RU2589503C2 - Липосомы с липидами, имеющими преимущественное значение рка, для доставки рнк - Google Patents

Липосомы с липидами, имеющими преимущественное значение рка, для доставки рнк Download PDF

Info

Publication number
RU2589503C2
RU2589503C2 RU2013104878/15A RU2013104878A RU2589503C2 RU 2589503 C2 RU2589503 C2 RU 2589503C2 RU 2013104878/15 A RU2013104878/15 A RU 2013104878/15A RU 2013104878 A RU2013104878 A RU 2013104878A RU 2589503 C2 RU2589503 C2 RU 2589503C2
Authority
RU
Russia
Prior art keywords
rna
liposome
liposomes
lipid
pka
Prior art date
Application number
RU2013104878/15A
Other languages
English (en)
Other versions
RU2013104878A (ru
Inventor
Эндрю ДЖИЛЛ
Original Assignee
Новартис Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44534956&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2589503(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Новартис Аг filed Critical Новартис Аг
Publication of RU2013104878A publication Critical patent/RU2013104878A/ru
Application granted granted Critical
Publication of RU2589503C2 publication Critical patent/RU2589503C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16111Cytomegalovirus, e.g. human herpesvirus 5
    • C12N2710/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18511Pneumovirus, e.g. human respiratory syncytial virus
    • C12N2760/18534Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/36011Togaviridae
    • C12N2770/36111Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
    • C12N2770/36134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mycology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

Предложенная группа изобретений относится к области невирусной доставки РНК для иммунизации. Предложена липосома для доставки in vivo РНК в клетку позвоночного животного, имеющая липидный бислой, содержащий липид, имеющий третичный амин и значение рКа от 5,0 до 6,8, который инкапсулирует водное ядро, включающее РНК, кодирующую иммуноген. Предложены также фармацевтическая композиция, содержащая указанную липосому, способ получения липосомы, способ индукции защитного иммунного ответа у позвоночного животного и применение липосомы или фармацевтической композиции для индукции защитного иммунного ответа у позвоночного животного. Предложенная группа изобретений обеспечивает эффективную доставку in vivo РНК для индукции защитного иммунного ответа у позвоночного животного. 5 н. и 10 з.п. ф-лы, 21 ил., 18 табл., 1 пр.

