3689338A1 (en) 2020-08-05
ZA201605563B (en) 2017-09-27
WO2015130707A2 (en) 2015-09-03
SA516371733B1 (ar) 2020-10-04
US9770583B2 (en) 2017-09-26
CN106470673B (zh) 2020-01-31
RU2016137744A3 (ru) 2019-03-12
MX2020003142A (es) 2020-07-28
WO2015130707A3 (en) 2015-11-26
EP3110405B1 (en) 2020-05-06
US20170368333A1 (en) 2017-12-28
CN111298285A (zh) 2020-06-19
EP3110405A4 (en) 2017-10-18
JP6604963B2 (ja) 2019-11-20
AU2015223184A1 (en) 2016-08-25
US20180280688A1 (en) 2018-10-04
JP2020022785A (ja) 2020-02-13
CN106470673A (zh) 2017-03-01
AU2015223184B2 (en) 2020-07-02
US9956397B2 (en) 2018-05-01
MX2016011118A (es) 2016-12-05
ES2812752T3 (es) 2021-03-18
US10799696B2 (en) 2020-10-13

Similar Documents

Publication Publication Date Title
RU2698711C2 (ru) Составы полимеров для носослёзной стимуляции
JP2017509747A5 (ru)
EP3583177B1 (en) Ionically modified silicones, compositions, and medical devices formed therefrom
EP2471508B1 (en) Method of making an ophthalmic device used in the treatment of ocular allergies
JP2008214640A (ja) 薬剤の取り込み量が多い、薬剤徐放可能なヒドロゲル材料の製造方法
ES2709101T3 (es) Lente de contacto de hidrogel humectable y método para la producción de la misma
TW201339213A (zh) 含有磺酸基之聚矽氧聚合物
JPS63246718A (ja) コンタクトレンズの表面処理用レンズ溶液
JP2007289641A (ja) 治療剤を含有しているコンタクト・レンズを形成するための方法
EP3132804A1 (en) Medical device including anionic drug
JP6856019B2 (ja) 眼用レンズおよびその製造方法
JP2005507866A (ja) 管理治療のための薬物放出システム
JP2004018472A (ja) 薬剤徐放可能ヒドロゲル材料
JP2005218780A (ja) 薬物放出速度を制御し得る薬物徐放可能なヒドロゲル材料の製造方法
TWI796497B (zh) 含有陰離子性藥劑之眼用器材
JP4124610B2 (ja) 薬物徐放性コンタクトレンズ