WO2022208841A1 - 蛍光ナノダイヤモンドの製造方法 - Google Patents

蛍光ナノダイヤモンドの製造方法 Download PDF

Info

Publication number
WO2022208841A1
WO2022208841A1 PCT/JP2021/014154 JP2021014154W WO2022208841A1 WO 2022208841 A1 WO2022208841 A1 WO 2022208841A1 JP 2021014154 W JP2021014154 W JP 2021014154W WO 2022208841 A1 WO2022208841 A1 WO 2022208841A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanodiamond
annealing
nanodiamonds
carbon
raw material
Prior art date
Application number
PCT/JP2021/014154
Other languages
English (en)
French (fr)
Inventor
明 劉
正浩 西川
佳寛 稻本
真紀 岸本
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to PCT/JP2021/014154 priority Critical patent/WO2022208841A1/ja
Publication of WO2022208841A1 publication Critical patent/WO2022208841A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/08Application of shock waves for chemical reactions or for modifying the crystal structure of substances
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/26Preparation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon

Definitions

  • the present invention relates to a method for producing fluorescent nanodiamonds.
  • the luminescent center of diamond is a nano-sized, chemically stable fluorescent chromophore that does not exhibit in vivo decomposition, discoloration, or flickering, which is often seen in organic phosphors. ing.
  • information on the spin of electrons excited in the luminescence center can be measured from the outside, so it is expected to be used for ODMR (Optically Detected Magnetic Resonance) and quantum bits.
  • NV nitrogen-vacancy
  • Patent Document 1 A method for producing nanodiamonds by the detonation method is known (Patent Document 1), but fluorescence from the NV center cannot be detected in nanodiamonds produced by the detonation method.
  • An object of the present invention is to provide fluorescent nano-particles obtained by a detonation method and having sharp peaks corresponding to NV 0 and/or NV ⁇ of ZPL (Zero Phonon Line) derived from the NV center in its fluorescence emission wavelength spectrum. to provide diamonds.
  • Step 1 A detonation step of detonating at least one explosive in a closed container to obtain a nanodiamond raw material;
  • Step 2 a first annealing step of annealing the nanodiamond raw material or the nanodiamond obtained by removing sp2 carbon from the nanodiamond raw material by strong acid treatment, ozone treatment or gas phase oxidation at a temperature of 1000 ° C to 1600 ° C;
  • Step 3 After the first annealing step, a vacancy forming step of irradiating the nanodiamond with an ion beam or an electron beam;
  • Step 4 A second annealing step in which the nanodiamonds with vacancies are annealed at
  • NV Nonrogen-Vacancy
  • nanodiamonds produced by the detonation method little or no fluorescence from NV centers can be detected, but according to the production method of the present invention, nanodiamonds that emit fluorescence derived from NV centers can be obtained.
  • the fluorescent nanodiamonds obtained by the production method of the present invention are nano-sized and chemically stable, do not exhibit in vivo decomposition, discoloration, or blinking, and emit long-wavelength fluorescence. It is useful as a fluorescence imaging probe. Since information on the spin of electrons excited in the NV emission center can sometimes be measured from the outside, it is expected to be used for ODMR (Optically Detected Magnetic Resonance), quantum bits, and quantum sensors. .
  • Fluorescence emission wavelength spectrum of fluorescent nanodiamonds obtained by the production method of the present invention. XRD measurement results are shown. A SAXS measurement result is shown.
  • the nanodiamond obtained by the production method of the present invention has fluorescence originating from the NV center.
  • the fluorescence emission wavelength spectrum of the NV center has a sharp peak called Zero Phonon Line (ZPL) and a broad peak called subband.
  • ZPL Zero Phonon Line
  • ZPL has two peaks at 575 nm (NV 0 ) and 637 nm (NV - ).
  • Fluorescent nanodiamonds obtained by the production method of the present invention may use ZPL of either 575 nm (NV 0 ) or 637 nm (NV - ), or may use both ZPLs.
  • a longer wavelength peak at 637 nm (NV ⁇ ) is desirable for better penetration of biological samples, and preferred fluorescent nanodiamonds include one peak at 637 nm (NV ⁇ ) or 575 nm in their fluorescence emission wavelength spectrum. It contains two peaks at (NV 0 ) and 637 nm (NV ⁇ ).
  • the NV center has a structure in which two adjacent carbon atoms are replaced by a pair of a nitrogen atom and an atomic vacancy, and one N and one V are adjacent.
  • the average size of the primary particles of fluorescent nanodiamonds is preferably 10 nm or less. If the average size of primary particles is 10 nm or less, they are particularly useful as probes for fluorescence imaging of biological samples. Nanodiamonds with an average primary particle size of 10 nm can be obtained by a detonation process. The average size of the primary particles can be determined by Scherrer's formula from the analysis results of X-ray powder diffraction (XRD). Examples of XRD measurement devices include a fully automatic multi-purpose X-ray diffractometer (manufactured by Rigaku Corporation).
  • the surface of the fluorescent nanodiamond may have at least one oxygen functional group termination and/or at least one hydrogen termination.
  • Oxygen functional group terminations include OH, COOH, CONH 2 , C ⁇ O, CHO, and the like, with OH, C ⁇ O, and COOH being preferred.
  • Hydrogen-terminated groups include alkyl groups having 1 to 20 carbon atoms. Oxygen functional group terminations can be introduced in step 5, the sp2 carbon removal step.
  • the presence of at least one type of oxygen functional group termination on the surface of the fluorescent nanodiamond suppresses aggregation of the nanodiamond particles, which is preferable.