Description

Данная заявка заявляет приоритет предварительных заявок на патент США 61/361830 (поданной 6 июля 2010) и 61/378837 (поданной 31 августа 2010), полное содержание обеих заявок включено в данный документ для сведения для всех целей.
Область техники, к которой относится изобретение
Данное изобретение относится к области невирусной доставки РНК для иммунизации.
Уровень техники
В течение нескольких лет доставка нуклеиновых кислот для иммунизации животных является целью научных исследований. Тестировались различные подходы, при применении ДНК или РНК, такие как доставка с использованием вирусных и невирусных носителей (даже доставка без носителя в «голой» вакцине) реплицирующихся или нереплицирующихся векторов или вирусных, или невирусных векторов.
Остается потребность в дополнительных и улучшенных нуклеиновокислотных вакцинах.
Раскрытие изобретения
Согласно изобретению РНК, кодирующую иммуноген, доставляют в липосоме в целях иммунизации. Липосома включает липиды, которые имеют значение pKa в пределах от 5,0 до 7,6. В идеальном варианте липид со значением pKa в данных пределах содержит третичный амин; такие липиды ведут себя иначе по сравнению с липидами, такими как DOTAP или DC-Chol, которые содержат группу четвертичного амина. При физиологических значениях рН амины с pKa в пределах от 5,0 до 7,6 имеют нейтральный или пониженный поверхностный заряд, в то время как липид, такой как DOTAP, является сильно катионным. Заявители настоящего изобретения установили, что липосомы, образованные липидами с четвертичным амином (например, DOTAP), являются менее подходящими для доставки иммуноген-кодирующей РНК, чем липосомы, образованные липидами с третичным амином (например, DLinDMA).
Таким образом, изобретение относится к липосоме, имеющей липидный бислой, инкапсулирующий водное ядро, где (i) липидный бислой содержит липид, имеющий значение pKa от 5,0 до 7,6, и предпочтительно содержащий третичный амин, и (ii) водное ядро включает РНК, которая кодирует иммуноген. Такие липосомы подходят для доставки в условиях in vivo РНК в клетку позвоночных животных и, таким образом, они пригодны в качестве компонентов в фармацевтических композициях для иммунизации субъектов против вирусных заболеваний.
Изобретение также относится к способу получения РНК-содержащей липосомы, включающему стадии: (а) смешивание РНК с липидом при рН, который ниже pKa липида, но который выше 4,5, с образованием липосомы, в которой инкапсулирована РНК; и (b) повышение рН полученной липосома-содержащей смеси до значения, которое выше pKa липида.
Липосома
В изобретении используются липосомы, в которых инкапсулирована РНК, кодирующая иммуноген. Таким образом, РНК отделена (как и в природном вирусе) от внешней среды липидным бислоем липосомы, и было установлено, что такое инкапсулирование защищает РНК от расщепления РНКазой. Липосомы могут включать некоторое количество внешней РНК (например, на их поверхности), но, по меньшей мере, половина РНК (и в идеальном варианте вся РНК) инкапсулирована в ядре липосомы. Инкапсулирование в липосомах отличается, например, от комплексов липид/РНК, раскрытых в источнике 1.
Различные амфифильные липиды могут образовать бислои в водной среде с инкапсулированием РНК-содержащего водного ядра в виде липосомы. Такие липиды содержат анионную, катионную или цвитерионную гидрофильную «головку». Липосомы по изобретению содержат липид, имеющий значение pKa в пределах от 5,0 до 7,6, и предпочтительные липиды с pKa в этих пределах содержат третичный амин. Например, они могут содержать 1,2-дилинолеилокси-N,N-диметил-3-аминопропан (DLinDMA; pKa 5,8) и/или 1,2-дилиноленилокси-N,N-диметил-3-аминопропан (DLenDMA). Другим подходящим липидом, содержащим третичный амин, является 1,2-диолеилокси-N,N-диметил-3-аминопропан (DODMA). Смотри фиг.3 и источник 2. Также можно использовать некоторые аминолипиды из источника 3, а также некоторые аминолипиды из источника 4. Дополнительные подходящие липиды с третичными аминами в их «головках» раскрыты в источнике 5, полное содержание которого включено в данный документ для сведения.
Липосомы по изобретению также можно получить из одного липида или из смеси липидов, при условии, что, по меньшей мере, один из липидов имеет значение pKa в пределах от 5,0 до 7,6 (и предпочтительно содержит третичный амин). В данных пределах значений pKa предпочтительные липиды имеют pKa от 5,5 до 6,7, например, в пределах от 5,6 до 6,8, от 5,6 до 6,3, от 5,6 до 6,0, от 5,5 до 6,2 или от 5,7 до 5,9. pKa представляет рН, при котором 50% липидов заряжено, находясь в середине между точкой, при которой липиды полностью заряжены, и точкой, при которой липиды полностью не заряжены. Этот показатель можно определить различными путями, но предпочтительно с использованием способа, раскрытого ниже в разделе под заголовком «Определение pKa». Как правило, pKa следует определять для одного липида в большей степени, чем для липида в контексте смеси, которая также включает другие липиды (например, отлично от того, как описано в источнике 6, который в большей степени относится к pKa SNALP, чем для отдельных липидов).
Когда липосому по изобретению получают из смеси липидов, то предпочтительно, чтобы относительное количество липидов, которые имеют pKa в требуемых пределах, составляло 20-80% от общего содержания липидов в смеси, например, находилось в пределах 30-70% или 40-60%. Например, ниже показаны подходящие липосомы, в которых 40% или 60% от общего содержания липидов представлял липид с pKa в требуемых пределах. Остальная часть может представлять, например, холестерин (например, в смеси может находиться 35-50% холестерина) и/или DMG (необязательно ПЭГилированного), и/или DSPC. Такие смеси используются ниже. Такие % значения являются моль процентами.
Липосома может содержать амфифильный липид, в котором гидрофильный фрагмент ПЭГилирован (т.е. модифицирован ковалентным присоединением полиэтиленгликоля). Такая модификация может повысить стабильность и предупредить неспецифическую адсорбцию липосом. Например, липиды можно конъюгировать с ПЭГом с использованием методов, которые раскрыты в источниках 6 и 7. ПЭГ обеспечивает липосомы с оболочкой, которая придает ей благоприятные фармакокинетические свойства. Сочетание эффективного инкапсулирования РНК (в частности, самореплицирующейся РНК), катионного липида, имеющего значение pKa в пределах 5,0-7,6 и ПЭГилированной поверхности обеспечивают эффективную доставку к многочисленным типам клеток (включая иммунные и неиммунные клетки), тем самым вызывая более сильный и лучший иммунный ответ по сравнению с тем, когда используются четвертичные амины без ПЭГилирования. Можно использовать ПЭГ молекулярной массы, например, 0,5-8 kDa.
Липиды, используемые по изобретению, могут быть насыщенными или ненасыщенными. Применение, по меньшей мере, одного ненасыщенного липида для получения липосом является предпочтительным. На фиг.3 показано три подходящих ненасыщенных липида. Если ненасыщенный липид имеет два «хвоста», то оба «хвоста» могут быть ненасыщенными, или он может иметь один насыщенный «хвост» или ненасыщенный «хвост».
В примерах используется смесь DSPC, DLinDMA, PEG-DMG и холестерина. Независимым аспектом изобретения является липосома, содержащая DSPC, DLinDMA, ПЭГ-DMG и холестерин. Такая липосома предпочтительно инкапсулирует РНК, такую как самореплицирующаяся РНК, например, кодирующая иммуноген.
Липосомальные частицы обычно разделяют на три группы: мультиламеллярные везикулы (MLV); небольшие униламеллярные везикулы (SUV) и крупные униламеллярные везикулы (LUV). MLV имеют многочисленные бислои в каждой везикуле, образуя несколько отдельных водных компартментов. SUV и LUV имеют один бислой, инкапсулирующий водное ядро; как правило, SUV имеют диаметр ≤50 нм, и LUV имеют диаметр >50 нм. В идеальном варианте липосомальные частицы по изобретению являются LUV с диаметром в пределах 50-220 нм. Для композиции, содержащей популяцию LUV с различными диаметрами, имеются следующие условия: (i) по меньшей мере, 80% по количеству должно иметь диаметры в пределах 20-220 нм, (ii) в идеальном варианте средний диаметр (Zav по интенсивности) в популяции находится в пределах 40-200 нм и/или (iii) диаметры должны иметь показатель полидисперсности <2. Полагают, что комплексы липосома/РНК из источника 1 имеют диаметр в пределах 600-800 нм, и для них характерна высокая полидисперсность. Липосома должна быть по существу сферической.
Способы приготовления подходящих липосом являются хорошо известными в данной области, например, смотри источники 8-10. Один подходящий способ описан в источнике 11, и он включает смешивание (i) этанольного раствора липидов, (ii) водного раствора нуклеиновой кислоты и (iii) буфера с последующим перемешиванием, уравновешиванием, разведением и выделением. Предпочтительные липосомы по изобретению получают данным способом смешивания.
Способ смешивания
Как уже указывалось выше, изобретение относится к способу получения РНК-содержащей липосомы, включающему стадии: (а) смешивания РНК с липидом при рН, который ниже значения pKa липида, но выше 4,5; затем (b) повышение рН до значения, которое выше pKa липида.
Таким образом, катионный липид положительно заряжен во время образования липосомы на стадии (а), но затем изменение рН означает, что большинство (или все) положительно заряженные группы становятся нейтральными. Такой способ является преимущественным для приготовления липосом по изобретению, и избегая достичь рН ниже 4,5 на стадии (а), повышается стабильность инкапсулированной РНК.
Значения рН на стадии (а) находятся выше 4,5, и в идеальном варианте выше 4,8. Используя рН в пределах от 5,0 до 6,0 или в пределах 5,0 до 5,5, можно получить подходящие липосомы.
Повышенное значение рН на стадии (b) выше значения pKa липида. В идеальном варианте рН повышают до рН ниже 9 и предпочтительно ниже 8. В зависимости от pKa липида рН на стадии (b) можно, таким образом, повысить до пределов 6-8, например, до рН, равного 6,5±0,3. Повышения рН на стадии (b) можно достичь переносом липосом в подходящий буфер, например, забуференный фосфатом физиологический раствор. В идеальном варианте повышение рН на стадии (b) моно провести после образования липосом.
РНК, используемая на стадии (а), может находиться в водном растворе, который смешивают с органическим раствором липида (например, этанольным раствором, как описано в источнике (11)). Затем смесь разводят с получением липосом, после чего рН можно повысить на стадии (b).
РНК
Изобретение является подходящим для доставки в условиях in vivo РНК, которая кодирует иммуноген. РНК транслируется неиммунными клетками в месте доставки, приводя к экспрессии иммуногена, и она также стимулирует иммунные клетки к секреции интерферонов I и/или провоспалительных цитокинов, которые обеспечивают местный адъювантный эффект. Неиммунные клетки также могут секретировать интерфероны типа I и/или провоспалительные цитокины в ответ на РНК.
РНК является плюс-цепочечной и, таким образом, может транслироваться неиммунными клетками без необходимости в каких-либо промежуточных стадиях репликации, таких как обратная транскрипция. Она также может связываться с рецепторами TLR7, которые экспрессируются иммунными клетками, тем самым инициируя адъювантный эффект.
Предпочтительные плюс-цепочечные РНК являются самореплицирующимися молекулами. Молекула самореплицирующейся РНК (репликон), когда доставляется в клетки позвоночных животных даже без каких-либо белков, приводит к продукции многочисленных дочерних РНК транскрипцией из нее самой (посредством антисмысловой копии, которую она генерирует из себя самой). Таким образом, молекула самореплицирующейся РНК обычно представляет плюс-цепочечную молекулу, которая может непосредственно транслироваться после доставки в клетку, и такая трансляция обеспечивает РНК-зависимую РНК-полимеразу, которая затем продуцирует антисмысловые и смысловые транскрипты из доставленной РНК. Таким образом, доставленная РНК приводит к продукции многочисленных дочерних копий РНК. Такие дочерние РНК, а также коллинеарные субгеномные транскрипты, могут транслировать самих себя с обеспечением экспрессии in situ кодированного иммуногена, или могут транскрибироваться с обеспечением дополнительных транскриптов с тем же смыслом, что и доставленная РНК, которые транслируются с обеспечением экспрессии in situ иммуногена. В целом результаты данной последовательности транскрипций представляют высокую амплификацию копий введенных РНК-репликонов и, таким образом, кодированный иммуноген становится основным полипептидным продуктом клеток.
Как показано ниже, для РНК не требуется самореплицирующейся активности для обеспечения адъювантного эффекта, хотя, она может повысить секрецию цитокинов после трансфекции. Самореплицирующаяся активность является особенно пригодной для достижения высокого уровня экспрессии иммуногена неиммунными клетками. Она также может повысить апоптоз неиммунных клеток.
Одной подходящей системой для достижения саморепликации является применение РНК-репликона на основе альфа-вируса. Такие плюс-цепочечные репликоны транслируются после доставки в клетку с получением репликазы (или репликазы-транскриптазы). Репликаза транслируется в виде полипротеина, который саморасщепляется с обеспечением комплекса репликации, который продуцирует геномные минус-цепочечные копии плюс-цепочечной доставленной РНК. Такие минус-цепочечные транскрипты могут транскрибировать их самих с образованием дополнительных копий плюс-цепочечной исходной РНК и также могут генерировать субгеномный транскрипт, который кодирует иммуноген. Трансляция субгеномного транскрипта, таким образом, приводит к экспрессии in situ иммуногена инфицированной клеткой. В подходящих репликонах на основе альфа-вирусов можно использовать репликазу из вируса Синдбис, вируса леса Семлики, вируса восточного энцефалита лошадей, вируса венесуэльского энцефалита лошадей и т.д. В репликонах могут использоваться последовательности мутантных вирусов или вирусов дикого типа, например, аттенуированный мутант TC83 VEEV [12].
Таким образом, предпочтительная молекула самореплицирующейся РНК кодирует (i) РНК-зависимую РНК-полимеразу, которая может транскрибировать РНК из молекулы самореплицирующейся РНК, и (ii) иммуноген. Полимераза может представлять репликазу альфа-вируса, например, включающую один или более альфа-вирусных белков nsP1, nsP2, nsP3 и nsP4.
Несмотря на то, что геномы природных альфа-вирусов кодируют структурные белки вирионов в дополнении к неструктурному полибелку репликазы, предпочтительно, чтобы молекула самореплицирующейся РНК по изобретению не кодировала структурные белки альфавирусов. Таким образом, предпочтительная самореплицирующаяся РНК может приводить к продукции копий геномной РНК ее самой в клетке, но не продуцировать РНК-содержащие вирионы. Отсутствие способности продуцировать такие вирионы означает, что в отличие от альфа-вируса дикого типа, молекула самореплицирующейся РНК не может сохранять себя в инфекционной форме. Структурные белки альфа-вируса, которые необходимы для сохранения в вирусах дикого типа, отсутствуют из самореплицирующихся РНК по изобретению и их место занято геном(и), кодирующими интересующих иммуноген, так, что субгеномный транскрипт кодирует иммуноген в большей степени, чем структурные белки альфа-вирусного вириона.
Таким образом, молекула самореплицирующейся РНК, подходящая для изобретения, может иметь две открытых рамки считывания. Первая (5') открытая рамка считывания кодирует репликазу; вторая (3') открытая рамка считывания кодирует иммуноген. В некоторых вариантах осуществления РНК может иметь дополнительные (например, даунстрим) открытые рамки считывания, например, для кодирования дополнительных иммуногенов (смотри ниже) или для кодирования вспомогательных полипептидов.
Молекула самореплицирующейся РНК может содержать 5'-последовательность, которая совместима с кодированной репликазой.
Молекулы самореплицирующейся РНК могут иметь различную длину, но, как правило, их длина составляет 5000-25000 нуклеотидов, например, 8000-15000 нуклеотидов или 9000-12000 нуклеотидов. Таким образом, РНК длиннее, чем длина, наблюдаемая в системе siPHK доставки.
Молекула РНК, подходящая для изобретения, может содержать 5'-кэп (например, 7-метилгуанозин). Такая кэп-структура может повышать трансляцию РНК in vitro.
5'-нуклеотид молекулы РНК, подходящей для изобретения, содержит 5'-трифосфатную группу. В кэпированной РНК она может быть связана с 7-метилгуанозином посредством 5'-5' мостика. 5'-трифосфат может повышать связывание с RIG-I и, таким образом, стимулировать адъювантные эффекты.
Молекула РНК может содержать 3'-поли-А-хвост. Она также может содержать последовательность распознавания поли-А-полимеразы (например, AAUAAA) около 3'-конца.
Молекула РНК, подходящая для изобретения, как правило, является одноцепочечной. Одноцепочечные РНК обычно инициируют адъювантный эффект посредством связывания с TLR7, TLR8, РНК-геликазами и/или PKR. Доставленная в двухцепочечной форме РНК (dsPHK) может связываться c TLR3, и этот рецептор также может запускаться dsPHK, которая образуется во время репликации одноцепочечной РНК или находится во вторичной структуре одноцепочечной РНК.
Молекулу РНК, подходящую для изобретения, можно соответственно получить транскрипцией в условиях in vitro (IVT). При IVT можно использовать матрицу (кДНК), полученную и размноженную в плазмидной форме в бактериях, или получить синтетически (например, методами генной инженерии, синтезом гена и/или полимеразной цепной реакцией (ПЦР)). Например, ДНК-зависимую РНК-полимеразу (такую как РНК-полимеразы бактериофага Т7, Т3 или SP6) можно использовать для транскрибирования РНК с ДНК-матрицы. Можно использовать соответствующие реакции кэпирования и поли-А-добавления, в зависимости от того, что требуется (хотя, поли-А-хвост репликона обычно кодирован в ДНК-матрице). Такие РНК-полимеразы могут иметь строгие требования для транскрибированного 5'-нуклеотида(в), и в некоторых вариантах осуществления такие требования должны соответствовать требованиям кодированной репликазы для гарантии того, что транскрибированная IVT РНК может эффективно функционировать в качестве субстрата для ее самокодированной репликазы.
Как обсуждается в источнике 13, самореплицирующаяся РНК может содержать (в дополнении к 5'-кэпированной структуре) один или более модифицированных азотистых оснований. Таким образом, РНК может включать m5C (5-метилцитидин), m5U (метилуридин), m6A (N6-метиладенозин), s2U (2-тиоуридин), Um (2'-О-метилуридин), m1A (1-метиладенозин); m2A (2-метиладенозин); Am (2'-О-метиладенозин); ms2m6A (2-метилтио-N6-метиладенозин); i6A (N6-изопентениладенозин); ms2i6A (2-метилтио-N6-изопентениладенозин); io6A (N6-(цис-гидроксиизопентенил)аденозин); ms2io6A (2-метилтио-N6-(цис-гидроксиизопентенил)аденозин); g6A (N6-глицинилкарбамоиладенозин); t6A (N6-треонилкарбамоиладенозин); ms2t6A (2-метилтио-N6-треонилкарбамоиладенозин); m6t6A (N6-метил-N6-треонилкарбамоиладенозин); hn6A (N6-гидроксинорвалилкарбамоиладенозин); ms2hn6A (2-метилтио-N6-гидроксинорвалилкарбамоиладенозин); Ar(p) (2'-О-рибозиладенозин (фосфат)); I (инозин); m11 (1-метилинозин); m'Im (1,2'-О-диметилинозин); m3C (3-метилцитидин); Cm (2Т-О-метилцитидин); s2C (2-тиоцитидин); ас4С (N4-ацетилцитидин); f5C (5-фоннилцитидин); m5Cm (5,2-О-диметилцитидин); ac4Cm (N4-ацетил-2ТО-метилцитидин); k2C (лизидин); m1G (1-метилгуанозин); m2G (N2-метилгуанозин); m7G (7-метилгуанозин); Gm (2'-О-метилгуанозин); m22G (N2,N2-диметилгуанозин); m2Gm (N2,2'-O-диметилгуанозин); m22Gm (N2,N2,2'-O-триметилгуанозин); Gr(p)(2'-O-рибозилгуанозин (фосфат)); yW (вибутозин); o2yW (пероксивибутозин); OHyW (гидроксивибутозин); OHyW* (немодифицированный гидроксивибутозин); imG (виозин); mimG (метилгуанозин); Q (квеозин); oQ (эпоксиквеозин); galQ (галтактозилквеозин); manQ (маннозилквеозин); preQ (7-циано-7-деазагуанозин); preQi (7-аминометил-7-деазагуанозин); G (археозин); D (дигидроуридин); m5Um (5,2'-О-диметилуридин); s4U (4-тиоуридин); m5s2U (5-метил-2-тиоуридин); s2Um (2-тио-2'-О-метилуридин); acp3U (3-(3-амино-3-карбоксипропил)уридин); ho5U (5-гидроксиуридин); mo5U (5-метоксиуридин); cmo5U (уридин-5-оксиуксусную кислоту); mcmo5U (метиловый эфир уридин-5-оксиуксусной кислоты); chm5U (5-(карбоксигидроксиметил)уридин)); mchm5U (метиловый эфир 5-(карбоксигидроксиметил)уридина)); mcm5U (5-метоксикарбонилметилуридин); mcm5Um (S-метоксикарбонилметил-2-О-метилуридин); mcm5s2U (5-метоксикарбонилметил-2-тиоуридин); nm5s2U (5-аминометил-2-тиоуридин); mnm5U (5-метиламинометилуридин); mnm5s2U (5-метиламинометил-2-тиоуридин); mnm5se2U (5-метиламинометил-2-селеноуридин); ncm5U (5-карбамоилметилуридин); ncn5Um (5-карбамоилметилуридин); ncm5Um (5-карбамоилметил-2'-О-метилуридин); cmnm5U (5-карбоксиметиламинометилуридин); cnmm5Um (5-карбоксиметиламинометил-2-L-О-метилуридин); cmnm5s2U (5-карбоксиметиламинометил-2-тиоуридин); m62A (N6,N6-диметиладенозин); Tm (2'-О-метилинозин); m4C (N4-метилцитидин); m4Cm (N4,2-O-диметилцитидин); hm5C (5-гидроксиметилцитидин); m3U (3-метилуридин); cm5U (5-карбоксиметилуридин); m6Am (N6,T-O-диметиладенозин); rn62Am (N6,N6,О-2-триметиладенозин); m2'7G (N2,7-диметилгуанозин); m2'2'7G (N2,N2,7-триметилгуанозин); m3Um (3,2Т-О-диметилуридин); m5D (5-метилдигидроуридин); f5Cm (5-формил-2'-О-метилцитидин); m1Gm (1,2'-О-диметилгуанозин); m'Am (1,2-О-диметиладенозин)иринометилуридин); tm5s2U (S-тауринометил-2-тиоуридин); imG-14 (4-деметилгуанозин); imG2 (изогуанозин) или ас6А (N6-ацетиладенозин), гипоксантин, инозин, 8-оксоаденин, его 7-замещенные производные, дигидроурацил, псевдоурацил, 2-тиоурацил, 4-тиоурацил, 5-аминоурацил, 5-(С1-С6)алкилурацил, 5-метилурацил, 5-(С2-С6)алкенилурацил, 5-(С2-С6)алкинилурацил, 5-(гидроксиметил)урацил, 5-хлорурацил, 5-фторурацил, 5-бромурацил, 5-гидроксицитозин, 5-(С1-С6)алкилцитозин, 5-метилцитозин, 5-(С2-С6)алкенилцитозин, 5-(С2-С6)алкинилцитозин, 5-хлорцитозин, 5-фторцитозин, 5-бромцитозин, N2-диметилгуанин, 7-деазагуанин, 8-азагуанин, 7-деаза-7-замещенный гуанин, 7-деаза-7-(С2-С6)алкинилгуанин, 7-деаза-8-замещенный гуанин, 8-гидроксигуанин, 6-тиогуанин, 8-оксогуанин, 2-аминопурин, 2-амино-6-хлорпурин, 2,4-диаминопурин, 2,6-диаминопурин, 8-азапурин, замещенный 7-деазапурин, 7-деаза-7-замещенный пурин, 7-деаза-8-замещенный пурин или абазический нуклеотид. Например, самореплицирующаяся РНК может содержать одно или более модифицированных пиримидиновых азотистых оснований, таких как остатки псевдоуридина и/или 5-метилцитозина. Однако в некоторых вариантах осуществления РНК включает немодифицированные азотистые основания, и может включать немодифицированные нуклеотиды, т.е. все нуклеотиды в РНК являются обычными А, С, G и U рибонуклеотидами (за исключением 5'-кэпированной структуры, которая может содержать 7'-метилгуанозин). В других вариантах осуществления РНК может включать 5'-кэп, содержащий 7'-метилгуанозин, и первые 1, 2 или 3 5'-рибонуклеотида могут быть метилированными в 2'-положении рибозы.
В идеальном варианте РНК, используемая в изобретении, включает только фосфодиэфирные связи между нуклеотидами, но в некоторых вариантах осуществления она может содержать фосфорамидатные, фосфоротиоатные и/или метилфосфонатные связи.
В идеальном варианте липосома включает менее 10 различных видов РНК, например, 5, 4, 3 или 2 различных вида; наиболее предпочтительно липосома включает один вид РНК, т.е. молекулы РНК в липосоме имеют одинаковую последовательность и длину.
Количество РНК на липосому может варьировать. Как правило, число отдельных молекул самореплицирующихся РНК на липосому составляет ≤50, например, <20, <10, <5 или 1-4 на липосому.
Иммуноген
Молекулы РНК, используемые в изобретении, кодируют полипептидный иммуноген. После введения в липосомах РНК транслируется в условиях in vivo, и иммуноген может вызывать иммунный ответ у реципиента. Иммуноген может вызывать иммунный ответ против бактерии, вируса, гриба или паразита (или в некоторых вариантах осуществления против аллергена, и в других вариантах осуществления против опухолевого антигена). Иммунный ответ может включать ответную продукцию антител (обычно представляющих собой IgG) и/или опосредованный клетками иммунный ответ. Полипептидный иммуноген, как правило, будет вызывать иммунный ответ, в результате которого распознается соответствующий бактериальный, вирусный, грибковый или паразитарный (или аллерген или опухолевый) полипептид, но в некоторых вариантах осуществления полипептид может функционировать в качестве мимотопа для индукции иммунного ответа, который распознает бактериальный, вирусный, грибковый или паразитарный сахарид. Как правило, иммуноген является поверхностным полипептидом, например, адгезином, гемагглютинином, гликопротеином оболочки, гликопротеином шипов и т.д.
Молекулы самореплицирующейся РНК могут кодировать единичный полипептидный иммуноген или многочисленные полипептиды. Многочисленные иммуногены могут находиться в виде одного полипептидного иммуногена (слитого полипептида) или в виде отдельных полипептидов. Если иммуногены экспрессируются в виде отдельных полипептидов, то тогда один или более из них может обеспечиваться с апстрим IRE или дополнительным вирусным промоторным элементом. Альтернативно многочисленные иммуногены могут экспрессироваться из полипротеина, который кодирует отдельные иммуногены, слитые с короткой аутокаталитический протеазой (например, белок 2А вируса ящура), или в виде интеинов.
В отличие от источников 1 и 14, РНК кодирует иммуноген. Во избежание разночтений изобретение не включает РНК, которая кодирует люциферазу светляков или которая кодирует слитый белок β-галактозидазу E. coli, или которая кодирует зеленый флуоресцентный белок (GFP). Также РНК не является общей мышиной РНК тимуса.
В некоторых вариантах осуществления иммуноген вызывает иммунный ответ против одной из следующих бактерий:
Nesseria meningitides: подходящие иммуногены включают, не ограничиваясь этим, мембранные белки, такие как адгезины, аутотранспортеры, токсины, белки захвата железа и белок, связывающийся с фактором Н.
Streptococcus pneumoniae: подходящие полипептидные иммуногены описаны в источнике 16. Они включают, не ограничиваясь этим, субъединицу фимбрии RrgB, предшественник бета-N-ацетилгексозаминидазы (spr0057), spr0096, общий стресс-белок GSP-781 (spr2021, SP2216), серин-треониновую протеинкиназу StkP (SP1732) и поверхностный адгезин PsaA пневмококков.
