RU2043784C1 - Катализатор для получения фталевого ангидрида - Google Patents

Катализатор для получения фталевого ангидрида Download PDF

Info

Publication number
RU2043784C1
RU2043784C1 SU925052045A SU5052045A RU2043784C1 RU 2043784 C1 RU2043784 C1 RU 2043784C1 SU 925052045 A SU925052045 A SU 925052045A SU 5052045 A SU5052045 A SU 5052045A RU 2043784 C1 RU2043784 C1 RU 2043784C1
Authority
RU
Russia
Prior art keywords
catalyst
antimony
pentoxide
oxide
component
Prior art date
Application number
SU925052045A
Other languages
English (en)
Inventor
Уеда Кендзи
Окуно Масааки
Кавабата Татцуя
Танака Синия
Original Assignee
Ниппон Сокубаи Ко., Лтд.,
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ниппон Сокубаи Ко., Лтд., filed Critical Ниппон Сокубаи Ко., Лтд.,
Application granted granted Critical
Publication of RU2043784C1 publication Critical patent/RU2043784C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • C07C51/313Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting with molecular oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Использование: в нефтехимии, в частности в составе катализатора для производства фталевого ангидрида. Сущность изобретения: катализатор содержит 3-20 г каталитически активного вещества на 100 см3 носителя. Активное вещество включает компонент A, содержащий, мас.ч. 1-20 пентаоксида ванадия и 80-99 диоксида титана типа анатаза с уд. поверхностью 10-60 м3/г компонент B, содержащий, мас.ч. 0,01-1,0 пентаоксида ниобия; 0,05-2,0 оксида элемента (выбранного из группы: калий, цезий, рубдий и таллий), 0,2-1,2 пентаоксида фосфора и 0,55-5,5 пентаоксида сурьмы. Катализатор содержит также 3-20 г каталитически активного вещества на 100 см3 термостойкого неорганического носителя, причем каталитически активное вещество включает компонент A указанного состава, и компонент C, содержащий, мас.ч. пентаоксид ниобия 0,01-1,0, оксид элемента (выбранного из группы: калий, цезий, рубидий и таллий) 0,05-2,2; пентаоксид фосфора 0,2-1,2; оксид серебра 0,05-2,0 и пентаоксид сурьмы 0,55-5,5. Лучше, чтобы в слое каталитически активного вещества, нанесенном на термостойкий неорганический носитель, объем пор, занимаемый порами с диаметром 0,15-0,45 мкм, составлял 50% или более от суммарного объема мелких пор, занимаемого порами с диаметром 10 мкм или менее. 2 с. и 1 з.п. ф-лы, 5 ил. 3 табл.

Description

Изобретение относится к катализатору для получения фталевого ангидрида, в частности, оно относится к катализатору для получения фталевого ангидрида посредством парофазного каталитического окисления орто-ксилола и/или нафталина молекулярным кислородом или газом, содержащим молекулярный кислород,
Широко известным катализатором такого рода является катализатор для получения фталевого ангидрида, включающий нанесенное на инертный носитель каталитически активное вещество, содержащее в качестве основных компонентов оксид ванадия и оксид титана.
Однако имеется обширное пространство для усовершенствования характеристик катализатора, с учетом масштаба производства заметным по своему экономическому эффекту является увеличение выхода, составляющее лишь 1% Изобретение предусматривает катализатор с дополнительно усовершенствованными, по сравнению с ранее известными традиционными катализаторами, характеристиками катализатора и поэтому полезный для получения фталевого ангидрида.
Целью изобретения является создание катализатора для получения фталевого ангидрида с высокой селективностью посредством парофазного каталитического окисления орто-ксилола и/или нафталина. Кроме того, создание катализатора для получения фталевого ангидрида посредством парофазного каталитического окисления орто-ксилола и/или нафталина, который делает возможным получение фталевого ангидрида с высокой селективностью даже в условиях с высоким содержанием реагентов и высокой температурой, обладает хорошей продолжительностью срока службы и делает возможным получение фталевого ангидрида при постоянных условиях в течение длительного периода времени.