  • Presence of at least one type of hydrogen termination on the surface of the fluorescent nanodiamond makes the zeta potential positive and allows the fluorescent nanodiamond to be stably and highly dispersed in an acidic aqueous solution, which is preferable.
  • the fluorescent nanodiamond of the present invention may have a core-shell structure.
  • the core of the core-shell fluorescent nanodiamond is a nanodiamond particle. This core has an NV center and emits fluorescence.
  • the shell is a non-diamond coated layer and may contain sp2 carbon and preferably contains oxygen atoms.
  • the shell may be a graphite layer.
  • the thickness of the shell is preferably 5 nm or less, more preferably 3 nm or less, even more preferably 1 nm or less.
  • the shell may have hydrophilic functional groups on its surface.
  • the sp2 carbon can be partially or wholly removed by strong acid treatment, vapor phase oxidation treatment, ozone oxidation treatment, or the like.
  • the nanodiamond raw material obtained in the detonation step is subjected to the first annealing step, but since the nanodiamond raw material obtained in the detonation step contains a considerable amount of sp2 carbon in addition to nanodiamonds, this sp2 It is preferable to remove carbon by a treatment for removing sp2 carbon, such as strong acid treatment, ozone treatment, or gas-phase oxidation, to increase the ratio of nanodiamonds, and then subject the first annealing step. Nanodiamonds obtained in the detonation process have thick sp2 carbon (shell) on the surface of soot and nanodiamond particles. can be removed.
  • a treatment for removing sp2 carbon such as strong acid treatment, ozone treatment, or gas-phase oxidation
  • the treatment temperature is high in the first annealing step, most of the fine (for example, particle size of 1 nm or less) nanodiamond particles are converted to sp2 carbon.
  • larger particles eg, 5 nm or larger in size
  • SAXS small-angle X-ray scattering
  • sp2 carbon is removed by a treatment such as strong acid treatment, ozone treatment, gas phase oxidation, etc., followed by a vacancy forming step and a second annealing step. It can be performed.
  • the first annealing step is followed by a pore forming step, followed by a treatment to remove sp2 carbon, such as strong acid treatment, ozone treatment, or vapor phase oxidation, and then A second annealing step may be performed.
  • step 3 includes the case of (first annealing step) ⁇ (sp2 carbon removal step, which is an optional step) ⁇ (hole formation step).
  • the second annealing step of annealing at a temperature of 600°C to 900°C to form a NV (Nitrogen-Vacancy) center” indicates the order of the vacancy forming step and the second annealing step.
  • step 4 includes the case of (hole formation step) ⁇ (sp2 carbon removal step, which is an optional step) ⁇ (second annealing step).
  • step 4 a step of removing sp2 carbon may be further carried out.
  • the vacancy formation treatment is performed by irradiation with an ion beam or an electron beam to introduce vacancies into the nanodiamond particles. Although NV centers are not formed at this point, NV centers are formed by movement of vacancies in the nanodiamond particles in the subsequent second annealing treatment.
  • the center of the nanodiamond particles obtained in the detonation process has a diamond structure of sp3 carbon, and its surface is covered with an amorphous layer composed of sp2 carbon.
  • the outside of the amorphous layer may be covered with a graphite oxide layer.
  • a hydrated layer may be formed between the amorphous layer and the graphite oxide layer.
  • the fluorescent nanodiamonds have a positive or negative zeta potential.
  • the zeta potential of the fluorescent nanodiamonds is preferably ⁇ 70 to 70 mV, more preferably ⁇ 60 to 30 mV.
  • the detonation step (step 1) can be performed by detonating at least one type of explosive in a closed container.
  • containers include metal containers and synthetic resin containers.
  • the explosive is not particularly limited, and a wide range of known explosives containing nitrogen atoms can be used. Specific examples include trinitrotoluene (TNT), cyclotrimethylenetrinitramine (hexogen, RDX), cyclotetramethylenetetranitramine (octogen), trinitrophenylmethylnitramine (tetril), pentaerythritol tetranitrate (PETN). ), tetranitromethane (TNM), triamino-trinitrobenzene, hexanitrostilbene, diaminodinitrobenzofuroxane and the like, and these can be used alone or in combination of two or more.
  • TNT trinitrotoluene
  • RDX cyclotrimethylenetrinitramine
  • octogen cyclotetramethylenetetranitramine
  • tetril trinitrophenylmethylnitramine
  • PETN pentaerythr
  • the explosive further comprises a cooling medium.
  • the cooling medium may be solid, liquid or gaseous.
  • a method of using a cooling medium includes a method of detonating an explosive in the cooling medium.
  • Cooling media include inert gases (nitrogen, argon, CO), water, ice, liquid nitrogen, and the like. In the case of water or ice, for example, the cooling medium should preferably be used in an amount about five times the weight of the explosive.
  • a certain amount of nitrogen atoms (for example, 1.0 to 5.0% by mass) are present in the nanodiamonds obtained in the detonation process, and the nitrogen atoms combine with vacancies to form NV centers.
  • the nanodiamonds obtained by the detonation process are subjected to treatment such as strong acid treatment, ozone treatment, and gas phase oxidation to remove sp2 carbon as necessary, and then to the first annealing treatment.
  • treatment such as strong acid treatment, ozone treatment, and gas phase oxidation to remove sp2 carbon as necessary, and then to the first annealing treatment.
  • the strong acid used in the strong acid treatment for removing sp2 carbon includes strong acids capable of removing sp2 carbon, preferably oxidative includes strong acids that can remove the sp2 carbon.
  • the temperature of the strong acid treatment is not particularly limited, but is, for example, 50 to 250° C.