Streptococcus pyogenes: подходящие иммуногены включают, не ограничиваясь этим, полипептиды раскрытые в источниках 17 и 18.
Moraxella catarrhalis.
Bordetella pertussis: подходящие столбнячные иммуногены включают, не ограничиваясь этим, столбнячный токсин или токсоид (РТ), нитчатый гемагглютинин (FHA), пертактин и агглютиногены 2 и 3.
Staphylococcus aureus: подходящие иммуногены включают, не ограничиваясь этим, полипептиды, раскрытые в источнике 19, такие как гемолизин, esxA, esxB, феррихром-связывающий белок (sta006) и/или липопротеин sta011.
Clostridium tetani: типичным иммуногеном является столбнячный токсоид.
Cornynebacterium diphtheriae: типичным иммуногеном является дифтерийный токсоид.
Haemophilus influenzae: подходящие иммуногены включают, не ограничиваясь этим, полипептиды, раскрытые в источниках 20 и 21.
Pseudomonas aeruginosa.
Streptococcus agalactiae: подходящие иммуногены включают, не ограничиваясь этим, полипептиды раскрытые в источнике 17.
Chlamydia trachomatis: подходящие иммуногены включают, не ограничиваясь этим, PepA, LcrE, ArtJ, DnaK, CT398, OmpH-подобный, AtoS, CT547, Eno, HtrA и MurG (например, смотри раскрытые в источнике 22. LcrE [23] и HtrA [24] являются двумя предпочтительными иммуногенами.
Chlamydia pneumoniae: подходящие иммуногены включают, не ограничиваясь этим, полипептиды раскрытые в источнике 25.
Helicobacter pylori: подходящие иммуногены включают, не ограничиваясь этим, CagA, VacA, NAP и/или уреазу [26].
Escherichia coli: подходящие иммуногены включают, не ограничиваясь этим, иммуногены, полученные из энтеротоксигенных E. coli (ETEC), энтероаггрегативных E. coli (EAggEC), диффузноадгезирующих E. coli (DAEC), энтеропатогенных E. coli (EPEC), внекишечных патогенных E. coli (ExPEC) и/или энтерогеморрагических E. coli (EHEC). Штаммы ExPEC включают уропатогенные E. coli (UPEC) и менингит/сепсис-ассоциированные E. coli (MNEC). Подходящие полипептидные иммуногены раскрыты в источниках 27 и 28. Подходящие иммуногены MNEC раскрыты в источнике 29. Подходящим иммуногеном для некоторых типов E. coli является AcfD [30].
Bacillus anthracis
Yersinia pestis: подходящие иммуногены включают, не ограничиваясь этим, полипептиды раскрытые в источниках 31 и 32.
Staphylococccus epidermis
Clostridium perfringens или Clostridium botulinums
Leggionella pneumophila
Coxiella burnetii
Brucella, такие как B. abortis, B. canis, B. melitensis, B. neotomae, B. ovis, B. suis, B. Pinnipediae.
Francisella, такие как F. novicida, F. philomiragia, F. tularensis
Neisseria gonorrhoeae
Treponema pallidum
Haemophilus ducreyi
Enterococcus faecalis или Enterococcus faecium
Staphylococcus saprophyticus
Yersinia enterocolitica
Mycobacterium tuberculosis
Rickettsia
Listeria monocytogenes
Vibrio cholerae
Salmonella typhi
Borrelia burgdorferi
Porphyrominas gingivalis
Klebsiella
В некоторых вариантах осуществления иммуноген вызывает иммунный ответ против одного из следующих вирусов:
Ортомиксовирус: подходящие иммуногены могут происходить из вируса гриппа А, В и С, такие как гемагглютинин, нейраминидаза или матричные белки М2. В том случае, когда иммуноген представляет собой гемагглютинин вируса гриппа А, то он может происходить из любого субтипа, например, Н1, Н2, Н3, Н4, Н5, Н6, Н7, Н8, Н9, Н10, Н11, Н12, Н13, Н14, Н15 или Н16.
Парамиксовирусы: вирусные иммуногены включают, не ограничиваясь этим, полученные из пневмовирусов (например, респираторный синцитиальный вирус, RSV), рубулавирусов (например, вирус свинки), парамиксовирусов (например, вирус парагриппа), метапневмовирусов и морбилливирусов (например, кори).
Поксвирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из ортопоксвируса, такого как Variola vera, включая, не ограничиваясь этим, Variola major и Variola minor.
Пикорнавирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из пикорнавирусов, таких как энтеровирусы, риновирусы, гепарнавирусы, кардиовирусы и афтоловирусы. В одном варианте осуществления энтеровирус является полиовирусом, например, полиовирусом типа 1, типа 2 и/или типа 3. В еще одном варианте осуществления энтеровирус представляет энтеровирус EV71. В еще одном варианте осуществления энтеровирус представляет вирус Коксаки А или В.
Буньявирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из ортобуньявируса, такого как вирус калифорнийского энцефалита, флебовируса, такого как вирус лихорадки долины Рифт, или наировируса, такого как вирус геморрагической лихорадки Крым-Конго.
Гепарнавирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из гепарнавируса, такого как вирус гепатита А (HAV).
Филовирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из филовируса, такого как вирус Эбола (включая подтипы вируса Эбола заирский, побережья Ивори, рестонский или суданский) или вирус Марбурга.
Тогавирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из тогавируса, такого как рубивирус, альфа-вирус или артеривирус. Они включают вирус краснухи. rubella
Флавивирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из флавивируса, такого как вирус клещевого энцефалита (TBE), вирус Денге (тип 1, 2, 3 или 4), вирус желтой лихорадки, вирус японского энцефалита, вирус болезни кьясанурского леса, вирус энцефалита Западного Нила, вирус энцефалита Сент-Луис, вирус русского весеннего-летнего энцефалита, вирус энцефалита Повассан.
Пестивирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из пестивирусов, вызывающих вирусную диарею крупного рогатого скота (BVDV), классическую лихорадку свиней (CSFV) или пограничную болезнь (BDV).
Гепаднавирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из гепаднавируса, такого как вирус гепатита В. Композиция может включать поверхностный антиген вирус гепатита В (HBsAg).
Другие вирусы гепатита: композиция может включать иммуноген из вируса гепатита С, вируса гепатита-дельта, вируса гепатита Е или вируса гепатита G.
Рабдовирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из рабдовирусов, таких как лиссавирус (например, вирус бешенства) и везикуловирус (VSV).
Калицивирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из калицивируса, такого как вирус Норуолк (Norovirus) и Норуолк-подобные вирусы, такие как вирус Гавайи и вирус Снежных Гор.
Коронавирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из коронавируса SARS, вируса инфекционного бронхита птиц (IBV), вируса гепатита мышей (MHV) и вируса трансмиссивного гастроэнтерита свиней (TGEV). Иммуноген коронавируса может быть полипептидом шипов.
Ретровирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из онковируса, лентивируса (например, HIV-1 или HIV-2) или спумавируса.
Реовирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из ортореовируса, ротавируса, орбивируса или колтивируса.
Парвовирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из парвовируса B19.
Герпесвирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из герпесвирусов человека, таких как, например, приводимые только в качестве примера, вирус герпеса простого (HSV) (например, HSV типов 1 и 2), вирус опоясывающего лишая (VZV), вирус Эпштейна-Барра (EBV), цитомегаловирус (CMV), герпесвирус человека типа 6 (HHV6), герпесвирус человека типа 7 (HHV7) и герпесвирус человека типа 8 (HHV8).
Паповавирусы: вирусные иммуногены включают, не ограничиваясь этим, полученные из папилломавирусов и полиомавирусов. Папилломавирус (человека) может представлять серотип 1, 2, 3, 4, 5, 6, 8, 11, 13, 16, 18, 31, 33, 35, 39, 41, 42, 47, 51, 57, 58, 63 или 65, например, одного или более серотипов 6, 11, 16 и/или 18.
Аденовирус: вирусные иммуногены включают, не ограничиваясь этим, полученные из аденовируса серотипа 36 (Ad-36).
В некоторых вариантах осуществления иммуноген вызывает иммунный ответ против вируса, который заражает рыб, такого как вирус инфекционной анемии лососевых (ISAV), вирус болезни поджелудочной железы лососевых (SPDV), вирус инфекционного некроза поджелудочной железы (IPNV), возбудитель вирусной болезни канального сома (CCV), вирус лимфоцистиса рыб (FLDV), вирус инфекционного гематопоэтического некроза (IHNV), кои-герпесвирус, вирус, подобный пикорнавирусам у лососевых (также известный, как вирус, подобный пикорнавирусам у атлантического лосося), вирус пресноводного лосося (LSV), ротавирус атлантического лосося (ASR), вирус земляничной форели (TSD), вирус папилломатоза лосося кижуча (CSTV) или вирус геморрагической септицемии (VHSV).
Грибковые иммуногены могут быть получены из Dermatophytres, включая: Epidermophyton floccusum, Microsporum audouini, Microsporum canis, Microsporum distorum, Microsporum equinum, Microsporum gypsum, Microsporum nanum, Trichophyton concetricum, Trichophyton equinum, Trichophyton gallinae, Trichophyton gypseum, Trichophyton megnini, Trichophyton mentagrophytes, Trichophyton quinckeanum, Trichophyton rubrum, Trichophyton schoeleini, Trichophyton tonsurans, Trichophyton verrucosum, Trichophyton verrucosum var. album, var. discoides, var. ochraceum, Trichophyton violaceum и/или Trichophyton faviforme; или из Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus nidulans, Aspergillus terreus, Aspergillus sydowi, Aspergillus flavatus, Aspergillus glaucus, Blastoschizomyces capitatus, Candida albicans, Candida enolase, Candida tropicalis, Candida glabrata, Candida krusei, Candida parapsilosis, Candida stellatoidea, Candida kusei, Candida parakwsei, Candida lusitaniae, Candida pseudotropicalis, Candida guilliermondi, Cladosporium carrionii, Coccidiodes immitis, Blastomyces dermatidis, Cryptococcus neoformans, Geotrichum clavatum, Histoplasma capsulatum, Klebsiella pneumoniae, Microsporidia, Encephalitozoon spp., Septata interstinalis и Enterocytozoon bieneusi; реже Brachiola sp., Microsporidium sp., Nosema sp., Pleistophora sp., Trachipleistophora sp., Vittaforma sp., Paracoccidioides brasiliensis, Pneumocystis carinii, Pythiumn insidiosum, Pityrosporum ovale, Sacharomyces cerevisae, Sacharomyces boulardii, Sacharomyces pombe, Scedosporium apiosperum, Sporothrix schenckii, Trichosporon beigelii, Toxoplasma gondii, Penicillium marneffei, Malassezia spp., Fonsecaea spp., Wangiella spp., Sporothrix spp., Basidiobolus spp., Conidiobolus spp., Rhizopus spp., Mucor spp., Absidia spp., Mortierella spp., Cunninghamella spp., Saksenaea spp., Alternaria spp., Curvularia spp., Helminthosporium spp., Fusarium spp., Aspergillus spp., Penicillium spp., Monolinia spp., Rhizoctonia spp., Paecilomyces spp., Pithomyces spp. и Cladosporium spp.
В некоторых вариантах осуществления иммуноген вызывает иммунный ответ против паразита из рода Plasmodium, такого как P. falciparum, P. vivax, P. malariae или P. ovale. Таким образом, изобретение можно использовать для иммунизации против малярии. В некоторых вариантах осуществления иммуноген вызывает иммунный ответ против паразита семейства Caligidae, в частности, родов Lepeophtheirus и Caligus, например, это морская вошь, такая как Lepeophtheirus salmonis и Caligus rogercresseyi.
В некоторых вариантах осуществления иммуноген вызывает иммунный ответ против: аллергенов пыльцы (аллергенов пыльцы деревьев, травянистых растений, сорных растений и злаковых трав); аллергенов насекомых или клещей (воздушных аллергенов, аллергенов слюны и яда, например, аллергенов клещей, аллергенов тараканов и мошек, аллергенов яда отряда перепончатокрылых); аллергенов волос и перхоти животных (например, собак, кошек, лошади, крысы мыши и т.д.) и пищевых аллергенов (например, глиадин). Важными аллергенами пыльцы деревьев, злаковых трав и травянистых растений являются аллергены, которые происходят от растений таксономических отрядов Fagales, Oleales, Pinales и Platanaceae, включая, не ограничиваясь этим, березу (Betula), ольху (Alnus), лещина (Corylus), граб (Carpinus) и оливковое дерево (Olea), кедр (Cryptomeria и Juniperus), плоское дерево (Platanus), отряд Poales, включая злаковые травы родов Lolium, Phleum, Poa, Cynodon, Dactylis, Holcus, Phalaris, Secale и Sorghum, отрядов Asteralis и Urticales, включая травянистые растения родов Ambrosia, Artemisia и Parietaria. Другими важными воздушными аллергенами являются аллергены клещей домашней пыли рода Dermatophagoides и Euroglyphus, амбарных клещей, например, Lepidoglyphys, Glycyphagus и Tyrophagus, аллергены тараканов, мошек и блох, например, Blatella, Periplaneta, Chironomus и Ctenocepphalides, и аллергены млекопитающих, таких как кошка, собака и лошадь, аллергены ядов, включая аллергены жалящих или кусающих насекомых, такие как аллергены таксономического отряда перепончатокрылых, включая пчел (Apidae), ос (Vespidea) и муравьев (Formicoidae).
В некоторых вариантах осуществления иммуноген является опухолевым антигеном, выбранным из: (а) антигенов злокачественной опухоли семенников, таких как полипептиды семейства NY-ESO-1, SSX2, SCP1, а также полипептиды семейства RAGE, BAGE, GAGE и MAGE, например, GAGE-1, GAGE-2, MAGE-1, MAGE-2, MAGE-3, MAGE-4, MAGE-5, MAGE-6 и MAGE-12 (которые можно использовать, например, при вакцинации против меланомы, опухолей легких, головы и шеи, NSCLC, молочной железы, органов желудочно-кишечного тракта и мочевого пузыря); (b) мутированных антигенов, например, р53 (ассоциированного с различными солидными опухолями, например, злокачественными опухолями ободочной и прямой кишки, легких, головы и шеи), p21/Ras (ассоциированного, например, с меланомой, раком поджелудочной железы и колоректальным раком), CDK4 (ассоциированного с меланомой), MUM1 (ассоциированного, например, с меланомой), каспазы-8 (ассоциированной, например, со злокачественными опухолями головы и шеи), CIA 0205 (ассоциированного, например, с раком мочевого пузыря), HLA-A2-R1701, бета-катенина (ассоциированного, например, с меланомой), TCR (ассоциированного, например, с Т-клеточной неходжкинской лимфомой), BCR-abl (ассоциированного, например, с хроническим миелогенным лейкозом), триосефосфатизомеразы, KIA 0205, CDC-27 и LDLR-FUT; (c) сверхэкспрессированных антигенов, например, галектина 4 (ассоциированного, например, с колоректальным раком), галектина 9 (ассоциированного, например, с болезнью Ходжкина), протеиназы 3 (ассоциированной, например, с хроническим миелоидным лейкозом), WT 1 (ассоциированного, например, с различными лейкозами), карбоангидразы (ассоциированной, например, с раком почек), альдолазы А (ассоциированной, например, с раком легких), PRAME (ассоциированного, например, с меланомой), HER-2/neu (ассоциированного, например, с раком молочной железы, ободочной кишки, легких и яичников), маммоглобина, альфа-фетопротеина (ассоциированного, например, с гепатомой), KSA (ассоциированного, например, с колоректальным раком), гастрина (ассоциированного, например, с раком поджелудочной железы и желудка), каталитического компонента теломеразы MUC-1 (ассоциированного, например, с раком молочной железы и яичников), G-250 (ассоциированного, например, с почечно-клеточной карциномой), р53 (ассоциированного, например, с раком молочной железы, ободочной кишки) и карциноэмбрионального антигена (ассоциированного, например, с раком молочной железы, раком легких и раком органов желудочно-кишечного тракта, таким как колоректальный рак); (d) общих антигенов, например, антигенов меланомы-дифференцировки меланоцитов, таких как MART-1/Melan A, gp100, MC1R, рецептор меланоцит-стимулирующего гормона, тирозиназы, связанного с тирозиназой белка-1/TRP1 и связанного с тирозиназой белка-2/TRP2 (ассоциированных, например, с меланомой); (е) ассоциированных с предстательной железой антигенов, таких как PAP, PSA, PSMA, PSH-1, PSM-P1, PSM-P2, ассоциированных, например, с раком предстательной железы; (f) иммуноглобулиновых идиотипов (ассоциированных, например, с миеломой и В-клеточными лимфомами). В некоторых вариантах осуществления опухолевые иммуногены включают, не ограничиваясь этим, p15, Hom/Mel-40, H-Ras, E2A-PRL, H4-RET, IGH-IGK, MYL-RAR, антигены вируса Эпштейна-Барра, EBNA, антигены папилломавируса (HPV), включая Е6 иЕ7, антигены вируса гепатита В и С, антигены Т-лимфотропного вируса, TSP-180, p185erbB2, p180erb-3, c-met, mn-23H1, TAG-72-4, CA 19-9, CA 72-4, CAM 17.1, NuMa, K-ras, p16, TAGE, PSCA, CT7, 43-9F, 5T4, 791 Tgp72, beta-HCG, BCA225, BTAA, CA 125, CA 15-3 (CA 27.29\BCAA), CA 195, CA 242, CA-50, CAM43, CD68\KP1, CO-029, FGF-5, Ga733 (EpCAM), HTgp-175, M344, MA-50, MG7-Ag, MOV18, NB/70K, NY-CO-1, RCAS1, SDCCAG16, TA-90 (Mac-2-связывающий белок/циклофилин С-ассоциированный белок), TAAL6, TAG72, TLP, TPS и тому подобное.
Фармацевтические композиции
Липосомы по изобретению являются подходящими в качестве компонентов в фармацевтических композициях для иммунизации субъектов против различных заболеваний. Как правило, такие композиции включают фармацевтически приемлемый носитель в дополнении к липосомам. Подробное обсуждение фармацевтически приемлемых носителей приводится в источнике 33.
Фармацевтическая композиция по изобретению может включать один или более небольших молекул иммунопотенциаторов. Например, композиция может содержать агонист TLR2 (например, Pam3CSK4), агонист TLR4 (например, аминоалкилглюкозаминид фосфат, такой как Е6020), агонист TLR4 (например, имиквимод), агонист TLR8 (например, резиквимод) и/или агонист TLR9 (например, IC31). В идеальном варианте любой такой агонист имеет молекулярную массу <2000 Da. В том случае, если РНК инкапсулирована, то в некоторых вариантах осуществления агонист(ы) также инкапсулируют с РНК, но в других вариантах осуществления они остаются неинкапсулированными. В тех случаях, когда РНК адсорбирована на частице, то в некоторых вариантах осуществления такой агонист(ы) также адсорбируется с РНК, но в других вариантах осуществления он не адсорбирован.
Фармацевтические композиции по изобретению могут содержать липосомы в обыкновенной воде (например, в вожже для инъекций) или в буфере, например, фосфатном буфере, Трис-буфере, боратном буфере, сукцинатном буфере, гистидиновом буфере или цитратном буфере. Как правило, соли буфера будут находиться в количестве в пределах 5-20 мМ.
Фармацевтические композиции по изобретению могут иметь рН в пределах от 5,0 до 9,5, например, от 6,0 до 8,0.
Композиции по изобретению могут содержать соли натрия (например, хлорида натрия) для обеспечения эффективного осмотического давления раствора. Концентрация NaCl 10±2 мг/мл является типичной, например, примерно 9 мг/мл.
Композиции по изобретению могут содержать вещества, образующие хелатные комплексы с ионами металлов. Они могут пролонгировать стабильность РНК посредством удаления ионов, ускоряющих гидролиз фосфодиэфирных связей. Таким образом, композиция может содержать одно или более из ЭДТА, ЭГТА, BAPTA, пентетовой кислоты и т.д. Такие хелатообразующие вещества, как правило, находятся в количестве 10-500 мкМ, например, 0,1 мМ. Цитрат, такой как цитрат натрия, также может функционировать в качестве хелатообразующего агента, одновременно преимущественно обеспечивая также буферную активность.
Фармацевтические композиции по изобретению могут иметь осмолярность в пределах от 200 мОсм/кг до 400 мОсм/кг, в пределах 240-360 мОсм/кг или в пределах 290-310 мОсм/кг.
Фармацевтические композиции по изобретению могут содержать один или более консервантов, таких как тиомерсал или 2-феноксиэтанол. Предпочтительными являются не содержащие ртути композиции, и можно приготовить не содержащие консервантов вакцины.
Фармацевтические композиции по изобретению предпочтительно являются стерильными.
Фармацевтические композиции по изобретению предпочтительно являются непирогенными, например, содержащими <1 ЕЭ (единиц эндотоксина, стандартный показатель) на дозу, и предпочтительно <0,1 ЕЭ.
Фармацевтические композиции по изобретению предпочтительно не содержат глютен.
Фармацевтические композиции по изобретению можно приготовить в форме разовой дозы. В некоторых вариантах осуществления разовая доза может иметь объем в пределах 0,1-1,0 мл, например, примерно 0,5 мл.
Композиции можно приготовить в виде инъекционных препаратов, или в виде растворов или суспензий. Композицию можно приготовить для пульмонарного введения, например, с помощью ингалятора, с использованием мелкодисперсного спрея. Можно приготовить композиции для интраназального, внутриушного или внутриглазного введения, например, в виде спрея или капель. Типичными являются инъекционные препараты для внутримышечного введения.
Композиции могут включать иммунологически эффективное количество липосом, а также любые другие компоненты, которые требуются. Выражение «иммунологически эффективное количество» означает, что введение такого количества индивидууму, в одной дозе или в виде части серий доз, эффективно для лечения или профилактики. Такое количество варьирует в зависимости от состояния здоровья и физического состояния индивидуума, который подвергается лечению, возраста, таксономической группы индивидуума, который подвергается лечению (например, примат, отличный от человека, примат и т.д.), способности иммунной системы индивидуума продуцировать антитела, степени требуемой защиты, формуляции вакцины, оценки медицинской ситуации лечащим врачом и других имеющих отношении факторов. Полагается, что количество будет находиться в относительно широких пределах, которые можно определить обычными исследованиями. Содержание липосомы и РНК в композициях по изобретению, как правило, будет выражаться в единицах количества РНК на дозу. Предпочтительная доза составляет ≤100 мкг РНК (например, в пределах 10-100 мкг, например, примерно 10 мкг, 25 мкг, 50 мкг, 75 мкг или 100 мкг), но экспрессия может наблюдаться при значительно более низких количествах, ≤1 мкг/дозу, ≤100 нг/дозу, ≤10 нг/дозу, ≤1 нг/дозу и т.д.
Изобретение также относится к устройству для доставки (например, шприцу, распылителю, пульверизатору, дермальному пластырю и т.д.), содержащему фармацевтическую композицию по изобретению. Такое устройство можно использовать для введения композиции субъекту позвоночному животному.
Липосомы по изобретению не содержат рибосом.
Способы лечения и медицинские применения
В противоположность частицам, раскрытым в источнике 14, липосомы и фармацевтические композиции по изобретению являются пригодными в условиях in vivo для индукции иммунного ответа против интересующего иммуногена.
Изобретение относится к способу индукции иммунного ответа у позвоночного животного, включающему стадию введения эффективного количества липосомы и фармацевтической композиции по изобретению. Иммунный ответ предпочтительно является протективным и предпочтительно включает антитела и/или опосредованный клетками иммунитет. Способ может индуцировать бустер-эффект.
Также изобретение относится к липосоме и фармацевтической композиции по изобретению для применения в способе индукции иммунного ответа у позвоночного животного.
Также изобретение относится к применению липосомы по изобретению в производстве лекарственного препарата для индукции иммунного ответа у позвоночного животного.
Посредством индукции иммунного ответа у позвоночного животного с данными применениями и способами позвоночное животное может быть защищено против различных заболеваний и/или инфекций, например, против бактериальных и/или вирусных заболеваний, которые обсуждались выше. Липосомы и композиции являются иммуногенными, и более предпочтительно представляют вакцинные композиции. Вакцины по изобретению могут быть профилактическими (т.е. профилактировать инфекцию) или терапевтическими (т.е. лечить инфекцию), но обычно они являются профилактическими.
Позвоночное животное предпочтительно является млекопитающим, таким как человек или крупное сельскохозяйственное животное (например, лошади, крупный рогатый скот, олень, козы, свиньи). В том случае, когда вакцина предназначена для профилактического применения, то человек предпочтительно является ребенком (например, ребенком ясельного возраста или младенцем), или подростком; когда вакцина рассчитана для терапевтического применения, то человек предпочтительно представляет подростка или взрослого человека. Вакцину, предназначенную для детей, также можно вводить взрослым, например, для оценки безопасности, установления дозировки, иммуногенности и т.д.
Вакцины, приготовленные по изобретению, можно использовать для лечения детей и взрослых. Таким образом, человек-пациент может находиться в возрасте моложе 1 года, моложе 5 лет, в возрасте 1-5 лет, 5-15 лет, 15-55 лет или, по меньшей мере, 55 лет. Предпочтительными пациентами для введения вакцин являются пожилые люди (например, в возрасте ≥50 лет, ≥60 лет и предпочтительно ≥65 лет), молодые люди (например, в возрасте ≤5 лет), пациенты больниц, работники учреждений здравоохранения, военные и полицейские, беременные женщины, пациенты с хроническими болезнями или люди с иммунодефицитными состояниями. Однако вакцины подходят не только для этих групп, их можно использовать более широко для других групп населения.
Композиции по изобретению, как правило, вводят непосредственно пациенту. Прямую доставку можно осуществить парентеральной инъекцией (например, подкожно, внутрибрюшинно, внутривенно, внутримышечно, внутрикожно или в интерстициальное пространство ткани; в отличие от источника 1, внутриязычная инъекция не используется широко в настоящем изобретении). Альтернативные пути введения включают ректальный, пероральный (например, таблетки, спрей), буккальный, сублингвальный, интравагинальный, местный, трансдермальный или чрезкожный, интраназальный, внутриглазной, внутриушной, пульмонарный или другие мукозальные пути введения. Внутрикожное и внутримышечное введение является двумя предпочтительными путями. Инъекцию можно проводить с использованием иглы (например, гиподермической иглы), но альтернативно можно проводить безыгольную инъекцию. Типичная доза при внутримышечном введении составляет 0,5 мл.
Изобретение можно использовать для индукции системного и/или мукозального иммунитета, предпочтительно для индукции повышенного системного и/или мукозального иммунитета.