Цель достигается особенно в условиях с высокой температурой, посредством использования соединения пятивалентной сурьмы, например, представленного формулой Sb2O6, вместо традиционного соединения трехвалентной сурьмы, представленного, например, формулой Sb2O3, в качестве исходного соединения при введении сурьмы в катализатор на основе ванадия и титана в качестве компонента каталитически активных веществ. Кроме того, упомянутая цель достигается особенно в условиях с высокой температурой посредством использования соединения пятивалентной сурьмы, например, представленного формулой Sb2O5 в качестве исходного вещества для введения сурьмы даже в катализатор на основе ванадия и титана, в который уже добавлено серебро.
Изобретение предоставляет катализатор для получения фталевого ангидрида посредством парофазного каталитического окисления орто-ксилола и/или нафталина молекулярным кислородом или газом, содержащим молекулярный кислород, содержащий нанесенное на термостойкий неорганический носитель каталитически активное вещество, включающий (А) от 1 до 20 мас.ч. оксида ванадия в виде V2O5 и 80-99 мас.ч. диоксида титана типа октаэдрита в виде TiO2 с удельной площадью поверхности, равной 10-60 м2/г; и (В) на 100 суммарных мас.ч. (А) 0,01-1 мас. ч. ниобия в виде Nb2O5, 0,05-2 мас.ч. по крайней мере, одного элемента, выбранного из калия, цезия, рубидия и таллия в виде оксидов, 0,2-1,2 мас.ч. фосфора в виде Р2О5, 0,55-5,5 мас.ч. сурьмы в виде Sb2О5 и в котором в качестве источника сурьмы при получении каталитически активного вещества используют соединение пятивалентной сурьмы. В дальнейшем этот полученный катализатор называют катализатор 1.
Кроме того, изобретение предоставляет катализатор для получения фталевого ангидрида посредством парофазного каталитического окисления орто-ксилола и/или нафталина молекулярным кислородом или газом, содержащим молекулярный кислород, содержащий нанесенное на термостойкий неорганический носитель каталитически активное вещество, включающий (А) 1-20 мас.ч. оксида ванадия в виде V2O5 и 80-99 мас.ч. диоксида титана типа октаэдрита в виде TiO2 с удельной площадью поверхности, равной 10-60 м2/г; и (В) на 100 суммарных мас.ч. (А) 0,01-1 мас.ч. ниобия в виде Nb2O5 0,05-2 мас.ч. по крайней мере, одного элемента, выбранного из калия, цезия, рубидия и таллия в виде оксидов, 0,2-1,2 мас. ч. фосфора в виде Р2О5, 0,05-2 мас.ч. серебра в виде Ag2O, 0,55-5,5 мас. ч. соединения пятивалентной сурьмы в виде Sb2O5, в котором соединение пятивалентной сурьмы используют в качестве источника сурьмы при получении каталитически активного вещества. В дальнейшем, этот полученный катализатор называют катализатор 2.
Одним из признаков изобретения является то, что диоксид титана типа октаэдрида с удельной площадью поверхности, равной 10-60 м2/г, предпочтительно 15-40 м2/г, используют в качестве компонента каталитически активного вещества. Если удельная площадь поверхности диоксида титана типа октаэдрита составляет менее 10 м2/г, активность полученного катализатора является низкой, если она превышает 60 м2/г, снижается продолжительность срока службы катализатора и быстро снижается выход, что нежелательно (удельную площадь поверхности измеряют посредством метода ВЕТ).
Хотя в качестве способов получения диоксида титана типа октаэдрита имеются так называемый "способ раствора" и так называемый "способ отверждения", предпочтительным для использования является способ раствора.