  • the time of the strong acid treatment is not particularly limited, but is, for example, 0.5 to 24 hours.
  • the strong acid is used in an amount of preferably 5 to 2000 times, more preferably 10 to 1000 times, still more preferably 20 to 500 times the mass of the nanodiamond raw material or nanodiamond.
  • ozone oxidation for removing sp2 carbon can be performed at an ozone concentration of 100-20000 ppm, a reaction temperature of preferably 150-500°C, and a reaction time of preferably 0.5-10 hours.
  • vapor-phase oxidation for removing sp2 carbon can be carried out in an air atmosphere, the vapor-phase oxidation temperature is preferably 300° C. or higher, and the vapor-phase oxidation time is 2 hours or longer. .
  • the temperature of the first annealing step (step 2) is preferably 1000-1600°C, more preferably 1200-1500°C, and the time of the first annealing step is not particularly limited, but is, for example, 1-10 hours.
  • the vacancy forming step (step 3) is performed by irradiation with an ion beam or an electron beam.
  • the upper limit of the density of vacancies introduced by ion beam irradiation or electron beam irradiation is limited by the concentration at which diamond is destroyed (>1 ⁇ 10 21 /cm 3 vacancy concentration), but the lower limit is, for example, 1 ⁇ It is 10 16 /cm 3 or more, and further 1 ⁇ 10 18 /cm 3 or more.
  • An ion beam is preferable as the high-energy beam for irradiating the diamond raw material with the high-energy beam.
  • the ion beam is preferably an ion beam of hydrogen (H) or helium (He).
  • the energy of hydrogen ion beams is preferably between 10 and 1500 keV
  • the energy of helium ion beams is preferably between 20 and 2000 keV.
  • the energy of the electron beam is preferably 500-5000 keV.
  • Nanodiamonds can be obtained.
  • the temperature of the second annealing step (step 4) is not particularly limited as long as the vacancies (V) move to form NV centers, but is preferably 600 to 900 ° C., more preferably 750 to 850 ° C. Yes, and the time for the second annealing step is not particularly limited, but is, for example, 0.5 to 10 hours.
  • sp2 carbon is formed on the nanodiamond surface by the second annealing step, in one preferred embodiment of the present invention, vapor-phase oxidation, ozone oxidation, and strong acid treatment are performed to remove this, and the more preferred fluorescent nanodiamond Diamond particles can be obtained.
  • the treatment to remove sp2 carbon such as strong acid treatment, ozone treatment, and vapor phase oxidation in step 5, can be performed under the same conditions as above.
  • the vapor phase oxidation in step 5 can be carried out in an air atmosphere, the vapor phase oxidation temperature is preferably 300°C or higher, and the vapor phase oxidation time is 2 hours or longer.
  • the ozone concentration is 100-20000 ppm
  • the reaction temperature is preferably 150-500°C
  • the reaction time is preferably 0.5-10 hours.
  • Example 1 A fluorescent diamond was produced by the following steps (I) to (VII).
  • TNT trinitrotoluene
  • RDX cyclotrimethylenetrinitramine
  • the grain size of the large nanodiamond particles is slightly smaller due to the surface sp3 carbon being converted to sp2 carbon and then removed by the mixed acid, but the average grain size is larger than that of the nanodiamonds after the detonation process.
  • VII Gas phase oxidation process (sp2 carbon removal process)
  • the annealed nanodiamonds were subjected to vapor-phase oxidation treatment at 300° C. for 2 hours in an air atmosphere to remove the sp2 carbon on the surface of the nanodiamonds, thereby obtaining the fluorescent nanodiamonds of the present invention.
  • the nanodiamond powder after the "(IV) mixed acid treatment step” obtained above or the nanodiamond powder obtained in the “(II) mixed acid treatment step” is directly packed in a non-reflective Si plate sample holder, and is subjected to X-ray diffraction analysis. (trade name “Smart Lab”, manufactured by Rigaku Corporation) was used for measurement. The measurement results are shown in FIG. The crystallite size of nanodiamonds was estimated by the Scherrer method.
  • the crystallite size by the Scherrer method varies from 4.2 nm for the nanodiamonds obtained in the "(II) mixed acid treatment step” (ND before treatment) to 4.2 nm for the nanodiamonds after the "(IV) mixed acid treatment step” (ND after 200°C mixed acid treatment). ) to 6.2 nm.
  • Nanodiamond particles were measured by small angle X-ray scattering (SAXS).
  • the measurement was performed using a fully automatic horizontal multipurpose X-ray diffractometer (manufactured by Rigaku Corporation, trade name "SmartLab”) under the following measurement conditions.
  • a particle size distribution curve was obtained by analyzing the obtained measurement data.
  • the software "NANO-Solver” manufactured by Rigaku Corporation was used for curve fitting analysis.
  • a volume-based particle size distribution curve (composite distribution) obtained from the analysis is shown in FIG.
  • Microcoder JM10 manufactured by Jay Science Lab was used as an apparatus.
  • a calibration curve was prepared using antipyrine as a standard sample.
  • Acetanilide was also analyzed as a calibration.
  • About 1.3 mg of the nanodiamond powder after the "(IV) mixed acid treatment step” obtained above or the nanodiamond powder obtained in the "(II) mixed acid treatment step” was weighed and analyzed. Measurements were taken three times and the average value was taken. Table 1 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は、以下の工程1~4を含み、その蛍光発光波長スペクトルがNV0及び/又はNV-のゼロフォノン線(ZPL)を示す蛍光ナノダイヤモンドの製造方法: 工程1:少なくとも1種の爆薬を密閉容器内で爆発させてナノダイヤモンド原料を得る爆轟工程、 工程2:前記ナノダイヤモンド原料或いは前記ナノダイヤモンド原料について強酸処理、オゾン処理又は気相酸化によりsp2炭素を除去して得られたナノダイヤモンドを1000℃~1600℃の温度でアニーリングする第1アニーリング工程、 工程3:第1アニーリング工程の後に、ナノダイヤモンドにイオンビーム又は電子ビームを照射する空孔形成工程、 工程4:空孔を形成したナノダイヤモンドを600℃~900℃の温度でアニーリングしてNV(Nitrogen-Vacancy)センターを形成する第2アニーリング工程、 を提供するものである。

