RU2466088C2 - Способ получения светоизлучающих наночастиц алмаза - Google Patents

Способ получения светоизлучающих наночастиц алмаза Download PDF

Info

Publication number
RU2466088C2
RU2466088C2 RU2009145703/05A RU2009145703A RU2466088C2 RU 2466088 C2 RU2466088 C2 RU 2466088C2 RU 2009145703/05 A RU2009145703/05 A RU 2009145703/05A RU 2009145703 A RU2009145703 A RU 2009145703A RU 2466088 C2 RU2466088 C2 RU 2466088C2
Authority
RU
Russia
Prior art keywords
diamonds
diamond
centers
nitrogen
electron
Prior art date
Application number
RU2009145703/05A
Other languages
English (en)
Other versions
RU2009145703A (ru
Inventor
Жан-Поль БУДУ (FR)
Жан-Поль БУДУ
Патрик КЮРМИ (FR)
Патрик КЮРМИ
Original Assignee
Инсерм (Энститю Насьональ Де Ля Сантэ Э Де Ля Решерш Медикаль)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Инсерм (Энститю Насьональ Де Ля Сантэ Э Де Ля Решерш Медикаль) filed Critical Инсерм (Энститю Насьональ Де Ля Сантэ Э Де Ля Решерш Медикаль)
Publication of RU2009145703A publication Critical patent/RU2009145703A/ru
Application granted granted Critical
Publication of RU2466088C2 publication Critical patent/RU2466088C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)