В соответствии со способом раствора ильменит (FeOTiO2) обрабатывают разбавленной серной кислотой с концентрацией, равной около 70-80% гидролизуют под давлением при около 150оС и прокаливают, получая диоксид титана типа октаэдрита. Полученный диоксид титана типа октаэдрита имеет высокую механическую прочность несмотря на пористость, он обладает прочностью, достаточной для того, чтобы его считали "первичными частицами", которые не разрушаются при механическом измельчении посредством обычно шаровой мельницы или подобного устройства. Хотя этот диоксид титана типа октаэдрита имеет большой средний размер частиц, равный 0,4-0,7 мкм, он обладает такой значительной удельной площадью поверхности, как 10-60 м2/г и, по существу, представляет собой агрегат первичных частиц малого диаметра (средний размер частиц измеряют при помощи просвечивающего электронного микроскопа). Среди частиц предпочтительными для практического использования являются частицы, имеющие сферическую форму.
Кроме того, способ отверждения отчасти неудобен для практического применения, поскольку этот способ осуществляют в серной кислоте, имеющей более высокую концентрацию по сравнению со способом раствора. Из-за руды, используемой в качестве исходного вещества, дело обстоит так, что железо, цинк, алюминий, марганец, хром, кальций, свинец и т.д. смешиваются с диоксидом титана типа октаэдрида, однако поскольку они в виде оксидов составляют 0,5 мас. или менее по сравнению с диоксидом титана, трудностей с каталитическими характеристиками не существует. Требуется, чтобы термостойкий неорганический носитель, используемый в изобретении, был устойчив в течение длительного периода времени при температуре, существенно более высокой, чем температура прокаливания катализатора, а также при температуре катализатора при получении фталевого ангидрида, требуется также, чтобы он был инертен по отношению к каталитически активному веществу. Предпочтительными примерами термостойких неорганических носителей такого рода являются карбид кремния (SiC), оксид алюминия, оксид циркония, оксид титана и т.п. Среди этих носителей очень предпочтительным является носитель карбид кремния, а предпочтительное содержание оксида алюминия (Al2O3) в этом карбиде кремния составляет 20 мас. или менее, а его другое предпочтительное содержание составляет 5 мас. или менее. Другим предпочтительным носителем является носитель карбид кремния, получаемый посредством самоспекания порошка карбида кремния, имеющего чистоту 98% и более. Предпочтительная кажущаяся пористость носителя карбида кремния составляет 10% или менее, а другая предпочтительная кажущаяся пористость находится в пределах от 15 до 45% Форма термостойкого неорганического носителя конкретно не ограничивается, но со сферической или колоннообразной формами легко обращаться, предпочтительным для использования является такой носитель, как носитель, имеющий средний диаметр, равный 2-15 мм.
Признаком катализатора, относящегося к изобретению, является использование соединения пятивалентной сурьмы, например, представленного формулой Sb2O5 в качестве источника сурьмы, т.е. одного компонента каталитически активного вещества, кроме Sb2O5 соединение сурьмы надлежащим образом выбирают из различных видов соединений, содержащих пятивалентную сурьму. Количество соединения сурьмы для использования составляет 0,55-5,5 мас.ч. в виде Sb2O5 на 100 мас.ч. суммы двух компонентов, представляющих собой оксид ванадия в диоксид титана; предпочтительное количество для использования составляет 1,5-3,5 мас.ч. в виде Sb2O5. Если содержание сурьмы слишком велико или слишком мало, цель изобретения не достигается.
Предпочтительными соединениями, содержащими пятивалентную сурьму, являются соединения, имеющие средний размер частиц в пределах от 1 до 40 мкм, а другими предпочтительными соединениями являются соединения, имеющие размер частиц в пределах от 5 до 30 мкм. Если средний размер частиц превышает 40 мкм, становится значительным отклонение активности при превращении соединения, содержащего пятивалентную сурьму, с другими компонентами в катализатор. Это обусловливается трудностью поддержания на постоянном уровне наиболее подходящей температуры. Отклонение активности может возникать вследствие неравномерного распределения частиц сурьмы в активном слое катализатора. Кроме того, если средний размер частиц составляет менее 1 мкм, активность катализатора становится выше, чем в случае с частицами, имеющими средний размер, равной 1 мкм или более, а также снижается эффект от добавления пятивалентной сурьмы. Это может обуславливаться тем, что реакционная активность на поверхности соединения, содержащего пятивалентную сурьму, высока сама по себе. (Средний размер частиц определяют до приготовления катализатора при помощи просвечивающего электронного микроскопа).