Дозировка может представлять однодозовую схему или мультидозовую схему. Мультидозы можно использовать в схеме первичной иммунизации и/или схеме повторной иммунизации. В мультидозовой схеме различные дозы можно вводить одним и тем же или различными путями, например, первую дозу - парентеральным путем и повторную дозу - через слизистую, первую дозу - через слизистую и повторную дозу - парентеральным путем и т.д. Как правило, мультидозы вводят, по меньшей мере, с интервалом 1 неделю (например, примерно 2 недели, примерно 3 недели, примерно 3 недели, примерно 4 недели, примерно 6 недель, примерно 8 недель, примерно 10 недель, примерно 12 недель, примерно 16 недель и т.д.). В одном варианте осуществления мультидозы можно вводить через примерно 6 недель, 10 недель и 14 недель после рождения, например, в возрасте 6 недель, 10 недель и 14 недель, как это часто применяют в расширенной программе иммунизации Всемирной Организации Здравоохранения («EPI»). В альтернативном варианте осуществления две основные дозы вводят с интервалом примерно два месяца, например, с интервалом примерно 7, 8 или 9 недель, с последующим введением одной или более повторных доз примерно через период времени от 6 месяцев до 1 года после второй основной дозы, например, примерно через 6, 8, 10 или 12 месяцев после второй основной дозы. В дополнительном варианте осуществления три основных дозы вводят с интервалом примерно два месяца, например, с интервалом примерно 7, 8 или 9 недель, с последующим введением одной или более повторных доз через период времени от 6 месяцев до 1 года после третьей основной дозы, например, примерно через 6, 8, 10 или 12 месяцев после третьей основной дозы.
Общая информация
В практике настоящего изобретения будут применяться, если не указано иначе, обычные методы химии, биохимии, молекулярной биологии, иммунологии и фармакологии, известные в данной области. Такие методы подробно описаны в литературе. Смотри, например, источники 34-40 и т.д.
Термин «содержащий» означает «включающий», а также «состоящий», например, композиция, «содержащая» Х, может исключительно состоять из Х, или может содержать некоторые дополнительные компоненты, например, Х+Y.
Термин «примерно» по отношению к цифровому значению x является необязательным и означает, например, х±10%.
Выражение «по существу» не исключает «полностью», например, композиция, которая «по существу не содержит» Y, может полностью не содержать Y. Когда это необходимо, то выражение «по существу» можно исключить из определения по изобретению.
Обращения к терминам заряд, катионы, анионы, цвитеррионы и т.д., используются при рН 7.
TLR3 представляет Toll-подобный рецептор 3. Это единичный мембранный рецептор, который играет ключевую роль в системе врожденного иммунитета. Известные агонисты TLR3 включают поли(I:C). «TLR3» является принятым по номенклатуре HGNC названием гена, кодирующего данный рецептор, и его уникальным номером HGNC ID является HGNC:11849. Последовательность RefSeq для гена TLR3 человека представляет GI:2459625.
TLR7 представляет Toll-подобный рецептор 7. Это единичный мембранный рецептор, который играет ключевую роль в системе врожденного иммунитета. Известные агонисты TLR7 включают, например, имиквимод. «TLR7» является принятым по номенклатуре HGNC названием гена, кодирующего данный рецептор, и его уникальным номером HGNC ID является HGNC:15631. Последовательность RefSeq гена TLR7 человека представляет GI:67944638.
TLR8 представляет Toll-подобный рецептор 8. Это единичный мембранный рецептор, который играет ключевую роль системе врожденного иммунитета. Известные агонисты TLR7 включают, например, резиквимод. «TLR8» является принятым по номенклатуре HGNC названием гена, кодирующего данный рецептор, и его уникальным номером HGNC ID является HGNC:15632. Последовательность RefSeq гена TLR8 человека представляет GI:20302165.
Семейство RIG-I-подобных рецепторов («RLR») включает различные РНК-геликазы, которые играют ключевую роль системе врожденного иммунитета [41]. RLR-1 (также известный, как RIG-I или ген I, индуцируемый ретиноевой кислотой) имеет два домена рекрутирования каспазы около его N-конца. Принятым по номенклатуре HGNC названием гена, кодирующего геликазу RLR-1, является «DDX58» (для DEAD (Asp-Glu-Ala-Asp) box полипептида 58), и его уникальным номером HGNC ID является HGNC:19102. Последовательность RefSeq гена RLR-1 человека представляет GI:77732514. RLR-2 (также известный, как MDA5 или ассоциированный с дифференцировкой меланомы ген 5) также имеет два домена рекрутирования каспазы около его N-конца. Принятым по номенклатуре HGNC названием гена, кодирующего геликазу RLR-2, является «IFIH1» (для домена 1 индуцированной интерфероном геликазы С), и его уникальный номер HGNC ID представляет HGNC:18873. Последовательность RefSeq гена RLR-2 человека представляет GI:27886567. RLR-3 (также известный, как LGP2 или лаборатория генетики и физиологии 2) не имеет доменов рекрутирования каспазы. Принятым по номенклатуре HGNC названием гена, кодирующего геликазу RLR-3, является «DHX58» (для DHX (Asp-Glu-Х-His) box полипептида 58), и его уникальным номером HGNC ID является HGNC:29517. Последовательность RefSeq гена RLR-3 человека представляет GI:149408121.
PKR представляет зависимую от двухцепочечной РНК протеинкиназу. Она играет ключевую роль в системе врожденного иммунитета. «EIF2AK2» (для эукариотического фактора инициации трансляции 2-альфа киназы 2) является принятым по номенклатуре HGNC названием гена, кодирующего данный фермент, и его уникальный номер HGNC ID представляет HGNC:9437. Последовательность RefSeq гена PKR человека представляет GI:208431825.
КРАТКОЕ ОПИСАНИЕ ФИГУР
На фиг.1 показан гель с окрашенной РНК. Дорожки показывают (1) маркеры (2) «голый» репликон (3) репликон после обработки РНКазой (4) репликон, инкапсулированный в липосоме (5) липосома после обработки РНКазой (6) липосома, обработанная РНКазой, затем подвергнутая экстракции смесью фенол/хлороформ.
Фиг.2 представляет электронную микрофотографию липосом.
На фиг.3 приведены структуры DLinDMA, DLenDMA и DODMA.
На фиг.4 показан гель с окрашенной РНК. Дорожки показывают (1) маркеры (2) «голый» репликон (3) репликон, инкапсулированный в липосому (4) липосома, обработанная РНКазой, затем подвергнутая экстракции смесью фенол/хлороформ.
На фиг.5 показана экспрессия белка на сутки 1; 3 и 6 после доставки РНК в виде упакованного в вирион репликона (прямоугольники) в виде «голой» РНК (ромбы) или в липосомах (+=0,1 мкг, х=1 мкг).
На фиг.6 показана экспрессия белка на сутки 1; 3 и 6 после доставки инкапсулированной в липосому РНК в четырех различных дозах.
На фиг.7 показаны титры анти-F-IgG у животных, получивших упакованный в вирион репликон (VRP или VSRP), 1 мкг «голой» РНК и 1 мкг инкапсулированной в липосому РНК.
На фиг.8 показаны титры анти-F-IgG у животных, получивших VRP, 1 мкг «голой» РНК и 0,1 г или 1 мкг инкапсулированной в липосому РНК.
На фиг.9 показаны титры нейтрализующих антител у животных, получивших VRP или 0,1 г или 1 мкг инкапсулированной в липосому РНК.
На фиг.10 показаны уровни экспрессии после доставки репликона в виде «голой» РНК (кружки), инкапсулированной в липосому РНК (треугольники и прямоугольники) или в виде липоплекс (перевернутые треугольники).
На фиг.11 показаны титры F-специфического IgG (через 2 недели после второй дозы) после доставки репликона в виде «голой» РНК (0,01-1 мкг), инкапсулированной в липосому РНК (0,01-10 мкг) или упакованной в виде вириона (VRP, 106 инфекционных единиц или МЕ).
На фиг.12 показаны титры F-специфического IgG (кружки) и титры PRNT (прямоугольники) после доставки репликона в виде «голой» РНК (1 мкг), инкапсулированной в липосому РНК (0,1 или 1 мкг) или упакованной в виде вириона (VRP, 106 МЕ). Также представлены титры у интактных мышей. Сплошные линии являются геометрическими средними значениями.
На фиг.13 показана внутриклеточная продукция цитокинов после повторной стимуляции синтетическими пептидами, представляющими основные эпитопы в белке F, 4 недели после второй дозы. На оси Y приведен % цитокина+ CD8+CD4-.
На фиг.14 показаны титры F-специфического IgG (log10 средних значений титров) в течение 63 суток (фиг.14А) и 210 суток (фиг.14В) после иммунизации телят. Три линии легко распознаются на 63 сутки и снизу вверх означают: отрицательный контроль PBS, доставленная в липосомах РНК и продукт «Triangle 2».
На фиг.15 показана зависимость экспрессии SEAP (относительная интенсивность) на сутки 6 против pKa липидов, использованных в липосомах. Кружки показывают значения для липосом с DSPC и прямоугольники - для липосом без DSPC; в некоторых случаях прямоугольники и кружки перекрываются, оставляя видимыми только прямоугольники для данного значения pKa.
На фиг.16 показана экспрессия титров анти-F-IgG (относительно RV01, 100%) через две недели после первой дозы репликона, кодирующего F-белок. Строили график зависимости титров от pKa аналогично тому, как на фиг.15. Звездочки показывают RV02, в которых использовали катионный липид, имеющий pKa выше, чем другие липиды. Треугольники показывают данные для липосом с отсутствием DSPC; кружки - для липосом, которые содержали DSPC.
На фиг.17 показаны общие титры IgG после доставки репликона в липосомах с использованием, слева направо, RV01, RV16, RV17, RV18 или RV19. Линии показывают средние значения. Верхняя линия в каждом случае 2wp2 (т.е. через 2 недели после второй дозы), в то время как нижняя линия представляет 2wp1.
На фиг.18 показаны титры IgG в 13 группах мышей. Каждый кружок означает отдельную мышь, и сплошные линии показывают геометрические средние значения. Прерывистая горизонтальная линия представляет предел определения теста. 13 групп, слева направо, представляют от А до М, как показано ниже.
На фиг.19 показано (А) IL-6 и (В) IFNα (пкг/мл), продуцированные pDC. Имеются 4 пары столбцов, слева направо: контроль; иммунизированные РНК+DOTAP; иммунизированные РНК+липофектамин и иммунизированные РНК в липосомах. В каждой паре черный столбец представляет мышей дикого типа, серый - мутанта rsq1.
СПОСОБЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
РНК-репликоны
Ниже используются различные репликоны. В целом они основаны на рекомбинантном геноме альфа-вируса с неструктурными белками из вируса венесуэльского энцефалита лошадей (VEEV), сигналом упаковки из вируса Синдбис и 3' UTR из вируса Синдбис или мутанта VEEV. Репликон имеет длину примерно 10 т.п.н. и содержит поли-А-хвост.
Плазмидная ДНК, кодирующая репликоны альфа-вируса (имеющая название: pT7-mVEEV-FL.RSVF или A317; pT7-mVEEV-SEAP или A306; pSP6-VCR-GFP или A50), служила в качестве матрицы для синтеза РНК в условиях in vitro. Репликоны содержат генетические элементы альфа-вируса, необходимые для репликации РНК, но в них отсутствуют элементы, кодирующие продукты гена, необходимые для сборки частиц; структурные белки замещены интересующим белком (репортером, таким как SEAP или GFP, или иммуногеном, таким как полноразмерный RSV F-белок) и, таким образом, репликоны не способны индуцировать генерацию инфекционных частиц. Промотор бактериофага (Т7 или SP6) апстрим кДНК альфа-вируса облегчает синтез РНК-репликона в условиях in vitro, и рибозим вируса гепатита дельта (HDV) сразу же даунстрим поли(А)-хвоста генерирует правильный 3'-конец посредством его саморасщепляющей активности.
После линеаризации плазмидной ДНК даунстрим от рибозима HDV с использованием подходящей рестриктазы, синтезировали «прерванные» транскрипты в условиях in vitro с использованием ДНК-зависимой РНК-полимеразы бактерифага Т7 или SP6. Транскрипции проводили в течение 2 ч при 37°С в присутствии 7,5 мМ (РНК-полимеразы Т7) или 5 мМ (РНК-полимеразы SP6) каждого из нуклеозидтрифосфатов (ATP, CTP, GTP и UTP), следуя инструкциям, предоставленным изготовителем (Ambion). После транскрипции ДНК-матрицу расщепляли ДНКазой TURBO (Ambion). РНК-репликон преципитировали LiCl и восстанавливали в воде, не содержащей нуклеаз. После транскрипции некэпированную РНК кэпировали с использованием Vaccinia Capping Enzyme (VCE) с использованием системы ScriptCap m7G Capping System (Epicentre Biotechnologies), как описано в инструкции для пользователя; репликоны, кэпированные таким образом, представлены с приставкой «v», например, vA317 является репликоном A317, кэпированным VCE. После транскрипции кэпированную РНК преципитировали LiCl и восстанавливали в воде, не содержащей нуклеаз. Концентрацию образцов РНК анализировали по определению OD260nm. Целостность транскриптов in vitro подтверждали электрофорезом в агарозном геле в денатурирующих условиях.
Липосомальное инкапсулирование
РНК инкапсулировали в липосомах, приготовленных способом, описанным в источниках 11 и 42. Липосомы готовили из 10% DSPC (цвиттерионный), 40% DLinDMA (катионный), 48% холестерина и 2% конъюгированного с ПЭГом DMG (ПЭГ 2 kDa). Данные относительные количества относятся к моль % к всей липосоме.
DLinDMA (1,2-дилинолеилокси-N,N-диметил-3-аминопропан) синтезировали с использованием метода, описанного в источнике 6. DSPC (1,2-диастероил-sn-глицеро-3-фосфохолин) получали от Genzyme. Холестерин получали от Sigma-Aldrich. Конъюгированный с ПЭГом DMG (1,2-димиристоил-sn-глицеро-3-фосфоэтаноламин-N-[метокси(полиэтиленгликоль] аммониевая соль), DOTAP (1,2-диолеоил-3-триметиламмоний пропан хлорид) и DC-chol (3β-[N-(N',N'-диметиламиноэтан)карбамоил]холестерин гидрохлорид) получали от Avanti Polar Lipids.
Вкратце, липиды растворяли в этаноле (2 мл), РНК-репликон растворяли в буфере (2 мл, 100 мМ цитрата натрия, рН 6) и растворы смешивали с 2 мл буфера с последующим уравновешиванием в течение 1 ч. Смесь разбавляли 6 мл буфера, затем фильтровали. Полученный продукт содержал липосомы, с эффективностью инкапсулирования примерно 95%.
Например, в одном конкретном способе готовили свежие маточные растворы в этаноле. Взвешивали 37 мг DLinDMA, 11,8 мг DSPC, 27,8 мг холестерина и 8,07 мг ПЭГ-DMG и растворяли в 7,55 мл этанола. Свежеприготовленный маточный раствор липидов осторожно качали при 37°С примерно в течение 15 мин с получением гомогенной смеси. Затем 755 мкл маточного раствора добавляли к 1,245 мл этанола с получением рабочего маточного раствора липидов объемом 2 мл. Это количество липидов использовали для получения липосом с 250 мкг РНК. Также готовили 2 мл рабочего раствора РНК из маточного раствора с концентрацией ≈1 мкг/мкл в 100 мМ цитратном буфере (рН 6). Три стеклянных сосуда емкостью 20 мл (с магнитной мешалкой) промывали раствором RNase Away (Molecular BioProducts) и промывали избытком воды MilliQ перед использованием для инактивации РНКаз в сосудах. Один из сосудов использовали для рабочего раствора РНК и другие для сбора смесей липида и РНК (как описано ниже). Рабочие растворы липидов и РНК нагревали при 37°С в течение 10 мин перед загрузкой в шприцы 3cc «Луер Лок». В другой шприц 3cc вносили 2 мл цитратного буфера (рН 6). Шприцы, содержащие РНК и липиды, подсоединяли к Т-смесителю (PEEKTM 500 мкм ID junction, Idex health Science), используя трубку из FEP (фторированный этилен-пропилен; все использованные FEP-трубки имели внутренний диаметр 2 мм и внешний диаметр 3 мм). Выходное отверстие Т-смесителя также представляло трубку из FEP. Третий шприц, содержащий цитратный буфер, соединяли с отдельным участком FEP-трубки. Затем содержимое всех шприцов приводилось в движение со скоростью 7 мл/мин с использованием шприцевого насоса. Выходные отверстия трубок располагались для сбора смесей в стеклянном сосуде емкостью 20 мл (с одновременным перемешиванием). Затем извлекали магнитные мешалки, и смеси этанол/водный раствор давали уравновеситься при комнатной температуре в течение 1 ч. 4 мл смеси загружали в шприц 5 сс, который был соединен с участком FEP-трубки, и в другой шприц 5 сс, соединенный с таким же по длине участком FEP-трубки, загружали равное количество 100 мМ цитратного буфера (рН 6). Содержимое двух шприцов приводили в движение со скоростью 7 мл/мин с использованием шприцевого насоса и конечную смесь собирали в стеклянном сосуде емкостью 20 мл (с одновременным перемешиванием). Затем смесь, собранную на второй стадии сбора (липосомы) пропускали через мембрану Mustang Q (анионообменная подложка, которая связывает и удаляет анионные молекулы, производства Pall Corporation). Перед использованием данной мембраны для липосом через нее последовательно пропускали 4 мл 1М NaOH, 4 мл 1М NaCl и 10 мл 100 мМ цитратного буфера (рН 6). Липосомы подогревали в течение 10 мин при 37°С до пропускания через мембрану. Затем липосомы концентрировали до 2 мл и диализовали против 10-15 объемов IX PBS с использованием тангенциального проточного фильтрования перед извлечением конечного продукта. Систему TFF и фильтрационные мембраны из полых волокон получали от Spectrum Labs (Rancho Dominguez) и использовали согласно указаниям изготовителя. Использовали полисульфоновые фильтрационные мембраны из полых волокон с отсечением по молекулярной массе 100 kD и площадью поверхности 8 см2. Для экспериментов in vitro и in vivo композиции разбавляли до требуемой концентрации РНК с использованием IX PBS.
На фиг.2 показан пример электронной микрофотографии липосом, приготовленных данными способами. Эти липосомы содержат инкапсулированную РНК, кодирующую полноразмерный антиген RSV F. Результаты динамического рассеяния света одной партии показывали, что средний диаметр равен 141 нм (по интенсивности) или 78 нм (по числу).
Определяли процент инкапсулированной РНК и концентрацию РНК с использованием набора Quant-iT RiboGreen RNA reagent (Invitrogen), следуя инструкциям изготовителя. Стандарт рибосомальной РНК, включенный в набор, использовали для построения калибровочной кривой. Липосомы разводили 10× или 100× буфером 1X TE (из набора) перед добавлением красителя. Отдельно липосомы разводили 10× или 100× буфером 1X TE, содержащим 0,5% Тритона Х до добавления красителя (для разрушения липосом и, таким образом, анализа общей фракции РНК). Затем добавляли равное количество красителя в каждый раствор и затем ≈180 мкл каждого раствора, после добавления красителя, вносили в двух параллелях в 96-луночный планшет для культивирования тканей. Определяли флуоресценцию (длина волны возбуждения 485 нм, длина волны эмиссии 528 нм) на ридере для планшетов. Все композиции липосом дозировали in vivo по инкапсулированному количеству РНК.
Было показано, что липосомы защищали РНК от расщепления РНКазой. В опытах использовали 3,8 mAU РНКазы А на мкг РНК, инкубировали в течение 30 мин при комнатной температуре. РНКазу инактивировали протеиназой К при 55°С в течение 10 мин. Затем добавляли смесь образца добавляли 1:1 об/об к смеси фенол:хлороформ:изоамиловый спирт 25:24:1 об/об/об для экстракции РНК из липидов в водную фазу. Образцы смешивали на вортексе в течение нескольких секунд и затем помещали в центрифугу на 15 мин при 12k RPM. Водную фазу (содержащую РНК) удаляли и использовали для анализа РНК. Перед загрузкой (400 нг РНК на лунку) все образцы инкубировали с красителем, содержащим формальдегид, денатурировали в течение 10 мин при 65°С и охлаждали до комнатной температуры. Использовали маркеры Ambion Millennium для приближения к молекулярной массе РНК-конструкции. Электрофорез в геле проводили при 90 В. Гель окрашивали с использованием красителя 0,1% SYBR gold согласно инструкциям изготовителя в воде при качании при комнатной температуре в течение 1 ч. На фиг.1 показано, что РНКаза полностью расщепляет РНК в отсутствии инкапсулирования (дорожка 3). РНК не детектируется после инкапсулирования (дорожка 4), и отсутствовали изменения, если липосомы обрабатывали РНКазой (дорожка 4). После обработки РНКазой липосомы подвергали экстракции фенолом, видна нерасщепленная РНК (дорожка 6). Даже после 1 недели при 4°С РНК детектировали без какой-либо фрагментации (фиг.4, стрелка). Экспрессия белка in vivo не изменялась через 6 недель выдерживания при 4°С и одного цикла замораживания-оттаивания. Таким образом, инкапсулированная в липосоме РНК является стабильной.
Для оценки экспрессии РНК in vivo репортерный фермент (SEAP; секретированная щелочная фосфатаза) кодировали в репликон в большей степени, чем в иммуноген. Определяли уровни экспрессии в сыворотке крови, разведенной 1:4 в буфере для разведения 1X Phospa-Light, с использованием хемилюминесцентного субстрата щелочной фосфатазы. 8-10-недельным мышам BALB/c (5 животных/на группу) вводили внутримышечно на сутки 0 по 0,50 мкл на конечность в дозе 0,1 мкг или 1 мкг РНК. Этот же вектор также вводили без липосом (в 1X PBS, не содержащем РНКазу) в дозе 1 мкг. Также тестировали упакованные в вирион репликоны. Упакованные в вирион репликоны, использованные в данном случае (далее относится к «VRP»), получали с использованием способов, описанных в источнике 43, где альфа-вирусный репликон был получен из мутантного VEEV или химеры, полученной из генома VEEV, сконструированного с включением 3' UTR вируса Синдбис и сигнала упаковки вируса Синдбис (PS), упакованных совместной электропорацией в клетки BHK с дефектными хэлперными РНК, кодирующими гены капсида вируса Синдбис и гликопротеина.
Как показано на фиг.5, инкапсулирование повышало уровни SEAP примерно на ½ log при дозе 1 мкг, и на 6 сутки экспрессия после введения 0,1 мкг инкапсулированной дозы совпадала с уровнями, наблюдаемыми для 1 мкг неинкапсулированной дозы. На 3 сутки уровни экспрессии превышали таковые, достигаемые с VRP (прямоугольники). Таким образом, экспрессия возрастала, когда РНК формулировали в липосомы по сравнению с контрольной «голой» РНК, даже в 10 раз более низкой дозе. Экспрессия также была выше по сравнению с контролем VRP, но кинетика экспрессии была очень различной (смотри фиг.5). Доставка РНК электропорацией приводила к повышенной экспрессии по сравнению с «голой» РНК, но эти уровни были ниже по сравнению с липосомами.
Для оценки того, насколько эффект, наблюдаемый в группах с липосомами, имел место только за счет компонентов липосомы или был непосредственно связан с инкапсулированием, репликон вводили в инкапсулированной форме (с двумя различными протоколами выделения, 0,1 мкг РНК) или смешивали с липосомами после их приготовления (неинкапсулированный «липоплекс», 0,1 мкг РНК), или в виде «голой» РНК (1 мкг). На фиг.10 показано, что липоплекс давал наиболее низкие уровни экспрессии, свидетельствуя о том, что инкапсулирование является важным для обеспечения высокой экспрессии.
Опыты in vivo с использованием доставки в липосомах подтвердили эти установленные факты. Мышам вводили различные комбинации (i) самореплицирующийся РНК-репликон, кодирующий полноразмерный RSV F-белок, (ii) самореплицирующийся РНК-репликон, кодирующий GFP, (iii) РНК-репликон, кодирующий GFP, с нокаутом в nsP4, что элиминировало саморепликацию, (iv) полноразмерный RSV F-белок. 13 групп мышей в целом получали:
A - -
B 0,1 мкг (i), «голая» -
C 0,1 мкг (i), инкапсулированная в липосому -
D 0,1 мкг (i), с отдельными липосомами -
E 0,1 мкг (i), «голая» 10 мкг (ii), «голая»
F 0,1 мкг (i), «голая» 10 мкг (iii), «голая»
G 0,1 мкг (i), инкапсулированная в липосому 10 мкг (ii), «голая»
H 0,1 мкг (i), инкапсулированная в липосому 10 мкг (iii), «голая»
I 0,1 мкг (i), инкапсулированная в липосому 1 мкг (ii), инкапсулированная в липосому
J 0,1 мкг (i), инкапсулированная в липосому 1 мкг (iii), инкапсулированная в липосому
K 5 мкг F-белка -
L 5 мкг F-белка 1 мкг (ii), инкапсулированная в липосому
M 5 мкг F-белка 1 мкг (iii), инкапсулированная в липосому
Результаты, приведенные на фиг.18, показывают, что для ответной продукции F-специфического IgG требуется инкапсулирование в липосоме в большей степени, чем только совместная доставка с пустыми липосомами (сравните группы С&D). Сравнение данных по группам K, L и М показывает, что РНК обеспечивает адъювантный эффект против совместно доставленного белка, и данный эффект имел место как с реплицирующейся, так и нереплицирующейся РНК.
Дальнейшие опыты с SEAP показали наличие четкой зависимости доза-ответ в условиях in vivo для экспрессии, регистрируемой после доставки, по меньшей мере, 1 нг РНК (фиг.6). Результаты дальнейших экспериментов по сравнению экспрессии от инкапсулированного и «голого» репликонов указывали, что действие 0,01 мкг инкапсулированной РНК эквивалентно действию 1 мкг «голой» РНК. Инкапсулированное вещество в дозе 0,5 мкг РНК приводило к более высокой 12-кратной экспрессии на 6 сутки; в дозе 0,1 мкг - к 24-кратной экспрессии на 6 сутки.
Проводили анализ не только средних значений по группе, но также исследовали отдельных животных. В то время, как несколько животных не были респондерами на «голые» репликоны, инкапсулирование элиминировало наличие таких нон-респондеров.
В дальнейших опытах DLinDMA заменяли на DOTAP. Несмотря на то, что липосомы с DOTAP приводили к лучшей экспрессии по сравнению с «голым» репликоном, их эффект был ниже по сравнению с липосомами, содержащими DLinDMA (на 1 сутки различие составило 2-3 раза). В то время как DOTAP содержит четвертичный амин, и, таким образом, имеет положительный заряд в точке доставки, DLinDMA содержит третичный амин.
Для оценки иммуногенности in vivo конструировали репликон для экспрессии полноразмерного F-белка из респираторного синцитиального вируса (RSV). Его вводили «голым» (1 мкг), инкапсулированным в липосомы (0,1 или 1 мкг) или упакованным в вирионы (106 МЕ; «VRP») на сутки 0 и 21. На фиг.7 приведены титры анти-F-IgG через 2 недели после второй дозы, и липосомы четко повышали иммуногенность. На фиг.8 показаны титры еще через 2 недели, на этой временной точке отсутствовала статистически достоверная разница между группами с инкапсулированной РНК в дозе 0,1 мкг, инкапсулированной РНК в дозе 1 мкг или VRP. Титры нейтрализации (определено в виде 60% снижения бляшкообразования, «PRNT60») не различались статистически значимым образом в данных трех группах через 2 недели после второй дозы (фиг.9). На фиг.12 показаны титры IgG и PRNT через 4 недели после второй дозы.
Данные на фиг.13 подтверждают, что РНК индуцирует сильный ответ CD8 Т-клеток.
В дальнейших опытах сравнивали титры F-специфического IgG у мышей, получавших VRP, 0,1 мкг инкапсулированной в липосомы РНК или 1 мкг инкапсулированной в липосомы РНК. Соотношения титров (VRP:липосома) на различные периоды времени после второй дозы были следующими:
2 недели 4 недели 8 недель
0,1 мкг 2,9 1,0 1,1
1 мкг 2,3 0,9 0,9
Таким образом, инкапсулированная в липосомы РНК индуцировала по существу такой же иммунный ответ, что и введение вирионов.
В дальнейших опытах была показана более высокая ответная продукция F-специфического IgG с дозой 10 мкг, эквивалентные ответы на дозы 1 мкг и 0,1 мкг, и более низкий ответ на дозировку 0,01 мкг. На фиг.11 показаны титры IgG у мышей, получавших репликон в «голой» форме при введении в трех различных дозах, в липосомах в 4 различных дозах или VRP (106 МЕ). Ответ, наблюдаемый с 1 мкг инкапсулированной в липосомы РНК не отличался статистически достоверно (ANOVA) по сравнению с VRP, но был установлен достоверно более высокий ответ на 10 мкг инкапсулированной в липосомы РНК (Р<0,05) по сравнению с обеими группами.