Abstract

Изобретение может быть использовано в светоизлучателях для систем квантовой криптографии и в биомаркерах. Алмазы, содержащие центры азот-вакансия, получают из алмазов размером свыше 0,1 мкм, выращенных при высоком давлении и высокой температуре и содержащих изолированные замещающие атомы азота, путем их облучения электронным пучком с дозой облучения от 1017 до 1018 электрон/см2 и энергией свыше 7 МэВ. В процессе облучения температуру алмазов поддерживают не выше 80°C посредством циркуляции потока жидкости, содержащей главным образом воду. Облученные алмазы отжигают в вакууме или в инертной атмосфере при температуре более 700°C в течение по меньшей мере 1 часа. После отжига алмазы размалывают до наночастиц размером меньше 20 нм. Полученные алмазы содержат 4-16 центров азот-вакансия в частице 20 нм, или 10 центров азот-вакансия в частице 10 нм, или 8 центров азот-вакансия в частице 15 нм. Высокая плотность азот-вакансий обеспечивает высокие характеристики свечения. Процесс эффективен по времени и энергозатратам. 5 н. и 8 з.п. ф-лы, 7 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к светоизлучающим алмазам и способу их получения. Оно относится также к порошку из таких светоизлучающих алмазов и применению такого порошка.
Уровень техники
В выращенном при высоком давлении и высокой температуре кристалле (НРНТ) алмаза с кубооктаэдрической кристаллической решеткой с наиболее часто встречающимися точечными дефектами являются следующие:
вакансия (V), дефект, вызванный отсутствием атома в узле кристаллической решетки;
- междоузельный атом, когда в структуру кристаллической решетки между нормально занятыми узлами этой решетки внедрен дополнительный атом, например междоузельный атом азота (NI);
- замещение, обусловленное заменой атома одного типа на атом другого типа, например изолированный/одиночный атом азота (NS), заменяет собой атом углерода.
При соединении NS с V образуются центры азот-вакансия (N-V). Такой N-V центр поглощает излучение возбуждения в диапазоне длин волн 480-638 нм и испускает в ответ излучение люминесценции в диапазоне длин волн 638-780 нм. Для образования N-V центров облучают сырьевой алмаз, содержащий атомы Ns, электронным лучом с энергией электронов несколько МэВ, обычно меньше 4 МэВ, для генерации дефектов кристаллической решетки. Затем облученный алмаз отжигают для соединения дефекта кристаллической решетки с атомом азота и образования при этом N-V центра. Во время отжига вакансии перемещаются посредством термически активированных скачков из одного узла кристаллической решетки в следующий узел. Вероятность такого скачка равна ν ехр [-Еа/(kBТ)], где ν - «частота попыток к бегству» и Еа - энергия активации. В алмазе типа Ib (т.е. дискретно-дисперсионного типа) такое хаотическое перемещение продолжается до тех пор, пока вакансия V не встретит изолированный атом азота NS, так что произойдет захват вакансии и образование N-V центра. Существуют определенные ограничения на образование и равномерность распределения N-V центров вследствие возникновения конкурирующих дефектов и из-за сильной зависимости от сектора роста, обусловленной концентрацией дефектов, например, атомов азота в алмазе.
N-V центр является одним из дефектов, изученных наиболее детально. Такие дефекты обладают С3v-симметрией, так что ось симметрии ориентирована вдоль кристаллографической оси [111]. Основные фотофизические параметры N-V центров показывают, что система вполне пригодна для обнаружения одиночных центров; такие центры имеют большое поперечное сечение поглощения для излучения с длиной волны возбуждения, короткое время жизни возбужденного состояния и высокую квантовую эффективность излучательной релаксации. Кроме того, до сих пор не сообщалось о сколько-нибудь эффективном накоплении N-V центров в метастабильном состоянии при комнатной температуре, хотя высокая спектральная эффективность выжигания провалов при низкой температуре указывает на наличие этого процесса. Такой центр окраски обладает значительным преимуществом светостойкости и не проявляет фотомерцания при облучении лазером с длиной волны 532 нм при типичной интенсивности в несколько мВт/см2. Концентрация N-V центров в необработанных образцах алмаза Ib-типа хорошо подходит для рассмотрения индивидуальных центров.
В патенте США 4,880,613 описан светоизлучающий элемент, содержащий алмаз, включающий N-V центры и дополнительно Н3-окраски (N-V-N). Предложенный способ изготовления такого алмаза предполагает использование электронного луча с энергиями от 2 до 4 МэВ и дозой облучения от 1×1017 до 2×1018 электрон/см2 для генерации N-V центров. При ускорении до таких энергий электронный луч становится неэффективным при толщине алмаза свыше 3 или 4 мм. Поэтому в патенте США 4880613 предлагается использовать пучок нейтронов, если толщина алмаза оказывается больше. Это означает, что количество алмазов, которое можно облучить электронным лучом в одной партии, заключено в пределах объема, ограниченного площадью области сканирования электронным лучом и глубиной ≤ 3 мм.
Значительным ограничением в объемном алмазе является то, что излучение света происходит в материале с высоким показателем преломления, что делает эффективный вывод излучения наружу затруднительным. Преломление на границе образца ведет к уменьшению телесного угла концентрации излучения и к аберрациям. Тот факт, что размеры нанокристаллов меньше длины волны излучения, исключает само явление преломления. Нанокристалл можно рассматривать в качестве точечного источника, излучающего свет в воздух. Статья Грубера и др. «Растровая конфокальная оптическая микроскопия и магнитный резонанс на одиночных дефектных центрах» (Gruber et al., "Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centres", Science 276, 2012-2014, 1997) является первой работой, описывающей N-V центры в нанокристаллах алмаза с использованием конфокальной микроскопии, магнитного резонанса, фотолюминесценции и т.п.
Индивидуальные центры окраски азот-вакансия (N-V центры) в алмазе представляют собой многообещающую систему для создания надежных источников одиночных фотонов. Источники света, способные испускать индивидуальные фотоны по требованию, нашли бы очень широкую потенциальную область применения в квантовой криптографии. Недавно был также предложен способ квантовых вычислений, требующий применения таких источников. Значительные усилия, таким образом, сосредоточены на разработке и реализации эффективных, надежных и работающих при комнатной температуре источников, генерирующих периодические серии импульсов, каждый из которых содержит один и только один фотон. Такие источники основаны на свойстве одиночного излучающего диполя испускать лишь один фотон за раз. При возбуждении коротким и мощным импульсом такой излучатель испускает один и только один фотон. После того как пионерные эксперименты продемонстрировали антигруппировку фотонов и возможность условного создания однофотонных состояний и последовавших за этим первых попыток построения управляемых источников одиночных фотонов, экспериментальные работы нынешнего «поколения» сосредоточились на твердотельных вариантах, лучше приспособленных для практического использования, таких как одиночные органические молекулы, самособираемые полупроводниковые квантовые точки или полупроводниковые нанокристаллы. Успешный кандидат должен работать при комнатной температуре и быть светостойким. В рамках этих работ, например, Бевератос и др. в статье «Неклассическое излучение нанокристаллов алмаза» (Beveratos et al. "Nonclassical radiation from diamond nanocrystals", Phys. Rev. A 061802, 1-4. (2002)) описывают изготовление нанокристаллов из порошка синтетического алмаза, приобретаемого в компании де Бирс (de Beers). Дефекты создавали посредством облучения электронным лучом с энергией 1,5 МэВ в дозе 3×1017 электрон/см2 и отжига в вакууме при 850°С в течение 2 часов. Нанокристаллы были диспергированы с применением ультразвукового дезинтегратора в 1% растворе полимера поливинилпирролидона в пропаноле. Это позволило разъединить частицы и стабилизировать их в коллоидном состоянии. Центрифугирование со скоростью 11000 об/мин в течение 30 мин позволило авторам выбрать нанокристаллы размером 90±30 нм по результатам измерений динамического рассеяния света. Среднее число N-V центров в таком нанокристалле по оценкам составило 8. После этого оценили плотность созданных N-V центров как один центр в теоретической сфере диаметром 30 нм.
