RU2310702C2 - Аэрогелевый композит с волокнистым ватином - Google Patents

Аэрогелевый композит с волокнистым ватином Download PDF

Info

Publication number
RU2310702C2
RU2310702C2 RU2003122514/12A RU2003122514A RU2310702C2 RU 2310702 C2 RU2310702 C2 RU 2310702C2 RU 2003122514/12 A RU2003122514/12 A RU 2003122514/12A RU 2003122514 A RU2003122514 A RU 2003122514A RU 2310702 C2 RU2310702 C2 RU 2310702C2
Authority
RU
Russia
Prior art keywords
composite
airgel
batting
fibers
thermal conductivity
Prior art date
Application number
RU2003122514/12A
Other languages
English (en)
Other versions
RU2003122514A (ru
Inventor
Кристофер Дж. СТЕПАНИАН (US)
Кристофер Дж. СТЕПАНИАН
Джордж ГУЛД (US)
Джордж ГУЛД
Редун БЕГАГ (US)
Редун БЕГАГ
Original Assignee
Эспен Аэроджелз, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22976306&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2310702(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Эспен Аэроджелз, Инк. filed Critical Эспен Аэроджелз, Инк.
Publication of RU2003122514A publication Critical patent/RU2003122514A/ru
Application granted granted Critical
Publication of RU2310702C2 publication Critical patent/RU2310702C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/064Silica aerogel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/413Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing granules other than absorbent substances
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7654Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings
    • E04B1/7658Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres
    • E04B1/7662Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres comprising fiber blankets or batts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/04Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
    • E04B9/045Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like being laminated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/38Meshes, lattices or nets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00258Electromagnetic wave absorbing or shielding materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00413Materials having an inhomogeneous concentration of ingredients or irregular properties in different layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/50Flexible or elastic materials
    • C04B2111/503Elastic materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7687Crumble resistant fibrous blankets or panels using adhesives or meltable fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24008Structurally defined web or sheet [e.g., overall dimension, etc.] including fastener for attaching to external surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249962Void-containing component has a continuous matrix of fibers only [e.g., porous paper, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249962Void-containing component has a continuous matrix of fibers only [e.g., porous paper, etc.]
    • Y10T428/249964Fibers of defined composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249962Void-containing component has a continuous matrix of fibers only [e.g., porous paper, etc.]
    • Y10T428/249964Fibers of defined composition
    • Y10T428/249965Cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2475Coating or impregnation is electrical insulation-providing, -improving, or -increasing, or conductivity-reducing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2631Coating or impregnation provides heat or fire protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric
    • Y10T442/2869Coated or impregnated regenerated cellulose fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric
    • Y10T442/2893Coated or impregnated polyamide fiber fabric
    • Y10T442/2902Aromatic polyamide fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric
    • Y10T442/291Coated or impregnated polyolefin fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric
    • Y10T442/291Coated or impregnated polyolefin fiber fabric
    • Y10T442/2918Polypropylene fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2926Coated or impregnated inorganic fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2926Coated or impregnated inorganic fiber fabric
    • Y10T442/2984Coated or impregnated carbon or carbonaceous fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • Y10T442/622Microfiber is a composite fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • Y10T442/624Microfiber is carbon or carbonaceous

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Acoustics & Sound (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulating Bodies (AREA)
  • Laminated Bodies (AREA)
  • Organic Insulating Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Ceramic Products (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

В изобретении предлагается аэрогелевый композиционный материал, который имеет упрочнение в виде высокого волокнистого ватина, преимущественно в сочетании с индивидуальными короткими случайно ориентированными микроволокнами и/или проводящими слоями. Этот композиционный материал имеет повышенную гибкость и дражируемость, повышенную долговечность, повышенную стойкость к спеканию, повышенную теплопроводность в плоскости x-y, повышенную электропроводность в плоскости x-y, пониженный уровень радиопомех и/или электромагнитных помех; и/или повышенную стойкость к прожогу. 2 н. и 13 з.п. ф-лы, 7 ил.