Результаты дополнительного опыта подтвердили, что 0,1 мкг инкапсулированной в липосомы РНК обеспечивало более высокую ответную продукцию анти-F-IgG (через 15 суток после второй дозы) по сравнению с 0,1 мкг доставленной ДНК, и первая была более иммуногенной по сравнению с 20 мкг плазмидной ДНК, кодирующей F-антиген, доставленной электропорацией (ElgenTM DNA Delivery System, Inovio).
Проводили дополнительное исследование на хлопковых крысах (Sigmodon hispidis) вместо мышей. Инкапсулирование в липосомы в дозе 1 мкг приводило к повышению титров F-специфического IgG в 8,3 раза по сравнению с «голой» РНК и к повышению титров PRNT в 9,5 раз. Уровень ответной продукции антител был эквивалентным ответу, индуцированному 5×106 МЕ VRP. «Голая» и инкапсулированная в липосомы РНК были способны защитить хлопковых крыс от заражения RSV (1×105 бляшкообразующих единиц), снижая вирусную нагрузку в легких, по меньшей мере, в 3,5 log. Инкапсулирование усиливало снижение примерно в 2 раза.
Опыт на крупных животных проводил на крупном рогатом скоте. Коров иммунизировали 66 мкг репликона, кодирующего полноразмерный RSV F-белок на сутки 0 и 21, формулированного в липосомах. Один PBS использовали а качестве отрицательного контроля, а официально разрешенную вакцину использовали в качестве положительного контроля («Triangle» 4 производства Fort Dodge, содержащую убитый вирус). На фиг.14 показаны титры F-специфического IgG в течение 63-суточного периода, начиная от первой иммунизации. РНК-репликон был иммуногенным у коров, хотя, он индуцировал более низкие титры по сравнению официально разрешенной вакциной. У всех вакцинированных коров детектировали наличие F-специфических антител после второй дозы, и титры были очень стабильными в период 2-6 недель после введения второй дозы (и были особенно стабильными для РНК-вакцины).
Механизм действия
Дендритные клетки, генерированные из костного мозга (pDC), получали от мышей дикого типа или мышей мутантного штамма «Resq» (rsq1). Мутантный штамм содержит точечную мутацию в аминоконце рецептора TLR7, что элиминирует сигнальный путь TLR7, не оказывая влияние на связывание лиганда [44]. Клетки стимулировали РНК-репликоном, формулированным с DOTAP, липофектамином 2000 и внутри липосомы. Как показано на фиг.16, IL-6 и INFα продуцировались клетками мышей дикого типа, но данный ответ почти полностью отсутствовал у мутантных мышей. Эти результаты свидетельствуют о том, что TLR7 необходим для распознавания РНК в иммунных клетках, и что инкапсулированные в липосомах репликоны могут стимулировать иммунные клетки к секреции высоких уровней интерферонов и провоспалительных цитокинов.
Определение pKa
pKa липида определяют в воде при обычной температуре и давлении с использованием следующего метода:
- Готовят 2 мМ раствор липида в этаноле взвешиванием липида и растворением в этаноле. Готовят 0,3 мМ раствор флуоресцентного зонда толуолнитросульфоновой кислоты (TNS) в смеси этанол:метанол 9:1 посредством приготовления вначале 3 мМ раствора TNS в метаноле и затем разведением до 0,3 мМ этанолом.
- Готовят водный буфер, содержащий фосфат натрия, цитрат натрия, ацетат натрия и хлорид натрия в концентрациях соответственно 20 мМ, 25 мМ, 20 мМ и 150 мМ. Буфер разделяют на восемь частей и рН доводят 12н HCl или 6н NaOH до 4,44-4,52, 5,27, 6,15-6,21, 6,57, 7,10-7,20, 7,72-7,80, 8,27-8,33 и 10,47-11,12. Смешивают 400 мкл 2 мМ раствора липида и 800 мкл 0,3 мМ раствора TNS.
- 7,5 мкл смеси зонд/липид добавляют к 242,5 мкл буфера в 1 мл в 96-луночном планшете. Так поступают со всеми восьмью буферами. После перемешивания 100 мкл каждой смеси зонд/липид/буфер переносят в 250 мкл в черный 96-луночный планшет с прозрачным дном (например, модель COSTAR 3904, Corning). Удобным способом осуществления такого перемешивания является применение высокопропускного манипулятора для жидкостей Tecan Genesis RSP150 и программного обеспечения Gemini Software.
- Анализируют флуоресценцию каждой смеси зонд/липид/буфер (например, на спектрофотометре SpectraMax M5 и программном обеспечении SoftMax pro 5,2) при длине волны возбуждения 322 нм и длине волны эмиссии 431 нм (аутопорог при 420 нм).
- После анализа вычитают фоновую флуоресценцию пустой лунки в 96-луночном планшете из флуоресценции смеси зонд/липид/буфер. Затем значения флуоресценции нормализуют к значению при наиболее низком рН. Затем строят график зависимости нормализованной флуоресценции против рН и получают линию наилучшей подгонки.
- Находят точку на линии наилучшей подгонки, при которой интенсивность нормализованной флуоресценции равна, 0,5. Находят рН, соответствующий нормализованной интенсивности флуоресценции, равной 0,5, и принимают это значение за pKa липида.
Данный метод дает значение pKa, равное 5,8, для DLinDMA. Значения pKa, анализированные данным методом, для катионных липидов из источника 5 приведены ниже.
Инкапсулирование в липосомах с использованием альтернативных катионных липидов
В качестве альтернативны для DLinDMA использовали катионные липиды из источника 5. Данные липиды можно синтезировать, как описано в источнике 5.
Липосомы, полученные выше, с использованием DLinDMA относятся ниже к серии «RV01». DLinDMA заменяли на различные катионные липиды в сериях «RV02»-«RV12», как описано ниже. Получали два различных типа каждой липосомы с использованием 2% ПЭГ2000-DMG с (01) 40% катионного липида, 10% DSPC и 48% холестерина или (02) 60% катионного липида и 38% холестерина. Таким образом, сравнение липосом (01) и (02) показывает эффект нейтрального цвиттерионного липида.
Липосомы RV02 готовили с использованием следующего катионного липида (pKa>9, без третичного амина):
Figure 00000001
Липосомы RV03 готовили с использованием следующего катионного липида (pKa 6,4):
Figure 00000002
Липосомы RV04 готовили с использованием следующего катионного липида (pKa 6,62):
Figure 00000003
Липосомы RV05 готовили с использованием следующего катионного липида (pKa 5,85):
Figure 00000004
Липосомы RV06 готовили с использованием следующего катионного липида (pKa 7,27):
Figure 00000005
Липосомы RV07 готовили с использованием следующего катионного липида (pKa 6,8):
Figure 00000006
Липосомы RV08 готовили с использованием следующего катионного липида (pKa 5,72):
Figure 00000007
Липосомы RV09 готовили с использованием следующего катионного липида (pKa 6,07):
Figure 00000008
Липосомы RV10 готовили с использованием следующего катионного липида (pKa 7,86):
Figure 00000009
Липосомы RV11 готовили с использованием следующего катионного липида (pKa 6,41):
Figure 00000010
Липосомы RV12 готовили с использованием следующего катионного липида (pKa 7):
Figure 00000011
Липосомы RV16 готовили с использованием следующего катионного липида (pKa 6,1) [45]:
Figure 00000012
Липосомы RV17 готовили с использованием следующего катионного липида (pKa 7,27):
Figure 00000013
Липосомы RV18 готовили с использованием DODMA. Липосомы RV19 получали с использованием DOTMA, и липосомы RV13 готовили с использованием DOTAP, оба липида содержали «головку» из четвертичного амина.
Липосомы характеризовали и тестировали с использованием репортера SEAP, описанного выше. В следующей таблице приведены размеры липосом (Z средний размер и индекс полидисперности), % инкапсулирования РНК в каждой липосоме, вместе с активностью SEAP, детектированной на 1 и 6 сутки после инъекции. Активность SEAP выражена относительно липосом «RV01(02)», приготовленных из DlinDMA, холестерина и ПЭГ-DMG:
RV pKa липида Zav (pdI) % инкапсулирования SEAP на сутки 1 SEAP на сутки 6
RV01 (01) 5,8 154,6 (0,131) 95,5 80,9 71,1
RV01 (02) 5,8 162,0 (0,134) 85,3 100 100
RV02 (01) >9 133,9 (0,185) 96,5 57 45,7
RV02 (02) >9 134,6 (0,082) 97,6 54,2 4,3
RV03 (01) 6,4 158,3 (0,212) 62,0 65,7 44,9
RV03 (02) 6,4 164,2 (0,145) 86 62,2 39,7
RV04 (01) 6,62 131,0 (0,145) 74,0 91 154,8
RV04 (02) 6,62 134,6 (0,117) 81,5 90,4 142,6
RV05 (01) 5,85 164,0 (0,162) 76,0 76,9 329,8
RV05 (02) 5,85 177,8 (0,117) 72,8 67,1 227,9
RV06 (01) 7,27 116,0 (0,180) 79,8 25,5 12,4
RV06 (02) 7,27 136,3 (0,164) 74,9 24,8 23,1
RV07 (01) 6,8 140,6 (0,184) 77 26,5 163,3
RV07 (02) 6,8 138,6 (0,122) 87 29,7 74,8
RV08(01) 5,72 176,7 (0,185) 50 76,5 187
RV08 (02) 5,72 199,5 (0,191) 46,3 82,4 329,8
RV09 (01) 6,07 165,3 (0,169) 72,2 65,1 453,9
RV09 (02) 6,07 179,5 (0,157) 65 68,5 658,2
RV10(01) 7,86 129,7 (0,184) 78,4 113,4 47,8
RV10 (02) 7,86 147,6 (0,131) 80,9 78,2 10,4
RV11 (01) 6,41 129,2 (0,186) 71 113,6 242,2
RV11 (02) 6,41 139 (0198) 75,2 71,8 187,2
RV12 (01) 7 135,7 (0,161) 78,8 65 10
RV12 (02) 7 158,3 (0,287) 69,4 78,8 8,2
На фиг.15 приведены графики зависимости уровней SEAP от pKa катионных липидов на 6 сутки. Наилучшие результаты были получены, когда липид имел значение pKa в пределах от 5,6 до 6,8, и в идеальном варианте от 5,6 до 6,3.
Данные липосомы также использовали для доставки репликона, кодирующего полноразмерный RSV F-белок. Строили график зависимости общих титров IgG к F-белку против pKa через две недели после введения первой дозы (2wp1), который приведен на фиг.16. Наилучшие результаты были получены при pKa, когда катионный липид имеет pKa в пределах 5,7-5,9, но только значение pKa не в достаточной мере гарантирует высокий титр IgG, например, липид должен поддерживать образование липосомы.
Иммуногенность RSV
Проводили дальнейшую работу с самореплицирующимся репликоном (vA317), кодирующим RSV F-белок. Мышей BALB/c, 4-8 животных на группу, вакцинировали билатерально внутримышечно (50 мкл на конечность) на сутки 0 и 21 одним репликоном (1 мкг) или репликоном, формулированным в липосомы с липидами RV01 или RV02 (смотри выше; pKa равен 5,8 или 5,85) или с RV013. Липосомы RV01 содержали 40% DLinDMA, 10% DSPC, 48% холестерина и 2% ПЭГ-DMG, но с различными количествами РНК. Липосомы RV05(01) содержали 40% катионного липида, 48% холестерина, 10% DSPC и 2% ПЭГ-DMG; липосомы RV05(02) содержали 60% катионного липида, 38% холестерина и 2% ПЭГ-DMG. Липосомы RV13 содержали 40% DOTAP, 10% DPE, 48% холестерина, 10% DSPC и 2% ПЭГ-DMG. В целях сравнения «голую» плазмидную ДНК (20 мкг), экспрессирующую тот же антиген RSV-F, доставляли либо с использованием электропорации, либо в липосомах RV01(10) (0,1 мкг ДНК). Четыре мыши использовали в качестве интактной контрольной группы.
Липосомы готовили способом (А) или (В). В способе (А) готовили свежие маточные растворы липидов в этаноле. Взвешивали 37 мг катионного липида, 11,8 мг DSPC, 27,8 мг холестерина и 8,07 мг ПЭГ-DMG, и растворяли в 7,55 мл этанола. Свежеприготовленный маточный раствор липидов осторожно качали при 37°С примерно в течение 15 мин с получением гомогенной смеси. Затем 226,7 мкл маточного раствора добавляли к 1,773 мл этанола с получением рабочего маточного раствора липидов объемом 2 мл. Это количество липидов использовали для приготовления липосом с 75 мкг РНК с получением соотношения азота к фосфору, равного 8:1 (за исключением липосом RV01(08) и RV01(09), для которых данное соотношение изменяли на 4:1 или 16:1). Также готовили 2 мл рабочего раствора РНК (или для RV01(10) ДНК) из маточного раствора с концентрацией ≈1 мкг/мкл в 100 мМ цитратном буфере (рН 6). Три стеклянных сосуда емкостью 20 мл (с магнитной мешалкой) промывали раствором RNase Away (Molecular BioProducts) и промывали избытком воды MilliQ перед использованием для инактивации РНКаз в сосудах. Один из сосудов использовали для рабочего раствора РНК и другие для сбора смесей липида и РНК (как описано ниже). Рабочие растворы липидов и РНК нагревали при 37°С в течение 10 мин перед загрузкой в шприцы 3cc «Луер Лок». В другой шприц 3cc вносили 2 мл цитратного буфера (рН 6). Шприцы, содержащие РНК и липиды, подсоединяли к Т-смесителю (PEEKTM 500 мкм ID junction, Idex health Science), используя трубку из FEP. Выходное отверстие Т-смесителя также представляло трубку из FEP. Третий шприц, содержащий цитратный буфер, соединяли с отдельным участком FEP-трубки. Затем содержимое всех шприцов приводилось в движение со скоростью 7 мл/мин с использованием шприцевого насоса. Выходные отверстия трубок располагались для сбора смесей в стеклянном сосуде емкостью 20 мл (с одновременным перемешиванием). Затем извлекали магнитные мешалки, и смеси этанол/водный раствор давали уравновеситься при комнатной температуре в течение 1 ч. Затем смесь загружали в шприц 5 сс, который был соединен с участком FEP-трубки, и в другой шприц 5 сс, соединенный с таким же по длине участком FEP-трубки, загружали равное количество 100 мМ цитратного буфера (рН 6). Содержимое двух шприцов приводили в движение со скоростью 7 мл/мин с использованием шприцевого насоса и конечную смесь собирали в стеклянном сосуде емкостью 20 мл (с одновременным перемешиванием). Затем липосомы концентрировали до 2 мл и диализовали против 10-15 объемов IX PBS с использованием TFF перед извлечением конечного продукта. Систему для TFF и и фильтрационные мембраны из полых волокон получали от Spectrum Labs и использовали согласно указаниям изготовителя. Использовали полисульфоновые (PES) фильтрационные мембраны из полых волокон (код P-C1-100E-100-01N) с отсечением по молекулярной массе 100 kD и площадью поверхности 20 см2. Для экспериментов in vitro и in vivo композиции разбавляли до требуемой концентрации РНК с использованием IX PBS.
Способ приготовления (В) отличался двояким образом от способа (А). Вначале после сбора в стеклянном сосуде емкостью 20 мл, но до концентрирования TFF, смесь пропускали через мембрану Mustang Q (анионообменная подложка, которая связывает и удаляет анионные молекулы, производства Pall Corporation Ann Arbor, MI, США). Данную мембрану вначале промывали 4 мл 1 М NaOH, 4 мл 1 М NaCl и 10 мл 100 мМ цитратного буфера (рН 6), и липосомы подогревали в течение 10 мин при 37°С до фильтрования. Второе отличие: фильтрационная мембрана из полых волокон представляла собой полисульфон (код PN: Х1АВ-100-20Р).
Средний диаметр частиц Z, индекс полидисперности и эффективность инкапсулирования липосом были следующими:
RV Zav (нм) pdI % инкапсулирования Способ приготовления
RV01 (10) 158,6 0,088 90,7 (A)
RV01 (08) 156,8 0,144 88,6 (A)
RV01 (05) 136,5 0,136 99 (B)
RV01 (09) 153,2 0,067 76,7 (A)
RV05 (01) 148 0,127 80,6 (A)
RV05 (02) 177,2 0,136 72,4 (A)
RV01 (10) 134,7 0,147 87,8* (A)
RV13 (02) 128,3 0,179 97 (A)
* в композиции RV01(10) нуклеиновой кислотой была ДНК, а не РНК.
Сыворотки крови собирали для анализа антител на сутки 14; 36 и 49. Образцы селезенки отбирали у мышей на сутки 49 для анализа Т-клеток.
Сывороточные титры F-специфического IgG (GMT) были следующими:
RV Сутки 14 Сутки 36
«Голая» ДНК-плазмида 439 6712
«Голая» РНК А317 78 2291
RV01 (10) 3020 26170
RV01 (08) 2326 9720
RV01 (05) 5352 54907
RV01 (09) 4428 51316
RV05 (01) 1356 5346
RV05 (02) 961 6915
RV01 (10) ДНК 5 13
RV13 (02) 644 3616
Относительное количество Т-клеток, которые являются цитокин-позитивными и специфическими для пептида RSV F51-66, являются следующими, показаны только цифровые данные, которые статистически достоверно выше нуля:
RV CD4+CD8- CD4-CD8+
IFNγ IL2 IL5 TNFα IFNγ IL2 IL5 TNFα
«Голая» ДНК-плазмида 0,04 0,07 0,10 0,57 0,29 0,66
«Голая» РНК А317 0,04 0,05 0,08 0,57 0,23 0,67
RV01 (10) 0,07 0,10 0,13 1,30 0,59 1,32
RV01 (08) 0,02 0,04 0,06 0,46 0,30 0,51
RV01 (05) 0,08 0,12 0,15 1,90 0,68 1,94
RV01 (09) 0,06 0,08 0,09 1,62 0,67 1,71
RV05 (01) 0,06 0,04 0,19
RV05 (02) 0,05 0,07 0,11 0,64 0,35 0,69
RV01 (10) ДНК 0,03 0,08
RV13 (02) 0,03 0,04 0,06 1,15 0,41 1,18
Таким образом, липосомальные композиции достоверно повышали иммуногенность по сравнению с «голыми» контрольными РНК, судя по повышенным титрам F-специфического IgG и относительному количеству отдельных популяций Т-клеток. Плазмидная ДНК, формулированная в липосомах, или доставленная «голой» с использованием электропорации, была менее иммуногенной по сравнению с самореплицирующейся РНК, формулированной в липосомы.
РНК-вакцины RV01 и RV05 были более иммуногенными по сравнению с вакциной RV13 (DOTAP). Данные композиции имели сравнимые физические характеристики и были сформулированы с одной и той же самореплицирующейся РНК, но они содержали разные катионные липиды. Липиды в RV01 и RV05 содержат третичный амин в «головке» и имеют значение pKa примерно 5,8, и также включают ненасыщенные алкильные хвосты. Липид в RV13 содержит ненасыщенные алкильные «хвосты», но в его «головке» имеется четвертичный амин, и он является сильно катионным. На основании этих результатов можно предположить, что липиды с третичными аминами со значениями pKa в пределах от 5,0 до 7,6 превосходят по своим свойствам липиды, такие как DOTAP, которые являются высоко катионными, при использовании в липосомальной системе для доставки РНК.
Дополнительные альтернативы DLinDMA
Катионный липид в липосомах RV01 (DLinDMA) замещали RV16, RV17, RV18 или RV19. Общие титры IgG приведены на фиг.17. Наиболее низкие результаты были получены с RV19, т.е. с DOTMA, содержащим четвертичный амин.
Экспрессия в BHK
Липосомы с различными липидами инкубировали с клетками ВНК в течение ночи и оценивали на их способность экспрессировать белок. По сравнению с фоновым уровнем экспрессия белка с липидом RV05 повышалась в 18 раз при добавлении в липосому 10% 1,2-дифитаноил-sn-глицеро-3-фосфоэтаноламина (DPyPE), в 10 раз при добавлении 10% 18:2 (цис) фосфатидилхолина, и в 900 раз при замене на RV01.
Иммуногенность RSV на различных штаммах мышей
Репликон «vA142» кодирует полноразмерный поверхностный слитый (F) гликопротеин дикого типа RSV, но с делецированным слитым белком, и 3'-конец сформирован рибозим-опосредованным отщеплением.
Мышей BALB/c вакцинировали билатерально внутримышечно (50 мкл на конечность) на сутки 0 и 22. Животных разделяли на 8 опытных групп (5 животных в группе) и интактную контрольную группу (2 животных):
мышам группы 1 вводили «голый» репликон (1 мкг);
мышам группы 2 вводили 1 мкг репликона при введении в липосомах «RV01(37)» с 40% DLinDMA, 10% DSPC, 48% Chol, 2% конъюгированного с ПЭГом DMG;
мышам группы 3 вводили то же самое, что и мышам группы 2, но вводили в дозе 0,1 мкг РНК;
мышам группы 4 вводили 1 мкг репликона в липосомах «RV17(10)» (40% RV17 (смотри выше), 10% DSPC, 49,5% холестерина, 0,5% ПЭГ-DMG);
мышам группы 5 вводили 1 мкг репликона в липосомах «RV05(11)» (40% липид RV17, 30% PE 18:2 (DLoPE, 28% холестерина, 2% ПЭГ-DMG);
мышам группы 6 вводили 0,1 мкг репликона в липосомах «RV17(10)»;
мышам группы 7 вводили 5 мкг субъединицы белка RSV-F с адъювантом гидроксидом алюминия;
мыши группы 8 были интактными контрольными (2 животных).
Собирали сыворотки крови для анализа антител на сутки 14; 35 и 49. GMT F-специфического IgG были следующими:
Сутки 1 2 3 4 5 6 7 8
14 82 2463 1789 2496 1171 1295 1293 5
35 1538 34181 25605 23579 13718 8887 73809 5
На сутки 35 титры (GMT) F-специфических IgG1 и IgG2 были следующими:
IgG 1 2 3 4 5 6 7
IgG1 94 6238 4836 7425 8288 1817 78604
IgG2a 5386 77064 59084 33749 14437 17624 24
Титры сывороточных нейтрализующих RSV антител на сутки 35 и 49 были следующими (данные представляют титры нейтрализации по 60% снижению бляшек для объединенных сывороток от 2-5 мышей, 1 пул на группу):
Сутки 1 2 3 4 5 6 7 8
35 <20 143 20 101 32 30 111 <20
49 <20 139 <20 83 41 32 1009 <20
Образцы селезенки отбирали на сутки 49 для анализа Т-клеток. Средние значения относительной доли чистых F-специфических цитокин-позитивных Т-клеток (CD4+ или CD8+) были следующими, показаны только цифровые данные, которые статистически достоверно выше нуля (специфические для пептидов RSV F51-66, F164-178, F309-323 для CD4+ или для пептидов F85-93 и F249-258 для CD8+):
Группа CD4+CD8- CD4-CD8+
IFNγ IL2 IL5 TNFα IFNγ IL2 IL5 TNFα
1 0,03 0,06 0,08 0,47 0,29 0,48
2 0,05 0,10 0,08 1,35 0,52 1,11
3 0,03 0,07 0,06 0,64 0,31 0,61
4 0,05 0,09 0,07 1,17 0,65 1,09
5 0,03 0,08 0,07 0,65 0,28 0,58
6 0,05 0,07 0,07 0,74 0,36 0,66
7 0,02 0,04 0,04
8
Мышей C57BL/6 иммунизировали аналогично, но мыши 9-й группы получали VRP (1×106 МЕ), экспрессирующие полноразмерный слитый поверхностный гликопротеин дикого типа RSV (слитый пептид делеции).
Собирали сыворотки крови для анализа антител на сутки 14; 35 и 49. Титры (GMT) F-специфического IgG были следующими:
Сутки 1 2 3 4 5 6 7 8 9
14 1140 2133 1026 2792 3045 1330 2975 5 1101
35 1721 5532 3184 3882 9525 2409 39251 5 12139
На сутки 35 титры (GMT) F-специфических IgG1 и IgG2 были следующими:
IgG 1 2 3 4 5 6 7 8
IgG1 66 247 14 328 468 92 56258 79
IgG2a 2170 7685 5055 6161 1573 2944 35 14229
Титры сывороточных нейтрализующих RSV антител на сутки 35 и 49 были следующими (данные представляют титры нейтрализации по 60% снижению бляшек для объединенных сывороток от 2-5 мышей, 1 пул на группу):
Сутки 1 2 3 4 5 6 7 8 9
35 <20 27 29 22 36 <20 28 <20 <20
49 <20 44 30 23 36 <20 33 <20 37
Образцы селезенки отбирали на сутки 49 для анализа Т-клеток. Средние значения относительной доли чистых F-специфических цитокин-позитивных Т-клеток (CD8+) были следующими, показаны только цифровые данные, которые статистически достоверно выше нуля (специфические для пептидов RSV F85-93 и F249-258):
Группа CD4-CD8+
IFNγ IL2 IL5 TNFα
1 0,42 0,13 0,37
2 1,21 0,37 1,02
3 1,01 0,26 0,77
4 1,26 0,23 0,93
5 2,13 0,70 1,77
6 0,59 0,19 0,49
7 0,10 0,05
8
9 2,83 0,72 2,26
Девять групп мышей C3H/HeN иммунизировали аналогично. Титры (GMT) F-специфического IgG были следующими:
Сутки 1 2 3 4 5 6 7 8 9
14 5 2049 1666 1102 298 984 3519 5 806
35 152 27754 19008 17693 3424 6100 62297 5 17249
На сутки 35 титры (GMT) F-специфических IgG1 и IgG2 были следующими:
IgG 1 2 3 4 5 6 7 8
IgG1 5 1323 170 211 136 34 83114 189
IgG2a 302 136941 78424 67385 15667 27085 3800 72727
Титры сывороточных нейтрализующих антител RSV на сутки 35 и 49 были следующими:
Сутки 1 2 3 4 5 6 7 8 9
35 <20 539 260 65 101 95 443 <20 595
49 <20 456 296 35 82 125 1148 <20 387
Таким образом, три разных липида (RV01, RV05, RV17; pKa 5,8, 5,85, 6,1) тестировали на трех различных штаммах инбредных мышей. На всех 3 штаммах RV01 был более эффективным по сравнению с RV17; для мышей штаммов BALB/c и С3Н RV05 был менее эффективным по сравнению с RV01 или RV17, но был более эффективным на штамме В6. Однако во всех случаях липосомы были более эффективными, чем две катионные наноэмульсии, которые тестировались параллельно.
Иммуногенность CMV
Липосомы RV01 с DLinDMA в качестве катионного липида использовали для доставки РНК-репликонов, кодирующих гликопротеины цитомегаловируса (CMV). Репликон «vA160» кодирует полноразмерные гликопротеины Н и L (gH/gL), в то время как «vA322» кодирует растворимую форму (gHsol/gL). Два белка находятся под контролем отдельных субгеномных промоторов в одном репликоне; совместное введение двух отдельных векторов, из которых один кодирует gH, и другой кодирует gL, не давало хороших результатов.
Мышей BALB/c, 10 животных на группу, вакцинировали билатерально внутримышечно (50 мкл на конечность) на сутки 0; 21 и 42 VRP, экспрессирующими gH/gL (1×106 МЕ), VRP, экспрессирующими gHsol/gL (1×106 МЕ), и PBS в качестве контроля. Две опытные группы получали 1 мкг репликона vA160 или vA322, формулированного в липосомах (40% DLinDMA, 10% DSPC, 48% Chol, 2% ПЭГ-DMG; липосомы были приготовлены способом (А), как обсуждалось выше, но партией размером 150 мкг РНК).
Липосомы vA160 имели диаметр Zav 168 нм, pdI 0,144, и эффективность инкапсулирования равнялась 87,4%. Липосомы vA322 имели диаметр Zav 162 нм, pdI 0,131 и с 90% инкапсулированием.
Репликоны были способны экспрессировать два белка из одного вектора.
Собирали сыворотки для иммунологического анализа на сутки 63 (3wp3). Титры нейтрализации CMV (обратная величина разбавлению сыворотки, которая дает 50% снижение числа позитивных на вирус очагов на лунку по сравнению с контролем) были следующими:
gH/gL VRP gHsol/gL VRP Липосома gH/gL Липосома gHsol/gL
4576 2393 4240 10062
Таким образом, РНК, экспрессирующая полноразмерную или растворимую форму комплекса CMV gH/gL, индуцировала высокие титры нейтрализующих антител при тестировании на эпителиальных клетках. Средние титры, индуцированные инкапсулированными в липосомы РНК, были, по меньшей мере, такими же высокими, как для соответствующих VRP.
Очевидно, понятно, что изобретение описано только с помощью примера, и могут быть сделаны модификации, не отступая от объема и сущности изобретения.
СПИСОК ИСТОЧНИКОВ ЛИТЕРАТУРЫ
[I] Johanning etal. (1995) Nucleic Acids Res 23:1495-1501. [2] WO2005/121348.
[3] WO2008/137758.
[4] WO2009/086558.
[5] WO2011/076807.
[6] Heyes etal. (2005) JControlled Release 107:276-87.
[7] WO2005/121348.
[8] Liposomes: Methods and Protocols, Volume 1: Pharmaceutical Nanocarriers: Methods an Protocols, (ed. Weissig). Humana Press, 2009. ISBN 160327359X.
[9] Liposome Technology, volumes I, II & III. (ed. Gregoriadis). Informa Healthcare, 2006.
[10] Functional Polymer Colloids and Microparticles volume 4 (Microspheres, microcapsules & liposomes). (eds. Arshady & Guyot). Citus Books, 2002.
[11] Jeffs et al. (2005) Pharmaceutical Research 22 (3):362-372.
[12] WO2005/113782.
[13] WO2011/005799.
[14] El Ouahabi et al. (1996)FEBSLetts 380:108-12.
[15] Giuliani et al. (2006)Proc Natl Acad Sci USA 103(29): 10834-9.
[16] WO2009/016515.
[17] WO02/34771.
[18] WO2005/032582.
[19] WO2010/119343.
[20] WO2006/110413.
[21] WO2005/111066.
[22] WO2005/002619.
[23] WO2006/138004.
[24] WO2009/109860.
[25] WO02/02606.
[26] WO03/018054.
[27] WO2006/091517.
[28] WO2008/020330.
[29] WO2006/089264.
[30] WO2009/104092.
[31] WO2009/031043.
[32] WO2007/049155.
[33] Gennaro (2000) Remington: The Science and Practice of Pharmacy. 20th edition, ISBN: 0683306472.
[34] Methods In Enzymology (S. Colowick and N. Kaplan, eds., Academic Press, Inc.)
[35] Handbook of Experimental Immunology, Vols. I-IV (D.M. Weir and C.C. Blackwell, eds, 1986, Blackwell Scientific Publications)
[36] Sambrook et al. (2001) Molecular Cloning: A Laboratory Manual, 3rd edition (Cold Spring Harbor Laboratory Press).
[37] Handbook of Surface and Colloidal Chemistry (Birdi, K.S. ed., CRC Press, 1997)
[38] Ausubel et al. (eds) (2002) Short protocols in molecular biology, 5th edition (Current Protocols).
[39] Molecular Biology Techniques: An Intensive Laboratory Course, (Ream et al, eds., 1998, Academic Press)
[40] PCR (Introduction to Biotechniques Series), 2nd ed. (Newton & Graham eds., 1997, Springer Verlag)
[41] Yoneyama & Fujita (2007) Cytokine & Growth Factor Reviews 18:545-51.
[42] Maurer et al. (2001) Biophysical Journal, 80: 2310-2326.
[43] Perri et al. (2003) J Virol 77:10394-10403.
[44] Iavarone et al. (2011) J Immunol 186;4213-22.
[45] WO2011/057020.