Биологические флуоресцентные зонды, например органические красители, флуоресцентные белки и флуоресцентные полупроводниковые нанокристаллы (или квантовые точки), способны поглощать свет с длиной волны более 500 нм и испускать свет с длиной волны более 600 нм, которая отличается большой глубиной проникновения сквозь клетки и ткани. Такие зонды имеют ряд недостатков, например фотообесцвечивание и мерцание или цитотоксичность и химическую неустойчивость (сложный химический состав поверхности квантовых точек). С другой стороны, недавно было показано, что нанокристаллы алмаза с внутрикристальными N-V центрами, которые, как известно, сильно поглощают излучение с длиной волны около 560 нм и эффективно флуоресцируют в диапазоне длин волн около 700 нм, в достаточной степени отстоящем от области спектра, в которую попадает излучение эндогенной флуоресценции, являются нетоксичными и позволяют в течение продолжительного времени наблюдать за одной алмазной наночастицей в биологической клетке. Yu и др., описавшие свою работу в статье «Наноалмазы с яркой флуоресценцией: никакого фотообесцвечивания и низкая цитотоксичность» (Yu et al. "Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity", J Am Chem Soc. 21, 17604-5 (2205)), получали сильно флуоресцирующие наноалмазы (FND) с низкой цитотоксичностью из порошка синтетического алмаза типа Ib с номинальным размером частиц 100 нм путем облучения пучком протонов с энергиями 3 МэВ, доза 5×1015 ион/см2 и последующего отжига в вакууме при 800°С в течение 2 часов. Вей П. и др. («Определение характеристик и применение одиночных флуоресцентных наноалмазов в качестве клеточных биомаркеров» (Wei P. et al., "Characterization and application of single fluorescent nanodiamonds as cellular biomarkers", PNAS 104, 727-732, (2007)) получали флуоресцентные алмазные наночастицы из частиц синтетического алмаза типа Ib размером 35 или 100 нм путем облучения протонами (3 МэВ, 1016 ион/см2), последующего отжига в вакууме при 700°С в течение 2 часов, удаления неалмазной оболочки и функционализации поверхности посредством карбоксильных или аминогрупп. Авторы показали, что флуоресценция одной алмазной частицы размером 35 нм значительно ярче, чем одной молекулы красителя, например Alexa Fluor 546. Последняя фотообесцвечивается примерно за 10 с при плотности потока мощности лазера 104 Вт/см2, тогда как частица наноалмаза не проявляет никаких признаков фотообесцвечивания даже после непрерывного возбуждения в течение 5 мин. Более того, не было замечено никакого мерцания флуоресценции в пределах временного разрешения 1 мс. Фотофизические свойства частиц не ухудшались даже после функционализации поверхности карбоксильными группами, которые образуют ковалентные связи с полиL-лисинами (polyL-lysine), взаимодействующими с молекулами ДНК посредством электростатических сил. Возможность использования поверхностно-функционализированных флуоресцентных алмазных наночастиц в качестве биомаркеров в виде отдельных частиц была продемонстрирована как на фиксированных, так и на живых клетках HeLa.
Раскрытие изобретения
Таким образом, было бы предпочтительно разработать технологический процесс, который позволил бы получать в большом количестве алмазы с N-V центрами при небольших затратах. И в частности, было бы предпочтительно производить наноалмазы, которые можно использовать в качестве излучателей в различных приложениях: в качестве молекулярных маркеров (нуклеиновые кислоты, протеины, глюциды, лекарственные средства и т.п.), в качестве флуоресцентных меток для отслеживания пути лекарств, в аналитической химии, в фотолюминесцентных покрытиях, в квантовой криптографии и т.п.
Для лучшего решения одной или нескольких проблем в первом аспекте настоящего изобретения предложен способ получения алмазов, содержащих центры Азот-Вакансия, из алмазов размером свыше 150 мкм, выращенных при высоком давлении и высокой температуре и содержащих изолированный замещающий азот, включающий:
- облучение указанных алмазов электронным лучом, так что доза облучения составляет (1017-1019) электрон/см2;
- отжиг облученных алмазов в вакууме или в инертной атмосфере при температуре свыше 700°С в продолжение по меньшей мере 1 часа;
характеризующийся тем, что пучок электронов имеет энергию более 7 МэВ.
Способ позволяет получать нанокристаллы алмаза с управляемой концентрацией N-V центров, начиная от алмаза, выращенного при высоком давлении/высокой температуре (НРНТ). Такие фотолюминесцентные наночастицы могут применяться в электронике, оптике, биологии, при нанесении покрытий, в аналитической химии и в других приложениях.
Предлагаемый способ обладает преимуществом более высокой производительности по сравнению с классическим способом, поскольку более высокая энергия ускоренного пучка позволяет облучать более толстые, свыше нескольких миллиметров, слои алмазов, обычно 1 см и более.
Способ имеет также преимущество повышения плотности светоизлучающих центров, поскольку электроны более высоких энергий создают больше вакансий.
Согласно второму аспекту настоящего изобретения в светоизлучающем алмазе, имеющем атомы азота типа Ib, более 30% азотных центров являются светоизлучающими элементами.
В случае светоизлучающего алмаза с повышенной плотностью содержания светоизлучающих элементов наночастицы такого алмаза являются биологическими маркерами более высокого качества.
Эти и другие аспекты настоящего изобретения станут очевидными и более ясными со ссылками на вариант, описанный далее, где:
фиг.1 представляет схему последовательности операций для варианта способа согласно настоящему изобретению;
фиг.2 представляет диаграмму дозы облучения, поглощенной алмазом, в зависимости от толщины алмазного слоя и энергии облучения электронного пучка;
фиг.3 представляет график зависимости излучения света алмазами, изготовленными по способу согласно фиг.1, при освещении Nd-YAG лазером с удвоением частоты, с длиной волны 532 нм.
фиг.4А, 4В и 4С представляют графики, показывающие число потенциальных N-V центров в пересчете на нанокристалл алмаза; и
фиг.5 представляет полученное на растровом электронном микроскопе изображение алмаза размером 80-100 меш после облучения, отжига и предварительного размола на струйной мельнице с противоположно направленными струями.
На этапе 10 (фиг.1) согласно варианту осуществления настоящего изобретения бокс заполняют алмазами типа Ib.
Как отмечено ранее, алмазы типа Ib представляют собой синтетические алмазы, получаемые при высоком давлении и высокой температуре (НРНТ). Размер необработанных алмазов превышает 0,1 мкм - обычно 80-100 меш.
Бокс выполнен из алюминиевого сплава (например, дюраля (Dural)) или полиимида (например, Vespel). Бокс, оснащенный системой охлаждения (проточная холодная вода), может иметь различную форму в зависимости от характеристик оборудования для получения электронного пучка, которое будет использовано для облучения алмазов. Обычно контейнер имеет форму параллелепипеда или тороидальную форму. Толщину слоя выбирают с использованием профилей зависимости толщина-доза, представленных на фиг.2, для заданной энергии пучка и поверхностной плотности или толщины слоя алмаза, выраженной в г/см2.
Как показано на фиг.2, в диапазоне между 5 и 15 МэВ энергия торможения в алмазе, определяемая формулой Бете-Блоха, возрастает от примерно 1,7 до 2 МэВ см2 г-1. При заданной энергии доза осаждения или облучения, предполагаемая равной интегральной по времени плотности потока падающих электронов с поправкой на потери энергии возрастает больше, чем просто пропорционально энергии пучка.