Description

Настоящее изобретение относится к созданию аэрогелевых композиционных материалов (композитов). Более конкретно, настоящее изобретение относится к созданию таких аэрогелевых композитов, которые имеют улучшенные свойства по сравнению с известными ранее аэрогелевыми композитами, а именно: пониженное спекание аэрогеля; более высокие рабочие температуры; повышенная гибкость и дражируемость; повышенная долговечность; пониженное осыпание частиц аэрогеля; повышенную теплопроводность в плоскости x-y; повышенная электропроводность в плоскости x-y; пониженный уровень радиопомех и/или электромагнитных помех, повышенное подавление инфракрасного (ИК) излучения; и/или повышенная стойкость к прожогу (проплавлению насквозь). Упрочнение (армирование) волокном преимущественно предусматривает использование сочетания высокой (lofty) волокнистой структуры (ватин), индивидуальных случайно ориентированных коротких микроволокон, и проводящих слоев. Более конкретно, оба типа армирования волокном основаны на использовании органических волокон (например, термопластичных полиэфиров) или тугоплавких волокон (например, диоксида кремния).
Изоляционные материалы известны очень давно и используются для решения ряда физических проблем. Хорошо известно использование в качестве изоляторов жестких полимерных пенопластовых и стекловолокнистых теплоизоляционных панелей, применяемых при низкой и высокой температурах в таких областях, как искусственное охлаждение, строительство зданий и системы отопления. Гибкие ватины, в том числе и изготовленные из стекловолокна, используют в таких областях, где требуется гибкость, низкая плотность и способность к расширению для заполнения пустого пространства, например, в строительной конструкции. Уже разработаны аэрогели, а более конкретно, аэрогелевые композиты, которые сочетают в себе прочность двух указанных классов материалов.
Аэрогелями называют класс таких материалов, которые имеют низкую плотность, структуры с открытыми порами, большие площади поверхности (часто 900 м2/г или выше) и субмиллимикронные размеры пор. Сверхкритические и субкритические технологии экстракции жидкости обычно используют для экстракции жидкости из хрупких ячеек материала. Известно множество аэрогелевых композиций, которые могут быть неорганическими или органическими. Неорганические аэрогели основаны обычно на алкоголятах металлов и содержат такие материалы, как диоксид кремния, карбиды и оксид алюминия. Органическими аэрогелями могут быть углеродные аэрогели и полимерные аэрогели, такие как полиимиды.
Аэрогели низкой плотности (0,02-0,2 г/см3) на базе диоксида кремния представляют собой отличные изоляторы, лучшие чем наилучшие жесткие пенопласты и имеющие коэффициент теплопроводности 10 мВт/м·К при температуре ниже 100°F и при атмосферном давлении. Аэрогели выполняют функцию теплоизоляторов прежде всего за счет сведения к минимуму проводимости (за счет низкой плотности и извилистого пути теплопередачи через наноструктуры), конвекции ( очень малые размеры пор снижают конвекцию до минимума) и излучения (подавляющие ИК-излучение легирующие примеси легко могут быть диспергированы по всей матрице аэрогеля). В зависимости от состава, такие аэрогели могут работать при температурах до 550°C и выше. Однако в монолитном состоянии такие аэрогели являются ломкими и хрупкими, поэтому они не нашли широкого применения вне лабораторных условий.
В патенте США N 5306555 (Ramamurthi et al.) раскрыт аэрогелевый матричный композит из массы аэрогеля с волокнами, диспергированными в массе аэрогеля, а также способ приготовления такого аэрогелевого матричного композита. В качестве волокон могут быть использованы длинные или короткие волокна различной толщины, нитевидные кристаллы, минеральная вата, стекловата и даже частицы. Композицией упрочняющего материала может быть оксид, такой как SiO2 и Al2O3 (волокна, нитевидные кристаллы и вата), углерод, металлы, а также различные оксиды (частицы). Предпочтительными волокнами являются стекловата и минеральная вата, причем волокна могут быть распределены случайно или могут быть ориентированы. Они могут также иметь вид отдельных волокон, пучков волокон, матов или листов, тканых и нетканых. Аэрогелевый матричный композит главным образом не имеет трещин и объемной усадки. Эти композиты получают путем пропитки волокнистых заготовок как тканых, так и нетканых, предшественниками геля, с последующей сушкой мокрого геля в сверхкритических условиях. Готовый продукт может быть получен в течение времени около 3-7 часов, однако его основным недостатком является высокий модуль упругости, что придает ему достаточно высокую жесткость. Авторы указанного патента показали, что гибкость изделий может быть улучшена за счет образования трещин в области матрицы аэрогеля. Вторым недостатком предложенного аэрогелевого матричного композита является относительно высокая теплопроводность (от 18 до 21 мВт/м·К при окружающих условиях по сравнению с величиной в диапазоне от 8.6 до 14 мВт/м·К при окружающих условиях для предпочтительных вариантов настоящего изобретения).
В патенте США N 5789075 (Frank et al.) описана, вероятнее всего, такая же структура, что и в указанном выше патенте США N 5306555, после ее извлечения из пресс-формы, за исключением того, что в композите специально создают трещины управляемым образом. Авторы утверждают, что контролируемое образование трещин придает дополнительную гибкость результирующему композиту. Подходящими волокнами в этом случае являются индивидуальные волокна, случайные или упорядоченные, которые преимущественно имеют длину по меньшей мере 1 см. Также могут быть использованы волокна в виде полотна или мата, причем множество полотен или матов может быть наложено друг на друга. В случае слоистой конструкции из матов, полагают, что изменение направления от одного слоя к следующему является благоприятным. Несмотря на то, что в описании и в формуле изобретения данного патента раскрыт способ изготовления, который включает в себя операцию (b) "добавление волокон в золь", в Примерах показана только добавка не содержащего волокон золя в полотно из полиэфирного волокна или из стекловолокна. Отметим, что индивидуальные распределенные по случайному закону волокна в комбинации с волокнистым полотном не используют.
В патенте США N 5972254 (Sander) описаны сверхтонкие, упрочненные предварительно напряженным волокном, аэрогелевые сотовые монолиты катализатора. Эти панели или монолиты аэрогелей, ксерогелей, цеолитов и других, имеющих низкую плотность материалов, упрочнены предварительно напряженными волокнами в двух или трех измерениях. Смесь алкоголятов металлов, воды и катализатора заливают в газопроницаемую форму, которая содержит предварительно напряженные упрочняющие волокна, идущие перпендикулярно друг другу с заданными промежутками, после чего проводят полимеризацию и сверхкритическую сушку.
В патентах США N 5973015 и 6087407 (Coronado, et al.) описаны аэрогелевые композиты, изготовленные с использованием органических предшественников, например формальдегида, которым пропитывают волокна заготовки. Утверждается, что полученный композит имеет хорошую стойкость к механическим воздействиям. Показанные на чертежах упрочняющие волокна идут продольно и представляют собой планарные структуры. Недостатком готового продукта является относительно низкая термостойкость на воздухе при высоких тепловых нагрузках, а также недостаточная для многих применений гибкость.
В патенте США N 6068882 (Ryu et al.) раскрыты аэрогелевые композиционные материалы, которые поставляются на рынок фирмой Aspen Systems, Inc. Аэрогель в продукте скорее представляет собой аэрогелевый порошок, а не аэрогелевый монолит, поэтому изгиб изделия приводит к осыпанию существенного количества частиц порошка. Тепловые параметры этого продукта существенно ниже по сравнению с аэрогелевым монолитом, причем продукт является жестким и легко растрескивается или ломается.
Таким образом, известные ранее аэрогелевые композиционные материалы не подходят для использования в различных областях по одной или нескольким из следующих причин: малая гибкость, низкая прочность, чрезмерное спекание аэрогеля при воздействии теплоты, далекий от идеального коэффициент теплопроводности, недостаточная x-y удельная теплопроводность и/или удельная электропроводность, малое ослабление радиопомех и электромагнитных помех, и/или недостаточная стойкость к прожогу.
Настоящее изобретение возникло в результате исследований, направленных на решение указанных проблем. Задачей настоящего изобретения является создание улучшенной аэрогелевой композитной структуры, которая обладает одним или несколькими следующими качествами: низкое спекание при воздействии высоких температур; повышенная гибкость, исключительно низкий коэффициент теплопроводности, дражируемость или конформируемость; повышенная x-y удельная теплопроводность и/или удельная электропроводность; повышенное ослабление радиопомех и электромагнитных помех; и/или повышенная стойкость к прожогу.
Настоящее изобретение направлено на создание аэрогелевого композита, который обладает следующими одним или несколькими улучшенными параметрами по сравнению с известными ранее аэрогелевыми композитами: гибкость, долговечность, спекание аэрогеля, x-y удельная теплопроводность и/или удельная электропроводность, ослабление радиопомех и электромагнитных помех; и/или стойкость к прожогу.
Более конкретно, настоящее изобретение направлено на создание композита, имеющего две части, а именно упрочняющие волокна и аэрогелевую матрицу, причем используют упрочняющие волокна в виде высокой волокнистой структуры (то есть ватина), преимущественно на основе волокон из термопластичного полиэфира или диоксида кремния, при этом преимущественно используют комбинацию с индивидуальными случайно распределенными короткими волокнами (микроволокнами). Использование упрочнения в виде высокого ватина позволяет снизить до минимума объем не имеющего опоры аэрогеля, при улучшении тепловых характеристик аэрогеля, а не их снижении, как в известных ранее структурах. Более того, в том случае, когда аэрогелевая матрица упрочнена при помощи материала в виде высокого ватина, а в особенности сплошного нетканого ватина, содержащего волокна с очень низким денье, то результирующий композиционный материал по меньшей мере сохраняет тепловые свойства монолитного аэрогеля, оставаясь гибким и дражируемым, что делает такой композит подходящим, например, для изготовления одежды.
При очень высоких тепловых нагрузках, таких как возникающих, например, при прямом поверхностном воздействии пламени газовой/ кислородной горелки, монолитные аэрогели быстро спекаются и в течение секунд дают усадку. Однако в том случае, когда аэрогель упрочнен при помощи комбинации высокого волокнистого ватина и микроволокон, как это предусмотрено в одном из вариантов настоящего изобретения, скорость усадки, спекания и окончательного разрушения изоляционной структуры может быть снижена на один или несколько порядков, при этом время прожога насквозь может быть увеличено с секунд до часов.
Более конкретно, аэрогелевый композит дополнительно включает в себя теплопроводящий слой, который позволяет улучшить тепловые параметры композита. Например, ткань из углеродного волокна или два ортогональных слоя однонаправленного углеродного волокна, которые помещают в центре композита, создают тепловой барьер прорыва при высокой тепловой нагрузке, высокую степень глушения ИК-излучения и слой рассеивания теплоты, который будет рассеивать теплоту наружу в x-y плоскости композита. Более конкретно, толщину теплопроводящего слоя в аэрогелевом композите выбирают таким образом, чтобы он оказывал минимальное воздействие на жесткость композита. Более того, желательно, чтобы этот слой обладал способностью деформирования в холодном состоянии или собственной конформируемостью, так чтобы результирующий аэрогелевый композит был конформируемым. Например, проволочная медная сетка, помещенная в промежуточном слое аэрогелевого композитного изделия, придает конформируемость и деформируемость при изгибе композита. Кроме того, проводящая сетка улучшает подавление радиопомех и электромагнитных помех.
Указанные ранее и другие характеристики изобретения будут более ясны из последующего детального описания, данного в качестве примера, не имеющего ограничительного характера и приведенного со ссылкой на сопроводительные чертежи.
На фиг. 1 показан общий способ изготовления композита в соответствии с настоящим изобретением.
На фиг. 2 показан аэрогелевый композит в соответствии с настоящим изобретением.
На фиг. 3 показано покомпонентное изображение трехслойного ламината, который в соответствии с настоящим изобретением используют в качестве упрочняющего материала.
На фиг. 4 показано покомпонентное изображение альтернативного трехслойного ламината, который в соответствии с настоящим изобретением используют в качестве упрочняющего материала.
На фиг. 5 показан аэрогелевый композит, причем можно видеть, что композит упрочнен на макроуровне при помощи волокнистого ватина, а на микроуровне при помощи индивидуальных волокон.
На фиг. 6 показано покомпонентное изображение альтернативного пятислойного ламината, который может быть использован в соответствии с настоящим изобретением.
На фиг. 7 показан график зависимости коэффициента теплопроводности пяти изготовленных аэрогелевых композитов в соответствии с настоящим изобретением от температуры.
Аэрогели представляют собой класс материалов, образованных за счет удаления подвижной междоузельной фазы растворителя из пор гелевой структуры, поддерживаемой в полимерном материале с открытыми порами при температуре и давлении выше критической точки растворителя. За счет удержания фазы растворителя выше критического давления и критической температуры в ходе всего процесса удаления растворителя, удается избежать воздействия мощных капиллярных сил, порождаемых за счет испарения жидкости из очень малых пор, которые вызывают усадку и разрушение пор. Аэрогели обычно имеют малые объемные плотности (около 0,15 г/см3 или меньше, а преимущественно около 0,03 - 0,3 г/см3), очень большие площади поверхности (обычно ориентировочно от 400 до 1,000 м2/г и выше, а преимущественно ориентировочно от 700 до 1000 м2/г, высокую пористость (около 95% и выше, а преимущественно ориентировочно выше 97%), и относительно большой объем пор (ориентировочно выше 3.8 мл/г, а преимущественно около 3.9 мл/г и выше). Комбинация указанных свойств в аморфной структуре позволяет получить самые низкие значения коэффициента теплопроводности (от 9 до 16 мВт/м·К при температуре 37°C и при давлении 1 атмосфера) для любого связного твердого материала.
Одним из наиболее привлекательных видов использования аэрогеля является пассивная изоляция тел для поддержания постоянной температуры или существенной разности температур между объектом и его окружением, при возможно более низкой стоимости энергии. Отметим, что монолитные аэрогелевые структуры обычно имеют минимальную гибкость до их разрушения (например, модуль изгиба 0.5 МПа при плотности 0.1 г/см3 для аэрогелевого монолита из диоксида кремния).
Аэрогелевый композиционный материал в соответствии с настоящим изобретением содержит две фазы. Первой является имеющая малую плотность аэрогелевая матрица, а второй является упрочняющая фаза. Эта упрочняющая фаза состоит в первую очередь из высокого волокнистого материала, а преимущественно из комбинации высокого ватина и одного или нескольких волокнистых материалов с существенно отличающейся толщиной, длиной и/или коэффициентом формы. Предпочтительную комбинацию двух систем волокнистых материалов получают в том случае, когда короткое, с высоким коэффициентом формы микроволокно (первый волокнистый материал) диспергируют по всей аэрогелевой матрице, которая пронизывает сплошной высокий волокнистый ватин (второй волокнистый материал).
Изобретение может быть проиллюстрировано на фиг. 1-6. На фиг. 1 показан общий способ изготовления в соответствии с настоящим изобретением, в соответствии с которым предшественник геля 11 добавляют к упрочняющему ватину 12, находящемуся в некоторой форме (изложнице) 10. На фиг. 2 показан аэрогелевый композит 20 в соответствии с настоящим изобретением, который содержит неорганический или органический ватин 21 и аэрогелевую матрицу. На фиг. 3 показан предшественник геля, перемешанный с микроволокнистым материалом, который заливают в сплошной высокий волокнистый материал ватина для образования композита, показанного на фиг. 4.
Аэрогелевая матрица в соответствии с настоящим изобретением может быть органической, неорганической или их смесью. Мокрые гели, которые используют для приготовления аэрогеля, могут быть получены при помощи любой хорошо известной специалистам технологии образования геля, в том числе: регулирование pH и/или температуры разбавленного золя оксида металла до точки, в которой происходит гелеобразование (R. K. Iler, Colloid Chemistry of Silica and Silicates, 1954. chapter 6; R. K. Iler, The Chemistry of Silica, 1979, chapter 5, C. J. Brinker и G. W. Scherer, Sol-Gel Science, 1990, chapters 2 и 3). Подходящими материалами для формирования неорганических аэрогелей являются оксиды большинства металлов, которые могут образовывать оксиды, такие как кремний, алюминий, титан, цирконий, гафний, иттрий, ванадий и т.п. Особенно предпочтительными являются гели, образованные в первую очередь из спиртовых растворов гидролизованных силикатных сложных эфиров по причине их широкой распространенности и низкой цены (алкогель).
Специалистам в данной области хорошо известно, что органические аэрогели могут быть приготовлены из полиакрилатов, полистиролов, полиакрилонитрилов, полиуретанов, полиимидов, полифурфурилевого спирта, фенолфурфурилевого спирта, меламиновых формальдегидов, резорциновых формальдегидов, крезольных формальдегидов, фенольных формальдегидов, диальдегида поливинилового спирта, полициануратов, полиакриламидов, различных эпоксидных смол, агара, агарозы и т.п. (смотри, например, статью C. S. Ashley, C. J. Brinker и D. M. Smith, Journal of Non-Crystalline Solids, volume 285, 2001). Однако при использовании в качестве изоляционных изделий при высоких температурах в содержащей кислород атмосфере эти материалы могут сгорать, и поэтому не могут быть рекомендованы для решения задач настоящего изобретения.
Для удобства образование неорганического аэрогеля описано далее на примере алкогеля, однако следует иметь в виду, что этот пример не ограничивает настоящее изобретение каким-либо конкретным типом аэрогеля и/или способом его приготовления, так как настоящее изобретение может найти применение для получения других аэрогелей и способов приготовления.