Description

蛍光ナノダイヤモンドの製造方法
 本発明は、蛍光ナノダイヤモンドの製造方法に関する。
 ダイヤモンドの発光センターは、ナノサイズで化学的に安定な蛍光性発色団であり有機物の蛍光体に多く見られる生体内での分解、褪色、明滅を示さないために、蛍光イメージングのプローブとして期待されている。また発光センター内で励起される電子のスピンの情報を外部より計測できる場合もあることにより、ODMR(Optically Detected Magnetic Resonance;光検出磁気共鳴法)や量子ビットとしての利用も期待されている。
 現状で利用可能な発光センターはNV(Nitrogen-Vacancy)センターであり、ダイヤモンドの格子位置に存在する不純物としてのN原子とそれに隣接した格子位置を占める空孔により構成されている。NVセンターには電気的に中性であるNV0と空孔位置に電子を1個捕獲したNV-の2種類があり、蛍光イメージングのプローブとしてはどちらでも利用できる。
 爆轟法によるナノダイヤモンドの製造法が知られているが(特許文献1)、爆轟法により製造したナノダイヤモンドはNVセンターの蛍光が検出できない。
特開2005-289677
 本発明の目的は、爆轟法で得られ、かつ、その蛍光発光波長スペクトルにおいて、NVセンターに由来するZPL(Zero Phonon Line)のNV0及び/又はNV-に対応する鋭いピークを有する蛍光ナノダイヤモンドを提供することにある。
 本発明は、以下の蛍光ナノダイヤモンドの製造法を提供するものである。
〔1〕 以下の工程1~4を含み、その蛍光発光波長スペクトルがNV及び/又はNVのゼロフォノン線(ZPL)を示す蛍光ナノダイヤモンドの製造方法:
工程1:少なくとも1種の爆薬を密閉容器内で爆発させてナノダイヤモンド原料を得る爆轟工程、
工程2:前記ナノダイヤモンド原料或いは前記ナノダイヤモンド原料について強酸処理、オゾン処理又は気相酸化によりsp2炭素を除去して得られたナノダイヤモンドを1000℃~1600℃の温度でアニーリングする第1アニーリング工程、
工程3:第1アニーリング工程の後に、ナノダイヤモンドにイオンビーム又は電子ビームを照射する空孔形成工程、
工程4:空孔を形成したナノダイヤモンドを600℃~900℃の温度でアニーリングしてNV(Nitrogen-Vacancy)センターを形成する第2アニーリング工程。
〔2〕 爆轟工程で得られたナノダイヤモンド原料を強酸処理、オゾン処理又は気相酸化によりsp2炭素を除去した後に第1アニーリング工程に供する、〔1〕に記載の蛍光ナノダイヤモンドの製造方法。
〔3〕下記の工程5をさらに含む、〔1〕又は〔2〕に記載の蛍光ナノダイヤモンドの製造方法。
工程5:第2アニーリング工程で得られたナノダイヤモンドを気相酸化、オゾン酸化又は強酸処理するsp2炭素の除去工程。
 爆轟法で製造したナノダイヤモンドについて、NVセンターによる蛍光はほとんど或いは全く検出できないが、本発明の製造方法によれば、NVセンターに由来する蛍光を発するナノダイヤモンドを得ることができる。
 本発明の製造方法で得られた蛍光ナノダイヤモンドは、ナノサイズで化学的に安定、かつ、生体内での分解、褪色、明滅を示さず、長波長の蛍光を発するので、生体由来のサンプルの蛍光イメージング用プローブとして有用である。NV発光センター内で励起される電子のスピンの情報を外部より計測できる場合もあることにより、ODMR(Optically Detected Magnetic Resonance;光検出磁気共鳴法)や量子ビット、量子センサーとしての利用も期待される。
本発明の製造方法で得られた蛍光ナノダイヤモンドの蛍光発光波長スペクトル。 XRD測定結果を示す。 SAXS測定結果を示す。
 本発明の製造方法で得られるナノダイヤモンドは、NVセンターに由来する蛍光を有する。NVセンターの蛍光発光波長スペクトルはゼロフォノン線(ZPL:Zero Phonon Line)と言われる鋭いピークとサブバンドと呼ばれるブロードなピークを有する。NVセンターには電気的に中性であるNV0と空孔位置に電子を1個捕獲したNV-の2種類があり、ZPLは575nm(NV0)と637nm(NV-)の2つのピークを含む。本発明の製造方法で得られる蛍光ナノダイヤモンドは、575nm(NV0)と637nm(NV-)のいずれか一方のZPLを利用してもよく、両方のZPLを利用してもよい。より長波長の637nm(NV-)のピークが生体サンプルの透過性に優れているので望ましく、好ましい蛍光ナノダイヤモンドは、その蛍光発光波長スペクトルにおいて637nm(NV-)の1つのピークを含むか、575nm(NV0)と637nm(NV-)の2つのピークを含むものである。NVセンターは、隣接する2個の炭素原子を窒素原子と原子空孔のペアが置き換えた構造を有し、1個のNと1個のVが隣接して存在する。
 蛍光ナノダイヤモンドの一次粒子の平均サイズは、好ましくは10 nm以下である。一次粒子の平均サイズが10nm以下であれば、生体由来のサンプルの蛍光イメージング用プローブとして特に有用である。一次粒子の平均サイズが10nmのナノダイヤモンドは爆轟工程により得ることができる。一次粒子の平均サイズは、粉末X線回折法(XRD) の分析結果から、シェラーの式により求めることができる。XRDの測定装置は、例えば、全自動多目的X線回折装置(株式会社リガク製)を挙げることができる。
 本発明の1つの好ましい実施形態において、蛍光ナノダイヤモンドの表面に少なくとも1種の酸素官能基終端及び/又は少なくとも1種の水素終端を有していてもよい。酸素官能基終端としては、OH、COOH、CONH、C=O、CHOなどが挙げられ、OH、C=O、COOHが好ましい。水素終端としては、炭素数1~20のアルキル基が挙げられる。酸素官能基終端は、工程5のsp2炭素の除去工程で導入することができる。
 蛍光ナノダイヤモンドの表面に少なくとも1種の酸素官能基終端が存在することで、ナノダイヤモンド粒子の凝集が抑制されるので好ましい。蛍光ナノダイヤモンドの表面に少なくとも1種の水素終端が存在することで、ゼータ電位がプラスになり、酸性水溶液中で安定的かつ高分散するので好ましい。
 本発明の他の1つの好ましい実施形態において、本発明の蛍光ナノダイヤモンドはコアシェル構造を有していてもよい。コアシェル構造の蛍光ナノダイヤモンドのコアはナノダイヤモンド粒子である。このコアは、NVセンターを有し、蛍光を発するものである。シェルは非ダイヤモンド被覆層であり、sp2炭素を含んでいてもよく、さらに酸素原子を含有することが好ましい。シェルはグラファイト層であってもよい。シェルの厚さは、好ましくは5nm以下、より好ましくは3nm以下、さらに好ましくは1nm以下である。シェルは表面に親水性官能基を有していてもよい。
 sp2炭素は、強酸処理、気相酸化処理、オゾン酸化処理などにより一部又は全部を除去することができる。