Исходные вещества для приготовления катализатора, содержащие ванадий, ниобий, калий, цезий, рубидий, таллий и фосфор, помимо таких оксидов, как V2O5, Nb2O5, K2O, Cs2O, Rb2O, Ti2O, P2O5, можно выбрать из соединений, превращаемых в такие оксиды посредством нагревания, например, солей аммония, нитратов, сульфатов, галогенидов, солей органических кислот и гидроксидов индивидуальных элементов. Предпочтительное для использования общее количество калия, цезия, рубидия и таллия составляет на 100 мас.ч. по суммарному весу оксида ванадия и диоксида титана типа октаэдрита 0,05-2 мас.ч. в виде упомянутых соответственных оксидов, а предпочтительное для использования количество фосфора и ниобия составляет 0,2-1,2 мас.ч. в виде Р2О5 и от 0,01 до 1 мас. ч. Nb2O5 соответственно. Если содержание слишком велико или слишком мало, цель изобретения не достигается.
В отношении катализатора 1 серебро представляет собой дополнительный компонент, помимо каталитически активных веществ, представленных в катализаторе 1. Что касается серебряного компонента, помимо Ag2O, можно использовать нитрат, галогенгид, аммониевую соль, соль органической кислоты, гидроксид, аминный комплекс, фосфат, сульфид и т.п. Некоторые из них, например, галогенид серебра и фосфат серебра, не превращаются в оксид посредством нагревания при получении катализатора, но все они могут быть использованы в настоящем изобретении без опасений. Предпочтительное для использования количество серебра составляет на 100 мас.ч. по суммарному весу оксида ванадия и диоксида титана типа октаэдрита 0,05-2 мас.ч. в виде Ag2O. Если содержание слишком велико или слишком мало, цель изобретения не достигается. В случае, когда используют фосфат серебра, поскольку это соединение состоит из фосфора и серебра и не вносит вклад, как добавка фосфора, фосфор в фосфате серебра не включают в упомянутое содержание фосфора, равное 0,2 до 1,2 мас.ч. в виде Р2О5. Хотя количество каталитически активного вещества, которое необходимо нанести на термостойкий неорганический носитель, изменяется с размером носителя, предпочтительное количество составляет 3-20 г на 100 см3 носителя. Слой каталитически активного вещества, получаемый при нанесении каталитически активного вещества на носитель, предпочтительно, имеет поверхность такую, что объем пор, занимаемый порами с диаметром 0,15-0,45 мкм, составляет 50% или более (предпочтительно 75% или более) от суммарного объема мелких пор, занимаемого порами с диаметром 10 мкм или менее (объем пор получают из распределения пор по диаметру, измеряемому посредством порозиметра с ртутным впрыскиванием). Цель изобретения достигается с большей эффективностью при создании слоя каталитически активного вещества, имеющего поверхностные характеристики, соответствующие упомянутым.
Способ нанесения каталитически активного вещества на термостойкий неорганический носитель при получении катализаторов изобретения конкретно не ограничен и можно использовать различные известные способы. Наиболее простой способ заключается в том, что конкретное количество носителя помещают в роторный барабан, который можно нагревать снаружи, и при поддержании барабана при температуре, равной 200-300oС, распыляют на носитель суспензию, содержащую каталитически активное вещество, для нанесения вещества.