Обычно основным синтетическим путем образования неорганического аэрогеля является гидролиз и конденсация соответствующего алкоголята металла. Наиболее подходящими являются алкоголяты металлов, которые содержат ориентировочно от 1 до 6 атомов углерода, а преимущественно 1-4 атома углерода в каждой алкильной группе. В качестве конкретных примеров таких соединений можно привести тетраэтоксисилан (TEOS), тетраметоксисилан (TMUS), тетра-n-пропоксисилан, изопропоксид алюминия, втор-бутоксид алюминия, изопропоксид церия, трет-бутоксид гафния, изопропоксид магния и алюминия, изопропоксид иттрия, изопропоксид титана, изопропоксид циркония и т.п. В случае предшественников диоксида кремния, эти материалы могут быть частично гидролизованы и стабилизированы при низких pH как полимеры эфиров поликремниевой кислоты, такие как полидиэтоксисилоксан. Эти материалы имеются в продаже в виде спиртовых растворов (например, Silbond® 40, который содержит 40% диоксида кремния, производитель Silbond Corporation). Предварительно полимеризированные предшественники диоксида кремния являются особенно предпочтительными для создания изделий из аэрогелевого композита в соответствии с настоящим изобретением.
Подходящими материалами, которые могут быть использованы для формирования аэрогелей, предназначенных для работы при низких температурах, являются нежаропрочные алкоголяты металлов на базе металлов, образующих оксиды. Такими металлами преимущественно являются кремний и магний, а также их смеси. Для работы при более высоких температурах подходящими алкоголятами металлов являются главным образом жаропрочные алкоголяты металлов на базе металлов, образующих оксиды, например, такие оксиды как диоксид циркония, оксид иттрия, оксид гафния, оксид алюминия, оксид титана, оксид церия и т.п., а также их смеси, такие как смесь диоксида циркония и оксида иттрия. Могут быть использованы также смеси нетугоплавких металлов с тугоплавкими металлами, например кремния и/или магния с алюминием. Преимуществом использования в матрице материала аэрогелевой структуры нескольких оксидов металлов является усиление глушения ИК-излучения за счет наличия химических функциональных групп, которые поглощают излучение в более широком диапазоне длин волн.
Мелко измельченные легирующие примеси, такие как углеродная сажа, оксид титана, оксиды железа, карбид кремния, силикат молибдена, оксид магния, полидиалкилсилоксаны, в которых алкильные группы содержат от 1 до 4 атомов углерода, и т.п., могут быть добавлены для улучшения тепловых характеристик при более высоких температурах за счет увеличения непроницаемости изделия к ИК-излучению. Подходящие количества таких легирующих примесей обычно лежат в диапазоне ориентировочно от 1 до 20%, в пересчете на массу готового композита, а преимущественно в диапазоне ориентировочно от 2 до 10 % масс.
Основными переменными в процессе формирования неорганического аэрогеля являются тип алкоголята металла, pH раствора и отношение алкоголят металла/спирт/вода. Контроль переменных позволяет управлять ростом и агрегацией элементов матрицы на всем переходе от состояния "золь" до состояния "гель". В то время как свойства результирующих аэрогелей сильно зависят от pH раствора предшественника и молярной концентрации реагентов, в соответствии с настоящим изобретением может быть использовано любое pH и любая молярная концентрация, которые позволяют образование гелей.
Обычно в качестве растворителей используют низшие спирты, то есть спирты с содержанием от 1 до 6, а преимущественно от 2 до 4 атомов углерода, хотя могут быть использованы и другие жидкости, что само по себе известно. Среди примеров других полезных жидкостей можно привести (но без ограничения): этилацетат, этилацетоацетат, ацетон, дихлорметан и т.п.
Альтернативно может быть использован любой из приведенных далее способов изготовления изделий из аэрогелевого композита в соответствии с настоящим изобретением, однако предпочтительными являются такие способы, которые позволяют получать изделия с самой низкой плотностью и/или с наилучшей теплоизоляцией. Например, в соответствии с первым альтернативным вариантом приготовления геля может быть проведено гелеобразование растворимого в воде, базового предшественника оксида металла при помощи подкисления в воде, что позволяет получить гидрогель, причем для этого широко используют силикат натрия. Соли побочных продуктов могут быть удалены из предшественника кремниевой кислоты при помощи ионообмена и/или промывки образующихся позднее гелей водой. Удаление воды из пор геля может быть осуществлено при помощи обмена с полярным органическим растворителем, таким как этанол, метанол или ацетон. Полученный сухой аэрогель имеет структуру, аналогичную той, которая непосредственно образуется при сверхкритической экстракции геля, проведенной в том же самом органическом растворителе. Второй альтернативный способ предусматривает снижение повреждающих капилляры сил давления на границе раздела растворителя и пор, при помощи химической модификации матричных материалов в их состоянии мокрого геля, за счет конверсии поверхностных гидроксильных групп в триметилсилил эфиры (смотри, например, патент США N 5877100), что позволяет производить сушку аэрогелевых материалов при температурах и давлениях ниже критической точки растворителя.
Для аэрогеля диоксида кремния, который содержит низкотемпературную изоляцию, в настоящее время предпочтительными ингредиентами являются тетраэтоксисилан (TEOS), вода и этанол (EtOH). Предпочтительное отношение TEOS к воде составляет около 0.2-0.5:1, предпочтительное отношение TEOS к EtOH составляет около 0.02-0.5:1, а предпочтительные значения pH составляют ориентировочно от 2 до 9. Естественное значение pH раствора ингредиентов составляют около 5. Несмотря на то, что любая кислота может быть использована для снижения pH раствора, в настоящее время предпочтительными кислотами являются HCl, H2SO4 или HF. Для получения более высокого значения pH, предпочтительной щелочью является NH4OH.
В соответствии с настоящим изобретением термин "высокий ватин" применяют к волокнистому материалу, который имеет свойства сыпучего материала и обладает некоторой упругостью (при полном восстановлении объема или без этого). Предпочтительной формой такого материала является мягкое полотно. Использование в качестве упрочняющего материала высокого ватина позволяет снизить до минимума объем не имеющего опоры (не поддерживаемого) аэрогеля, при одновременном исключении снижения тепловых характеристик аэрогеля. Ватином преимущественно называют слои или листы волокнистого материала, которые широко используют для облицовки теплоизоляции трубопроводов, для набивки или упаковки, а также в качестве оболочки тепловой изоляции.
В качестве упрочняющего волокнистого материала в соответствии с настоящим изобретением используют один или несколько слоев высокого волокнистого ватина. Использование упрочняющего материала в виде высокого ватина позволяет снизить до минимума объем не имеющего опоры аэрогеля, при одновременном исключении существенного снижения тепловых характеристик аэрогеля. В то время как обычно "ватин" представляет собой продукт, полученный при кардочесании или разволокнении и образующий мягкое полотно волокон в виде листа. В соответствии с настоящим изобретением "ватином" также называют и полотна не листовой формы, например, изделия Primaloft® фирмы Albany International, при условии, что они являются достаточно открытыми, чтобы быть "высокими". Ватином обычно называют волокнистый материал, который широко используют для теплоизоляции трубопроводов, для набивки или упаковки, а также в качестве оболочки тепловой изоляции. Для изготовления ватина используют относительно тонкие волокна, обычно 15 денье и меньше, а преимущественно 10 денье и меньше. Мягкость полотна ватина объясняется использованием для его изготовления относительно тонких, случайно ориентированных волокон.
Ватин в соответствии с настоящим изобретением называется "высоким", если он содержит достаточно малое число индивидуальных нитей (или волокон) для того, чтобы не снижать существенно тепловые свойства упрочненного композита по сравнению с неупрочненной массой аэрогеля того же материала. Обычно это означает, что при рассмотрении поперечного сечения готового аэрогелевого композита, площадь поперечного сечения волокон составляет менее 10% общей площади поперечного сечения, преимущественно менее 8%, а еще лучше, менее 5%. Высокий ватин преимущественно имеет коэффициент теплопроводности 50 мВт/м·К или меньше, при комнатной температуре и нормальном давлении, что облегчает формирование аэрогелевого композита с низким коэффициентом теплопроводности.
Другим путем определения того, что ватин является достаточно "высоким" для использования в соответствии с настоящим изобретением, является оценка его сжимаемости и упругости. В случае высокого ватина он должен (i) иметь сжимаемость от его натуральной толщины, составляющую по меньшей мере 50%, преимущественно по меньшей мере 65%, а еще лучше, от по меньшей мере 80%, и (ii) быть достаточно упругим, так чтобы после сжатия в течение пяти секунд он расширялся по меньшей мере до 70% исходной толщины, преимущественно по меньшей мере до 75%, а еще лучше, по меньшей мере до 80%. При таком определении высокий ватин может быть сжат для удаления воздуха и затем может вернуться главным образом к исходным размеру и форме. Например, ватин Holofil™ может быть сжат от исходной толщины 1.5" до минимальной толщины около 0.2", и затем может вернуться к исходной толщине сразу после снятия нагрузки. Этот ватин можно считать содержащим 1.3" воздуха и 0.2" волокна. Он может быть сжат на 87% и затем может вернуться главным образом к 100% своей исходной толщины. Отметим, что ватин из стекловолокна, который используют для изоляции зданий, может сжиматься аналогичным образом и возвращаться назад ориентировочно к 80% своей исходной толщины, но относительно медленно.
Ватин в соответствии с настоящим изобретением существенно отличается от волокнистого мата. Волокнистый мат представляет собой "плотно сотканную или сильно спутанную массу," то есть представляет собой плотную и относительно жесткую волокнистую структуру с минимальным открытым пространством между смежными волокнами, если оно вообще есть. В то время как такой мат обычно имеет плотность свыше 25 фунтов на фут (0.41 г/см3), высокий ватин в соответствии с настоящим изобретением имеет намного меньшую плотность, а именно, в диапазоне ориентировочно от 0,1 до 16 фунтов на фут (0,001-0,26 г/см3), а преимущественно ориентировочно от 2,4 до 6,1 фунта на фут (от 0,04 до 0,1 г/см3). Обычно указанные маты имеют сжимаемость ориентировочно менее 20% и малую упругость (если она вообще есть). В аэрогелевом композите, полученном с использованием упрочнения при помощи такого мата, площадь поперечного сечения волокон мата составляет до 30-50% полной площади поперечного сечения.
Отметим, что ватин преимущественно сохраняет по меньшей мере 50% своей толщины после заливки в него образующей гель жидкости.
Для того, чтобы понять необходимость использования открытого волокнистого упрочняющего материала в соответствии с настоящим изобретением, следует иметь в виду, что упрочнение волокнами, которые идут вдоль оси z (то есть в направлении теплового потока), существенно увеличивает коэффициент теплопроводности полученного композита, так как такое упрочнение действует в качестве тепловой трубы. Ватин, который имеет хорошо выровненные (прямые) волокна, в особенности в x-y горизонтальной плоскости, имеет большую жесткость, чем типичный высокий ватин той же самой плотности, с изогнутыми или закрученными волокнами, идущими по всем трем осям. Для того, чтобы снизить до минимума тепловой поток в направлении z (что желательно для большинства изоляционных материалов), ватин должен иметь низкую теплопередачу вдоль оси z (в направлении теплового потока). Подходящий ватин должен иметь достаточно большое количество волокон, ориентированных вдоль оси z, чтобы поддерживать его высоту, но не настолько большое количество волокон, которое существенно снижает изоляционные свойства результирующего композита за счет этих волокон. Волокна вдоль оси z могут быть изготовлены из другого материала (преимущественно имеющего более низкий коэффициент теплопроводности), чем материал волокон по осям x и y. Волокна вдоль оси z могут быть также более извилистыми, так что они создают более извилистый путь для распространения тепла, чем волокна в x-y направлении. Такие же соображения относительно выбора материала волокон и способов их использования могут быть применены к ватину в попытке снизить до минимума теплопроводность по всем осям. Однако в большинстве изоляционных применений тепловой поток распространяется в определенном направлении, поэтому снижение теплопроводности по всем осям не требуется, причем также следует иметь в виду, что такое снижение может приводить к ухудшению гибкости готового композита. Идеальным высоким ватином является ватин с тонкими закрученными волокнами, равномерно распределенными в объеме композита.
Несмотря на то, что композит с использованием высокого ватина является гибким, долговечным, имеет низкий коэффициент теплопроводности и хорошую стойкость к спеканию, свойства аэрогелевого композита могут быть существенно улучшены за счет введения случайно распределенных микроволокон в композит, а преимущественно микроволокон, которые повышают стойкость к спеканию, при одновременном повышении долговечности и снижении образования пыли. Влияние армирования коротким волокном (микроволокном) на свойства композита зависит от ряда переменных, таких как выравнивание волокна, диаметр, длина, коэффициент формы (отношение длины волокна к диаметру волокна), прочность, модуль упругости, деформация разрушения, коэффициент теплового расширения, и прочность границы раздела между волокном и матрицей. Микроволокна вводят в композит за счет их дисперсии в жидкости предшественника геля, после чего этой жидкостью пропитывают высокий войлок.
Подходящие микроволокна в соответствии с настоящим изобретением обычно имеют диаметр от 0.1 до 100 мкм и имеют высокие коэффициенты формы (L/d>5, а преимущественно L/d>100), причем эти микроволокна относительно однородно распределены по всему объему композита. Так как более высокие коэффициенты формы улучшают свойства композита, то желательно использовать возможно более длинные микроволокна. Однако длину волокон вынуждены ограничивать для того, чтобы избежать любой фильтрации (или по меньшей мере снизить ее до минимума), которую имеет выбранный высокий ватин при введении в него предшественника геля, содержащего микроволокна. Микроволокна должны быть достаточно короткими, чтобы свести к минимуму фильтрацию за счет высокого ватина, и достаточно длинными, чтобы оказывать максимальное положительное воздействие на тепловые и механические свойства готового композита. Микроволокна преимущественно имеют коэффициент теплопроводности 200 мВт/м·К и меньше, что облегчает формирование аэрогелевых композитов с низким коэффициентом теплопроводности.
При диспергировании микроволокон в золе они часто быстро осаждаются. Для решения этой проблемы в золь следует добавлять суспендирующий или диспергирующий агент, которые не оказывают отрицательного влияния на образование геля. Среди подходящих суспендирующих/диспергирующих агентов можно указать растворы блоксополимеров с высоким молекулярным весом и с группами сродства пигмента (Disperbyk-184 и 192 фирмы BYK-Chemie), и т.п. Эти вещества должны сохранять эффективность по меньшей мере в течение периода времени между дисперсией микроволокна в предшественник геля и гелеобразованием золя.
Количество, тип и/или размер и коэффициент формы микроволокон, которые используют в специфическом аэрогелевом композите, могут варьировать в зависимости от решаемых специфических задач. Например, в том случае, когда требуется изоляция областей с различными температурами, с использованием сплошного аэрогелевого композита, то этот композит может быть изготовлен таким образом, что большее число микроволокон имеется в зонах композита, которые входят в контакт с областями, имеющими более высокие температуры. Аналогичным образом, отличающиеся микроволокна (например, из другого материала, с иным размером или коэффициентом формы) могут быть включены в указанные области для повышения изоляционных свойств. Такое модифицирование микроволокон может быть осуществлено с использованием различных суспендирующих веществ и/или различных микроволокон, таким образом, чтобы вызвать осаждение микроволокон в композите с различными скоростями и, следовательно, в различных зонах.
Подходящими волокнистыми материалами для формирования как высокого ватина, так и микроволокон, являются любые образующие волокна материалы. В качестве примеров особенно подходящих материалов можно указать следующие: стекловолокно, кварц, полиэфир, полиэтилен, полипропилен, полибензимидазол, полифениленбензо-бис-оксазол, полиэфирэфир кетон, полиарилат, полиакрилат, политетрафторэтилен, полиметафенилен диамин (Nomex), полипарафенилен терефталамид (Kevlar), полиэтилен сверхвысокой молекулярной массы (UHMWPE), например, SpectraTM, новолоидные смолы (Kynol), полиакрилонитрил (ПАН), ПАН/углерод, а также углеродные волокна.
Несмотря на то, что один и тот же волокнистый материал может быть использован как в ватине, так и в микроволокне, может быть использована и комбинация различных материалов. Одной такой комбинацией является высокий ватин из стекловолокна с распределенными по всему его объему углеродными микроволокнами.
Как уже было упомянуто здесь ранее, обнаружено, что комбинация ватина и упрочнения микроволокнами повышает стойкость к спеканию. Такая комбинация может быть реализована за счет введения микроволокон соответствующего материала, например, угольных нитей, в предшественник геля (обычно в сочетании с соответствующим не химически активным диспергирующим веществом), до заливки предшественника геля в волокнистый ватин. На фиг. 5 показано покомпонентное изображение такого аэрогелевого композита, причем композит упрочнен как на макроуровне, при помощи волокнистого ватина 51, так и на микроуровне, при помощи нитей углеродного волокна 52. При диспергировании в матрице диоксида кремния углеродные микроволокна обеспечивают сочетание глушения ИК-излучения и упрочнения на микроуровне, что придает нетугоплавкому оксиду металла, такому как диоксид кремния, существенно улучшенные тепловые и механические свойства при более высоких температурах по сравнению с не упрочненным и не глушеным диоксидом кремния.