 爆轟工程で得られたナノダイヤモンド原料は第1アニーリング工程に供されるが、爆轟工程で得られたナノダイヤモンド原料はナノダイヤモンドに加えてsp2炭素が相当量含まれているので、このsp2炭素を強酸処理、オゾン処理、気相酸化などのsp2炭素を除去する処理で除去し、ナノダイヤモンドの比率を高めてから第1アニーリング工程に供することが好ましい。爆轟工程で得られたナノダイヤモンドは、煤、ナノダイヤモンド粒子表面に厚いsp2炭素(シェル)を有するので、これらの多くを強酸処理、オゾン処理、気相酸化などのsp2炭素を除去する処理により除去することができる。
 第1アニーリング工程は処理温度が高いので、微細な(例えば粒径1nm以下の)ナノダイヤモンド粒子の大部分がsp2炭素に変換される。一方、より大きな(例えば粒径5nm以上の)粒子は第1アニーリング工程により表面の一部がsp2炭素になるが、大部分のsp3炭素のコアは残ることになる。その結果、微細な粒子の除去によりナノダイヤモンド粒子の平均粒子径は大きくなり、粒度分布の幅が狭くなり、粒子径の揃った蛍光ナノダイヤモンドが得られることになる。第1アニーリング工程により微細なナノダイヤモンド粒子が除去されることは小角X線散乱法(SAXS)により確認することができる。
 本発明の好ましい1つの実施形態において、第1アニーリング工程を行った後に強酸処理、オゾン処理、気相酸化などのsp2炭素を除去する処理で除去し、その後に空孔形成工程、第2アニーリング工程を行うことができる。
 本発明の好ましい他の実施形態において、第1アニーリング工程を行った後に空孔形成工程を行い、その後に強酸処理、オゾン処理、気相酸化などのsp2炭素を除去する処理で除去し、次に第2アニーリング工程を行ってもよい。
 工程3で、「第1アニーリング工程の後に、ナノダイヤモンドにイオンビーム又は電子ビームを照射する空孔形成工程」と記載しているのは、第1アニーリング工程と空孔形成工程の順番を記載したもので、工程3は、(第1アニーリング工程)→(任意工程であるsp2炭素の除去工程)→(空孔形成工程)のケースを包含する
 工程4で、「空孔を形成したナノダイヤモンドを600℃~900℃の温度でアニーリングしてNV(Nitrogen-Vacancy)センターを形成する第2アニーリング工程」と記載しているのは、空孔形成工程と第2アニーリング工程の順番を記載したもので、工程4は、(空孔形成工程)→(任意工程であるsp2炭素の除去工程)→(第2アニーリング工程)のケースを包含する。
 また、工程4の後に、さらにsp2炭素の除去工程を実施してもよい。
 空孔形成処理は、イオンビーム又は電子ビームの照射により行い、ナノダイヤモンド粒子に空孔を導入する。この時点ではNVセンターは形成されていないが、次の第2アニーリング処理により、ナノダイヤモンド粒子中で空孔が移動することで、NVセンターが形成される。
 第2アニーリング工程の後に、気相酸化、オゾン酸化、強酸処理などによりsp2炭素を除去することで、NVセンターを有する蛍光ナノダイヤモンドを得ることができる。
 本発明の1つの実施形態において、爆轟工程で得られるナノダイヤモンド粒子の中心はsp3炭素のダイヤモンド構造を有し、その表面は、sp2炭素で構成されるアモルファス層で覆われている。さらに好ましい実施形態において、アモルファス層の外側は酸化グラファイト層で覆われていてもよい。また、アモルファス層と酸化グラファイト層の間には水和層が形成されていてもよい。
 本発明の好ましい1つの実施形態において、蛍光ナノダイヤモンドは、プラス又はマイナスのゼータ電位を有する。蛍光ナノダイヤモンドのゼータ電位は、好ましくは-70~70mV、より好ましくは-60~30mVである。
 本発明の製造方法において、爆轟工程(工程1)は、少なくとも1種の爆薬を密閉容器内で爆発させることにより実施することができる。容器としては、金属製容器、合成樹脂製容器が挙げられる。
 爆薬としては、特に限定されず、窒素原子を含む公知の爆薬を広く用いることができる。具体例としては、トリニトロトルエン(TNT)、シクロトリメチレントリニトラミン(ヘキソゲン、RDX)、シクロテトラメチレンテトラニトラミン(オクトゲン)、トリニトロフェニルメチルニトラミン(テトリル)、ペンタエリスリトールテトラニトレート(PETN)、テトラニトロメタン(TNM)、トリアミノ-トリニトロベンゼン、ヘキサニトロスチルベン、ジアミノジニトロベンゾフロキサンなどが挙げられ、これらを1種単独で、或いは2種以上を組み合わせて用いることができる。爆薬に含まれる窒素原子はナノダイヤモンドに取り込まれる。好ましい1つの実施形態において、爆薬は、さらに冷却媒体を含む。冷却媒体は、固体、液体、気体のいずれであってもよい。冷却媒体を使用する方法として、爆薬を冷却媒体中で起爆する方法が挙げられる。冷却媒体としては、不活性ガス(窒素、アルゴン、CO)、水、氷、液体窒素などが挙げられる。冷却媒体は、例えば水や氷の場合、爆薬重量に対して5倍程度使用することが好ましい。
 爆轟工程で得られたナノダイヤモンドは、一定量の窒素原子(例えば、1.0~5.0質量%)が存在し、その窒素原子が空孔と結合してNVセンターを形成する。
 爆轟工程により得られたナノダイヤモンドは、必要に応じて強酸処理、オゾン処理、気相酸化などのsp2炭素を除去する処理を行い、さらに第1アニーリング処理を行う。
 本明細書において、sp2炭素を除去するための強酸処理に用いる強酸としては、濃硝酸、発煙硝酸、濃硫酸と濃硝酸の混酸、王水など、sp2炭素を除去可能な強酸、好ましくは酸化的にsp2炭素を除去できる強酸が挙げられる。好ましい強酸の1例として、濃硫酸:濃硝酸=100:1~1:10(質量比)の混酸を挙げることができる。強酸処理の温度は、特に限定されないが、例えば50~250℃であり、強酸処理の時間は、特に限定されないが、例えば0.5~24時間である。強酸は、ナノダイヤモンド原料又はナノダイヤモンドの質量の好ましくは5倍~2000倍、より好ましくは10倍~1000倍、さらに好ましくは20倍~500倍の量で使用される。
 本明細書において、sp2炭素を除去するためのオゾン酸化は、オゾン濃度100~20000 ppm、反応温度は、好ましくは150~500℃、反応時間は、好ましくは0.5~10時間で行うことができる。
 本明細書において、sp2炭素を除去するための気相酸化は、大気雰囲気下で行うことができ、気相酸化温度は、好ましくは300℃以上であり、気相酸化時間は2時間以上である。
 第1アニーリング工程(工程2)の温度は、好ましくは1000~1600℃、より好ましくは1200~1500℃であり、第1アニーリング工程の時間は、特に限定されないが、例えば1~10時間である。
 空孔形成工程(工程3)は、イオンビーム又は電子ビームの照射により行う。イオンビーム照射又は電子ビーム照射により導入する空孔密度は、上限はダイヤモンドが破壊されてしまう濃度(>1×1021/cm3の空孔濃度)により限定されるが、下限に関しては例えば1×1016/cm3以上、さらに1×1018/cm3以上である。このダイヤモンド原料に高エネルギー線を照射する高エネルギー線として、好ましくはイオンビームである。イオンビームは、好ましくは水素(H)又はヘリウム(He)のイオンビームである。例えば、水素のイオンビームのエネルギーは、好ましくは10~1500 keVであり、ヘリウムのイオンビームのエネルギーは、好ましくは20~2000 keVである。電子線のエネルギーは、好ましくは500~5000 keVである。