На этапе 12, фиг.1, бокс с алмазами облучают электронным пучком с энергией между 7 и 15 МэВ и интегральной по времени плотностью потока падающих электронов свыше 1018 электрон/см2.
Поскольку облучение приводит к выделению тепла в боксе и в алмазах, используют поток воды для поддержания температуры загруженной порции алмазов ниже 80°С во избежание повреждения контейнера и загруженных алмазов в процессе облучения. Вода в качестве охлаждающей жидкости значительно лучше воздуха при облучении толстого - 1 см и более - слоя электронным пучком высокой энергии. Однако при дозах облучения 1019 электрон/см2 повышение интенсивности пучка для сохранения короткого времени облучения делает охлаждение загруженной порции алмазов более затруднительным, так что время облучения приходится увеличивать, чтобы создать избыточные вакансии в обогащенной атомами NS кристаллической решетке алмаза. Например, при интенсивности пучка 5 мкА/см2 (1 мкА примерно соответствует 6,24×1012 электрон/см2) потребуется около 90 часов облучения для достижения дозы 1019 электрон/см2. Энергия электронного пучка 7 МэВ создает преимущество более равномерного облучения порции алмазов, загруженных толстым слоем в бокс реактора. Электронные пучки высоких энергий, до 15 МэВ, можно с успехом использовать, не опасаясь запуска ядерных реакций и индуцирования остаточной радиоактивности металлических примесей (катализатор) или легких элементов, содержащихся в синтетическом алмазе.
Как показано на фиг.2, более высокая энергия электронного пучка дает возможность использовать более толстый слой алмаза. Например, при дозе свыше 60% максимальной дозы облучения максимальная толщина облучаемого слоя составляет около 1 г/см2 при 4 МэВ и около 5 г/см2 при 12 МэВ. Другое преимущество высокой энергии пучка также показано на фиг.2: это лучшее распределение дозы облучения по глубине вследствие увеличения размывания хвостовой части профиля глубина-доза, соответствующего более медленному снижению плотности электронов в пучке с большей энергией. Следовательно, масса алмазов, облучаемых в одной загруженной порции, увеличивается при возрастании энергии электронного пучка. Например, в компании Electron Beam Technologies (http://www.electronbeam.com/#irradiation) площадь сканирования электронным пучком с энергией 1,5 МэВ составляла 240 см2. Для алмазной крошки калибра 80-100 меш максимальная масса загружаемой порции, распределенной по площади 240 см2, составляет 96 г на партию. Меньшая по размерам компания Ionisos (http://www.ionisos.com/) использовала электронный пучок с энергией облучения 10 МэВ и площадью сканирования 400 см2. При использовании таких же алмазов (плотность 2,3) максимальная масса загружаемой порции составляет около 1 кг алмазов на партию.
На этапе 14, фиг.1, облученные алмазы отжигают в вакууме или в инертной атмосфере при температуре свыше 700°С, обычно между 800°С и 850°С. Необходимое время отжига составляет по меньшей мере 1 час. Обычно используют отжиг продолжительностью между 1 и 2 часами.
Во избежание оксидирования поверхности алмаза отжиг проводят в вакууме или в инертной атмосфере. Единственной целью этапа отжига более крупных алмазных частиц является перестройка кристаллических решеток и создание N-V центров. Преимуществом отжига в потоке азота при атмосферном давлении является большая простота и меньшая стоимость по сравнению с обработкой в вакууме. На этапе 16 отожженные алмазы размалывают на наночастицы размером меньше 1 мкм или меньше 100 нм. Для размалывания на стандартных доступных промышленных мельницах требуется минимальное количество 250 г алмаза, что можно получить только при облучении посредством пучка высокой энергии.
На этапе 18 такие алмазные частицы приводят в определенное состояние, например, путем дисперсии в жидкой среде, такой как чистая вода, или вводят в твердое вещество для создания композиционного материала. Алмазы с N-V центрами, полученные описанным выше способом, имеют розовую или красную окраску. При освещении зеленым светом они становятся флуоресцентными на неограниченное время, излучая красный свет. На фиг.3 показан спектр излучения флуоресценции нанокристаллов алмаза, полученных НРНТ способом (8 МэВ, 2×1018 электрон/см2, 820°С, 1 час). Лазер возбуждения излучает на длине волны 532 нм. Полученный спектр соответствует излучению, типичному для N-V дефектов. Такой спектр содержит относительно острую бесфононную линию с длиной волны 637 нм и широкие фононные боковые полосы, заходящие в смещенную в красную сторону область спектра.
Использование электронного пучка высокой энергии создает два преимущества. Первое преимущество состоит в создании большого числа вакансий, способных связываться с изолированными замещающими атомами азота (NS) для образования N-V центров. Второе преимущество заключается в том, что поскольку большую порцию алмазов можно облучить за один раз, появляется возможность проведения последующих операций, т.е. отжига и размалывания, необходимых для получения алмазных наночастиц, содержащих N-V центры. На фиг.4В показано, что доза облучения 2×1018 электрон/см2 позволяет ввести от 4 до 16 N-V центров в кристалл алмаза размером 20 нм, а доза облучения 1×1019 электрон/см2 приведет к появлению 10 N-V центров в нанокристалле размером 10 нм и 8 N-V центров в кристалле 15 нм. Такие высокие дозы облучения можно применять только при обработке свежевыращенных кристаллов алмаза, полученных НРНТ способом. Такое же облучение применительно к обычным коммерческим алмазным нанопорошкам ведет к аморфизации-агрегированию наночастиц. Были проведены предварительные эксперименты для сравнения различных видов облучения (электроны, протоны, нейтроны и т.п.) и различных типов порошков НРНТ-алмазов в качестве возможного исходного материала для изготовления алмазных наночастиц с N-V центрами. По результатам этих экспериментов наилучшим является облучение электронами-отжиг-размалывание свежевыращенных НРНТ кристаллов алмаза. Напротив, при такой же обработке нанопорошков НРНТ-алмазов, имеющих на поверхности функциональные группы, образуются наночастицы, агрегированные и загрязненные неалмазным углеродом, содержащие N-V центры.
В первой серии экспериментов использовали электронно-лучевое оборудование Института ядерных исследований (Institute for Nuclear Sciences (http://ssf.ugent.be/linac/linac/contact.php)) для предварительного облучения электронами при энергии пучка 8 МэВ и плотности потока электронов, возрастающей от 5×1017 электрон/см2 до 1×1019 электрон/см2. Были подготовлены небольшие (200-300 мг) образцы из:
- коммерческих микрочастиц НРНТ алмаза размером 80-100 меш (например, е6 PDA 999 80-10; http://www.е6.com). Число атомов NS в нанокубике, который, как предполагается, станет нанокристаллом, в таком алмазе не было измерено, но его можно оценить как меньше 10-4 (<100 ppm) (около 1019 атом/см3).
- коммерческих наночастиц НРНТ алмаза размером от 0 до 50 нм (SYP 0-0.05: www.vanmoppes.ch). Средний размер частиц такого алмаза около 40 нм. Кислотная обработка, использованная для удаления загрязнений, появившихся в ходе размалывания исходных НРНТ микроалмазов, оставила после себя поверхностные функциональные группы с высокой плотностью. Концентрация атомов NS в таком алмазе не была измерена, но ее можно оценить как меньше 10-4 (<100 ppm) (около 1019 атом/см3).
Для микрочастиц алмаза размером 80-100 меш до эксперимента поглощение NS, присутствующих в исходном алмазе, находилось в диапазоне 400-500 нм, что делало такой алмаз светло-желтым (дополнительный цвет).
Облучение электронами создает вакансии за счет перемещения атомов углерода, выталкивания их в междоузлия. В алмазе, содержащем атомы NS, облучение сначала создает вакансии в отрицательно заряженном состоянии (поскольку NS является электрическим донором). Отрицательно заряженные вакансии (V-) порождают полосу поглощения "ND1" в ультрафиолетовой части спектра, так что алмаз Ib остается желтым до момента, когда концентрация вакансий превысит первоначальную концентрацию NS.