В соответствии с другим вариантом осуществления настоящего изобретения высокий упрочняющий волокнистый ватин используют в виде многослойного ламината, как это показано на фиг. 3, 4 и 6. Кроме введения такого материала, как волокнистый ватин, ламинаты могут содержать слои таких материалов, которые позволяют получать специфические характеристики структуры готового композита. Например, введение металлического слоя в x-y плоскости, такого как медная сетка, позволяет улучшить x-y удельную теплопроводность и/или удельную электропроводность, понизить уровень радиопомех и электромагнитных помех, улучшить способность крепления композита к опорной структуре и/или обеспечить дополнительную физическую прочность. Несмотря на то, что для создания металлической сетки может быть использован любой металл, в настоящее время предпочтительными являются медь и нержавеющая сталь. Подходящие сетки могут быть сделаны из проволоки диаметром ориентировочно от 0.001 до 0.1 дюйма, а преимущественно ориентировочно от 0.01 до 0.05 дюйма, с такими промежутками, что образуются ячейки сетки размером 0.3 дюйма.
Когда в дополнительном слое использован материал с высоким (>1 Вт/(м·К)) коэффициентом теплопроводности, такой как углеродное волокно, карбид кремния или металл, то результирующий композит будет обладать существенно улучшенной способностью быстрого рассеивания теплоты по всей x-y плоскости многослойного композита, что дополнительно повышает долговечность композита при воздействии высокой тепловой нагрузки.
На фиг. 3 показан трехслойный ламинат, который содержит первый слой высокого волокнистого ватина 32, тонкую медную сетку 31, и затем второй слой высокого волокнистого ватина 32. На фиг. 4 показан другой трехслойный ламинат, который содержит первый слой высокого волокнистого ватина 42, тканое из углеродных волокон полотно 41, и затем второй слой высокого волокнистого ватина 42. Несмотря на то, что эти ламинаты показаны симметричными, это является предпочтительным, но не обязательным.
Когда металлическую сетку используют в качестве одного или нескольких центральных слоев, то получают аэрогелевый композиционный материал, который является не только дражируемым или гибким, но и конформируемым, то есть сохраняющим свою форму после изгиба.
Другие подходы к введению слоя с высокой проводимостью в композит предусматривают использование металлического листа, некоторые участки которого вырезаны и отогнуты из его плоскости. Эти отогнутые участки служат в качестве элементов крепления между проводящим слоем и остальным композитом. В указанном композите аналогичным образом могут быть использованы полосы металлической фольги.
Проводящий слой позволяет получить ряд вторичных преимуществ. Аэрогелевые композиты, которые содержат металлические проводящие слои, могут быть деформированы для соответствия определенной форме и для удержания этой формы. Показанный на фиг. 3 композит может быть деформирован с получением как простого, так и сложного изгибов. Он в ограниченной степени может возвращаться (пружинить) в исходное состояние, но также может эффективно пластически деформироваться с удержанием формы. Другим преимуществом проводящего слоя является то, что он обычно состоит из структурных волокон - прочных и непрерывных. Такой проводящий слой может служить в качестве материала крепления, через который могут быть пропущены механические крепежные детали. Эти крепежные детали сцеплены с композитом или с самим проводящим слоем.
Механические нагрузки, приложенные к композиту, могут быть переданы через металлический проводящий слой на крепежные элементы, а затем на другие конструкции. Примером такого решения является крепление аэрогелевого композита к шасси транспортного средства, где он служит в качестве теплового барьера. Если упрочнение в достаточной степени намагничено, то крепление к стальной или иной магнитной конструкции может быть произведено без механических крепежных деталей. Теплота, передаваемая проводящим слоем, может быть отведена в окружающую среду и/или направлена в теплоотвод для рассеивания за счет излучения и конвекции, или же может быть использована во вторичных процессах. Например, избыточная теплоты может быть использована непосредственно (например, для нагрева воды и т.п.) или преобразована в электрическую энергию, например, при помощи термоэлектрических элементов. Конструктивное исполнение аэрогелевого композита может быть таким, что горячая сторона полотна имеет проводящий слой вблизи от поверхности, который направляет тепловой поток к холодной стороне полотна только в точках, где установлены термоэлектрические элементы. В качестве примеров волокон с высоким коэффициентом теплопроводности можно привести графит, карбид кремния, медь, нержавеющую сталь, алюминий и т.п.
На фиг. 6 приведено покомпонентное изображение ламината, который содержит первый слой волокнистого ватина 61, первый слой войлока из карбида кремния 62, мелкую медную сетку 63, второй слой войлока из карбида кремния 62 и второй слой волокнистого ватина 61.
После задания требований к получаемому аэрогелю готовят спиртовой раствор соответствующего алкоголята металла. Процедура приготовления растворов для формирования аэрогеля сама по себе хорошо известна (смотри, например, публикации S.J. Teichner et al, Inorganic Oxide Aerogel, Advances in Colloid and Interface Science, Vol. 5, 1976, pp 245-273, и L.D. LeMay, el al., Low-Density Microcellular Materials, MRS Bulletin, Vol. 15, 1990, p 19).
В то время как обычно используют единственный спиртовой раствор соответствующего алкоголята металла, может быть использована также комбинация двух или нескольких спиртовых растворов алкоголятов металлов для приготовления аэрогелей смешанных оксидов. После образования спиртового раствора алкоголята металла добавляют воду для гидролиза, так что гидроксид металла присутствует в состоянии "золь". Реакция гидролиза, при использовании в качестве примера тетраэтоксисилана, идет в соответствии со следующим уравнением:
Si(OC2H5)4 + 4 H2O → Si(OH)4 + 4 (C2H5OH) (1)
Для образования монолита аэрогеля, этот раствор алкоголята металла в состоянии золя затем выдерживают в течение достаточно длительного периода времени (обычно в течение ночи), при этом протекает реакция конденсации (в соответствии с уравнением 2) и образуется предшественник, который после сверхкритической сушки становится аэрогелем.
Si(OH)4 → SiO2+2 H2O (2)
Дополнительные детали и объяснение настоящего изобретения содержатся в следующих конкретных примерах, в которых описано приготовление аэрогелевых композитов в соответствии с настоящим изобретением и результаты проведенных испытаний. Все проценты являются массовыми, если специально не оговорено иное.
ПРИМЕР 1
Секцию (2' x 3' x 1/4") полиэфирной изоляции типа Thinsulate® Lite Loft производства фирмы 3M Company поместили в контейнер. Перемешали 1300 мл имеющегося в продаже предварительно гидролизованного предшественника диоксида кремния (Silbond H-5) с 1700 мл 95% денатурата. Полученный раствор перемешивали в течение 15 мин. Затем раствор желатинизировали путем медленного добавления HF (2% от объема всего раствора) при перемешивании. Полученный раствор выливали на полотно, предварительно помещенное в контейнер. Гелеобразование происходит в течение нескольких минут. Свежий гель полотна выдерживали в течение ночи в герметичной ванне этанола при 50°C. Захваченный гелем спирт удаляли при помощи субкритической и сверхкритической CO2 экстракции в течение четырех дней.
Полученный аэрогелевый композит имеет плотность около 0,1 г/см3. Коэффициент теплопроводности аэрогелевого композита, который определяли при помощи испытания Thin Heater Termal Conductivity Test (ASTM C1114-98), составляет 16.6 мВт/м·K. Чистый аэрогелевый монолит, приготовленный из этих же исходных материалов при аналогичном способе изготовления, имеет коэффициент теплопроводности 17.4 мВт/м·K.
Аэрогелевый композит является очень гибким. Он может быть драпирован вокруг руки человека без макроскопических трещин. Это испытание "драпируемости" эквивалентно изгибу на 180° с радиусом кривизны около 2".
Полученное полотно обладает малой теплопередачей, существенной стойкостью к термической деструкции и спеканию при воздействии на него пропана, комбинации сжиженного нефтяного газа и газообразного метилацетилен-пропадиена, в пламени кислородно-ацетиленовой горелки. Если на полотно воздействует теплота от горелки на одной стороне, то к другой стороне полотна без риска повреждения можно прикасаться голой рукой. Полиэфировый ватин без упрочнения быстро разрушается при воздействии прямого пламени. Полиэфировый ватин, упрочненный при помощи аэрогелевого композита, имеет существенно сниженную скорость термической деструкции (вместо мгновенного прожога пламенем пропановой горелки образца без упрочнения, прожог образца толщиной 1/4" при наличии указанного упрочнения происходит ориентировочно через 40 секунд). До тех пор, пока полиэфир остается в аэрогелевой матрице, композит сохраняет гибкость и имеет малый коэффициент теплопроводности. Прожог будет происходить в том случае, когда пламя подведено слишком близко к аэрогелевому композиту.
ПРИМЕР 2
Описанная в Примере 1 процедура была повторена, за тем исключением, что ватин из полиэфирных волокон был заменен высокой структурой волокон из диоксида кремния (Quartzel от фирмы Saint-Cobain Quartz), которая имеет плотность 65 г/м2, со связующим в виде поливинилового спирта.
Полученный композит ватина из диоксида кремния / аэрогеля из диоксида кремния имеет коэффициент теплопроводности 15.0 мВт/м·К при испытании на защищенной горячей электрической или газовой плитке (ASTM C-177). Гибкость композита меньше, чем в случае полотна аэрогель-полиэфир Примера 1, однако все еще является существенной. Полученный композит является достаточно гибким, но не драпирует в той же степени, как в Примере 1. Плотность аэрогелевого композита составляет 0.113 г/см3. Толщина композита составляет около 3 мм. Этот композит имеет намного меньшую скорость термической деструкции, чем композит в Примере 1.
Спекание аэрогеля снижено до минимального, вероятно, за счет присутствия волокон. Помещали ацетилено-кислородную горелку на расстоянии 5-6" под образцом, так что вершина пламени находилась у основания полотна. После пяти часов воздействия пламени наблюдалось минимальное спекание на нижней поверхности образца. При воздействии пламени в ходе испытания можно прикасаться голой рукой к верхней части образца. Температура верхней части аэрогелевого композита варьирует в диапазоне 150-230°C при изменении расстояния между полотном и источником пламени. Нижняя часть полотна накаляется до оранжево-желтого цвета. Измеренная пирометром температура желтого участка нижней части полотна равна 1100°C.
ПРИМЕР 3
Описанная в Примерах 1 и 2 процедура была повторена, за тем исключением, что упрочненный волокном ватин был заменен пятислойным волокнистым ламинатом со слоями полиэфира/карбида кремния/медной сетки/карбида кремния/полиэфира.
Коэффициент теплопроводности (измеренный в соответствии с ASTM C-177) составляет 12,5 мВт/м·К (в среднем). Композит не является очень гибким. Толщина ламината составляет 10.3 мм. Медная сетка улучшает x-y коэффициент теплопроводности за счет расширения точечных нагрузок на большую площадь. Медная сетка также обеспечивает экранирование электромагнитных помех и радиопомех. Спекание аэрогеля снижено до минимального, вероятно, за счет присутствия упрочняющего полиэфира и волокон карбида кремния.
ПРИМЕР 4
Описанная в Примере 3 процедура была повторена, за тем исключением, что упрочнение выполнено в виде четырехслойного ламината, который содержит слой полиэфирного ватина, слой однонаправленных углеродных волокон с полимерным связующим, легкую медную сетку и слой высокого полиэфирного ватина.
Коэффициент теплопроводности (измеренный в соответствии с ASTM C-177) составляет 14.1 мВт/м·К (в среднем). Композит имеет малую гибкость. Толщина ламината составляет 8.0 мм. Спекание аэрогеля снижено до минимального за счет присутствия упрочняющих волокон.
ПРИМЕР 5
Описанная в Примере 3 процедура была повторена, за тем исключением, что упрочнение выполнено в виде трехслойного ламината, который содержит слой войлока из диоксида кремния, сетку из нержавеющей стали и еще один слой войлока из диоксида кремния. Ламинат имеет размер квадрата со стороной около 6". Был также приготовлен второй аэрогелевый композит, в котором медная сетка была заменена сеткой из нержавеющей стали.
Коэффициент теплопроводности (измеренный в соответствии с ASTM C-177) составляет 12.4 мВт/м·К (в среднем). Композит в некоторой степени является гибким и конформируемым, так как он сохраняет форму, в которую он был изогнут. Толщина ламината составляет 5.3 мм. Спекание аэрогеля снижено до минимального, вероятно, за счет присутствия упрочняющего волокна; испытание проведено при воздействии пламени ацетилено-кислородной горелки, установленной на расстоянии 6" от основания композита и образующей зону воздействия (накаливания до красно-оранжевого цвета) диаметром около 2 дюймов. Температура на краю композита составляет 120°C (термопара была прикреплена к стальной сетке через верхнюю часть), в то время как на расстоянии более 2 дюймов от центра зоны воздействия (но все еще непосредственно над пламенем) температура составляет 60оC в установившемся режиме.
Аэрогелевый композит с заменой медной сетки на сетку из нержавеющей стали показывает такие же результаты.
ПРИМЕР 6
Описанная в Примере 2 процедура была повторена, за тем исключением, что два дополнительных ингредиента были введены в золь диоксида кремния. Первым является углеродное волокно с низким денье (Pyrograf III, Grade PR-11-AG от фирмы Pyrograf Products, Zenia, OH). Вторым ингредиентом является диспергирующее вещество (Disperbyk 184 от фирмы BYK-Chemie). Два грамма углеродного волокна и 6 граммов диспергирующего вещества были введены в 1000 мл химический стакан, содержащий 750 мл этанола. Химический стакан помещали на ледяную баню и проводили обработку ультразвуком при полной мощности установки для обработки ультразвуком Misonix 2020 в течение одного часа для разрушения скопления волокон и образования суспензии, которая является визуально стабильной по меньшей мере в течение часа. При помещении капли такой суспензии на предметное стекло она не позволяет волокнам быстро агломерировать.
Полученный аэрогелевый композит из ватина диоксида кремния, углеродных волокон и диоксида кремния имеет коэффициент теплопроводности 14.8 мВт/м·К (ASTM C-177). Гибкость композита немного меньше, чем гибкость полотна аэрогеля в Примере 2 (полотно #2), но все еще является существенной. Аэрогелевая матрица имеет тенденцию к образованию трещин при приложении нагрузки. Плотность аэрогелевого композита составляет ориентировочно 0.12 г/см3. Толщина композита составляет ориентировочно 3 мм.
Этот композиционный материал имеет гораздо лучшую стойкость к термической деструкции под воздействием открытого пламени, чем полотно аэрогеля в Примере 2.
В качестве источника пламени использовали газовую горелку MAPP. При воздействии пламени на один только кварцевый ватин образуются морщины и в конце концов ватин расплавляется. Аналогичный эффект наблюдается для полотна #2. Если сопло горелки подведено очень близко к полотну #2, то может происходить деструкция/ спекание и прожиг. Аэрогелевый ватин с добавкой короткого углеродного волокна в соответствии с этим Примером имеет деструкцию только на самой нижней поверхности, причем отсутствует прожиг при воздействии пламени горелки MAPP. К верхней части образца в ходе испытания можно прикасаться голой рукой. Основание образца накаляется до оранжевого, желтого и белого цвета, в зависимости от того, как далеко стоит горелка. Спекание аэрогеля является минимальным. Таким образом, комбинация макро- и микроармирования волокном работает лучше, чем просто одно макроармирование волокном.
ПРИМЕР 7
Для оценки воздействия различных упрочняющих систем на свойства аэрогелевых композитов в соответствии с различными вариантами настоящего изобретения были приготовлены различные композиты в соответствии с процедурой Примера 1, имеющие различное упрочнение. Аэрогелевые композиты были приготовлены за счет пропитки структуры высокого упрочнения соответствующим золем, с последующей сверхкритической сушкой. На фиг. 7 показаны зависимости тепловых характеристик от температуры для следующих образцов.
Образец A был приготовлен с использованием высокого полиэфирного ватина с волокном менее 2 денье, причем площадь поперечного сечения волокон составляла менее 15% от полной площади поперечного сечения аэрогелевого композита. После сжатия высокий ватин возвращается к 75% своей исходной толщины.
Образец B был приготовлен с использованием кварцевой стекловаты с волокнами диаметром 9 мкм, причем плотность ватина составляет 0.005 г/см3, а после сжатия высокий ватин возвращается к 75% своей исходной толщины.
Образец C был приготовлен с использованием ватина Образца B, в сочетании с 5% (в пересчете на массу высушенного композита) легирующей примеси в виде углеродной сажи, и с 3% (при таком же пересчете) углеродного микроволокна. В качестве углеродной сажи использовали углеродную сажу фирмы Cabot Vulcan. Углеродные микроволокна имели диаметр от 0.1 до 100 мкм и длину около 1-2 мм. В качестве диспергирующего агента использовали Disperbyk 184.
Образец D был приготовлен с использованием ватина Образца B, в сочетании с 6% (в пересчете на массу высушенного композита) легирующей примеси в виде углеродной сажи, и с 4% (при таком же пересчете) углеродного микроволокна. В качестве углеродной сажи использовали углеродную сажу фирмы Cabot Vulcan. Углеродные микроволокна имели диаметр от 0.1 до 100 мкм и длину около 1-2 мм. В качестве диспергирующего агента использовали Disperbyk 184.
Образец E был приготовлен с использованием ватина Образца B, в сочетании с 6% (в пересчете на массу высушенного композита) легирующей примеси в виде углеродной сажи, с 4% (при таком же пересчете) углеродного микроволокна и с 10% по массе легирующей примеси в виде полидиметилсилоксана. В качестве углеродной сажи использовали углеродную сажу фирмы Cabot Vulcan. Углеродные микроволокна имели диаметр от 0.1 до 100 мкм и длину около 1-2 мм. В качестве диспергирующего агента использовали Disperbyk 184.
Образец E выдержал более 100,000 циклов изгиба, при которых материал складывали вдвое, без потери тепловых характеристик.