 空孔を形成した時点ではNVセンターは形成されず、第2アニーリング工程により空孔をナノダイヤモンド粒子内で移動させることにより、内部の窒素原子と結合してNVセンターを形成して本発明の蛍光ナノダイヤモンドを得ることができる。
 第2アニーリング工程(工程4)の温度は、空孔(V)が移動してNVセンターが形成されればよく、特に限定されないが、好ましくは600~900℃、より好ましくは750~850℃であり、第2アニーリング工程の時間は、特に限定されないが、例えば0.5~10時間である。
 第2アニーリング工程により、ナノダイヤモンド表面にsp2炭素が形成されるので、本発明の好ましい1つの実施形態では、これを除去するために気相酸化、オゾン酸化、強酸処理を行い、より好ましい蛍光ナノダイヤモンドの粒子を得ることができる。
 工程5の強酸処理、オゾン処理、気相酸化などのsp2炭素を除去する処理は上記と同様な条件で行うことができる。
 工程5の気相酸化は、大気雰囲気下で行うことができ、気相酸化温度は、好ましくは300℃以上であり、気相酸化時間は2時間以上である。
 オゾン酸化は、オゾン濃度100~20000 ppm、反応温度は、好ましくは150~500℃であり、反応時間は、好ましくは0.5~10時間である。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
実施例1
 下記の(I)~(VII)の工程により蛍光ダイヤモンドを製造した。
(I)爆轟工程
 トリニトロトルエン(TNT)とシクロトリメチレントリニトラミン(RDX)を含む爆薬組成物約1000gを使用し、ナノダイヤモンド製造の常法に従い、ナノダイヤモンドを製造した。
(II)混酸処理工程(sp2炭素の除去工程)
 濃硫酸:濃硝酸=12:1(質量比)の混酸500gに爆轟工程で得たナノダイヤモンド原料5gを加え、撹拌しながら150℃で5時間処理した。
(III)第1アニーリング工程
 混酸処理後のナノダイヤモンドを真空雰囲気下、1400℃で3時間アニーリングして、大きいナノダイヤモンド粒子を選別し、小さいナノダイヤモンド粒子をsp2炭素に変換した。
(IV)混酸処理工程(sp2炭素の除去工程)
 濃硫酸:濃硝酸=8:1(質量比)の混酸820gに爆轟工程で得たナノダイヤモンド8gを加え、撹拌しながら200℃で10時間処理し、大きいナノダイヤモンド粒子の表面のsp2炭素を除去するとともに、全体がsp2炭素に変換された粒子を除去した。第1アニーリング工程と混酸処理工程により小さいナノダイヤモンド粒子を除去できる。大きいナノダイヤモンド粒子の粒径は、表面のsp3炭素がsp2炭素に変換された後に混酸により除去されることでやや小さくなるが、平均粒径は爆轟工程後のナノダイヤモンドよりも大きくなる。
(V)空孔形成工程
 180keVのヘリウムのイオンビームを混酸処理後のナノダイヤモンドに照射して、ナノダイヤモンド内部に空孔を形成した。
(VI)第2アニーリング工程
 空孔形成後のナノダイヤモンドを真空雰囲気下、800℃で30分間アニーリングして空孔を移動させ、NVセンターを形成した。
(VII)気相酸化工程(sp2炭素の除去工程)
 アニーリングしたナノダイヤモンドを大気雰囲気下、300℃、2時間気相酸化処理することで、ナノダイヤモンド表面のsp2炭素を除去して本発明の蛍光ナノダイヤモンドを得た。
 得られた蛍光ナノダイヤモンドについて、XRD分析、蛍光分析、元素分析を行った。結果を表1及び図1に示す。
<XRD分析>
 結晶子サイズ変化を測定した。
 上記で得られた「(IV)混酸処理工程」後のナノダイヤモンド粉末又は「(II)混酸処理工程」で得たナノダイヤモンド粉末をそのまま無反射Si板試料ホルダーに充填し、X線回析装置(商品名「Smart Lab」,株式会社リガク製)を使用し測定を行った。測定結果を図2に示す。Scherrer法によりナノダイヤモンドの結晶子サイズを見積もった。
 Scherrer法による結晶子サイズは、「(II)混酸処理工程」で得たナノダイヤモンド(処理前ND)の4.2nmから「(IV)混酸処理工程」後のナノダイヤモンド(200℃混酸処理後ND)の6.2nmに大きくなった。
<小角X線散乱測定(SAXS法)>
 ナノダイヤモンド粒子について、X線小角散乱法(SAXS)により測定を行った。測定は、全自動水平型多目的X線回析装置(株式会社リガク製、商品名「SmartLab」)を使用し、下記の測定条件で行った。そして、得られた測定データを解析することにより粒径分布曲線を得た。カーブフィッティングの解析には、株式会社リガク製ソフトウエア「NANO-Solver」を使用した。解析から得られた体積基準の粒径分布曲線(合成分布)を図3に示す。
(測定条件)
 散乱体モデル:球
 測定方法:透過法
 粒子/空孔:C
 マトリックス:空気(AIR)
 スリット補正:高
 アナライザー結晶:無し
 解析範囲:0.2000° → 3.0000°
 ステップ:0.0040°
 波長:CuKα特性X線(波長 0.1.541867nm)
 管電圧:50kV
 管電流:300mA
 分布関数:F分布
 高さ(mm):
 フィラメント:8.00
 CBO選択スリット:15.00
 入射スリット:10.00
 試料:20.00
 受光スリット(RS)1:20.00
 受光スリット(RS)2:20.00
 距離(mm):
 フォーカス -CBO:115.8
 CBO- 入射スリット:74.2
 入射スリット-試料:110.0
 試料-RS1:185.5
 RS1-RS2:114.5
 RS2-検出器窓:33.0
<元素分析>
 装置はジェイ・サイエンス・ラボ製マイクロコーダーJM10を使用した。標準試料にアンチピリンを用いて検量線を作成した。またキャリブレーションとしてアセトアニリドを分析した。
上記で得られた「(IV)混酸処理工程」後のナノダイヤモンド粉末又は「(II)混酸処理工程」で得たナノダイヤモンド粉末は約1.3mg秤量して分析を行った。3回測定し、平均値を取った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 窒素量は、第1アニーリング工程とその後の混酸処理工程により24%減少することが明らかになった。
<蛍光分析>
 気相酸化で得られた本発明の蛍光ナノダイヤモンドの10w/v%の水懸濁液をガラス基板上に滴下し、乾燥させて評価サンプルを作製した。得られた評価サンプルを顕微ラマン分光装置(商品名:顕微レーザーラマン分光光度計LabRAM HR Evolution、堀場製作所株式会社製)を用いて高速マッピングを行い、NV輝点を見つけ、個別輝点測定で詳細を分析した。
高速マッピングと個別輝点測定の条件を以下の表2、表3に示し、個別輝点測定で得られた蛍光ナノダイヤモンドの蛍光発光波長スペクトルを図1に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
顕微ラマン分析した結果、本発明で製造された蛍光ナノダイヤモンドについて、NVセンターに由来するZPLが確認できた。