С этого момента облучение порождает вакансии в нейтральном состоянии (V°). Поглощение нейтральными вакансиями дает поглощение на длине волны 741 нм, соответствующей GR1 (GR - общее излучение) центру, поглощающему красный свет, вследствие чего кристалл приобретает дополнительный цвет, зеленый или сине-зеленый цвет. Таким образом, зеленый цвет, появившийся после облучения электронами микроалмазов марки PDA 999 80-100, будет означать, что облучение электронами вызвало образование комплексов с участием атомов азота в междоузлиях, где атом азота занимает промежуточное положение между двумя ближайшими соседними с ним атомами углерода и при этом смещен от оси, соединяющей эти два атома углерода (Коллинз и Дахвич, «Образование вакансий в алмазе типа Ib» (Collins and Dahwich, "The production of vacancies in type Ib diamond", J. Phys.: Condens. Matter.15, L591-L596, 2003), что объясняет зеленый цвет, несмотря на относительно низкую дозу облучения с учетом первоначальной концентрации NS во всем алмазе или в некоторых секторах роста.
После облучения электронами (при энергии 8 МэВ и плотности потока электронов от 2×1018 электрон/см2 до 1×1019 электрон/см2) и отжига (в потоке гелия при 820°С в течение 1 часа) появляется пурпурно-розовый цвет. Этот пурпурно-розовый цвет связан с поглощением N-V дефектами света в области 575-637 нм (1,95-2,15 эВ), что подтверждается данными спектроскопии флуоресценции. Однако под оптическим микроскопом кристалл алмаза кажется окрашенным неравномерно из-за неравномерного первоначально распределения азота, как это описывают Коллинз и др. в упомянутой выше статье. Оказывается облучение электронами только усиливает зелено-оранжевую фотолюминесценцию от возбуждения синим светом, которая в естественном состоянии присутствует, но является очень слабой. Последующий отжиг сильно ослабляет эту фотолюминесценцию и создает N-V° и N-V- центры, излучающие красный-инфракрасный свет при возбуждении зеленым светом. Соотношение N-V°/N-V- зависит от параметров облучения. Предполагается, что отрицательный заряд N-V- центра приходит от соседних атомов азота: создание дополнительных вакансий приводит к уменьшению числа доступных атомов азота, еще не вовлеченных в N-V- центры, и тем самым к увеличению доли N-V°. Дефекты кристаллической структуры в таких кристаллах могут быть многочисленными: ни на одном из образцов, включая необлученные микрокристаллы, комптоновское рассеяние не наблюдалось ни при длине волны возбуждения 532 нм, ни при длине волны возбуждения 473 нм.
При облучении и отжиге коммерчески доступного порошка НРНТ алмаза марки SYP 0-0.05 в таких же условиях, какие применялись для НРНТ микроалмазов, первоначально обнаружились проблемы, связанные с образованием неалмазного слоя на поверхности. Такой неалмазный углерод вызывает агрегирование нанокристаллов в частицы с типичным размером в несколько микрон. Обработка образцов в кипящей смеси серной, азотной и перхлорной кислот позволяет частично очистить алмаз. Дальнейшая оценка характеристик одиночных наночастиц была проведена с использованием атомно-силового микроскопа в сочетании с конфокальным оптическим микроскопом. Такое комбинированное обследование позволяет выявить корреляцию между оптическими и структурными свойствами одиночных нанокристаллов алмаза. Таким образом, облученные и отожженные нанокристаллы можно рассматривать в качестве люминесцентного маркера. Точное число N-V дефектов на один нанокристалл определяли путем измерения антигруппировки фотонов с разрешением по времени (данные не показаны). В среднем после облучения электронами с энергией 8 МэВ (плотность потока электронов 2×1018 электрон/см2) и отжига при 820°С половина всех частиц алмаза не флуоресцирует, и только одиночные нанокристаллы размером 50 нм содержат в среднем по два N-V дефекта. Облучение более высокой дозой (1×1019 электрон/см2) ведет к более сильному агрегированию-аморфизации и уменьшению образования N-V центров.
Сравнение этих двух экспериментов - с микрокристаллами и с нанокристаллами - показывает, что лучшие результаты получаются при использовании микрокристаллов.
После этих двух экспериментов при энергии 8 МэВ были проведены промышленные эксперименты с использованием ускорителя электронов Ionisos (http://www.ionisos.fr). Это оборудование позволяет использовать электронный пучок с максимальными параметрами - энергия 10 МэВ при площади сканирования около 400 см2. В этих испытаниях два бокса из дюралюминия (Dural) размером 125×80×10 мм были заполнены алмазами типа Ib размером 80-100 меш (плотность ~2,3) в количестве всего 250 г. В процессе облучения охлаждали контейнеры с алмазами водой. Для облучения алмазов дозой 2×1018 электрон/см2 облучение алмазов продолжалось 18 часов (средняя интенсивность 5 мкА/см2). Уровень радиоактивности облученного алмазного порошка оказался гораздо ниже безопасного предела, установленного законодательством. После отжига при температуре около 820°С в течение 1 часа алмазы были размолоты промышленными методами. На первом этапе микроалмазы, содержащие N-V центры, размалывают методом самоистирания на частицы размером 200-300 нм (с небольшой долей более мелких наночастиц, как показано на фиг.5) посредством струйной мельницы со встречными струями N2 в компании Альпин Хосокава (эксперимент проведен в компании Alpine Hosokawa,
http://www.alpinehosokawa.com). После такого первичного размола наночастицы размером менее 50 нм были легко получены на планетарной мельнице (эксперимент проведен в компании Фритц (Fritsch, http://www.fritsgh.de)) или методом самоистирания в перемешиваемой среде с чистой водой (эксперимент проведен в компании Альпин Хосокава (Alpine Hosokawa, http://www.alpinehosokawa.com)).
Анализ фотолюминесценции наночастиц показал, что четыре падающих электрона создают один N-V центр (вместо обычной «эмпирической» оценки, устанавливающей, что на каждый падающий электрон образуется один N-V центр), возможно, в результате низкого коэффициента преобразования плотности потока электронов в дозу, низкого «выхода» вакансий, коэффициента агрегирования азота с вакансиями и т.п.
В последних экспериментах в Институте ядерной физики Университета Майнца (Institut für Kernphyzik Universität Mainz (http://www.kph.uni-mainz.de/)) был использован электронный пучок с энергией 15 МэВ. Перед исследованием фотолюминесценции был проведен анализ радиоактивности с использованием счетчика Гейгера при большой дозе облучения электронами (от 2×1018 электрон/см2 до более 1019 электрон/см2) для двух видов НРНТ микроалмазов, изготовленных с добавками различных металлов, поскольку металлические частицы, содержащиеся в алмазах, могут порождать долгоживущие радиоактивные элементы. После часов или суток обработки анализ не показал сколько-нибудь определимую наведенную радиоактивность.
Все образцы, обработанные лучом 15 МэВ при дозе до 1×1019 электрон/см2, не показали каких-либо признаков аморфизации (проверено с применением спектроскопии комбинационного рассеяния и дифракционной рентгеновской спектроскопии), а показали спектр интенсивного фотолюминесцентного возбуждения, как на фиг.3.
Тогда как настоящее изобретение проиллюстрировано и описано подробно на чертежах и в приведенном выше описании, эти чертежи и описание следует считать исключительно иллюстрацией или примером, но не ограничениями; настоящее изобретение не ограничивается только рассмотренным вариантом.
Например, операцию размалывания можно выполнять до операции облучения или до операции отжига. Однако оказалось, что при размалывании алмазов после отжига можно получать флуоресцентные алмазы более высокого качества. Специалисты в данной области могут разработать и осуществить на практике и другие варианты настоящего изобретения на основе изучения чертежей, приведенного описания и прилагаемой формулы изобретения.
Мы постарались обеспечить точность цифровых значений (например, количеств, температур, долей, интервалов времени и т.п.), но следует учитывать некоторые ошибки и отклонения.
В формуле изобретения термин «содержащий» не исключает других элементов: а неопределенный артикль "а" или "an" не исключает множественности.