Claims (15)

1. Гибкий и легкий композит для изоляции, содержащий аэрогель и упрочняющую структуру, отличающийся тем, что упрочняющая структура выполнена в виде волокнистого ватина, приготовленного из волокон с денье 10 и меньше или из волокон с диаметром от 0,1 до 100 мкм, который может быть сжат по меньшей мере на 65% своей толщины и после сжатия в течение 5 с возвращается в состояние с толщиной, составляющей по меньшей мере 75% своей исходной толщины, имеет плотность в диапазоне от около 0,001-0,26 г/см3.
2. Гибкий и легкий композит для изоляции, содержащий аэрогель и упрочняющую структуру, отличающийся тем, что площадь поперечного сечения упрочняющей структуры в виде волокнистого ватина занимает менее 10% общей площади поперечного сечения изделия.
3. Композит по одному из пп.1 и 2, отличающийся тем, что он дополнительно содержит микроволокна, которые имеют диаметр от 0,1 до 100 мкм и коэффициент формы более 5.
4. Композит по одному из пп.1-3, отличающийся тем, что он дополнительно содержит один или несколько материалов с высокой теплопроводностью, коэффициент теплопроводности которых равен 1 Вт/м·К или более.
5. Композит по одному из пп.1-4, отличающийся тем, что волокнистый ватин состоит из волокон, имеющих коэффициент теплопроводности менее 50 мВт/м·К.
6. Композит по одному из пп.1-5, отличающийся тем, что дополнительно содержит тонко измельченную легирующую примесь в количестве 1-20 мас.% в пересчете на общую массу композита.
7. Композит по одному из пп.1-6, отличающийся тем, что волокна волокнистого ватина имеют диаметр от 0,1 до 100 мкм и представляют собой закрученные волокна, равномерно распределенные по всему объему композита.
8. Композит по одному из пп.1-7, в котором ватин имеет плотность от 0,04 до 0,1 г/см3.
9. Композит по п.3, отличающийся тем, что микроволокна имеют коэффициент теплопроводности ниже 200 мВт/м·К.
10. Композит по одному из пп.3 и 9, отличающийся тем, что микроволокна изготовлены из материала, имеющего более высокую стойкость к спеканию, чем волокнистый ватин.
11. Композит по одному из пп.3 и 9, отличающийся тем, что микроволокна изготовлены из материала, снижающего прохождение инфракрасного излучения через композит в большей степени, чем волокнистый ватин.
12. Композит по одному из пп.4-11, отличающийся тем, что материал с высокой теплопроводностью представляет собой ковкий металл, обеспечивающий конформируемость композита и позволяет композиту сохранять форму после изгиба.
13. Композит по одному из пп.4-12, отличающийся тем, что композит имеет x-y горизонтальную плоскость и z вертикальную плоскость, причем материал с высокой теплопроводностью скорее ориентирован в плоскости x-y композита, чем в вертикальной плоскости z.
14. Композит по одному из пп.4-13, отличающийся тем, что материал с высокой теплопроводностью отводит теплоту от локализованной тепловой нагрузки и рассеивает ее в окружающую среду.
15. Композит по одному из пп.1-14, отличающийся тем, что материалом с высокой теплопроводностью является металл или углеродные волокна.
RU2003122514/12A 2000-12-22 2001-12-21 Аэрогелевый композит с волокнистым ватином RU2310702C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25743700P 2000-12-22 2000-12-22
US60/257,437 2000-12-22

Publications (2)

Publication Number Publication Date
RU2003122514A RU2003122514A (ru) 2004-10-20
RU2310702C2 true RU2310702C2 (ru) 2007-11-20

Family

ID=22976306

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003122514/12A RU2310702C2 (ru) 2000-12-22 2001-12-21 Аэрогелевый композит с волокнистым ватином

Country Status (11)

Country Link
US (3) US7078359B2 (ru)
EP (1) EP1358373A2 (ru)
JP (4) JP2004517222A (ru)
KR (1) KR100909732B1 (ru)
CN (1) CN1306993C (ru)
BR (1) BR0115523A (ru)
CA (1) CA2429771C (ru)
IL (2) IL155922A0 (ru)
MX (1) MXPA03004333A (ru)
RU (1) RU2310702C2 (ru)
WO (1) WO2002052086A2 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468921C2 (ru) * 2009-12-23 2012-12-10 Парок Ой Аб Композитный продукт из минеральных волокон и способ его производства
RU2511717C2 (ru) * 2010-03-30 2014-04-10 ДжейЭкс НИППОН МАЙНИНГ ЭНД МЕТАЛЗ КОРПОРЕЙШН Композит для электромагнитного экранирования
RU2582528C2 (ru) * 2011-01-17 2016-04-27 Констракшн Рисёрч Энд Текнолоджи Гмбх Композитная система теплоизоляции
WO2017009858A1 (en) 2015-07-15 2017-01-19 International Advanced Research Centre For Powder Metallurgy And New Materials (Arci) An improved process for producing silica aerogel thermal insulation product with increased efficiency.
RU2634774C2 (ru) * 2012-08-10 2017-11-03 Эспен Аэроджелз, Инк. Сегментированные гелевые композиты и жесткие панели, изготовленные из них
RU2696638C1 (ru) * 2019-01-17 2019-08-05 Общество с ограниченной ответственностью "Ниагара" Способ получения теплоизоляционного материала на основе аэрогеля
RU2721110C2 (ru) * 2015-02-04 2020-05-15 Флумрок Аг Способ получения аэрогелей и композиционный материал на основе аэрогеля
RU2729992C2 (ru) * 2016-02-05 2020-08-13 ЭсКейСи КО., ЛТД. Аэрогелевый композит и способ его получения
RU2755992C2 (ru) * 2016-05-20 2021-09-23 Роквул Интернэшнл А/С Система и способ для изготовления аэрогелевого композитного материала и аэрогелевый композитный материал