Claims (3)

  1. 以下の工程1~4を含む、その蛍光発光波長スペクトルがNV及び/又はNVのゼロフォノン線(ZPL)を示す蛍光ナノダイヤモンドの製造方法:
    工程1:少なくとも1種の爆薬を密閉容器内で爆発させてナノダイヤモンド原料を得る爆轟工程、
    工程2:前記ナノダイヤモンド原料或いは前記ナノダイヤモンド原料について強酸処理、オゾン処理又は気相酸化によりsp2炭素を除去して得られたナノダイヤモンドを1000℃~1600℃の温度でアニーリングする第1アニーリング工程、
    工程3:第1アニーリング工程の後に、ナノダイヤモンドにイオンビーム又は電子ビームを照射する空孔形成工程、
    工程4:空孔を形成したナノダイヤモンドを600℃~900℃の温度でアニーリングしてNV(Nitrogen-Vacancy)センターを形成する第2アニーリング工程。
  2. 爆轟工程で得られたナノダイヤモンド原料を強酸処理、オゾン処理又は気相酸化によりsp2炭素を除去した後に第1アニーリング工程に供する、請求項1に記載の蛍光ナノダイヤモンドの製造方法。
  3. 下記の工程5をさらに含む、請求項1又は2に記載の蛍光ナノダイヤモンドの製造方法。
    工程5:第2アニーリング工程で得られたナノダイヤモンドを気相酸化、オゾン酸化又は強酸処理するsp2炭素の除去工程。
PCT/JP2021/014154 2021-04-01 2021-04-01 蛍光ナノダイヤモンドの製造方法 WO2022208841A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014154 WO2022208841A1 (ja) 2021-04-01 2021-04-01 蛍光ナノダイヤモンドの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014154 WO2022208841A1 (ja) 2021-04-01 2021-04-01 蛍光ナノダイヤモンドの製造方法