Упоминается практический способ создания слоя каталитически активного вещества, имеющего поверхностные характеристики, соответствующие упомянутым. Когда суспензию готовят, используя диоксид титана типа октаэдрита с размером первичных частиц 0,005-0,05 мкм, концентрацию суспензии регулируют при 5-25 мас. предпочтительно 10 до 20 мас. а при использовании диоксида титана типа октаэдрита с размером первичных частиц, превышающем 0,05 мкм, концентрацию суспензии регулируют при 10-40 мас. предпочтительно 15-25 мас. полученную суспензию делают достаточно однородной, используя эмульгатор, термостойкий неорганический носитель помещают в роторный барабан, поддерживаемый при температуре 200-300оС, упомянутую суспензию распыляют при вращении барабана таким образом, что каталитически активное вещество может наноситься в определенном количестве, а затем носитель, содержащий нанесенное активное вещество, прокаливают в токе воздуха при температуре 4-700оС предпочтительно 500-600оС, в течение около 2-10 ч, получая катализатор настоящего изобретения. Если соединение, содержащее пятивалентную сурьму, используют в качестве источника сурьмы, которая представляет собой компонент каталитически активного вещества, наиболее подходящая реакционная температура катализатора на конечной стадии становится выше, чем в случае, когда используют соединение, содержащее трехвалентную сурьму. Такие эффекты особенно заметны в условиях реакции с высоким содержанием реагентов, например при высокой концентрации газа орто-ксилола и/или нафталина, так что производительность может быть существенно увеличена.
Используя катализатор изобретения, фталевый ангидрид можно производить с высокой селективностью из орто-ксилола и/или нафталина. Операция теплообработки и дистилляции с получением продукта фталевого ангидрида упрощаются, и можно получить продукты более высокого качества при более низкой, по сравнению с традиционными способами цене. Катализатор изобретения имеет длительный срок службы и в промышленности возможна длительная устойчивая эксплуатация. Даже в условиях реакции с высоким содержанием реагентов, например при высокой концентрации потока газа, содержащего вещество, и даже в условиях с высокой температурой, например 380оС и более, фталевый ангидрид получают с высокой селективностью, даже если катализатор используют в течение длительного промежутка времени, он прочен и производительность по фталевому ангидриду велика. Предлагаемый катализатор чрезвычайно полезен для получения фталевого ангидрида.
На фиг. 1 представлен график, показывающий результат анализа дифракции рентгеновского излучения катализатора Е, полученного из примера 2, в области дифракционного угла 10-90о; на фиг.2 то же, катализатора С, полученного из сравнительного примера 2, в области угла дифракции 10 до 90о; на фиг.3 то же, катализатора, составленного только из ванадия и титана в области дифракционного угла 26-36о; на фиг.4 то же, катализатора С, полученного из сравнительного примера 2 в области дифракционного угла 26-36о; на фиг.5 то же, катализатора Е, полученного из примера 2, в области угла дифракции 26 до 36о.
П р и м е р 1. Приготовление катализатора.
После смешивания серной кислоты с концентрацией 80% с ильменитом и осуществления достаточного взаимодействия посредством разбавления водой получали водный раствор сульфата титана. К нему в качестве восстанавливающего средства добавляли кусочки железа, и содержание железа из ильменита снижали переводом в ионы двухвалентного железа, после охлаждения сульфат двухвалентного железа осаждали и отделяли. В полученный водный раствор сульфата титана продували пар, нагретый до 150оС, и осаждали водный оксид титана. Его промывали водой, протравливали и снова промывали водой, прокаливали при 800оС в течение 4 ч в потоке проходящего воздуха. Его измельчали при помощи высокоскоростного потока воздуха, получая диоксид титана типа октаэдрита (в дальнейшем иногда называемый просто оксид титана) со средним размером частиц, составляющим около 0,5 мкм и удельной площадью поверхности 22 м2/г. В 6400 см3 деионизированной воды растворяли 200 г щавелевой кислоты, 47,24 г метаванадата аммония, 5,95 г однозамещенного фосфата аммония, 18,67 г хлорида ниобия, 8,25 г сульфата цезия и 45,91 г пятиокиси сурьмы (средний размер частиц 20 мкм) добавляли и перемешивали. К полученному раствору добавляли 1800 г оксида титана и перемешивали при помощи эмульгирующего устройства, получая суспензию катализатора. В роторную печь из нержавеющей стали диаметром 35 см и длиной 80 см, которую можно нагревать снаружи, загружали 2000 см3самоспеченного носителя SiC сферической формы с диаметром 6 мм и кажущейся пористостью 35% и при вращении печи, предварительно нагретой до 200-250оС, суспензию распыляли на носитель, таким образом наносили каталитически активное вещество при расходе 8 г на 100 см3 носителя. Потом носитель с каталитически активным веществом прокаливали в токе воздуха в электрической печи в течение 6 при 580оС, получая катализатор А.