Claims (15)

1. Липосома для доставки in vivo РНК в клетку позвоночного животного, имеющая липидный бислой, инкапсулирующий водное ядро, где (i) липидный бислой содержит липид, имеющий третичный амин и значение рКа от 5,0 до 6,8; и (ii) водное ядро включает РНК, которая кодирует иммуноген.
2. Липосома по п. 1, где липид имеет рКа в пределах от 5,6 до 6,8.
3. Липосома по п. 1, где рКа находится в пределах 5,7-5,9.
4. Липосома по п. 1, где липид, имеющий рКа в пределах от 5,0 до 6,8, представляет собой липид, выбранный из группы, состоящей из:
Figure 00000014

Figure 00000015

Figure 00000016

Figure 00000017

Figure 00000018

Figure 00000019

Figure 00000020

Figure 00000021

или
Figure 00000022

Figure 00000023
5. Липосома по п. 1, имеющая диаметр в пределах 20-220 нм.
6. Липосома по п. 1, где молекула РНК кодирует (i) РНК-зависимую РНК-полимеразу, которая может транскрибировать РНК из молекулы РНК, и (ii) иммуноген.
7. Липосома по п. 5, где молекула РНК имеет две открытые рамки считывания, где первая кодирует репликазу альфа-вируса и вторая кодирует иммуноген.
8. Липосома по п. 1, где молекула РНК имеет длину 9000-12000 нуклеотидов.
9. Липосома по п. 1, где иммуноген может вызывать иммунный ответ в условиях in vivo против бактерии, вируса, гриба или паразита.
10. Липосома по п. 1, где иммуноген может вызывать иммунный ответ в условиях in vivo против гликопротеина F респираторного синцитиального вируса.
11. Фармацевтическая композиция для доставки in vivo РНК в клетку позвоночного животного, содержащая липосому по одному из предшествующих пунктов.
12. Способ индукции защитного иммунного ответа у позвоночного животного, включающий стадию введения позвоночному животному эффективного количества липосомы по пп. 1-10 или фармацевтической композиции по п. 11.
13. Способ получения РНК-содержащей липосомы по п. 1, включающий стадии: (а) смешивание РНК с липидом при рН, который ниже значения рКа липида, но выше 4,5; затем (b) повышение рН до значения, которое выше рКа липида.
14. Способ по п. 13, где РНК, использованная на стадии (а), находится в водном растворе, предназначенном для смешивания с органическим раствором липида, с получением смеси, которую затем разводят с образованием липосом; и рН повышают на стадии (b) после образования липосом.
15. Применение липосомы по пп. 1-10 или фармацевтической композиции по п. 11 для индукции защитного иммунного ответа у позвоночного животного.
RU2013104878/15A 2010-07-06 2011-07-06 Липосомы с липидами, имеющими преимущественное значение рка, для доставки рнк RU2589503C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US36183010P 2010-07-06 2010-07-06
US61/361,830 2010-07-06
US37883710P 2010-08-31 2010-08-31
US61/378,837 2010-08-31
PCT/US2011/043105 WO2012006378A1 (en) 2010-07-06 2011-07-06 Liposomes with lipids having an advantageous pka- value for rna delivery

Publications (2)

Publication Number Publication Date
RU2013104878A RU2013104878A (ru) 2014-08-20
RU2589503C2 true RU2589503C2 (ru) 2016-07-10

Family

ID=44534956

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013104878/15A RU2589503C2 (ru) 2010-07-06 2011-07-06 Липосомы с липидами, имеющими преимущественное значение рка, для доставки рнк

Country Status (19)

Country Link
US (15) US20130171241A1 (ru)
EP (1) EP2590626B1 (ru)
JP (5) JP2013537518A (ru)
CN (1) CN103153284B (ru)
AU (1) AU2011276234B2 (ru)
BR (1) BR112013000244A2 (ru)
CA (1) CA2804396C (ru)
DK (1) DK2590626T3 (ru)
ES (1) ES2557382T3 (ru)
HR (1) HRP20151349T1 (ru)
HU (1) HUE026646T2 (ru)
MX (1) MX2013000164A (ru)
PL (1) PL2590626T3 (ru)
PT (1) PT2590626E (ru)
RS (1) RS54489B1 (ru)
RU (1) RU2589503C2 (ru)
SI (1) SI2590626T1 (ru)
SM (1) SMT201600007B (ru)
WO (1) WO2012006378A1 (ru)

Families Citing this family (214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8530708B2 (en) 2003-07-25 2013-09-10 Honeywell International Inc. Processes for selective dehydrohalogenation of halogenated alkanes
HUE047796T2 (hu) 2010-07-06 2020-05-28 Glaxosmithkline Biologicals Sa RNS bevitele több immunútvonal bekapcsolására
WO2012006369A2 (en) 2010-07-06 2012-01-12 Novartis Ag Immunisation of large mammals with low doses of rna
BR112013000392B8 (pt) 2010-07-06 2022-10-04 Novartis Ag Composição farmacêutica contendo partícula de distribuição semelhante a vírion para moléculas de rna autorreplicantes e seu uso
US9770463B2 (en) 2010-07-06 2017-09-26 Glaxosmithkline Biologicals Sa Delivery of RNA to different cell types
ES2557382T3 (es) 2010-07-06 2016-01-25 Glaxosmithkline Biologicals Sa Liposomas con lípidos que tienen un valor de pKa ventajoso para el suministro de ARN
EP2600901B1 (en) 2010-08-06 2019-03-27 ModernaTX, Inc. A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof
DK4066855T3 (da) 2010-08-31 2023-02-20 Glaxosmithkline Biologicals Sa Pegylerede liposomer til forsyning af RNA, der koder for immunogen
JP2013538569A (ja) * 2010-08-31 2013-10-17 ノバルティス アーゲー 免疫原をコードするrnaの送達のための小さなリポソーム
HRP20220796T1 (hr) 2010-10-01 2022-10-14 ModernaTX, Inc. Ribonukleinske kiseline koje sadrže n1-metil-pseudouracil i njihove uporabe
TR201903651T4 (tr) * 2010-10-11 2019-04-22 Glaxosmithkline Biologicals Sa Antijen uygulama platformları.
CA2831613A1 (en) 2011-03-31 2012-10-04 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
JP6022557B2 (ja) 2011-06-08 2016-11-09 シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド 切断可能な脂質
AU2012267531B2 (en) 2011-06-08 2017-06-22 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
SG10201605537XA (en) * 2011-07-06 2016-09-29 Novartis Ag Liposomes having useful n:p ratio for delivery of rna molecules
US11896636B2 (en) * 2011-07-06 2024-02-13 Glaxosmithkline Biologicals Sa Immunogenic combination compositions and uses thereof
SG10201602456WA (en) 2011-08-31 2016-04-28 Novartis Ag Pegylated liposomes for delivery of immunogen-encoding rna
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
EP3492109B1 (en) 2011-10-03 2020-03-04 ModernaTX, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
RS63244B1 (sr) 2011-12-16 2022-06-30 Modernatx Inc Kompozicije modifikovane mrna
WO2013143555A1 (en) 2012-03-26 2013-10-03 Biontech Ag Rna formulation for immunotherapy
SI2830593T1 (sl) * 2012-03-26 2019-07-31 Biontech Rna Pharmaceuticals Gmbh RNA formulacija za imunoterapijo
US9303079B2 (en) 2012-04-02 2016-04-05 Moderna Therapeutics, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
CA2868391A1 (en) 2012-04-02 2013-10-10 Stephane Bancel Polynucleotides comprising n1-methyl-pseudouridine and methods for preparing the same
WO2013151664A1 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics Modified polynucleotides for the production of proteins
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
AU2013245950B2 (en) 2012-04-10 2016-04-21 The Trustees Of The University Of Pennsylvania Human respiratory syncytial virus consensus antigens, nucleic acid constructs and vaccines made therefrom, and methods of using same
EA201492055A1 (ru) 2012-06-08 2015-11-30 Шир Хьюман Дженетик Терапис, Инк. ИНГАЛЯЦИОННАЯ ДОСТАВКА мРНК В НЕЛЕГОЧНЫЕ КЛЕТКИ-МИШЕНИ
CN104853771A (zh) 2012-07-06 2015-08-19 诺华股份有限公司 巨细胞病毒蛋白的复合物
WO2014028429A2 (en) 2012-08-14 2014-02-20 Moderna Therapeutics, Inc. Enzymes and polymerases for the synthesis of rna
PL2922554T3 (pl) 2012-11-26 2022-06-20 Modernatx, Inc. Na zmodyfikowany na końcach
MX2015008847A (es) * 2013-01-10 2015-10-30 Novartis Ag Composiciones inmunogenicas de virus de influenza y usos de las mismas.
EP3434774A1 (en) 2013-01-17 2019-01-30 ModernaTX, Inc. Signal-sensor polynucleotides for the alteration of cellular phenotypes
JP6352950B2 (ja) 2013-03-08 2018-07-04 ノバルティス アーゲー 活性薬物の送達のための脂質と脂質組成物
US20160024181A1 (en) 2013-03-13 2016-01-28 Moderna Therapeutics, Inc. Long-lived polynucleotide molecules
WO2014152211A1 (en) 2013-03-14 2014-09-25 Moderna Therapeutics, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
AU2014239184B2 (en) 2013-03-14 2018-11-08 Translate Bio, Inc. Methods and compositions for delivering mRNA coded antibodies
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
US20160194368A1 (en) 2013-09-03 2016-07-07 Moderna Therapeutics, Inc. Circular polynucleotides
CA2923029A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Chimeric polynucleotides
EP3052106A4 (en) 2013-09-30 2017-07-19 ModernaTX, Inc. Polynucleotides encoding immune modulating polypeptides
SG11201602503TA (en) 2013-10-03 2016-04-28 Moderna Therapeutics Inc Polynucleotides encoding low density lipoprotein receptor
BR112016024644A2 (pt) 2014-04-23 2017-10-10 Modernatx Inc vacinas de ácido nucleico
EP2974739A1 (en) 2014-07-15 2016-01-20 Novartis AG RSVF trimerization domains
SI3766916T1 (sl) 2014-06-25 2023-01-31 Acuitas Therapeutics Inc. Formulacije novih lipidov in lipidnih nanodelcev za dostavo nukleinskih kislin
EP3169693B1 (en) 2014-07-16 2022-03-09 ModernaTX, Inc. Chimeric polynucleotides
JP6240570B2 (ja) * 2014-07-17 2017-11-29 富士フイルム株式会社 脂質粒子および核酸送達キャリア
JP2016023148A (ja) * 2014-07-17 2016-02-08 富士フイルム株式会社 脂質粒子の製造法および脂質粒子を有する核酸送達キャリア
US20170210788A1 (en) 2014-07-23 2017-07-27 Modernatx, Inc. Modified polynucleotides for the production of intrabodies
EP3061826A1 (en) 2015-02-27 2016-08-31 Novartis AG Flavivirus replicons
US10653768B2 (en) 2015-04-13 2020-05-19 Curevac Real Estate Gmbh Method for producing RNA compositions
JP2017000667A (ja) 2015-06-16 2017-01-05 国立大学法人三重大学 無針注射器及びそれを用いた注射対象領域へのdna導入方法
SI3313829T1 (sl) 2015-06-29 2024-09-30 Acuitas Therapeutics Inc. Lipidi in formulacije lipidnih nanodelcev za dostavo nukleinskih kislin
EP3324979B1 (en) 2015-07-21 2022-10-12 ModernaTX, Inc. Infectious disease vaccines
US11364292B2 (en) 2015-07-21 2022-06-21 Modernatx, Inc. CHIKV RNA vaccines
US11564893B2 (en) 2015-08-17 2023-01-31 Modernatx, Inc. Methods for preparing particles and related compositions
RS63030B1 (sr) 2015-09-17 2022-04-29 Modernatx Inc Jedinjenja i kompozicije za intracelularno isporučivanje terapeutskih sredstava
CA3001003A1 (en) 2015-10-05 2017-04-13 Modernatx, Inc. Methods for therapeutic administration of messenger ribonucleic acid drugs
MA45209A (fr) 2015-10-22 2019-04-17 Modernatx Inc Vaccins contre les maladies sexuellement transmissibles
CN108472354A (zh) * 2015-10-22 2018-08-31 摩登纳特斯有限公司 呼吸道合胞病毒疫苗
CA3002912A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Nucleic acid vaccines for varicella zoster virus (vzv)
WO2017070624A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Tropical disease vaccines
CA3003055C (en) 2015-10-28 2023-08-01 Acuitas Therapeutics, Inc. Lipids and lipid nanoparticle formulations for delivery of nucleic acids
EP3964200A1 (en) 2015-12-10 2022-03-09 ModernaTX, Inc. Compositions and methods for delivery of therapeutic agents
LT3394030T (lt) 2015-12-22 2022-04-11 Modernatx, Inc. Junginiai ir kompozicijos terapinei medžiagai teikti intraceliuliniu būdu
RS63135B1 (sr) 2015-12-23 2022-05-31 Modernatx Inc Postupci upotrebe polinukleotida koji kodiraju ox40 ligand
CA3009727A1 (en) 2015-12-28 2017-07-06 Novartis Ag Compositions and methods for the treatment of hemoglobinopathies
US20190241658A1 (en) 2016-01-10 2019-08-08 Modernatx, Inc. Therapeutic mRNAs encoding anti CTLA-4 antibodies
WO2017162266A1 (en) 2016-03-21 2017-09-28 Biontech Rna Pharmaceuticals Gmbh Rna replicon for versatile and efficient gene expression
WO2017162265A1 (en) 2016-03-21 2017-09-28 Biontech Rna Pharmaceuticals Gmbh Trans-replicating rna
MA45051A (fr) 2016-05-18 2019-03-27 Modernatx Inc Polynucléotides codant la relaxine
EP3463445A1 (en) 2016-06-02 2019-04-10 GlaxoSmithKline Biologicals SA Zika viral antigen constructs
CN106176634A (zh) * 2016-08-17 2016-12-07 浙江美保龙生物技术有限公司 一种猪传染性胃肠炎‑流行性腹泻二联弱毒疫苗脂质体稀释液冻干制品及其制备方法
CN106176633A (zh) * 2016-08-17 2016-12-07 浙江美保龙生物技术有限公司 一种猪传染性胃肠炎病毒脂质体稀释液冻干制品及其制备方法
CN106109424A (zh) * 2016-08-17 2016-11-16 浙江美保龙生物技术有限公司 一种猪圆环病毒2型脂质体稀释液冻干制品及其制备方法
WO2018033254A2 (en) 2016-08-19 2018-02-22 Curevac Ag Rna for cancer therapy
US11466292B2 (en) 2016-09-29 2022-10-11 Glaxosmithkline Biologicals Sa Compositions and methods of treatment
GB201616904D0 (en) 2016-10-05 2016-11-16 Glaxosmithkline Biologicals Sa Vaccine
US11583504B2 (en) 2016-11-08 2023-02-21 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
WO2018089851A2 (en) 2016-11-11 2018-05-17 Modernatx, Inc. Influenza vaccine
US11780885B2 (en) 2016-11-17 2023-10-10 Glaxosmithkline Biologicals Sa Zika viral antigen constructs
WO2018104540A1 (en) 2016-12-08 2018-06-14 Curevac Ag Rnas for wound healing
US11103578B2 (en) 2016-12-08 2021-08-31 Modernatx, Inc. Respiratory virus nucleic acid vaccines
EP3808380A1 (en) 2016-12-08 2021-04-21 CureVac AG Rna for treatment or prophylaxis of a liver disease
EP3558354A1 (en) 2016-12-23 2019-10-30 CureVac AG Lassa virus vaccine
US11141476B2 (en) 2016-12-23 2021-10-12 Curevac Ag MERS coronavirus vaccine
TW201839136A (zh) 2017-02-06 2018-11-01 瑞士商諾華公司 治療血色素異常症之組合物及方法
EP3609534A4 (en) 2017-03-15 2021-01-13 ModernaTX, Inc. BROAD SPECTRUM VACCINE AGAINST THE INFLUENZA VIRUS
MX2019011004A (es) 2017-03-15 2020-08-10 Modernatx Inc Compuestos y composiciones para la administracion intracelular de agentes terapeuticos.
MA47787A (fr) * 2017-03-15 2020-01-22 Modernatx Inc Vaccin contre le virus respiratoire syncytial
WO2018170256A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Herpes simplex virus vaccine
WO2018170336A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Lipid nanoparticle formulation
WO2018170270A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Varicella zoster virus (vzv) vaccine
DK3596042T3 (da) 2017-03-15 2022-04-11 Modernatx Inc Krystalformer af aminolipider
WO2018167320A1 (en) 2017-03-17 2018-09-20 Curevac Ag Rna vaccine and immune checkpoint inhibitors for combined anticancer therapy
BR112019015244A2 (pt) 2017-03-24 2020-04-14 Curevac Ag ácidos nucleicos codificando proteínas associadas a crispr e usos dos mesmos
MA48047A (fr) 2017-04-05 2020-02-12 Modernatx Inc Réduction ou élimination de réponses immunitaires à des protéines thérapeutiques administrées par voie non intraveineuse, par exemple par voie sous-cutanée
JP2020518648A (ja) 2017-05-08 2020-06-25 グリットストーン オンコロジー インコーポレイテッド アルファウイルス新生抗原ベクター
ES2952779T3 (es) 2017-05-18 2023-11-06 Modernatx Inc ARN mensajero modificado que comprende elementos de ARN funcionales
JP7285220B2 (ja) 2017-05-18 2023-06-01 モデルナティエックス インコーポレイテッド 連結したインターロイキン-12(il12)ポリペプチドをコードするポリヌクレオチドを含む脂質ナノ粒子
US11015204B2 (en) 2017-05-31 2021-05-25 Arcturus Therapeutics, Inc. Synthesis and structure of high potency RNA therapeutics
US12077501B2 (en) 2017-06-14 2024-09-03 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
US20200268666A1 (en) * 2017-06-14 2020-08-27 Modernatx, Inc. Polynucleotides encoding coagulation factor viii
EP3638215A4 (en) 2017-06-15 2021-03-24 Modernatx, Inc. RNA FORMULATIONS
RU2020103379A (ru) 2017-07-04 2021-08-04 Куревак Аг Новые молекулы нуклеиновых кислот
AU2018326799A1 (en) 2017-08-31 2020-02-27 Modernatx, Inc. Methods of making lipid nanoparticles
WO2019053012A1 (en) 2017-09-13 2019-03-21 Biontech Rna Pharmaceuticals Gmbh RNA REPLICON FOR THE REPROGRAMMING OF SOMATIC CELLS
CA3074919A1 (en) 2017-09-13 2019-03-21 Biontech Cell & Gene Therapies Gmbh Rna replicon for expressing a t cell receptor or an artificial t cell receptor
US10653767B2 (en) 2017-09-14 2020-05-19 Modernatx, Inc. Zika virus MRNA vaccines
EP3461497A1 (en) 2017-09-27 2019-04-03 GlaxoSmithKline Biologicals S.A. Viral antigens
RU2020115287A (ru) 2017-10-19 2021-11-19 Куревак Аг Новые молекулы искусственных нуклеиновых кислот
JP6388700B2 (ja) * 2017-10-20 2018-09-12 富士フイルム株式会社 脂質粒子の製造法および脂質粒子を有する核酸送達キャリア
JP6495995B2 (ja) * 2017-11-02 2019-04-03 富士フイルム株式会社 脂質粒子および核酸送達キャリア
JP7423521B2 (ja) 2017-11-22 2024-01-29 モダーナティエックス・インコーポレイテッド フェニルケトン尿症の治療用のフェニルアラニンヒドロキシラーゼをコードするポリヌクレオチド
MA50803A (fr) 2017-11-22 2020-09-30 Modernatx Inc Polynucléotides codant pour l'ornithine transcarbamylase pour le traitement de troubles du cycle de l'urée
JP7424976B2 (ja) 2017-11-22 2024-01-30 モダーナティエックス・インコーポレイテッド プロピオン酸血症の治療用のプロピオニルCoAカルボキシラーゼアルファ及びベータサブユニットをコードするポリヌクレオチド
IL315325A (en) 2018-01-04 2024-10-01 Iconic Therapeutics Inc Anti-tissue-mediated antibodies, antibody-drug conjugates, and related methods
MA51523A (fr) 2018-01-05 2020-11-11 Modernatx Inc Polynucléotides codant pour des anticorps anti-virus du chikungunya
WO2019148101A1 (en) 2018-01-29 2019-08-01 Modernatx, Inc. Rsv rna vaccines
EP3773745A1 (en) 2018-04-11 2021-02-17 ModernaTX, Inc. Messenger rna comprising functional rna elements
WO2019226650A1 (en) 2018-05-23 2019-11-28 Modernatx, Inc. Delivery of dna
US20220184185A1 (en) 2018-07-25 2022-06-16 Modernatx, Inc. Mrna based enzyme replacement therapy combined with a pharmacological chaperone for the treatment of lysosomal storage disorders
WO2020035609A2 (en) 2018-08-17 2020-02-20 Glaxosmithkline Biologicals Sa Immunogenic compositions and uses thereof
WO2020047201A1 (en) 2018-09-02 2020-03-05 Modernatx, Inc. Polynucleotides encoding very long-chain acyl-coa dehydrogenase for the treatment of very long-chain acyl-coa dehydrogenase deficiency
JP2021535226A (ja) * 2018-09-04 2021-12-16 ザ ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム 核酸を臓器特異的送達するための組成物および方法
EP3849595A2 (en) 2018-09-13 2021-07-21 Modernatx, Inc. Polynucleotides encoding glucose-6-phosphatase for the treatment of glycogen storage disease
EP3849594A2 (en) 2018-09-13 2021-07-21 Modernatx, Inc. Polynucleotides encoding branched-chain alpha-ketoacid dehydrogenase complex e1-alpha, e1-beta, and e2 subunits for the treatment of maple syrup urine disease
MA53615A (fr) 2018-09-14 2021-07-21 Modernatx Inc Polynucléotides codant pour le polypeptide a1, de la famille de l'uridine diphosphate glycosyltransférase 1, pour le traitement du syndrome de crigler-najjar
CN113271926A (zh) 2018-09-20 2021-08-17 摩登纳特斯有限公司 脂质纳米颗粒的制备及其施用方法
WO2020069169A1 (en) 2018-09-27 2020-04-02 Modernatx, Inc. Polynucleotides encoding arginase 1 for the treatment of arginase deficiency
US20220001026A1 (en) 2018-11-08 2022-01-06 Modernatx, Inc. Use of mrna encoding ox40l to treat cancer in human patients
US20220062439A1 (en) 2019-01-10 2022-03-03 Biontech Rna Pharmaceuticals Gmbh Localized administration of rna molecules for therapy
JOP20210186A1 (ar) 2019-01-10 2023-01-30 Janssen Biotech Inc مستضدات البروستاتا المستحدثة واستخداماتها
JP7523449B2 (ja) 2019-01-11 2024-07-26 アクイタス セラピューティクス インコーポレイテッド 活性剤の脂質ナノ粒子送達のための脂質
US11351242B1 (en) 2019-02-12 2022-06-07 Modernatx, Inc. HMPV/hPIV3 mRNA vaccine composition
WO2020190750A1 (en) 2019-03-15 2020-09-24 Modernatx, Inc. Hiv rna vaccines
US20220226438A1 (en) 2019-05-08 2022-07-21 Astrazeneca Ab Compositions for skin and wounds and methods of use thereof
SG11202113187WA (en) 2019-05-30 2021-12-30 Gritstone Bio Inc Modified adenoviruses
EP3986480A1 (en) 2019-06-24 2022-04-27 ModernaTX, Inc. Messenger rna comprising functional rna elements and uses thereof
US20220251577A1 (en) 2019-06-24 2022-08-11 Modernatx, Inc. Endonuclease-resistant messenger rna and uses thereof
CN112237628A (zh) * 2019-07-17 2021-01-19 四川大学华西医院 靶向EBV的LMP2-mRNA纳米疫苗
WO2021009336A1 (en) 2019-07-18 2021-01-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for inducing full ablation of hematopoiesis
AU2020318680A1 (en) 2019-07-21 2022-02-17 Glaxosmithkline Biologicals Sa Therapeutic viral vaccine
KR20220101077A (ko) 2019-09-19 2022-07-19 모더나티엑스, 인크. 치료제의 세포내 전달을 위한 분지형 꼬리 지질 화합물 및 조성물
US11987791B2 (en) 2019-09-23 2024-05-21 Omega Therapeutics, Inc. Compositions and methods for modulating hepatocyte nuclear factor 4-alpha (HNF4α) gene expression
CN114391040A (zh) 2019-09-23 2022-04-22 欧米茄治疗公司 用于调节载脂蛋白b(apob)基因表达的组合物和方法
EP3819377A1 (en) 2019-11-08 2021-05-12 Justus-Liebig-Universität Gießen Circular rna and uses thereof for inhibiting rna-binding proteins
US12018289B2 (en) 2019-11-18 2024-06-25 Janssen Biotech, Inc. Vaccines based on mutant CALR and JAK2 and their uses
WO2021123920A1 (en) 2019-12-18 2021-06-24 Novartis Ag Compositions and methods for the treatment of hemoglobinopathies
US20240277830A1 (en) 2020-02-04 2024-08-22 CureVac SE Coronavirus vaccine
US11744887B2 (en) 2020-03-09 2023-09-05 Arcturus Therapeutics, Inc. Coronavirus vaccine compositions and methods
CN116096886A (zh) 2020-03-11 2023-05-09 欧米茄治疗公司 用于调节叉头框p3(foxp3)基因表达的组合物和方法
US20230364219A1 (en) 2020-04-16 2023-11-16 Glaxosmithkline Biologicals Sa Sars cov-2 spike protein construct
EP4158005A1 (en) 2020-06-01 2023-04-05 ModernaTX, Inc. Phenylalanine hydroxylase variants and uses thereof
AU2021286169A1 (en) 2020-06-04 2023-01-19 BioNTech SE RNA replicon for versatile and efficient gene expression
WO2021245611A1 (en) 2020-06-05 2021-12-09 Glaxosmithkline Biologicals Sa Modified betacoronavirus spike proteins
WO2022002783A1 (en) 2020-06-29 2022-01-06 Glaxosmithkline Biologicals Sa Adjuvants
AU2021308681A1 (en) 2020-07-16 2023-03-09 Acuitas Therapeutics, Inc. Cationic lipids for use in lipid nanoparticles
WO2022032196A2 (en) 2020-08-06 2022-02-10 Gritstone Bio, Inc. Multiepitope vaccine cassettes
US20230406895A1 (en) 2020-11-13 2023-12-21 Modernatx, Inc. Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis
EP4008785A1 (en) 2020-12-03 2022-06-08 Justus-Liebig-Universität Gießen Circular nucleic acids and uses thereof for interfering with genome expression and proliferation of coronaviruses
KR20230164648A (ko) 2020-12-22 2023-12-04 큐어백 에스이 SARS-CoV-2 변이체에 대한 RNA 백신
US20240301006A1 (en) 2020-12-23 2024-09-12 Glaxosmithkline Biologicals Sa Self-amplifying messenger rna
CN116981692A (zh) * 2021-01-14 2023-10-31 翻译生物公司 递送mRNA编码的抗体的方法和组合物
EP4032546A1 (en) 2021-01-20 2022-07-27 GlaxoSmithKline Biologicals S.A. Therapeutic viral vaccine
US11524023B2 (en) 2021-02-19 2022-12-13 Modernatx, Inc. Lipid nanoparticle compositions and methods of formulating the same
WO2022204380A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits and uses thereof
JP2024512026A (ja) 2021-03-24 2024-03-18 モデルナティエックス インコーポレイテッド オルニチントランスカルバミラーゼ欠損症の治療を目的とした脂質ナノ粒子及びオルニチントランスカルバミラーゼをコードするポリヌクレオチド
WO2022204369A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Polynucleotides encoding methylmalonyl-coa mutase for the treatment of methylmalonic acidemia
US20240207444A1 (en) 2021-03-24 2024-06-27 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding phenylalanine hydroxylase and uses thereof
US20240207374A1 (en) 2021-03-24 2024-06-27 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding glucose-6-phosphatase and uses thereof
EP4313152A1 (en) 2021-03-26 2024-02-07 GlaxoSmithKline Biologicals S.A. Immunogenic compositions
US20240285755A1 (en) 2021-05-24 2024-08-29 Glaxosmithkline Biologicals Sa Adjuvants
US20240272143A1 (en) 2021-06-09 2024-08-15 Glaxosmithkline Biologicals Sa Release assay for determining potency of self-amplifying rna drug product and methods for using
EP4355882A2 (en) 2021-06-15 2024-04-24 Modernatx, Inc. Engineered polynucleotides for cell-type or microenvironment-specific expression
WO2022271776A1 (en) 2021-06-22 2022-12-29 Modernatx, Inc. Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide a1 for the treatment of crigler-najjar syndrome
EP4359527A2 (en) 2021-06-23 2024-05-01 Novartis AG Compositions and methods for the treatment of hemoglobinopathies
EP4367242A2 (en) 2021-07-07 2024-05-15 Omega Therapeutics, Inc. Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression
WO2023006999A2 (en) 2021-07-30 2023-02-02 CureVac SE Mrnas for treatment or prophylaxis of liver diseases
WO2023021421A1 (en) 2021-08-16 2023-02-23 Glaxosmithkline Biologicals Sa Low-dose lyophilized rna vaccines and methods for preparing and using the same
WO2023020993A1 (en) 2021-08-16 2023-02-23 Glaxosmithkline Biologicals Sa Novel methods
WO2023021427A1 (en) 2021-08-16 2023-02-23 Glaxosmithkline Biologicals Sa Freeze-drying of lipid nanoparticles (lnps) encapsulating rna and formulations thereof
WO2023020992A1 (en) 2021-08-16 2023-02-23 Glaxosmithkline Biologicals Sa Novel methods
WO2023020994A1 (en) 2021-08-16 2023-02-23 Glaxosmithkline Biologicals Sa Novel methods
CA3229889A1 (en) 2021-09-03 2023-03-09 Glaxosmithkline Biologicals Sa Substitution of nucleotide bases in self-amplifying messenger ribonucleic acids
EP4408871A1 (en) 2021-10-01 2024-08-07 ModernaTX, Inc. Polynucleotides encoding relaxin for the treatment of fibrosis and/or cardiovascular disease
WO2023066874A1 (en) 2021-10-18 2023-04-27 BioNTech SE Methods for determining mutations for increasing modified replicable rna function and related compositions and their use
CA3234396A1 (en) 2021-10-18 2023-04-27 BioNTech SE Modified replicable rna and related compositions and their use
WO2023135298A1 (en) 2022-01-17 2023-07-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of inducing cell death of a population of solid tumor cells
WO2023144193A1 (en) 2022-01-25 2023-08-03 CureVac SE Mrnas for treatment of hereditary tyrosinemia type i
WO2023152365A1 (en) 2022-02-14 2023-08-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of the 15-lipoxygenase for the treatment of lymphedema
WO2023161350A1 (en) 2022-02-24 2023-08-31 Io Biotech Aps Nucleotide delivery of cancer therapy
WO2023183909A2 (en) 2022-03-25 2023-09-28 Modernatx, Inc. Polynucleotides encoding fanconi anemia, complementation group proteins for the treatment of fanconi anemia
WO2023213378A1 (en) 2022-05-02 2023-11-09 BioNTech SE Replicon compositions and methods of using same for the treatment of diseases
WO2023242817A2 (en) 2022-06-18 2023-12-21 Glaxosmithkline Biologicals Sa Recombinant rna molecules comprising untranslated regions or segments encoding spike protein from the omicron strain of severe acute respiratory coronavirus-2
US11878055B1 (en) 2022-06-26 2024-01-23 BioNTech SE Coronavirus vaccine
WO2024017479A1 (en) 2022-07-21 2024-01-25 BioNTech SE Multifunctional cells transiently expressing an immune receptor and one or more cytokines, their use and methods for their production
WO2024023034A1 (en) 2022-07-25 2024-02-01 Institut National de la Santé et de la Recherche Médicale Use of apelin for the treatment of lymphedema
WO2024026254A1 (en) 2022-07-26 2024-02-01 Modernatx, Inc. Engineered polynucleotides for temporal control of expression
WO2024044147A1 (en) 2022-08-23 2024-02-29 Modernatx, Inc. Methods for purification of ionizable lipids
WO2024047247A1 (en) 2022-09-02 2024-03-07 Institut National de la Santé et de la Recherche Médicale Base editing approaches for the treatment of amyotrophic lateral sclerosis
WO2024056856A1 (en) 2022-09-15 2024-03-21 BioNTech SE Systems and compositions comprising trans-amplifying rna vectors with mirna
WO2024068545A1 (en) 2022-09-26 2024-04-04 Glaxosmithkline Biologicals Sa Influenza virus vaccines
WO2024121378A1 (en) 2022-12-09 2024-06-13 Institut National de la Santé et de la Recherche Médicale Novel human antiviral genes related to the eleos and lamassu prokaryotic systems
WO2024133160A1 (en) 2022-12-19 2024-06-27 Glaxosmithkline Biologicals Sa Hepatitis b compositions
WO2024149697A1 (en) 2023-01-09 2024-07-18 Institut National de la Santé et de la Recherche Médicale Use of the recombinant fibrinogen-like domain of angiopoietin-like 4 for treating adverse post-ischemic cardiac remodeling in a patient who experienced a myocardial infarction
WO2024153636A1 (en) 2023-01-17 2024-07-25 Institut National de la Santé et de la Recherche Médicale Vasorin as a biomarker and biotarget in nephrology
WO2024156835A1 (en) 2023-01-27 2024-08-02 Institut National de la Santé et de la Recherche Médicale Use of amphiregulin (areg) in methods of treating vascular hyperpermeability
WO2024160936A1 (en) 2023-02-03 2024-08-08 Glaxosmithkline Biologicals Sa Rna formulation
GB202302092D0 (en) 2023-02-14 2023-03-29 Glaxosmithkline Biologicals Sa Analytical method
WO2024197033A1 (en) 2023-03-21 2024-09-26 Modernatx, Inc. Polynucleotides encoding relaxin for the treatment of heart failure
WO2024194484A1 (en) 2023-03-23 2024-09-26 Institut National de la Santé et de la Recherche Médicale Modulating the expression and/or activity of gas7 for modulating viral replication
GB202404607D0 (en) 2024-03-29 2024-05-15 Glaxosmithkline Biologicals Sa RNA formulation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2245149C2 (ru) * 1999-09-25 2005-01-27 Юниверсити Оф Айова Рисерч Фаундейшн Иммуностимулирующие нуклеиновые кислоты