Publications (1)

Publication Number Publication Date
WO2022208841A1 true WO2022208841A1 (ja) 2022-10-06

Family

ID=83457027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014154 WO2022208841A1 (ja) 2021-04-01 2021-04-01 蛍光ナノダイヤモンドの製造方法

Country Status (1)

Country Link
WO (1) WO2022208841A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100181534A1 (en) * 2005-08-30 2010-07-22 Olga Shenderova Enhancement of photoluminescence of nanodiamond particles
JP2010526746A (ja) * 2007-05-10 2010-08-05 アンセルム(アンスチチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル) 発光ダイヤモンドナノ粒子を製造する方法
WO2014058012A1 (ja) * 2012-10-12 2014-04-17 独立行政法人科学技術振興機構 ナノダイヤモンド粒子およびその製造方法ならびに蛍光分子プローブおよびタンパク質の構造解析方法
WO2020195997A1 (ja) * 2019-03-26 2020-10-01 株式会社ダイセル 異原子ドープナノダイヤモンド

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100181534A1 (en) * 2005-08-30 2010-07-22 Olga Shenderova Enhancement of photoluminescence of nanodiamond particles
JP2010526746A (ja) * 2007-05-10 2010-08-05 アンセルム(アンスチチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル) 発光ダイヤモンドナノ粒子を製造する方法
WO2014058012A1 (ja) * 2012-10-12 2014-04-17 独立行政法人科学技術振興機構 ナノダイヤモンド粒子およびその製造方法ならびに蛍光分子プローブおよびタンパク質の構造解析方法
WO2020195997A1 (ja) * 2019-03-26 2020-10-01 株式会社ダイセル 異原子ドープナノダイヤモンド

Similar Documents

Publication Publication Date Title
Butenko et al. Photoemission study of onionlike carbons produced by annealing nanodiamonds
US7338648B2 (en) Method for low temperature synthesis of single wall carbon nanotubes
Kanzawa et al. Size-dependent near-infrared photoluminescence spectra of Si nanocrystals embedded in SiO2 matrices
Vlasov et al. Nitrogen and luminescent nitrogen‐vacancy defects in detonation nanodiamond
Aleksenskii et al. Optical properties of nanodiamond layers
US20140065424A1 (en) Method to produce light-emitting nano-particles of diamond
Chen et al. Eu‐doped Boron Nitride Nanotubes as a Nanometer‐Sized Visible‐Light Source
TWI804596B (zh) 螢光鑽石材料及製造其之方法
Wang et al. Carbon quantum dots derived by direct carbonization of carbonaceous microcrystals in mesophase pitch
US7754179B2 (en) Lower pressure synthesis of diamond material
Kulakova et al. The structure of chemically modified detonation-synthesized nanodiamond particles
Concas et al. Nano-and microcrystalline Lu2O3: Eu phosphors: variations in occupancy of C2 and S6 sites by Eu3+ ions
Lin et al. Aqueous synthesis of Ag+ doped CdS quantum dots and its application in H 2 O 2 sensing
Laube et al. Defined functionality and increased luminescence of nanodiamonds for sensing and diagnostic applications by targeted high temperature reactions and electron beam irradiation
Pudovkin et al. Characterization of Pr‐Doped LaF3 Nanoparticles Synthesized by Different Variations of Coprecipitation Method
WO2022208841A1 (ja) 蛍光ナノダイヤモンドの製造方法
JP7457529B2 (ja) 蛍光ナノダイヤモンドの製造方法
Dasgupta et al. Optimization of parameters by Taguchi method for controlling purity of carbon nanotubes in chemical vapour deposition technique
Bogdanov et al. Size-dependent Raman and SiV-center luminescence in polycrystalline nanodiamonds produced by shock wave synthesis
Krsmanović et al. Structural characterization and luminescence properties of nanostructured lanthanide-doped Sc2O3 prepared by propellant synthesis
CN117487540A (zh) 一种氮铁锰共掺杂碳点的微波辅助合成方法及应用
TW202239705A (zh) 螢光奈米鑽石之製造方法
Boopathi et al. Synthesis of samarium doped gadolinium oxide nanorods, its spectroscopic and physical properties
Reema et al. Magnesium and zinc diffused growth and characterization of strontium L (+) tartrate pentahydrate crystals
Yang et al. Wet synthesis and characterization of MSe (M= Cd, Hg) nanocrystallites at room temperature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935003

Country of ref document: EP

Kind code of ref document: A1