Families Citing this family (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44145E1 (en) 2000-07-07 2013-04-09 A.V. Topchiev Institute Of Petrochemical Synthesis Preparation of hydrophilic pressure sensitive adhesives having optimized adhesive properties
CN1306993C (zh) * 2000-12-22 2007-03-28 思攀气凝胶公司 带有纤维胎的气凝胶复合材料
US20050113510A1 (en) * 2001-05-01 2005-05-26 Feldstein Mikhail M. Method of preparing polymeric adhesive compositions utilizing the mechanism of interaction between the polymer components
US20050215727A1 (en) 2001-05-01 2005-09-29 Corium Water-absorbent adhesive compositions and associated methods of manufacture and use
US8541021B2 (en) 2001-05-01 2013-09-24 A.V. Topchiev Institute Of Petrochemical Synthesis Hydrogel compositions demonstrating phase separation on contact with aqueous media
US8206738B2 (en) 2001-05-01 2012-06-26 Corium International, Inc. Hydrogel compositions with an erodible backing member
CA2445086C (en) 2001-05-01 2008-04-08 A.V. Topchiev Institute Of Petrochemical Synthesis Hydrogel compositions
US8840918B2 (en) 2001-05-01 2014-09-23 A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences Hydrogel compositions for tooth whitening
DK1523512T3 (da) 2002-07-22 2020-03-30 Aspen Aerogels Inc Polyimide-aerogeler, carbon-aerogeler, og metalcar-bidaerogeler og fremgangsmåder til fremstilling af samme
US20040018336A1 (en) * 2002-07-29 2004-01-29 Brian Farnworth Thermally insulating products for footwear and other apparel
DK1620669T3 (da) 2003-05-06 2009-03-23 Aspen Aerogels Inc Bærende, let og kompakt isoleringssystem
WO2004110742A1 (en) * 2003-06-09 2004-12-23 3M Innovative Properties Company Casing-free insulation blanket
SI2813338T1 (sl) * 2003-06-24 2016-12-30 Aspen Aerogels Inc. Metodi za pridobivanje pol gela
US7410718B2 (en) * 2003-09-30 2008-08-12 Lawrence Livermore National Security, Llc Aerogel and xerogel composites for use as carbon anodes
US7118801B2 (en) 2003-11-10 2006-10-10 Gore Enterprise Holdings, Inc. Aerogel/PTFE composite insulating material
US7575789B2 (en) 2003-12-17 2009-08-18 E.I. Du Pont De Nemours And Company Coated pipes for conveying oil
US20060035054A1 (en) * 2004-01-05 2006-02-16 Aspen Aerogels, Inc. High performance vacuum-sealed insulations
BRPI0506437A (pt) * 2004-01-06 2006-12-26 Aspen Aerogels Inc aerogéis de ormosil contendo polìmeros lineares ligados a silìcio
BRPI0506438A (pt) * 2004-01-06 2006-12-26 Aspen Aerogels Inc aerogéis de ormosil contendo polimetacrilato ligado por silìcio
RU2380092C2 (ru) 2004-01-30 2010-01-27 Кориум Интернэшнл, Инк. Быстро растворяющаяся пленка для доставки активного агента
US8467875B2 (en) 2004-02-12 2013-06-18 Medtronic, Inc. Stimulation of dorsal genital nerves to treat urologic dysfunctions
US20050270746A1 (en) * 2004-06-04 2005-12-08 Reis Bradley E Insulating structure having combined insulating and heat spreading capabilities
FR2871180B1 (fr) * 2004-06-08 2008-02-15 Cellutec Sa Element d'isolation acoustique
US8195304B2 (en) 2004-06-10 2012-06-05 Medtronic Urinary Solutions, Inc. Implantable systems and methods for acquisition and processing of electrical signals
US7761167B2 (en) 2004-06-10 2010-07-20 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
US9308382B2 (en) 2004-06-10 2016-04-12 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US9205255B2 (en) 2004-06-10 2015-12-08 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US8165692B2 (en) 2004-06-10 2012-04-24 Medtronic Urinary Solutions, Inc. Implantable pulse generator power management
US7239918B2 (en) 2004-06-10 2007-07-03 Ndi Medical Inc. Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
WO2006009921A2 (en) * 2004-06-19 2006-01-26 Polarwrap, Llc Insulating liner for an article of clothing
US20060254088A1 (en) * 2004-06-19 2006-11-16 Mccormick Bruce Thermal liner for an article of clothing
ES2392644T3 (es) * 2004-06-29 2012-12-12 Aspen Aerogels Inc. Cerramientos para edificios energéticamente eficientes y provistos de aislamiento
US7560062B2 (en) * 2004-07-12 2009-07-14 Aspen Aerogels, Inc. High strength, nanoporous bodies reinforced with fibrous materials
WO2006024010A2 (en) * 2004-08-24 2006-03-02 Aspen Aerogels, Inc. Aerogel-based vehicle thermalmanagement systems and methods
JP2008511537A (ja) * 2004-09-01 2008-04-17 アスペン エアロジェルス,インク. 真空封入された高性能断熱材
US20060263587A1 (en) * 2004-11-24 2006-11-23 Ou Duan L High strength aerogel panels
US7588058B2 (en) * 2004-11-24 2009-09-15 E. I. Du Pont De Nemours And Company Coated pipes for harsh environments
US7691911B2 (en) * 2004-11-26 2010-04-06 Aspen Aerogels, Inc. Polyolefin-based aerogels
KR100565940B1 (ko) * 2004-12-02 2006-03-30 한국과학기술연구원 바나디아-티타니아 에어로젤 촉매, 그 제조 방법 및 상기촉매를 이용한 염소계 방향족 화합물의 산화분해방법
US7635411B2 (en) * 2004-12-15 2009-12-22 Cabot Corporation Aerogel containing blanket
WO2006074449A2 (en) * 2005-01-07 2006-07-13 Aspen Aerogels, Inc. A thermal management system for high temperature events
WO2006074463A2 (en) * 2005-01-10 2006-07-13 Aspen Aerogels, Inc. Flexible, compression resistant and highly insulating systems
WO2006107420A2 (en) * 2005-02-23 2006-10-12 Aspen Aerogels, Inc. Composites based on macro and nanoporous materials
WO2006091812A2 (en) * 2005-02-25 2006-08-31 Aspen Aerogels, Inc. Insulated roofing systems
US20060223965A1 (en) * 2005-03-31 2006-10-05 Aspen Aerogels Inc. High strength organic-inorganic hybrid gel materials
US8461223B2 (en) * 2005-04-07 2013-06-11 Aspen Aerogels, Inc. Microporous polycyclopentadiene-based aerogels
US9469739B2 (en) 2005-04-07 2016-10-18 Aspen Aerogels, Inc. Microporous polyolefin-based aerogels
US20060264133A1 (en) * 2005-04-15 2006-11-23 Aspen Aerogels,Inc. Coated Aerogel Composites
US20060269734A1 (en) * 2005-04-15 2006-11-30 Aspen Aerogels Inc. Coated Insulation Articles and Their Manufacture
US9476123B2 (en) * 2005-05-31 2016-10-25 Aspen Aerogels, Inc. Solvent management methods for gel production
US20060270248A1 (en) * 2005-05-31 2006-11-30 Gould George L Solvent Management Methods for Gel Production
WO2007011750A2 (en) * 2005-07-15 2007-01-25 Aspen Aerogels, Inc. Secured aerogel composites and method of manufacture thereof
WO2007044341A2 (en) * 2005-10-04 2007-04-19 Aspen Aerogels, Inc. Cryogenic insulation systems with nanoporous components
US8222302B2 (en) * 2005-11-29 2012-07-17 The Hong Kong University Of Science And Technology Titania-silica aerogel monolith with ordered mesoporosity and preparation thereof
US7691474B2 (en) * 2006-03-18 2010-04-06 Aspen Aerogels, Inc. Mitigation of hydrogen cyanide in aerogels
US7943225B2 (en) * 2006-03-27 2011-05-17 Polar Wrap, Llc Vented insulating liner method and apparatus
US20070264485A1 (en) * 2006-05-15 2007-11-15 Aspen-Aerogels, Inc. Aerogel-based enclosure systems
US9480846B2 (en) 2006-05-17 2016-11-01 Medtronic Urinary Solutions, Inc. Systems and methods for patient control of stimulation systems
US9181486B2 (en) 2006-05-25 2015-11-10 Aspen Aerogels, Inc. Aerogel compositions with enhanced performance
WO2007146945A2 (en) * 2006-06-12 2007-12-21 Aspen Aerogels, Inc. Aerogel-foam composites
US8828540B2 (en) 2006-06-16 2014-09-09 United Technologies Corporation Silicon carbide ceramic containing materials, their methods of manufacture and articles comprising the same
US7997541B2 (en) * 2006-08-18 2011-08-16 Kellogg Brown & Root Llc Systems and methods for supporting a pipe
US8505857B2 (en) 2006-08-18 2013-08-13 Kellogg Brown & Root Llc Systems and methods for supporting a pipe
US8453393B2 (en) * 2006-08-25 2013-06-04 Raytheon Company Encapsulated and vented particulate thermal insulation
KR101105436B1 (ko) * 2006-10-25 2012-01-17 한국생산기술연구원 에어로겔 시트 및 그 제조방법
WO2008055208A1 (en) * 2006-11-01 2008-05-08 New Jersey Institute Of Technology Aerogel-based filtration of gas phase systems
DE102006052512A1 (de) * 2006-11-06 2008-05-08 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung von opakem Quarzglas, nach dem Verfahren erhaltenes Halbzeug sowie daraus hergestelltes Bauteil
US9086235B2 (en) * 2006-11-30 2015-07-21 Praxair Technology, Inc. Insulation arrangement
DE502006006732D1 (de) * 2006-12-22 2010-05-27 Pavatex S A ktromagnetischer Strahlung
US8820028B2 (en) * 2007-03-30 2014-09-02 Certainteed Corporation Attic and wall insulation with desiccant
JP5077659B2 (ja) 2007-07-20 2012-11-21 ニチアス株式会社 触媒コンバーター及び触媒コンバーター用保持材
US8734931B2 (en) 2007-07-23 2014-05-27 3M Innovative Properties Company Aerogel composites
US8590437B2 (en) * 2008-02-05 2013-11-26 Guy Leath Gettle Blast effect mitigating assembly using aerogels
US8402716B2 (en) * 2008-05-21 2013-03-26 Serious Energy, Inc. Encapsulated composit fibrous aerogel spacer assembly
US7954283B1 (en) * 2008-05-21 2011-06-07 Serious Materials, Inc. Fibrous aerogel spacer assembly
EP2123426A1 (en) 2008-05-23 2009-11-25 Rockwool International A/S Pipe section and methods for its production
US9518163B2 (en) * 2008-05-26 2016-12-13 Semmes, Inc. Reinforced polymer foams, articles and coatings prepared therefrom and methods of making the same
DE102008040367A1 (de) 2008-07-11 2010-02-25 Evonik Degussa Gmbh Bauteil zur Herstellung von Vakuumisolationssystemen
DE102008046444A1 (de) 2008-09-09 2010-03-11 Evonik Röhm Gmbh Fassadenplatte, System und Verfahren zur Energiegewinnung
EP2180104A1 (en) 2008-10-21 2010-04-28 Rockwool International A/S Facade insulation system
EP2180113A1 (en) 2008-10-21 2010-04-28 Rockwool International A/S System for a building envelope with improved insulation properties and cassette for use in the building envelope
EP2180107A1 (en) 2008-10-21 2010-04-28 Rockwool International A/S Building wall with improved insulation properties and fixing assembly for use in the building wall
EP2180114A1 (en) 2008-10-21 2010-04-28 Rockwool International A/S System for a building envelope with improved insulation properties and cassette for use in the building
US8069587B2 (en) 2008-11-20 2011-12-06 3M Innovative Properties Company Molded insulated shoe footbed and method of making an insulated footbed
US20100139193A1 (en) * 2008-12-09 2010-06-10 Goldberg Michael J Nonmetallic ultra-low permeability butyl tape for use as the final seal in insulated glass units
US8592496B2 (en) * 2008-12-18 2013-11-26 3M Innovative Properties Company Telechelic hybrid aerogels
US8784879B2 (en) 2009-01-14 2014-07-22 Corium International, Inc. Transdermal administration of tamsulosin
US20110024698A1 (en) 2009-04-24 2011-02-03 Worsley Marcus A Mechanically Stiff, Electrically Conductive Composites of Polymers and Carbon Nanotubes
US20100190639A1 (en) 2009-01-28 2010-07-29 Worsley Marcus A High surface area, electrically conductive nanocarbon-supported metal oxide
US8685287B2 (en) 2009-01-27 2014-04-01 Lawrence Livermore National Security, Llc Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels
DE102009018688B4 (de) 2009-04-23 2017-03-02 Knauf Insulation Mineralwolleprodukt
BRPI1016122A2 (pt) 2009-04-27 2016-04-19 Cabot Corp composições de aerogel e métodos para preparar e usar os mesmos
EP2281961A1 (en) * 2009-06-25 2011-02-09 Knauf Insulation Technology GmbH Aerogel containing composite materials
WO2011020671A1 (de) 2009-08-20 2011-02-24 Evonik Röhm Gmbh Dämmplatte aus kunststoff, system und verfahren zur wärmedämmung
NL2005244A (en) * 2009-09-22 2011-03-23 Asml Netherlands Bv Support or table for lithographic apparatus, method of manufacturing such support or table and lithographic apparatus comprising such support or table.
DE102009046257A1 (de) * 2009-10-30 2011-05-12 Carcoustics Techconsult Gmbh Plattenförmige Isolationslage für eine Wand, Verfahren zu deren Herstellung sowie plattenförmiges Wandelement
CN101698583B (zh) * 2009-11-13 2012-08-22 航天特种材料及工艺技术研究所 一种多组元气凝胶复合材料及其制备方法
DE102009053784A1 (de) * 2009-11-19 2011-05-26 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zur Herstellung eines porösen SiO2-Xerogels mit charakteristischer Porengröße durch ein Bottom-Up-Verfahren über eine Vorstufe mit organischen Festkörperskelettstützen
FI122693B (fi) 2009-12-23 2012-05-31 Paroc Oy Ab Menetelmä mineraalivilla-komposiittimateriaalin valmistamiseksi, menetelmällä valmistettu tuote ja sen käyttö eristysmateriaalina
US8629076B2 (en) 2010-01-27 2014-01-14 Lawrence Livermore National Security, Llc High surface area silicon carbide-coated carbon aerogel
US8507071B1 (en) 2010-02-11 2013-08-13 Zeroloft Corporation Sheet insulator with improved resistance to heat transfer by conduction, convection and radiation
EP2572376A1 (en) * 2010-05-21 2013-03-27 Nokia Siemens Networks OY Method and device for thermally coupling a heat sink to a component
CN103108824B (zh) * 2010-08-13 2015-11-25 奥的斯电梯公司 具有保护性覆层的承重构件及其方法
US8952119B2 (en) 2010-11-18 2015-02-10 Aspen Aerogels, Inc. Organically modified hybrid aerogels
US8906973B2 (en) * 2010-11-30 2014-12-09 Aspen Aerogels, Inc. Modified hybrid silica aerogels
KR20120076997A (ko) 2010-12-30 2012-07-10 한국에너지기술연구원 섬유 형태의 고분자/에어로겔을 포함하는 시트 및 그 제조방법
EP2481859A1 (en) 2011-01-17 2012-08-01 Aspen Aerogels Inc. Composite aerogel thermal insulation system
CN103403273B (zh) * 2011-01-31 2016-05-25 罗克伍尔国际公司 用于覆盖建筑物的立面的隔离系统
US9133280B2 (en) * 2011-06-30 2015-09-15 Aspen Aerogels, Inc. Sulfur-containing organic-inorganic hybrid gel compositions and aerogels
US9218989B2 (en) 2011-09-23 2015-12-22 Raytheon Company Aerogel dielectric layer
FR2981341B1 (fr) 2011-10-14 2018-02-16 Enersens Procede de fabrication de xerogels
US20130196137A1 (en) * 2012-01-27 2013-08-01 Aspen Aerogels, Inc. Composite Aerogel Thermal Insulation System
WO2013116733A1 (en) * 2012-02-03 2013-08-08 The Massachusetts Institute Of Technology Aerogels and methods of making same
SI24001A (sl) 2012-02-10 2013-08-30 Aerogel Card D.O.O. Kriogena naprava za transport in skladiščenje utekočinjenih plinov
ITPD20120039A1 (it) * 2012-02-17 2013-08-18 Everlux S R L Pannello coibentante per l'edilizia e procedimento per la sua realizzazione
FI126355B (en) 2012-03-27 2016-10-31 Paroc Group Oy Composite insulating product consisting of mineral wool and material with excellent insulating properties
US9115498B2 (en) 2012-03-30 2015-08-25 Certainteed Corporation Roofing composite including dessicant and method of thermal energy management of a roof by reversible sorption and desorption of moisture
US11052375B2 (en) 2012-04-26 2021-07-06 Lawrence Livermore National Security, Llc Adsorption cooling system using carbon aerogel
US10994258B2 (en) * 2012-04-26 2021-05-04 Lawrence Livermore National Security, Llc Adsorption cooling system using metal organic frameworks
US9302247B2 (en) 2012-04-28 2016-04-05 Aspen Aerogels, Inc. Aerogel sorbents
RU2488244C1 (ru) * 2012-06-05 2013-07-20 Федеральное государственное унитарное предприятие "Московское опытно-конструкторское бюро "Марс" (ФГУП МОКБ "Марс") Способ повышения теплоотдачи и радиационной защиты электронных блоков
EP2864535B1 (en) * 2012-06-26 2018-11-14 Cabot Corporation Flexible insulating structures and methods of making and using same
CN102807358B (zh) * 2012-07-13 2014-03-12 中国科学院研究生院 一种柔性气凝胶块体及其制备方法
US20140087102A1 (en) * 2012-09-21 2014-03-27 Air Liquide Large Industries U.S. Lp Air separation column low-density solid-state insulation patent
US9638473B2 (en) 2012-12-04 2017-05-02 Carlsberg Breweries A/S Beverage dispensing assembly comprising beverage distribution python and a method of producing the beverage distribution python
WO2014197028A2 (en) 2013-03-08 2014-12-11 Aspen Aerogels, Inc. Aerogel insulation panels and manufacturing thereof
US20140287641A1 (en) * 2013-03-15 2014-09-25 Aerogel Technologies, Llc Layered aerogel composites, related aerogel materials, and methods of manufacture
US9493941B2 (en) * 2013-05-02 2016-11-15 Donald George White Thermal break wall systems and thermal adjustable clip
JP6134916B2 (ja) * 2013-06-10 2017-05-31 パナソニックIpマネジメント株式会社 シートヒータ
FR3007025B1 (fr) 2013-06-14 2015-06-19 Enersens Materiaux composites isolants comprenant un aerogel inorganique et une mousse de melamine
US10343131B1 (en) 2013-08-16 2019-07-09 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration High temperature, hydrophobic, flexible aerogel composite and method of making same
US10590000B1 (en) 2013-08-16 2020-03-17 United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration High temperature, flexible aerogel composite and method of making same
US9878405B2 (en) * 2013-08-27 2018-01-30 Hyundai Motor Company Heat protector and manufacturing and mounting methods
WO2015034515A1 (en) * 2013-09-06 2015-03-12 The Massachusetts Institute Of Technology In-situ aerogels and methods of making same
JP6361022B2 (ja) * 2013-09-17 2018-07-25 パナソニックIpマネジメント株式会社 複合シート
EP3065863B1 (en) * 2013-11-04 2017-10-25 Aspen Aerogels Inc. Benzimidazole based aerogel materials
US9434831B2 (en) 2013-11-04 2016-09-06 Aspen Aerogels, Inc. Benzimidazole based aerogel materials
DE202013010599U1 (de) 2013-11-27 2015-03-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Sandwichstruktur mit einem Aerogel enthaltenden Kernwerkstoff
EP3083794A1 (en) 2013-12-19 2016-10-26 W. L. Gore & Associates, Inc. Thermally insulative expanded polytetrafluoroethylene articles
CN103790248B (zh) * 2014-01-27 2016-08-17 钟春燕 一种建筑用保温耐热板的制备方法
WO2015188117A1 (en) * 2014-06-06 2015-12-10 President And Fellows Of Harvard College Stretchable conductive composites for use in soft devices
US11380953B2 (en) 2014-06-23 2022-07-05 Aspen Aerogels, Inc. Thin aerogel materials
FR3025205B1 (fr) * 2014-08-28 2016-09-09 Univ De Lorraine Materiau isolant thermique a base d'aerogel
JP5863917B1 (ja) 2014-09-22 2016-02-17 ニチアス株式会社 耐火構造及びその使用方法
SG11201702138XA (en) * 2014-10-03 2017-04-27 Aspen Aerogels Inc Improved hydrophobic aerogel materials
DE202014104869U1 (de) 2014-10-13 2016-01-15 Frenzelit Werke Gmbh Thermisches Mehrschichtisolationsformteil sowie Heißgas führendes Bauteil
JP6393902B2 (ja) * 2014-12-15 2018-09-26 パナソニックIpマネジメント株式会社 複合材料と電子機器
FR3030354B1 (fr) * 2014-12-17 2019-06-07 Saint-Gobain Isover Produits d'isolation thermique hautes performances
US9593797B2 (en) 2015-01-30 2017-03-14 Johns Manville Hybrid high temperature insulation
KR101789371B1 (ko) 2015-02-13 2017-10-23 주식회사 엘지화학 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
FR3033732B1 (fr) * 2015-03-17 2017-04-14 Enersens Materiaux composites multicouches
DE102015107233A1 (de) * 2015-05-08 2016-11-10 Elringklinger Ag Aerogel und Verfahren zum Herstellen des Aeorgels
CA2993468A1 (en) 2015-07-27 2017-02-02 Basf Se Foam as adhesive for composites for thermal insulation
FR3039539B1 (fr) * 2015-07-30 2020-10-09 Enersens Aerogel monolithique renforce par des fibres dispersees
JP6771195B2 (ja) * 2015-08-07 2020-10-21 パナソニックIpマネジメント株式会社 断熱材およびそれを使用した機器と断熱材の製造方法
US9777472B2 (en) * 2015-10-28 2017-10-03 Awi Licensing Llc Scrim attachment system
WO2017075554A1 (en) 2015-10-29 2017-05-04 Golfetto Michael Methods freeze drying and composite materials
KR101931569B1 (ko) 2015-11-03 2018-12-21 주식회사 엘지화학 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
CA2951367C (en) * 2015-11-24 2019-12-31 Weiping Yu Structure for blocking heat transfer through thermal bridge of curtain wall building
KR102147030B1 (ko) 2016-01-27 2020-08-21 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 절연 구조물
KR101962207B1 (ko) * 2016-02-17 2019-03-27 주식회사 엘지화학 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치
WO2017142245A1 (ko) * 2016-02-17 2017-08-24 주식회사 엘지화학 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치
JP6634595B2 (ja) * 2016-02-18 2020-01-22 パナソニックIpマネジメント株式会社 断熱材及びその製造方法
KR101962206B1 (ko) 2016-02-19 2019-03-27 주식회사 엘지화학 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치
WO2017142244A1 (ko) * 2016-02-19 2017-08-24 주식회사 엘지화학 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치
KR20170104914A (ko) * 2016-03-08 2017-09-18 주식회사 엘지화학 에어로겔 블랑켓의 제조방법 및 이로부터 제조된 에어로겔 블랑켓
KR20170110993A (ko) 2016-03-24 2017-10-12 주식회사 엘지화학 실리카 에어로겔 제조시스템
US11431100B2 (en) * 2016-03-25 2022-08-30 Commscope Technologies Llc Antennas having lenses formed of lightweight dielectric materials and related dielectric materials
CN113140915A (zh) 2016-03-25 2021-07-20 康普技术有限责任公司 具有由轻质介电材料形成的透镜和相关介电材料的天线
CN107265913B (zh) * 2016-04-08 2020-02-18 南京唯才新能源科技有限公司 一种气凝胶复合材料及其制备方法
EP3260290A1 (en) * 2016-06-23 2017-12-27 Microtherm N.v. Thermally insulating cloths
JP6934593B2 (ja) * 2016-07-22 2021-09-15 パナソニックIpマネジメント株式会社 断熱材とその製造方法
US11279622B2 (en) 2016-09-12 2022-03-22 Lg Chem, Ltd. Method for producing silica aerogel and silica aerogel produced thereby
WO2018078512A1 (en) 2016-10-24 2018-05-03 Blueshift International Materials, Inc. Fiber-reinforced organic polymer aerogel
WO2018140804A1 (en) 2017-01-26 2018-08-02 Blueshift International Materials, Inc. Organic polymer aerogels comprising microstructures
JP6960590B2 (ja) * 2017-02-28 2021-11-05 パナソニックIpマネジメント株式会社 複合材料およびその製造方法
WO2018183225A1 (en) 2017-03-29 2018-10-04 W.L. Gore & Associates, Inc. Thermally insulative expanded polytetrafluoroethylene articles
CN109642697A (zh) * 2017-05-15 2019-04-16 松下知识产权经营株式会社 绝热材料和使用其的绝热结构体
CN109458519B (zh) * 2017-09-06 2021-11-30 松下电器产业株式会社 绝热材料
CN111095674B (zh) 2017-09-15 2022-02-18 康普技术有限责任公司 制备复合介电材料的方法
CN108058408B (zh) * 2017-12-14 2020-07-07 苏州科达科技股份有限公司 一种磁力底座及该磁力底座的装配方法
CN116532055A (zh) 2018-05-31 2023-08-04 斯攀气凝胶公司 火类增强的气凝胶组成物
US20210395479A1 (en) * 2018-09-25 2021-12-23 Aerogel Technologies, Llc High-temperature polymer aerogel composites
RU187338U1 (ru) * 2018-10-15 2019-03-01 Екатерина Михайловна Огренич Панель строительная теплоизоляционная
CN113767486A (zh) 2019-02-27 2021-12-07 思攀气凝胶公司 碳气凝胶基电极材料及其制造方法
BR112021018814A2 (pt) 2019-03-22 2021-11-30 Aspen Aerogels Inc Catodos baseados em aerogel de carbono para baterias de lítio enxofre
CN114502625A (zh) * 2019-10-11 2022-05-13 气凝胶科技有限责任公司 聚合物-气凝胶/纤维复合材料和聚合物-气凝胶/织物复合材料以及相关系统和方法
JP2023504374A (ja) 2019-11-22 2023-02-03 ビーエーエスエフ エスイー 建物の断熱のための少なくとも1つのエアロゲル複合材料を含む断熱板
CA3160225A1 (en) * 2019-12-02 2021-06-10 Owen Evans Aerogel-based components and systems for electric vehicle thermal management
CA3160322A1 (en) * 2019-12-02 2021-06-10 Aspen Aerogels Inc. Components and systems to manage thermal runaway issues in electric vehicle batteries
JP2023509115A (ja) * 2020-01-07 2023-03-07 アスペン アエロジェルズ,インコーポレイテッド 電池熱管理のための組成物およびシステム
CN111151124A (zh) * 2020-01-08 2020-05-15 山东鲁阳浩特高技术纤维有限公司 一种具有催化导电功能的纳米板及其制备方法和应用
US11050144B1 (en) * 2020-05-08 2021-06-29 W. L. Gore & Associates, Inc. Assembly with at least one antenna and a thermal insulation component
CH717558A1 (de) * 2020-06-22 2021-12-30 Rockwool Int Aerogel-Verbundwerkstoffen, sowie Wärmedämmelement.
DE102020118734A1 (de) 2020-07-15 2022-01-20 Outlast Technologies Gmbh Aerogel-haltige Isolationsschicht
CN111992149A (zh) * 2020-08-12 2020-11-27 中山大学 一种多孔载体支撑金属气凝胶复合材料的制备方法
WO2022084394A1 (en) * 2020-10-22 2022-04-28 Basf Se Composite article
WO2022144736A1 (en) * 2020-12-30 2022-07-07 Aspen Aerogels, Inc. Fibrous carbon aerogels coated with nano-thin silicon as lithium battery anodes
CN112813584A (zh) * 2020-12-31 2021-05-18 中国科学院苏州纳米技术与纳米仿生研究所 一种气凝胶纤维填充材料及其制备方法与应用
EP4265407A1 (en) 2022-04-20 2023-10-25 Basf Se Thermal insulation composite
CN115304350B (zh) * 2022-08-29 2023-09-19 湖北硅金凝节能减排科技有限公司 疏水型二氧化硅气凝胶毡的制备方法
CN115920790B (zh) * 2023-01-06 2023-06-02 南昌航空大学 一种多功能氮掺杂碳气凝胶的制备方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988560A (en) * 1987-12-21 1991-01-29 Minnesota Mining And Manufacturing Company Oriented melt-blown fibers, processes for making such fibers, and webs made from such fibers
US4933129A (en) * 1988-07-25 1990-06-12 Ultrafibre, Inc. Process for producing nonwoven insulating webs
JPH03196110A (ja) * 1989-12-26 1991-08-27 Minolta Camera Co Ltd 有限距離ズームレンズ系
JPH03213545A (ja) * 1990-01-17 1991-09-18 Petoka:Kk 導電性炭素繊維マット及びその製造方法
US5544487A (en) * 1991-01-15 1996-08-13 Hydrocool Pty Ltd Thermoelectric heat pump w/hot & cold liquid heat exchange circutis
US5072254A (en) * 1991-01-25 1991-12-10 Ray Hicks Photographic printer assembly
US5306555A (en) * 1991-09-18 1994-04-26 Battelle Memorial Institute Aerogel matrix composites
US5458962A (en) * 1993-08-11 1995-10-17 Minnesota Mining And Manufacturing Company Nonwoven surface treating articles and methods of making and using same
JPH0834678A (ja) * 1994-07-27 1996-02-06 Matsushita Electric Works Ltd エアロゲルパネル
DE4430669A1 (de) * 1994-08-29 1996-03-07 Hoechst Ag Verfahren zur Herstellung von faserverstärkten Xerogelen, sowie ihre Verwendung
DE4430642A1 (de) 1994-08-29 1996-03-07 Hoechst Ag Aerogel- und Xerogelverbundstoffe, Verfahren zu ihrer Herstellung sowie ihre Verwendung
US5786059A (en) * 1994-12-21 1998-07-28 Hoechst Aktiengesellschaft Fiber web/aerogel composite material comprising bicomponent fibers, production thereof and use thereof
US5624726A (en) * 1995-01-09 1997-04-29 Minnesota Mining And Manufacturing Company Insulation blanket
DE19507732A1 (de) * 1995-03-07 1996-09-12 Hoechst Ag Transparentes Bauelement, enthaltend mindestens eine faserverstärkte Aerogelplatte und/oder -matte
US6887563B2 (en) * 1995-09-11 2005-05-03 Cabot Corporation Composite aerogel material that contains fibres
AU7720596A (en) * 1995-11-09 1997-05-29 Aspen Systems, Inc. Flexible aerogel superinsulation and its manufacture
DE19548128A1 (de) * 1995-12-21 1997-06-26 Hoechst Ag Faservlies-Aerogel-Verbundmaterial enthaltend mindestens ein thermoplastisches Fasermaterial, Verfahren zu seiner Herstellung, sowie seine Verwendung
US5877100A (en) * 1996-09-27 1999-03-02 Cabot Corporation Compositions and insulation bodies having low thermal conductivity
JPH10147664A (ja) * 1996-11-20 1998-06-02 C I Kasei Co Ltd エアロゲル断熱パネルおよびその製造方法
US5972254A (en) * 1996-12-06 1999-10-26 Sander; Matthew T. Ultra-thin prestressed fiber reinforced aerogel honeycomb catalyst monoliths
US5708075A (en) * 1996-12-30 1998-01-13 Dow Corning Corporation Silicone release coating compositions
DE19702239A1 (de) * 1997-01-24 1998-07-30 Hoechst Ag Mehrschichtige Verbundmaterialien, die mindestens eine aerogelhaltige Schicht und mindestens eine Schicht, die Polyethylenterephthalat-Fasern enthält, aufweisen, Verfahren zu ihrer Herstellung sowie ihre Verwendung
US5973015A (en) * 1998-02-02 1999-10-26 The Regents Of The University Of California Flexible aerogel composite for mechanical stability and process of fabrication
WO1999064504A1 (de) * 1998-06-05 1999-12-16 Cabot Corporation Nanoporöse interpenetrierende organisch-anorganische netzwerke
JP2000106495A (ja) * 1998-09-29 2000-04-11 Kitagawa Ind Co Ltd 電気電子器具の内部構造
US6197415B1 (en) * 1999-01-22 2001-03-06 Frisby Technologies, Inc. Gel-coated materials with increased flame retardancy
JP2001021094A (ja) * 1999-07-06 2001-01-26 Dainippon Printing Co Ltd 断熱性複合シートおよび断熱性部材
CN1306993C (zh) * 2000-12-22 2007-03-28 思攀气凝胶公司 带有纤维胎的气凝胶复合材料