Табл. 1 показывает состав катализатора А, соотношение между объемом пор, занимаемым порами с диаметром от 0,15 до 0,45 мкм, и суммарным объемом мелких пор, занимаемым порами с диаметром 10 мкм или менее, в слое каталитически активного вещества, средний размер частиц и удельную площадь поверхности оксида титана, используемого в приготовлении катализатора (в дальнейшем их вместе называют характеристиками катализатора). Соотношение между объемом пор, занимаемым порами диаметром 0,15 до 0,45 мкм, и суммарным объемом мелких пор определяют из распределения пор, измеренного при помощи порозиметра с ртутным впрыскиванием.
Катализатор В готовили как и катализатор А, за исключением того, что содержание однозамещенного фосфата аммония составляло 23,82 г. Катализаторные характеристики катализатора В представлены в табл.1. Содержание фосфора в катализаторе В было выше, чем в катализаторе А, и активность катализатора В была выше, чем катализатора А.
Реакция окисления. В железную реакционную трубку внутренним диаметром 25 мм и длиной 3 м, погруженную в баню с расплавленной солью, поддерживаемую при 390оС, загружали катализатор В в качестве катализатора второй стадии до высоты, равной 1 м, на конце выхода газа, содержащего вещество, затем загружали катализатор А в качестве катализатора первой стадии до высоты, равной 1,5 м, на входе. Орто-ксилол при соотношении 85 г/см3 (синтетического газа) смешивали с синтетическим газом, включающим 10 об. кислорода0 10 об. пара и 80 об. азота, эту смесь вводили в верхний вход реакционной трубки с объемной скоростью (SV) 2500 ч-1 (STP) для окисления орто-ксилола. Выход фталевого ангидрида измеряли в начале реакции и через 3 месяца после начала реакции, результаты представлены в табл.2. Конверсия орто-ксилола составляет приблизительно 100% эту величину можно считать селективностью превращения во фталевый ангидрид.
Сравнительный пример 1. Катализатор С и катализатора D получали как и в примере 1 (приготовление катализатора), за исключением того, что использовали 36,73 г трехокиси сурьмы, вместо 45,91 г пятиокиси сурьмы, и дополнительное количество сульфата цезия составляло 10,61 г; реакцию окисления осуществляли как в примере 1 (реакция окисления). Катализаторные характеристики катализаторов С и D представлены в табл.1, а результаты реакции окисления в табл.2.
П р и м е р 2. Катализатор Е и катализатор F получали как в примере 1 (приготовление катализатора), за исключением того, что добавляли также 5,38 г нитрата серебра, дополнительное количество сульфата цезия составляло 5,90 г; реакцию окисления осуществляли как в примере 1 (реакция окисления). Катализаторные характеристики катализаторов Е и F представлены в табл.1, а результаты реакции окисления в табл.2.