Family Cites Families (242)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090406A (en) 1984-04-12 2000-07-18 The Liposome Company, Inc. Potentiation of immune responses with liposomal adjuvants
US4853228A (en) 1987-07-28 1989-08-01 Micro-Pak, Inc. Method of manufacturing unilamellar lipid vesicles
US6867195B1 (en) 1989-03-21 2005-03-15 Vical Incorporated Lipid-mediated polynucleotide administration to reduce likelihood of subject's becoming infected
DE69034078T2 (de) 1989-03-21 2004-04-01 Vical, Inc., San Diego Expression von exogenen Polynukleotidsequenzen in Wirbeltieren
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5279833A (en) 1990-04-04 1994-01-18 Yale University Liposomal transfection of nucleic acids into animal cells
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
FR2676072B1 (fr) 1991-05-03 1994-11-18 Transgene Sa Vecteur de delivrance d'arn.
US5750390A (en) 1992-08-26 1998-05-12 Ribozyme Pharmaceuticals, Inc. Method and reagent for treatment of diseases caused by expression of the bcl-2 gene
US5693535A (en) 1992-05-14 1997-12-02 Ribozyme Pharmaceuticals, Inc. HIV targeted ribozymes
EP0646178A1 (en) 1992-06-04 1995-04-05 The Regents Of The University Of California expression cassette with regularoty regions functional in the mammmlian host
AU4769893A (en) 1992-07-17 1994-02-14 Ribozyme Pharmaceuticals, Inc. Method and reagent for treatment of animal diseases
US5474914A (en) 1992-07-29 1995-12-12 Chiron Corporation Method of producing secreted CMV glycoprotein H
US20020102273A1 (en) 1995-08-08 2002-08-01 Robert B. Grieve Use of alphavirus expression vectors to produce parasite anitgens
WO1994027435A1 (en) 1993-06-01 1994-12-08 Life Technologies, Inc. Genetic immunization with cationic lipids
US6015686A (en) 1993-09-15 2000-01-18 Chiron Viagene, Inc. Eukaryotic layered vector initiation systems
WO1995027721A1 (en) 1994-04-07 1995-10-19 Akzo Nobel N.V. Freeze-dried compositions comprising rna
US5993850A (en) 1994-09-13 1999-11-30 Skyepharma Inc. Preparation of multivesicular liposomes for controlled release of encapsulated biologically active substances
US5885613A (en) * 1994-09-30 1999-03-23 The University Of British Columbia Bilayer stabilizing components and their use in forming programmable fusogenic liposomes
AU4594996A (en) 1994-11-30 1996-06-19 Chiron Viagene, Inc. Recombinant alphavirus vectors
US5965434A (en) 1994-12-29 1999-10-12 Wolff; Jon A. Amphipathic PH sensitive compounds and delivery systems for delivering biologically active compounds
US5792462A (en) 1995-05-23 1998-08-11 University Of North Carolina At Chapel Hill Alphavirus RNA replicon systems
US5981501A (en) 1995-06-07 1999-11-09 Inex Pharmaceuticals Corp. Methods for encapsulating plasmids in lipid bilayers
US7422902B1 (en) 1995-06-07 2008-09-09 The University Of British Columbia Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
JPH11512609A (ja) 1995-09-27 1999-11-02 アメリカ合衆国 クローン化されたヌクレオチド配列からの感染性RSウイルス(respiratory syncytial virus)の生産
WO1997028818A1 (en) 1996-02-12 1997-08-14 Cobra Therapeutics Limited Novel methods of vaccination and vaccines therefore comprising a nucleic acid encoding a first epitope and a peptide containing a second epitope
DE19605548A1 (de) 1996-02-15 1997-09-04 Boehringer Ingelheim Int Zusammensetzung für die Transfektion höherer eukaryotischer Zellen
US6451592B1 (en) 1996-04-05 2002-09-17 Chiron Corporation Recombinant alphavirus-based vectors with reduced inhibition of cellular macromolecular synthesis
EP0910343A1 (en) 1996-07-03 1999-04-28 University Of Pittsburgh Emulsion formulations for hydrophilic active agents
US7384923B2 (en) 1999-05-14 2008-06-10 Lipoxen Technologies Limited Liposomes
ES2187812T3 (es) 1996-09-13 2003-06-16 Lipoxen Technologies Ltd Composicion de liposomas.
US6395302B1 (en) 1996-11-19 2002-05-28 Octoplus B.V. Method for the preparation of microspheres which contain colloidal systems
JP4656675B2 (ja) 1997-05-14 2011-03-23 ユニバーシティー オブ ブリティッシュ コロンビア 脂質小胞への荷電した治療剤の高率封入
US6048546A (en) 1997-07-31 2000-04-11 Sandia Corporation Immobilized lipid-bilayer materials
US6060308A (en) 1997-09-04 2000-05-09 Connaught Laboratories Limited RNA respiratory syncytial virus vaccines
JP2002500003A (ja) 1997-11-28 2002-01-08 ザ・クラウン・イン・ザ・ライト・オヴ・ザ・クイーンズランド・デパートメント・オヴ・ヘルス フラビウイルスの発現および送達のシステム
US6009406A (en) 1997-12-05 1999-12-28 Square D Company Methodology and computer-based tools for re-engineering a custom-engineered product line
GB9726555D0 (en) 1997-12-16 1998-02-11 Smithkline Beecham Plc Vaccine
WO1999055310A1 (en) 1998-04-27 1999-11-04 Altus Biologics Inc. Stabilized protein crystals, formulations containing them and methods of making them
US6432925B1 (en) 1998-04-16 2002-08-13 John Wayne Cancer Institute RNA cancer vaccine and methods for its use
AU767551B2 (en) 1998-06-29 2003-11-13 U.S. Medical Research Institute Of Infectious Diseases Marburg virus vaccines
CA2335393C (en) 1998-07-20 2008-09-23 Inex Pharmaceuticals Corporation Liposomal encapsulated nucleic acid-complexes
CA2360347C (en) 1998-12-31 2013-05-07 Chiron Corporation Improved expression of hiv polypeptides and production of virus-like particles
EP1818409A1 (en) 1999-09-09 2007-08-15 CureVac GmbH Transfer of mRNAusing polycationic compounds
CN1411512A (zh) 1999-10-20 2003-04-16 约翰霍普金斯大学医学院 嵌合的免疫原性组合物及其编码核酸
US8541008B2 (en) 1999-11-19 2013-09-24 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Pharmaceutical compositions and methods to vaccinate against candidiasis
US20030212022A1 (en) 2001-03-23 2003-11-13 Jean-Marie Vogel Compositions and methods for gene therapy
WO2001079253A1 (en) 2000-04-18 2001-10-25 Human Genome Sciences, Inc. Extracellular matrix polynucleotides, polypeptides, and antibodies
AU2001275423B2 (en) 2000-06-09 2007-01-11 Regulon, Inc. Encapsulation of polynucleotides and drugs into targeted liposomes
CA2414884A1 (en) 2000-07-03 2002-01-10 Chiron S.P.A. Immunisation against chlamydia pneumoniae
AU2001290520A1 (en) 2000-08-01 2002-02-13 The Johns Hokpins University Intercellular transport protein linked to an antigen as a molecular vaccine
US20040142474A1 (en) 2000-09-14 2004-07-22 Expression Genetics, Inc. Novel cationic lipopolymer as a biocompatible gene delivery agent
CN1468089B (zh) 2000-09-28 2011-09-21 诺华疫苗和诊断公司 用于传送异源核酸的微粒体
EP1328543B1 (en) 2000-10-27 2009-08-12 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus groups a & b
US7731975B2 (en) 2001-01-31 2010-06-08 The United States Of America As Represented By The Secretary Of The Army Chimeric filovirus glycoprotein
US7557200B2 (en) 2001-02-01 2009-07-07 Johns Hopkins University Superior molecular vaccine based on self-replicating RNA, suicidal DNA or naked DNA vector, that links antigen with polypeptide that promotes antigen presentation
AU2002306709A1 (en) 2001-03-14 2002-09-24 Replicon Technologies, Inc. Oncolytic rna replicons
WO2002074920A2 (en) 2001-03-16 2002-09-26 Johns Hopkins University A replication-defective alphavirus vaccine linking antigen with an immunogenicity-potentiating polypeptide and a method of delivery the same
JP2004535388A (ja) * 2001-04-30 2004-11-25 ターゲティッド ジェネティクス コーポレイション 脂質含有薬物送達複合体およびそれらの生成方法
US20030077251A1 (en) 2001-05-23 2003-04-24 Nicolas Escriou Replicons derived from positive strand RNA virus genomes useful for the production of heterologous proteins
DK1857122T3 (da) 2001-06-05 2011-03-21 Curevac Gmbh Stabiliseret mRNA med forøget G/C-indhold, kodende for et viralt antigen
CA2458854A1 (en) 2001-08-31 2003-03-06 Chiron Srl Helicobacter pylori vaccination
JP4790984B2 (ja) 2001-09-06 2011-10-12 アルファヴァックス,インコーポレイテッド アルファウイルスレプリコンベクター系
AU2003211103A1 (en) 2002-02-13 2003-09-04 Northeastern University Intracellular delivery of therapeutic agents
DE10207177A1 (de) 2002-02-19 2003-09-04 Novosom Ag Fakultativ kationische Lipide
EP2823809B1 (en) 2002-06-28 2016-11-02 Protiva Biotherapeutics Inc. Method and apparatus for producing liposomes
US7604803B2 (en) 2002-07-05 2009-10-20 Lipoxen Technologies Limited Method to enhance an immune response of nucleic acid vaccination
EP1530585A2 (en) 2002-08-22 2005-05-18 Cytos Biotechnology AG Inducible alphaviral/orip based gene expression system
EA008940B1 (ru) 2002-09-13 2007-10-26 Репликор, Инк. Антивирусные олигонуклеотиды, не связанные с комплементарностью последовательностей
ES2618309T3 (es) 2002-12-13 2017-06-21 Alphavax, Inc. Partículas de replicón de alfavirus multi-antigénico y métodos
CA2756797C (en) 2002-12-23 2015-05-05 Vical Incorporated Codon-optimized polynucleotide-based vaccines against human cytomegalovirus infection
WO2004069148A2 (en) 2003-02-04 2004-08-19 Bar-Ilan University Snornai-small nucleolar rna degradation by rna interference in trypanosomatids
WO2004076645A2 (en) 2003-02-27 2004-09-10 University Of Massachusetts Compositions and methods for cytomegalovirus treatment
ES2453344T3 (es) 2003-03-20 2014-04-07 Alphavax, Inc. Replicones de alfavirus mejorados y constructos cooperadores
US7731967B2 (en) 2003-04-30 2010-06-08 Novartis Vaccines And Diagnostics, Inc. Compositions for inducing immune responses
KR20060063788A (ko) 2003-05-30 2006-06-12 니뽄 신야쿠 가부시키가이샤 올리고 핵산 담지 복합체, 이 복합체를 함유하는 의약조성물
MXPA05013260A (es) 2003-06-26 2006-03-09 Chiron Corp Composiciones inmunogenicas para chlamydia trachomatis.
PT1651666E (pt) 2003-07-11 2009-08-28 Alphavax Inc Vacinas de citomegalovírus à base de alfavírus
US7368537B2 (en) 2003-07-15 2008-05-06 Id Biomedical Corporation Of Quebec Subunit vaccine against respiratory syncytial virus infection
EP2567693B1 (en) 2003-07-16 2015-10-21 Protiva Biotherapeutics Inc. Lipid encapsulated interfering RNA
PL1648500T3 (pl) 2003-07-31 2014-12-31 Novartis Vaccines & Diagnostics Inc Kompozycje immunogenne dla Streptococcus pyogenes
EP1512393A1 (de) 2003-09-08 2005-03-09 BOEHRINGER INGELHEIM PHARMA GMBH &amp; CO. KG Verfahren zur Herstellung von homogenen Liposomen und Lipoplexen
WO2005046621A2 (en) 2003-11-12 2005-05-26 The United States Of America As Represented By The Secretary Of The Navy Enhancement of vaccine-induced immune responses and protection by heterologous boosting with alphavirus replicon vaccines
US7303881B2 (en) 2004-04-30 2007-12-04 Pds Biotechnology Corporation Antigen delivery compositions and methods of use
GB0410866D0 (en) 2004-05-14 2004-06-16 Chiron Srl Haemophilius influenzae
US20060024670A1 (en) 2004-05-18 2006-02-02 Luke Catherine J Influenza virus vaccine composition and methods of use
US20050266550A1 (en) 2004-05-18 2005-12-01 Alphavax, Inc. TC-83-derived alphavirus vectors, particles and methods
GB0411428D0 (en) 2004-05-21 2004-06-23 Got A Gene Ab Vectors
WO2006078294A2 (en) 2004-05-21 2006-07-27 Novartis Vaccines And Diagnostics Inc. Alphavirus vectors for respiratory pathogen vaccines
EP1781593B1 (en) * 2004-06-07 2011-12-14 Protiva Biotherapeutics Inc. Cationic lipids and methods of use
WO2005121348A1 (en) 2004-06-07 2005-12-22 Protiva Biotherapeutics, Inc. Lipid encapsulated interfering rna
AU2005327198B2 (en) 2004-07-09 2011-03-31 University Of North Carolina At Chapel Hill Viral adjuvants
WO2006007712A1 (en) 2004-07-19 2006-01-26 Protiva Biotherapeutics, Inc. Methods comprising polyethylene glycol-lipid conjugates for delivery of therapeutic agents
JP5086082B2 (ja) 2004-10-01 2012-11-28 ノバルティス ヴァクシンズ アンド ダイアグノスティクス エスアールエル C型肝炎ウイルス複製系
US20060159737A1 (en) 2004-11-19 2006-07-20 Steffen Panzner Pharmaceutical compositions for local administration
GB2421025A (en) 2004-12-09 2006-06-14 Oxxon Therapeutics Ltd HSV vaccination vectors
US7404969B2 (en) 2005-02-14 2008-07-29 Sirna Therapeutics, Inc. Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules
WO2007086881A2 (en) 2005-02-14 2007-08-02 Sirna Therapeutics, Inc. Cationic lipids and formulated molecular compositions containing them
ES2385045T3 (es) 2005-02-18 2012-07-17 Novartis Vaccines And Diagnostics, Inc. Inmunógenos de Escherichia coli uropatogénica
HUE027400T2 (en) 2005-02-18 2016-10-28 Glaxosmithkline Biologicals Sa Proteins and nucleic acids from meningitis / sepsis with Escherichia coli
WO2006092607A1 (en) 2005-03-02 2006-09-08 The Secretary Of State For Defence Pharmaceutical composition
GB0504436D0 (en) 2005-03-03 2005-04-06 Glaxosmithkline Biolog Sa Vaccine
US20100034822A1 (en) 2005-03-30 2010-02-11 Vega Masignani Haemophilus Influenzae Type B
US7618393B2 (en) 2005-05-03 2009-11-17 Pharmajet, Inc. Needle-less injector and method of fluid delivery
WO2006138004A2 (en) 2005-05-12 2006-12-28 Novartis Vaccines And Diagnostics, Inc. Immunogenic compositions for chlamydia trachomatis
US8703095B2 (en) 2005-07-07 2014-04-22 Sanofi Pasteur S.A. Immuno-adjuvant emulsion
EP1909758A1 (en) 2005-08-02 2008-04-16 I.D.M. Immuno-Designed Molecules Process for the preparation of liposomal formulations
US7951384B2 (en) 2005-08-05 2011-05-31 University Of Massachusetts Virus-like particles as vaccines for paramyxovirus
LT2578685T (lt) 2005-08-23 2019-06-10 The Trustees Of The University Of Pennsylvania Rnr, apimančios modifikuotus nukleozidus ir jų panaudojimo būdai
EP1764089A1 (en) 2005-09-15 2007-03-21 Novosom AG Serum stable liposomes comprising amphoter II lipid mixtures
DE102005046490A1 (de) 2005-09-28 2007-03-29 Johannes-Gutenberg-Universität Mainz Modifikationen von RNA, die zu einer erhöhten Transkriptstabilität und Translationseffizienz führen
NZ567270A (en) 2005-09-29 2011-06-30 Elan Pharm Inc Pyrimidinyl amide compounds which inhibit leukocyte adhesion mediated by VLA-4
WO2007047749A1 (en) 2005-10-18 2007-04-26 Novartis Vaccines And Diagnostics Inc. Mucosal and systemic immunizations with alphavirus replicon particles
JP2007112768A (ja) 2005-10-24 2007-05-10 Kyoto Univ 肝指向性リポソーム組成物
CA2627302A1 (en) 2005-10-25 2007-05-03 Novartis Vaccines And Diagnostics S.R.L. Compositions comprising yersinia pestis antigens
EP2360175B1 (en) 2005-11-22 2014-07-16 Novartis Vaccines and Diagnostics, Inc. Norovirus and Sapovirus virus-like particles (VLPs)
WO2008051245A2 (en) 2005-12-02 2008-05-02 Novartis Ag Nanoparticles for use in immunogenic compositions
EP2004141A2 (en) 2006-03-17 2008-12-24 Novosom AG An efficient method for loading amphoteric liposomes with nucleic acid active substances
EP2037959B1 (en) 2006-06-07 2016-01-27 The Trustees Of Princeton University Cytomegalovirus surface protein complex for use in vaccines and as a drug target
US7915399B2 (en) 2006-06-09 2011-03-29 Protiva Biotherapeutics, Inc. Modified siRNA molecules and uses thereof
CN101506381B (zh) 2006-06-21 2012-09-05 斯克里普斯研究学院 针对肿瘤基质抗原fap的dna组合物及其使用方法
EP2586790A3 (en) 2006-08-16 2013-08-14 Novartis AG Immunogens from uropathogenic Escherichia coli
AU2007296489B2 (en) 2006-09-12 2013-07-04 Alphavax, Inc. Alphavirus replicon particles matched to protein antigens as immunological adjuvants
DE102007001370A1 (de) 2007-01-09 2008-07-10 Curevac Gmbh RNA-kodierte Antikörper
AU2008219165A1 (en) 2007-02-16 2008-08-28 Merck Sharp & Dohme Corp. Compositions and methods for potentiated activity of biologicaly active molecules
US20100196492A1 (en) 2007-03-08 2010-08-05 Green Jordan J Electrostatic coating of particles for drug delivery
US8877206B2 (en) 2007-03-22 2014-11-04 Pds Biotechnology Corporation Stimulation of an immune response by cationic lipids
EP2905336A1 (en) 2007-03-29 2015-08-12 Alnylam Pharmaceuticals Inc. Compositions and methods for inhibiting expression of a gene from the ebola
US8748591B2 (en) 2007-04-17 2014-06-10 The Board Of Regents Of The University Of Texas System Chimeric sindbis-western equine encephalitis virus and uses thereof
HUE040417T2 (hu) 2007-05-04 2019-03-28 Marina Biotech Inc Aminosavlipidek és alkalmazásuk
MX2009012635A (es) 2007-05-23 2012-09-13 Mannkind Corp Vectores multicistronicos y metodos para su diseño.
DE102007029471A1 (de) 2007-06-20 2008-12-24 Novosom Ag Neue fakultativ kationische Sterole
US8460913B2 (en) 2007-06-21 2013-06-11 Alpha Vax, Inc. Promoterless cassettes for expression of alpha virus structural proteins
US8202518B2 (en) 2007-07-04 2012-06-19 Ribovax Biotechnologies S.A. Antibodies against human cytomegalovirus (HCMV)
GB0714963D0 (en) 2007-08-01 2007-09-12 Novartis Ag Compositions comprising antigens
US20110177155A1 (en) 2007-08-21 2011-07-21 Immune Disease Institute, Inc. Methods of delivery of agents to leukocytes and endothelial cells
GB0717187D0 (en) 2007-09-04 2007-10-17 Novartis Ag Compositions comprising yersinia pestis antigens
EP2205751A2 (en) 2007-09-26 2010-07-14 Vanderbilt University Vaccine for rsv and mpv
EP2042193A1 (en) * 2007-09-28 2009-04-01 Biomay AG RNA Vaccines
EP2225374B1 (en) 2007-11-26 2013-08-14 Novartis AG Methods of generating alphavirus particles
EP2067749A1 (en) 2007-11-29 2009-06-10 Total Petrochemicals France Process for purification of an aqueous phase containing polyaromatics
WO2009074861A2 (en) 2007-12-10 2009-06-18 Powderject Research Limited Improved vaccine
CA2709875C (en) 2008-01-02 2019-07-16 Tekmira Pharmaceuticals Corporation Improved compositions and methods for the delivery of nucleic acids
WO2009111088A2 (en) 2008-01-02 2009-09-11 The Johns Hopkins University Antitumor immunization by liposomal delivery of vaccine to the spleen
ITMI20081249A1 (it) 2008-07-09 2010-01-09 Novartis Vaccines & Diagnostic Immunogeni di escherichia coli con solubilità migliorata.
US20110110857A1 (en) 2008-03-06 2011-05-12 Roberto Petracca Mutant forms of chlamydia htra
PT2279254T (pt) 2008-04-15 2017-09-04 Protiva Biotherapeutics Inc Novas formulações lipídicas para entrega de ácido nucleico
WO2009127230A1 (en) 2008-04-16 2009-10-22 Curevac Gmbh MODIFIED (m)RNA FOR SUPPRESSING OR AVOIDING AN IMMUNOSTIMULATORY RESPONSE AND IMMUNOSUPPRESSIVE COMPOSITION
WO2009132131A1 (en) 2008-04-22 2009-10-29 Alnylam Pharmaceuticals, Inc. Amino lipid based improved lipid formulation
WO2009132206A1 (en) 2008-04-25 2009-10-29 Liquidia Technologies, Inc. Compositions and methods for intracellular delivery and release of cargo
US20100040650A1 (en) 2008-05-30 2010-02-18 Crowe Jr James E Virus-Like paramyxovirus particles and vaccines
EP2130912A1 (en) 2008-06-04 2009-12-09 Institut für Viruskrankeiten und Immunprophylaxe Pestivirus replicons providing an RNA-based viral vector system
WO2009156852A1 (en) 2008-06-25 2009-12-30 Novartis Ag Rapid responses to delayed booster immunisations
WO2009156155A1 (en) 2008-06-25 2009-12-30 Probiogen Ag Cell line for propagation of highly attenuated alphaviruses
JP2010025644A (ja) * 2008-07-16 2010-02-04 Kochi Univ Of Technology 硝酸イオンの呈色試薬並びにこれを用いた硝酸イオンの検出及び定量方法
ES2548014T3 (es) 2008-07-16 2015-10-13 Institute For Research In Biomedicine Anticuerpos neutralizantes del citomegalovirus humano y uso de los mismos
PE20141432A1 (es) 2008-07-16 2014-10-18 Inst Research In Biomedicine Anticuerpos neutralizantes de citomegalovirus humano
WO2010017330A1 (en) 2008-08-06 2010-02-11 Novartis Ag Microparticles for use in immunogenic compositions
CL2008002322A1 (es) * 2008-08-07 2009-06-05 Univ Concepcion Formulacion farmaceutica veterinaria que comprende un sistema vectorial viral constituido por una particula recombinante de arn que codifica una cu/zn superoxido dismutasa de la bacteria patogena de bovinos brucella abortus, y al menos un alfavirus arn perteneciente a la familia del virus semliki forest (sfv), util como vacuna.
EP2323628B1 (en) 2008-08-13 2022-04-13 California Institute of Technology Carrier nanoparticles and related compositions, methods and systems
WO2010036948A2 (en) 2008-09-26 2010-04-01 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Dna prime/inactivated vaccine boost immunization to influenza virus
PL2350043T3 (pl) * 2008-10-09 2014-09-30 Tekmira Pharmaceuticals Corp Ulepszone aminolipidy i sposoby dostarczania kwasów nukleinowych
AU2009311667B2 (en) 2008-11-07 2016-04-14 Massachusetts Institute Of Technology Aminoalcohol lipidoids and uses thereof
NO2355851T3 (ru) 2008-11-10 2018-09-01
EP2367844A4 (en) 2008-11-18 2012-08-01 Ligocyte Pharmaceuticals Inc RSV-F VLP AND MANUFACTURING METHOD AND METHOD OF USE THEREOF
EP3243504A1 (en) 2009-01-29 2017-11-15 Arbutus Biopharma Corporation Improved lipid formulation
SG175092A1 (en) 2009-04-14 2011-11-28 Novartis Ag Compositions for immunising against staphylococcus aerus
JP5889783B2 (ja) 2009-05-05 2016-03-22 テクミラ ファーマシューティカルズ コーポレイションTekmira Pharmaceuticals Corporation 免疫細胞へオリゴヌクレオチドを送達する方法
KR20230098713A (ko) 2009-06-10 2023-07-04 알닐람 파마슈티칼스 인코포레이티드 향상된 지질 조성물
CA2767127A1 (en) 2009-07-01 2011-01-06 Protiva Biotherapeutics, Inc. Novel lipid formulations for delivery of therapeutic agents to solid tumors
US20120100207A1 (en) 2009-07-02 2012-04-26 Konica Minolta Holdings, Inc. Process for producing liposomes by two-step emulsification method utilizing outer aqueous phase containing specific dispersing agent, process for producing liposome dispersion or dry powder thereof using the process for producing liposomes, and liposome dispersion or dry powder thereof produced thereby
EP2451475A2 (en) 2009-07-06 2012-05-16 Novartis AG Self replicating rna molecules and uses thereof
HRP20220756T1 (hr) 2009-07-15 2022-09-02 Glaxosmithkline Biologicals S.A. Proteinski pripravci rsv f i postupci za izradu istih
EP2453914B1 (en) 2009-07-16 2018-09-05 Vaxil Biotherapeutics Ltd. Antigen specific multi epitope -based anti-infective vaccines
JP5785168B2 (ja) 2009-07-31 2015-09-24 エスリス ゲーエムベーハーethris GmbH タンパク質発現用未修飾および修飾ヌクレオチドの組み合わせを有するrna
TWI445708B (zh) 2009-09-02 2014-07-21 Irm Llc 作為tlr活性調節劑之化合物及組合物
CN102844047B (zh) 2009-09-02 2017-04-05 诺华股份有限公司 含tlr活性调节剂的免疫原性组合物
US20110070260A1 (en) 2009-09-09 2011-03-24 Baric Ralph S Multivalent Immunogenic Compositions Against Noroviruses and Methods of Use
JP5823405B2 (ja) 2009-11-04 2015-11-25 ザ ユニバーシティ オブ ブリティッシュ コロンビア 核酸含有脂質粒子および関連方法
CN102665761A (zh) 2009-11-04 2012-09-12 玛瑞纳生物技术有限公司 活性产生递送分子
US20110112353A1 (en) 2009-11-09 2011-05-12 Circulite, Inc. Bifurcated outflow cannulae
PT3338765T (pt) 2009-12-01 2019-03-18 Translate Bio Inc Derivado de esteróide adequado para a administração de arnm em doenças genéticas humanas
DK3287525T3 (da) 2009-12-07 2020-01-20 Univ Pennsylvania RNA-præparater omfattende oprenset modificeret RNA til omprogrammering af celler
EP3296398A1 (en) 2009-12-07 2018-03-21 Arbutus Biopharma Corporation Compositions for nucleic acid delivery
US20130017223A1 (en) * 2009-12-18 2013-01-17 The University Of British Columbia Methods and compositions for delivery of nucleic acids
SG10201407996PA (en) 2009-12-23 2015-01-29 Novartis Ag Lipids, lipid compositions, and methods of using them
PT2525815E (pt) 2010-01-24 2015-03-05 Novartis Ag Micropartículas de polímero biodegradável irradiadas
ES2651005T3 (es) 2010-03-09 2018-01-23 Biomedical Research Models, Inc. Una nueva estrategia de vacunación mucosa para el virus del herpes simple tipo-2
WO2011127316A1 (en) 2010-04-07 2011-10-13 Novartis Ag Method for generating a parvovirus b19 virus-like particle
ES2557382T3 (es) 2010-07-06 2016-01-25 Glaxosmithkline Biologicals Sa Liposomas con lípidos que tienen un valor de pKa ventajoso para el suministro de ARN
US9770463B2 (en) 2010-07-06 2017-09-26 Glaxosmithkline Biologicals Sa Delivery of RNA to different cell types
US20130171185A1 (en) 2010-07-06 2013-07-04 Ethan Settembre Norovirus derived immunogenic compositions and methods
BR112013000392B8 (pt) 2010-07-06 2022-10-04 Novartis Ag Composição farmacêutica contendo partícula de distribuição semelhante a vírion para moléculas de rna autorreplicantes e seu uso
US9192661B2 (en) 2010-07-06 2015-11-24 Novartis Ag Delivery of self-replicating RNA using biodegradable polymer particles
MX343410B (es) 2010-07-06 2016-11-04 Novartis Ag * Emulsiones cationicas de agua en aceite.
WO2012006369A2 (en) 2010-07-06 2012-01-12 Novartis Ag Immunisation of large mammals with low doses of rna
HUE047796T2 (hu) 2010-07-06 2020-05-28 Glaxosmithkline Biologicals Sa RNS bevitele több immunútvonal bekapcsolására
US8898852B2 (en) 2010-08-04 2014-12-02 Honeywell International Inc. Air burst to clear detection window
EP2600901B1 (en) 2010-08-06 2019-03-27 ModernaTX, Inc. A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof
EP3542789A3 (en) 2010-08-31 2020-01-01 GlaxoSmithKline Biologicals SA Lipids suitable for liposomal delivery of protein-coding rna
DK4066855T3 (da) 2010-08-31 2023-02-20 Glaxosmithkline Biologicals Sa Pegylerede liposomer til forsyning af RNA, der koder for immunogen
JP2013538569A (ja) 2010-08-31 2013-10-17 ノバルティス アーゲー 免疫原をコードするrnaの送達のための小さなリポソーム
US20130164289A1 (en) 2010-09-09 2013-06-27 Virginia Commonwealth University Human cytomegalovirus vaccine
HRP20220796T1 (hr) 2010-10-01 2022-10-14 ModernaTX, Inc. Ribonukleinske kiseline koje sadrže n1-metil-pseudouracil i njihove uporabe
TR201903651T4 (tr) 2010-10-11 2019-04-22 Glaxosmithkline Biologicals Sa Antijen uygulama platformları.
US9193936B2 (en) 2010-10-25 2015-11-24 Stepan Company Quaternized fatty amines, amidoamines and their derivatives from natural oil metathesis
TR201908715T4 (tr) 2011-01-26 2019-07-22 Glaxosmithkline Biologicals Sa Rsv immünizasyon rejimi.
US9243041B2 (en) 2011-01-31 2016-01-26 The Trustees Of The University Of Pennsylvania Nucleic acid molecules encoding novel herpes antigens, vaccine comprising the same, and methods of use thereof
WO2012116714A1 (en) 2011-03-02 2012-09-07 Curevac Gmbh Vaccination in elderly patients
CA2831613A1 (en) 2011-03-31 2012-10-04 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
PL2707385T3 (pl) 2011-05-13 2018-03-30 Glaxosmithkline Biologicals Sa Prefuzyjne antygeny RSV F
EP2710136A4 (en) 2011-05-17 2015-01-21 Moderna Therapeutics Inc MANIPULATED NUCLEIC ACIDS AND USE METHOD FOR NON-HUMAN SPINE
JP6022557B2 (ja) 2011-06-08 2016-11-09 シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド 切断可能な脂質
SG10201605537XA (en) 2011-07-06 2016-09-29 Novartis Ag Liposomes having useful n:p ratio for delivery of rna molecules
US9636410B2 (en) 2011-07-06 2017-05-02 Glaxosmithkline Biologicals Sa Cationic oil-in-water emulsions
EP2729168A2 (en) 2011-07-06 2014-05-14 Novartis AG Immunogenic compositions and uses thereof
US9655845B2 (en) 2011-07-06 2017-05-23 Glaxosmithkline Biologicals, S.A. Oil-in-water emulsions that contain nucleic acids
US11896636B2 (en) 2011-07-06 2024-02-13 Glaxosmithkline Biologicals Sa Immunogenic combination compositions and uses thereof
SG10201602456WA (en) 2011-08-31 2016-04-28 Novartis Ag Pegylated liposomes for delivery of immunogen-encoding rna
WO2013039861A2 (en) 2011-09-12 2013-03-21 modeRNA Therapeutics Engineered nucleic acids and methods of use thereof
EP3492109B1 (en) 2011-10-03 2020-03-04 ModernaTX, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
MX2014004214A (es) 2011-10-11 2014-05-07 Novartis Ag Moleculas de acido ribonucleico policistronicas auto-replicantes recombinantes.
EP2766385A2 (en) 2011-10-12 2014-08-20 Novartis AG Cmv antigens and uses thereof
US20140378538A1 (en) 2011-12-14 2014-12-25 Moderma Therapeutics, Inc. Methods of responding to a biothreat
RS63244B1 (sr) 2011-12-16 2022-06-30 Modernatx Inc Kompozicije modifikovane mrna
US20130165504A1 (en) 2011-12-21 2013-06-27 modeRNA Therapeutics Methods of increasing the viability or longevity of an organ or organ explant
CA2868391A1 (en) 2012-04-02 2013-10-10 Stephane Bancel Polynucleotides comprising n1-methyl-pseudouridine and methods for preparing the same
WO2013151664A1 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics Modified polynucleotides for the production of proteins
PL2922554T3 (pl) 2012-11-26 2022-06-20 Modernatx, Inc. Na zmodyfikowany na końcach
MX2015008847A (es) 2013-01-10 2015-10-30 Novartis Ag Composiciones inmunogenicas de virus de influenza y usos de las mismas.
US9504747B2 (en) 2013-03-08 2016-11-29 Novartis Ag Lipids and lipid compositions for the delivery of active agents
WO2014152211A1 (en) 2013-03-14 2014-09-25 Moderna Therapeutics, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
US20160032316A1 (en) 2013-03-14 2016-02-04 The Trustees Of The University Of Pennsylvania Purification and Purity Assessment of RNA Molecules Synthesized with Modified Nucleosides
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
US10059655B2 (en) 2013-12-19 2018-08-28 Novartis Ag Lipids and lipid compositions for the delivery of active agents
RS63030B1 (sr) 2015-09-17 2022-04-29 Modernatx Inc Jedinjenja i kompozicije za intracelularno isporučivanje terapeutskih sredstava
CA3003055C (en) 2015-10-28 2023-08-01 Acuitas Therapeutics, Inc. Lipids and lipid nanoparticle formulations for delivery of nucleic acids
US10471153B2 (en) 2016-11-10 2019-11-12 Translate Bio, Inc. Ice-based lipid nanoparticle formulation for delivery of mRNA
WO2018170270A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Varicella zoster virus (vzv) vaccine
AU2019384557A1 (en) 2018-11-21 2021-06-10 Translate Bio, Inc. Treatment of cystic fibrosis by delivery of nebulized mRNA encoding CFTR
WO2021038508A1 (en) 2019-08-30 2021-03-04 Glaxosmithkline Biologicals Sa Jet mixing lipid nanoparticle manufacturing process
WO2022137133A1 (en) 2020-12-22 2022-06-30 Curevac Ag Rna vaccine against sars-cov-2 variants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2245149C2 (ru) * 1999-09-25 2005-01-27 Юниверсити Оф Айова Рисерч Фаундейшн Иммуностимулирующие нуклеиновые кислоты