Claims (13)

1. Способ получения алмазов, содержащих центры азот-вакансия, из алмазов размером свыше 0,1 мкм, выращенных при высоком давлении и высокой температуре и содержащих изолированные замещающие атомы азота, включающий:
облучение (12) указанных алмазов электронным пучком, так что доза облучения составляет от 1017 до 1018 электрон/см2, причем электронный пучок имеет энергию ускорения свыше 7 МэВ;
отжиг (14) облученных алмазов в вакууме или в инертной атмосфере при температуре более 700°C в течение по меньшей мере 1 ч;
отличающийся тем, что после отжига указанные алмазы размалывают до наночастиц алмазов размером меньше 20 нм.
2. Способ по п.1, отличающийся тем, что указанный электронный пучок имеет энергию ниже 15 МэВ.
3. Способ по п.2, отличающийся тем, что указанный электронный пучок имеет энергию от 8 до 10 МэВ.
4. Способ по пп.1, 2 или 3, отличающийся тем, что в процессе облучения температуру алмазов поддерживают не выше 80°C.
5. Способ по п.4, отличающийся тем, что указанные алмазы охлаждают потоком жидкости, циркулирующим между указанными алмазами.
6. Способ по п.5, отличающийся тем, что указанная жидкость содержит главным образом воду.
7. Способ по п.1, отличающийся тем, что указанный отжиг проводят при температуре от 800°C до 850°C.
8. Способ по п.7, отличающийся тем, что указанный отжиг проводят в течение менее 2 ч.
9. Способ по п.1, отличающийся тем, что указанные алмазы для указанного облучения имеют размер более 150 мкм.
10. Алмаз, характеризующийся тем, что он содержит от 4 до 16 центров азот-вакансия в частице 20 нм, или 10 центров азот-вакансия в частице 10 нм, или 8 центров азот-вакансия в частице 15 нм.
11. Порошок из алмазов, имеющих центры азот-вакансия, содержащий наночастицы алмазов размером от 15 до 20 нм, изготовленные способом по любому из пп.1-9.
12. Применение алмазов по п.10 в качестве светоизлучателя в системе квантовой криптографии.
13. Биомаркер в виде отдельной частицы, характеризующийся тем, что содержит наночастицу алмаза по п.10.
RU2009145703/05A 2007-05-10 2008-05-07 Способ получения светоизлучающих наночастиц алмаза RU2466088C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07290593A EP1990313A1 (en) 2007-05-10 2007-05-10 Method to produce light-emitting nano-particles of diamond
EP07290593.8 2007-05-10

Publications (2)

Publication Number Publication Date
RU2009145703A RU2009145703A (ru) 2011-06-20
RU2466088C2 true RU2466088C2 (ru) 2012-11-10