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468921C2 (ru) * 2009-12-23 2012-12-10 Парок Ой Аб Композитный продукт из минеральных волокон и способ его производства
RU2511717C2 (ru) * 2010-03-30 2014-04-10 ДжейЭкс НИППОН МАЙНИНГ ЭНД МЕТАЛЗ КОРПОРЕЙШН Композит для электромагнитного экранирования
RU2582528C2 (ru) * 2011-01-17 2016-04-27 Констракшн Рисёрч Энд Текнолоджи Гмбх Композитная система теплоизоляции
US11053369B2 (en) 2012-08-10 2021-07-06 Aspen Aerogels, Inc. Segmented flexible gel composites and rigid panels manufactured therefrom
RU2634774C2 (ru) * 2012-08-10 2017-11-03 Эспен Аэроджелз, Инк. Сегментированные гелевые композиты и жесткие панели, изготовленные из них
RU2676289C1 (ru) * 2012-08-10 2018-12-27 Эспен Аэроджелз, Инк. Сегментированные гелевые композиты и жесткие панели, изготовленные из них
US11517870B2 (en) 2012-08-10 2022-12-06 Aspen Aerogels, Inc. Segmented flexible gel composites and rigid panels manufactured therefrom
US11118026B2 (en) 2012-08-10 2021-09-14 Aspen Aerogels, Inc. Segmented flexible gel composites and rigid panels manufactured therefrom
RU2721110C2 (ru) * 2015-02-04 2020-05-15 Флумрок Аг Способ получения аэрогелей и композиционный материал на основе аэрогеля
WO2017009858A1 (en) 2015-07-15 2017-01-19 International Advanced Research Centre For Powder Metallurgy And New Materials (Arci) An improved process for producing silica aerogel thermal insulation product with increased efficiency.
RU2729992C2 (ru) * 2016-02-05 2020-08-13 ЭсКейСи КО., ЛТД. Аэрогелевый композит и способ его получения
RU2755992C2 (ru) * 2016-05-20 2021-09-23 Роквул Интернэшнл А/С Система и способ для изготовления аэрогелевого композитного материала и аэрогелевый композитный материал
RU2696638C1 (ru) * 2019-01-17 2019-08-05 Общество с ограниченной ответственностью "Ниагара" Способ получения теплоизоляционного материала на основе аэрогеля