Also Published As

Publication number Publication date
US11786467B2 (en) 2023-10-17
US20220125722A1 (en) 2022-04-28
AU2011276234B2 (en) 2016-02-25
SMT201600007B (it) 2016-02-25
JP2017043626A (ja) 2017-03-02
US20230381105A1 (en) 2023-11-30
HRP20151349T1 (hr) 2016-01-01
US20220362152A1 (en) 2022-11-17
JP7531561B2 (ja) 2024-08-09
US20230381107A1 (en) 2023-11-30
US20220125724A1 (en) 2022-04-28
EP2590626B1 (en) 2015-10-28
US11638694B2 (en) 2023-05-02
US11638693B2 (en) 2023-05-02
MX2013000164A (es) 2013-03-05
US20220125725A1 (en) 2022-04-28
US20220331248A1 (en) 2022-10-20
SI2590626T1 (sl) 2016-01-29
JP2023002709A (ja) 2023-01-10
PL2590626T3 (pl) 2016-04-29
US20220323354A1 (en) 2022-10-13
CN103153284A (zh) 2013-06-12
RU2013104878A (ru) 2014-08-20
CA2804396C (en) 2021-06-29
US20240115501A1 (en) 2024-04-11
US20220125723A1 (en) 2022-04-28
HUE026646T2 (en) 2016-07-28
DK2590626T3 (en) 2016-01-25
PT2590626E (pt) 2016-01-26
RS54489B1 (en) 2016-06-30
US20230381106A1 (en) 2023-11-30
US11666534B2 (en) 2023-06-06
US20220125726A1 (en) 2022-04-28
EP2590626A1 (en) 2013-05-15
JP2019006777A (ja) 2019-01-17
US20220125727A1 (en) 2022-04-28
US11766401B2 (en) 2023-09-26
JP2013537518A (ja) 2013-10-03
US20130171241A1 (en) 2013-07-04
US20220347097A1 (en) 2022-11-03
ES2557382T3 (es) 2016-01-25
JP2020189881A (ja) 2020-11-26
US11839686B2 (en) 2023-12-12
AU2011276234A1 (en) 2013-02-21
CA2804396A1 (en) 2012-01-12
US11857681B2 (en) 2024-01-02
US11883534B2 (en) 2024-01-30
US11850305B2 (en) 2023-12-26
WO2012006378A1 (en) 2012-01-12
BR112013000244A2 (pt) 2016-05-17
CN103153284B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
US11766401B2 (en) Methods of administering lipid formulations with immunogens
US20220192997A1 (en) Virion-like delivery particles for self-replicating rna molecules
RU2671482C2 (ru) Маленькие липосомы для доставки кодирующей иммуноген рнк

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20220127