Family

ID=38582306

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009145703/05A RU2466088C2 (ru) 2007-05-10 2008-05-07 Способ получения светоизлучающих наночастиц алмаза

Country Status (7)

Country Link
US (2) US8574536B2 (ru)
EP (2) EP1990313A1 (ru)
JP (1) JP5782587B2 (ru)
KR (1) KR101494251B1 (ru)
CN (1) CN101679040A (ru)
RU (1) RU2466088C2 (ru)
WO (1) WO2008138841A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2543184C2 (ru) * 2013-04-01 2015-02-27 ЗАО "Алмазный Центр" Синтетический радиоактивный наноалмаз и способ его получения
RU2804497C2 (ru) * 2018-10-31 2023-10-02 Дайсел Корпорэйшн Флуоресцентный алмаз и способ его получения

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9296656B2 (en) 2003-09-09 2016-03-29 International Technology Center UV protective coatings
US10441810B2 (en) 2007-04-08 2019-10-15 Immunolight, Llc X-ray psoralen activated cancer therapy (X-PACT)
KR101754270B1 (ko) * 2009-03-09 2017-07-06 인쎄름 (엥스띠뛰 나씨오날 드 라 쌍떼 에 드 라 흐쉐르슈 메디깔) 입방형 다이아몬드 나노결정의 제조방법
US9255009B2 (en) 2009-06-26 2016-02-09 Element Six Technologies Limited Diamond material
CN104630882B (zh) * 2009-06-26 2018-03-30 六号元素有限公司 用于制备鲜艳橙色着色的单晶cvd 金刚石的方法及其获得的产品
GB2476478A (en) * 2009-12-22 2011-06-29 Element Six Ltd Chemical vapour deposition diamond synthesis
KR101440736B1 (ko) * 2010-06-03 2014-09-17 엘리멘트 식스 리미티드 다이아몬드 공구
RU2448900C2 (ru) * 2010-07-28 2012-04-27 Учреждение Российской академии наук Физико-технический институт им. А.Ф. Иоффе РАН Способ получения алмазной структуры с азотно-вакансионными дефектами
EP2745360A4 (en) * 2011-08-01 2015-07-08 Univ Columbia CONJUGATES OF NANODIAMANT AND MAGNETIC OR METALLIC PARTICLES
WO2013040446A1 (en) 2011-09-16 2013-03-21 The Trustees Of Columbia University In The City Of New York High-precision ghz clock generation using spin states in diamond
US9632045B2 (en) 2011-10-19 2017-04-25 The Trustees Of Columbia University In The City Of New York Systems and methods for deterministic emitter switch microscopy
JP2014095025A (ja) * 2012-11-08 2014-05-22 Osaka Univ ダイヤモンド複合粒子
US10364389B1 (en) * 2013-09-12 2019-07-30 Adámas Nanotechnologies, lnc. Fluorescent diamond particles
US10006973B2 (en) 2016-01-21 2018-06-26 Lockheed Martin Corporation Magnetometer with a light emitting diode
US9910105B2 (en) 2014-03-20 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
US9614589B1 (en) 2015-12-01 2017-04-04 Lockheed Martin Corporation Communication via a magnio
US9853837B2 (en) 2014-04-07 2017-12-26 Lockheed Martin Corporation High bit-rate magnetic communication
US10338162B2 (en) 2016-01-21 2019-07-02 Lockheed Martin Corporation AC vector magnetic anomaly detection with diamond nitrogen vacancies
US20160216304A1 (en) 2015-01-28 2016-07-28 Lockheed Martin Corporation Rapid high-resolution magnetic field measurements for power line inspection
US10168393B2 (en) 2014-09-25 2019-01-01 Lockheed Martin Corporation Micro-vacancy center device
US9638821B2 (en) 2014-03-20 2017-05-02 Lockheed Martin Corporation Mapping and monitoring of hydraulic fractures using vector magnetometers
US9829545B2 (en) 2015-11-20 2017-11-28 Lockheed Martin Corporation Apparatus and method for hypersensitivity detection of magnetic field
US9835693B2 (en) 2016-01-21 2017-12-05 Lockheed Martin Corporation Higher magnetic sensitivity through fluorescence manipulation by phonon spectrum control
US9551763B1 (en) 2016-01-21 2017-01-24 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with common RF and magnetic fields generator
US10088452B2 (en) 2016-01-12 2018-10-02 Lockheed Martin Corporation Method for detecting defects in conductive materials based on differences in magnetic field characteristics measured along the conductive materials
US9541610B2 (en) 2015-02-04 2017-01-10 Lockheed Martin Corporation Apparatus and method for recovery of three dimensional magnetic field from a magnetic detection system
US9910104B2 (en) 2015-01-23 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
US10012704B2 (en) 2015-11-04 2018-07-03 Lockheed Martin Corporation Magnetic low-pass filter
WO2015157290A1 (en) 2014-04-07 2015-10-15 Lockheed Martin Corporation Energy efficient controlled magnetic field generator circuit
WO2016115225A1 (en) * 2015-01-14 2016-07-21 Immunolight, Llc. Non-invasive systems and methods for treatment of a host carrying a virus with photoactivatable drugs
WO2016118756A1 (en) 2015-01-23 2016-07-28 Lockheed Martin Corporation Apparatus and method for high sensitivity magnetometry measurement and signal processing in a magnetic detection system
EP3250887A4 (en) 2015-01-28 2018-11-14 Lockheed Martin Corporation Magnetic navigation methods and systems utilizing power grid and communication network
GB2550809A (en) 2015-02-04 2017-11-29 Lockheed Corp Apparatus and method for estimating absolute axes' orientations for a magnetic detection system
GB201505139D0 (en) * 2015-03-26 2015-05-06 Element Six Abrasives Sa Highly fluorescent diamond particles and methods of fabricating the same
KR20160120106A (ko) 2015-04-07 2016-10-17 서울시립대학교 산학협력단 아조벤젠 결합 pvdf필름을 이용하는 압전센서 및 그 제조방법
RU2611633C2 (ru) * 2015-06-29 2017-02-28 Открытое акционерное общество "Научно-исследовательский институт природных, синтетических алмазов и инструмента" - ОАО "ВНИИАЛМАЗ" Способ изготовления алмазного инструмента
GB2540537A (en) * 2015-07-03 2017-01-25 Univ Oxford Innovation Ltd Crystal defects
CA3002394A1 (en) * 2015-10-19 2017-04-27 Immunolight, Llc X-ray psoralen activated cancer therapy (x-pact)
CN105352489B (zh) * 2015-11-16 2018-04-13 北京航空航天大学 一种基于金刚石nv―色心的加速度传感器
GB2560283A (en) 2015-11-20 2018-09-05 Lockheed Corp Apparatus and method for closed loop processing for a magnetic detection system
GB201522650D0 (en) 2015-12-22 2016-02-03 Element Six Technologies Ltd Nitrogen containing single crystal diamond materials optimized for magnetometr applications
GB2562957A (en) 2016-01-21 2018-11-28 Lockheed Corp Magnetometer with light pipe
WO2017127098A1 (en) 2016-01-21 2017-07-27 Lockheed Martin Corporation Diamond nitrogen vacancy sensed ferro-fluid hydrophone
WO2017127096A1 (en) 2016-01-21 2017-07-27 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with dual rf sources
EP3405603A4 (en) 2016-01-21 2019-10-16 Lockheed Martin Corporation DIAMOND NITROGEN SENSOR WITH SWITCHING ON DIAMOND
CN107305188A (zh) * 2016-04-25 2017-10-31 潘栋雄 钻石颜色等级的检测方法
CN105784648A (zh) * 2016-04-28 2016-07-20 广州标旗电子科技有限公司 一种光致发光钻石检测方法及装置
US10330744B2 (en) 2017-03-24 2019-06-25 Lockheed Martin Corporation Magnetometer with a waveguide
US10408890B2 (en) 2017-03-24 2019-09-10 Lockheed Martin Corporation Pulsed RF methods for optimization of CW measurements
US10677953B2 (en) 2016-05-31 2020-06-09 Lockheed Martin Corporation Magneto-optical detecting apparatus and methods
US10345395B2 (en) 2016-12-12 2019-07-09 Lockheed Martin Corporation Vector magnetometry localization of subsurface liquids
US10371765B2 (en) 2016-07-11 2019-08-06 Lockheed Martin Corporation Geolocation of magnetic sources using vector magnetometer sensors
US10145910B2 (en) 2017-03-24 2018-12-04 Lockheed Martin Corporation Photodetector circuit saturation mitigation for magneto-optical high intensity pulses
US10281550B2 (en) 2016-11-14 2019-05-07 Lockheed Martin Corporation Spin relaxometry based molecular sequencing
US10228429B2 (en) 2017-03-24 2019-03-12 Lockheed Martin Corporation Apparatus and method for resonance magneto-optical defect center material pulsed mode referencing
US10527746B2 (en) 2016-05-31 2020-01-07 Lockheed Martin Corporation Array of UAVS with magnetometers
US10345396B2 (en) 2016-05-31 2019-07-09 Lockheed Martin Corporation Selected volume continuous illumination magnetometer
US20170343621A1 (en) 2016-05-31 2017-11-30 Lockheed Martin Corporation Magneto-optical defect center magnetometer
US10317279B2 (en) 2016-05-31 2019-06-11 Lockheed Martin Corporation Optical filtration system for diamond material with nitrogen vacancy centers
US10274550B2 (en) 2017-03-24 2019-04-30 Lockheed Martin Corporation High speed sequential cancellation for pulsed mode
US10338163B2 (en) 2016-07-11 2019-07-02 Lockheed Martin Corporation Multi-frequency excitation schemes for high sensitivity magnetometry measurement with drift error compensation
US10571530B2 (en) 2016-05-31 2020-02-25 Lockheed Martin Corporation Buoy array of magnetometers
US10359479B2 (en) 2017-02-20 2019-07-23 Lockheed Martin Corporation Efficient thermal drift compensation in DNV vector magnetometry
US9983255B2 (en) * 2016-08-15 2018-05-29 The Boeing Company Apparatus for testing dielectric breakdown voltage
WO2018081577A1 (en) * 2016-10-28 2018-05-03 Stc.Unm High throughput characterization of individual magnetic nanoparticles
US10459041B2 (en) 2017-03-24 2019-10-29 Lockheed Martin Corporation Magnetic detection system with highly integrated diamond nitrogen vacancy sensor
US10379174B2 (en) 2017-03-24 2019-08-13 Lockheed Martin Corporation Bias magnet array for magnetometer
US10371760B2 (en) 2017-03-24 2019-08-06 Lockheed Martin Corporation Standing-wave radio frequency exciter
US10338164B2 (en) 2017-03-24 2019-07-02 Lockheed Martin Corporation Vacancy center material with highly efficient RF excitation
US10801982B2 (en) * 2017-06-29 2020-10-13 University of Pittsburgh—of the Commonwealth System of Higher Education Graphitic carbon nitride sensors
JP7462419B2 (ja) * 2017-10-20 2024-04-05 住友電気工業株式会社 合成単結晶ダイヤモンド
CN107840331B (zh) * 2017-11-02 2021-04-06 长沙新材料产业研究院有限公司 一种金刚石改性的方法及改性金刚石
CN107892297B (zh) * 2017-11-02 2021-04-06 长沙新材料产业研究院有限公司 一种金刚石的处理方法及改性金刚石
CN108002381A (zh) * 2017-12-21 2018-05-08 南昌航空大学 一种可控羰基化的纳米金刚石的制备方法
TWI804596B (zh) 2018-04-24 2023-06-11 美商戴蒙創新公司 螢光鑽石材料及製造其之方法
EP3563880A1 (de) 2018-05-03 2019-11-06 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Resorbierbares implantatmaterial aus magnesium oder einer magnesiumlegierung
JP2020025519A (ja) * 2018-08-16 2020-02-20 浜松ホトニクス株式会社 細胞凝集塊の観察方法
US20210395607A1 (en) * 2018-10-31 2021-12-23 Daicel Corporation Fluorescent diamond and method for producing same
US10816507B2 (en) * 2019-03-20 2020-10-27 Raytheon Technologies Corporation Apparatus and method and system for inspecting a component of a gas turbine engine
HUP1900269A1 (hu) 2019-07-26 2021-01-28 Mta Wigner Fizikai Kutatokoezpont Eljárás ponthibákat (vakancia) tartalmazó anyagrészecskék elõállítására
KR102400579B1 (ko) * 2020-05-29 2022-05-23 한국과학기술연구원 형광 나노 다이아몬드의 제조 방법
WO2022208841A1 (ja) * 2021-04-01 2022-10-06 株式会社ダイセル 蛍光ナノダイヤモンドの製造方法
WO2023227606A1 (en) * 2022-05-23 2023-11-30 Adamant Quanta Ab Method and system for processing a diamond
WO2023245112A1 (en) * 2022-06-15 2023-12-21 Schlumberger Technology Corporation Heat treatment of nanodiamond particles with controlled powder layer depth
WO2023245111A1 (en) * 2022-06-15 2023-12-21 Schlumberger Technology Corporation Nanodiamond with vacancy defect and quantum dot luminescence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0275063A2 (en) * 1987-01-12 1988-07-20 Sumitomo Electric Industries Limited Light emitting element comprising diamond and method for producing the same
EP0347772A1 (en) * 1988-06-20 1989-12-27 Sumitomo Electric Industries, Ltd. Hole-burnable material and production thereof
RU2145365C1 (ru) * 1998-12-11 2000-02-10 Эдуард Ильич Карагезов Способ облагораживания алмазов
RU2244679C2 (ru) * 2002-02-21 2005-01-20 Акционерное общество закрытого типа "Карбид"(АОЗТ "Карбид") Способ очистки ультрадисперсных алмазов