Also Published As

Publication number Publication date
US7078359B2 (en) 2006-07-18
CN1306993C (zh) 2007-03-28
IL155922A0 (en) 2003-12-23
KR100909732B1 (ko) 2009-07-29
JP2016001605A (ja) 2016-01-07
CA2429771C (en) 2010-06-08
CN1592651A (zh) 2005-03-09
KR20040030462A (ko) 2004-04-09
JP2004517222A (ja) 2004-06-10
JP2018012913A (ja) 2018-01-25
US7504346B2 (en) 2009-03-17
JP6592050B2 (ja) 2019-10-16
US20020094426A1 (en) 2002-07-18
US20090229032A1 (en) 2009-09-17
WO2002052086A2 (en) 2002-07-04
MXPA03004333A (es) 2005-01-25
JP2012182135A (ja) 2012-09-20
IL155922A (en) 2008-06-05
WO2002052086A3 (en) 2003-01-09
US20060199455A1 (en) 2006-09-07
RU2003122514A (ru) 2004-10-20
BR0115523A (pt) 2003-09-16
CA2429771A1 (en) 2002-07-04
EP1358373A2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
RU2310702C2 (ru) Аэрогелевый композит с волокнистым ватином
US20220177765A1 (en) Aerogel composites including phase change materials
US7560062B2 (en) High strength, nanoporous bodies reinforced with fibrous materials
US20210167438A1 (en) Components and systems to manage thermal runaway issues in electric vehicle batteries
US20230348286A1 (en) Aerogel-based components and systems for electric vehicle thermal management
US20230032529A1 (en) Battery thermal management member
US11588196B2 (en) Thin aerogel materials
EP3326810A1 (en) Method and apparatus for manufacturing composite sheet comprising aerogel sheet
AU2002232688A1 (en) Aerogel composite with fibrous batting
WO2023062605A1 (en) Rigid, non-flexible fiber reinforced insulation composite

Legal Events

Date Code Title Description
FA93 Acknowledgement of application withdrawn (no request for examination)

Effective date: 20050513

FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20051212