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02385A (ja) * 1987-01-12 1990-01-05 Sumitomo Electric Ind Ltd ダイヤモンド発光素子およびその製造方法
JPH0288417A (ja) * 1988-09-26 1990-03-28 Sumitomo Electric Ind Ltd ホールバーニング物質及びその製造法
JP2792069B2 (ja) * 1989-01-07 1998-08-27 住友電気工業株式会社 ホールバーニング物質及びその製造法
DE68914269T2 (de) 1988-12-20 1994-10-06 Henkel Corp Nach einer Zweistufenmethode arbeitendes autophoretisches Bad.
JP3094433B2 (ja) * 1990-09-25 2000-10-03 日本電気株式会社 ダイヤモンド微粉末の製造法と製造装置
ES2157238T3 (es) * 1993-08-11 2001-08-16 Gen Electric Procedimiento para aumentar la resistencia de diamantes manufacturados.
US5451430A (en) * 1994-05-05 1995-09-19 General Electric Company Method for enhancing the toughness of CVD diamond
US5637878A (en) * 1995-02-03 1997-06-10 E-Beam Corporation Process for irradiating gemstones
JP3655811B2 (ja) 2000-07-21 2005-06-02 株式会社石塚研究所 単結晶質ダイヤモンド微粉
EA200300182A1 (ru) 2000-07-21 2003-06-26 Дзе Исизука Рисерч Инститьют, Лтд. Монокристаллический тонкий алмазный порошок, имеющий узкое распределение частиц по размерам, и способ его получения
WO2002009909A2 (en) * 2000-08-02 2002-02-07 Element Six (Pty) Ltd Abrasive product
US7140567B1 (en) * 2003-03-11 2006-11-28 Primet Precision Materials, Inc. Multi-carbide material manufacture and use as grinding media
DE102004025048A1 (de) 2003-05-20 2004-12-23 Futaba Corp., Mobara Ultra-dispergierter Nano-Kohlenstoff und Verfahren zu seiner Herstellung
JP2005001983A (ja) * 2003-05-20 2005-01-06 Futaba Corp 超分散状態ナノ炭素およびその製造方法
US9260653B2 (en) * 2005-08-30 2016-02-16 International Technology Center Enhancement of photoluminescence of nanodiamond particles
US8110171B1 (en) * 2005-11-17 2012-02-07 Rajneesh Bhandari Method for decolorizing diamonds
US8168413B2 (en) * 2006-11-22 2012-05-01 Academia Sinica Luminescent diamond particles
GB0813491D0 (en) * 2008-07-23 2008-08-27 Element Six Ltd Diamond Material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0275063A2 (en) * 1987-01-12 1988-07-20 Sumitomo Electric Industries Limited Light emitting element comprising diamond and method for producing the same
US4880613A (en) * 1987-01-12 1989-11-14 Sumitomo Electric Industries, Ltd. Light emitting element comprising diamond and method for producing the same
EP0347772A1 (en) * 1988-06-20 1989-12-27 Sumitomo Electric Industries, Ltd. Hole-burnable material and production thereof
RU2145365C1 (ru) * 1998-12-11 2000-02-10 Эдуард Ильич Карагезов Способ облагораживания алмазов
RU2244679C2 (ru) * 2002-02-21 2005-01-20 Акционерное общество закрытого типа "Карбид"(АОЗТ "Карбид") Способ очистки ультрадисперсных алмазов

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GRUBER A. et al. Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers, Science, 1997, v.276, p.2012-2014. ALEXIOS BREVATOS et al. Nonclassical radiation from diamond nanocrystals, Phys. Rev. A, 2001, v.64, p.p.061802-1 - 061802-4. CHI-CHEN FU et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCI. OF THE USA, January 16, 2007, v.104, № 3, p.727-732. *
VLASOV I.I. et al. Relative Abundance of Single and Vacancy-Bonded Substitutional Nitrogen in CVD Diamond, Phys. State Sol., 2000, v.181, №83, p.83-90. UEDONO A. et al. Annealing behaviours of defects in electron-irradiated diamond probed by positron annihilation, J. Phys : Condens. Matter, 1999, v.11, p.4925-4934. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2543184C2 (ru) * 2013-04-01 2015-02-27 ЗАО "Алмазный Центр" Синтетический радиоактивный наноалмаз и способ его получения
RU2804497C2 (ru) * 2018-10-31 2023-10-02 Дайсел Корпорэйшн Флуоресцентный алмаз и способ его получения

Also Published As

Publication number Publication date
RU2009145703A (ru) 2011-06-20
JP2010526746A (ja) 2010-08-05
KR101494251B1 (ko) 2015-02-23
CN101679040A (zh) 2010-03-24
KR20100017762A (ko) 2010-02-16
US20140065424A1 (en) 2014-03-06
EP1990313A1 (en) 2008-11-12
US8574536B2 (en) 2013-11-05
EP2142474A1 (en) 2010-01-13
JP5782587B2 (ja) 2015-09-24
EP2142474B1 (en) 2018-07-11
US8932554B2 (en) 2015-01-13
US20100135890A1 (en) 2010-06-03
WO2008138841A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
RU2466088C2 (ru) Способ получения светоизлучающих наночастиц алмаза
Klassen et al. Laser and electric arc synthesis of nanocrystalline scintillators
Zhou et al. Defect engineering in lanthanide doped luminescent materials
Boruah et al. Synthesis, characterization, properties, and novel applications of fluorescent nanodiamonds
Xia et al. Quantum Point Defects for Solid‐State Laser Refrigeration
UA127266C2 (uk) Спосіб одержання опромінених частинок
Klassen et al. Nanoscintillators for microscopic diagnostics of biological and medical objects and medical therapy
Voitovich et al. Photoluminescence behavior of surface radiation induced color centers in lithium fluoride and influence of nanosized clusters
Kim et al. Fabrication of silicon-vacancy color centers in nanodiamonds by using Si-ion implantation
Lipatov et al. Applied optical properties of diamond
Popovic et al. Continuous wave laser for tailoring the photoluminescence of silicon nanoparticles produced by laser ablation in liquid
Pandurangappa et al. Optical absorption and thermoluminescence studies in 100 MeV swift heavy ion irradiated CaF2 crystals
Manika et al. Formation of dislocations in LiF irradiated with 3He and 4He ions
Zatsepin et al. Modification of MgAl 2 O 4 electron-optic properties by pulsed ion beam
Martynovich et al. Luminescence of single color centers created in LiF crystals at low dose of irradiation
Tsuchiya et al. Electron irradiation effects on cathodoluminescence in zircon
Mitsushima et al. Luminescence emitted from densely excited regions in tracks of heavy charged particles in CdS
Vij et al. 120 MeV Ag 9+ Ions Induced Ionoluminescence of SrS: Ce
US20210371742A1 (en) Method of fluorescent nanodiamonds production
Hsiao et al. Fabrication of Fluorescent Nanodiamonds
Treussart et al. Photoluminescence: Nitrogen-Vacancy and Silicon-Vacancy color centers
Haile Material Properties of Cerium Doped Yttrium Silicate (Y2SiO5: Ce3+) by Pulsed Laser Deposition Method for Display Applications
Levushkina Energy transfer processes in the solid solutions of complex oxides
Vlasov et al. Raman and photoluminescence spectroscopy of detonation nanodiamond
Yudin et al. The Effect of Ga+ ion beam irradiation on the optical properties of MAPbBr3 single crystals

Legal Events

Date Code Title Description
TC4A Change in inventorship

Effective date: 20151026

MM4A The patent is invalid due to non-payment of fees

Effective date: 20190508