Сравнительный пример 2. Катализатор G и катализатор Н получали как в примере 1 (приготовление катализатора), за исключением того, что добавляли также 5,38 г нитрата серебра, использовали 36,73 г трехокиси сурьмы, реакцию окисления осуществляли как в примере 1 (реакция окисления). Катализаторные характеристики катализаторов G и Н представлены в табл.1, а результаты реакции окисления в табл.2. В отношении катализатора Е и G, которые получали из примера 2 и сравнительного примера 2 соответственно, исследовали различие между кристаллическими структурами сурьмы в катализаторах при помощи анализа дифракции рентгеновского излучения (ХРД) с использованием Cu-Kα Основным компонентом в обоих катализаторах Е и G является TiO2 типа октаэдрита и, как видно на фиг.1 и 2, большие пики, обусловленные TiO2типа октаэдрита, обнаруживали в анализах дифракции рентгеновского излучения катализаторов Е и G. Поэтому, для того, чтобы исследовать различие между пятивалентной сурьмой и трехвалентной сурьмой, измерение осуществляли при повышенной чувствительности обнаружения в области, где отсутствует пик, обусловленный TiO2 типа октаэдрита (угол дифракции 2θ находится в области от 26 до 36о). В табл.3 представлены положения пиков (угол дифракции 2 θ ) анализов дифракции рентгеновского излучения в этой области, обусловленных соединениями, содержащими пятивалентную и трехвалентную сурьму, а также обусловленные V2O5 и Ag2O. Тем временем числовые значения в скобках в табл.3 представляют относительные интенсивности этих пиков. Для сравнения готовили катализатор, составленный только из ванадия и титана и, когда измерение осуществляли в области, в которой угол дифракции 2θ находится в пределах от 26 до 36о, наблюдали только пик, обусловленный пятиокисью ванадия (V2O5), как видно на фиг.3. Как видно на фиг. 4, в катализаторе G, в котором использовали трехокись сурьмы (Sn2O3), появлялся большой пик при 2θ 27,1о, и еще один пик появлялся при 2 θ 35,4о. На основании этих факторов и данных табл.3 полагают, что сурьма находится в состоянии, близком к форме Sb2O4. Как видно на фиг.5, в катализаторе Е, в котором использовали пятиокись сурьмы (Sb2O5), появлялся большой пик при 2θ29,9о, а другие пики появлялись при 2 θ28,6о и 347о. На основании этих фактов и данных табл. 3 полагают, что сурьма находится в состоянии, близком к форме Sb6O13. Однако остаются пики, обусловленные Sb2O5 при 2 θ 27,1о 28,9 и 34,3о.
На основании упомянутого можно полагать, что эффект использования соединения, содержащего пятивалентную сурьму в качестве источника сурьмы, обусловливается Sb6O13, но если используют Sb6O13, которую получали из Sb2O5 путем заблаговременного прокаливания при температуре 700оС (изменения в площади поверхности отсутствуют) эффект изобретения не достигается, получают лишь катализатор с высокой активностью для низкотемпературной реакции.
П р и м е р 3. Ильменит и серную кислоту 80 мас. концентрации смешивали и оставляли взаимодействовать до достаточной степени, затем продукт разбавляли водой, получая водный раствор сульфата титана. Кусочки железа добавляли в качестве восстанавливающего средства, и содержание железа из ильменита снижали переводом в ионы двухвалентного железа, после охлаждения сульфат двухвалентного железа осаждали и отделяли. В полученный водный раствор сульфата титана продували пар, нагретый до 150оС, и осаждали водный оксид титана. Его промывали водой, протравливали, снова промывали водой и прокаливали при 700оС в течение 4 ч в токе воздуха. Его измельчали при помощи высокоскоростного потока воздуха и получали диоксид титана типа октаэдрита с удельной площадью поверхности 33 м2/г, измеренной методом ВЕТ, и средним размером частиц около 0,45 мкм. В 6400 см3 деионизированной воды растворяли 900 г щавелевой кислоты, к этому водному раствору добавляли 408,50 г метаванадата аммония, 10,30 г однозамещенного фосфата аммония, 17,22 г хлорида ниобия, 4,08 г сульфата цезия, 3,92 г сульфата калия и 52,93 г пятиокиси сурьмы (средний размер частиц 20 мкм) и в достаточной степени перемешивали. К полученному раствору добавляли 1800 г оксида титана (который представлял собой полученный диоксид титана типа октаэдрита), и смесь перемешивали при помощи эмульгирующего устройства, получая суспензию катализатора.
Используя эту суспензию, каталитически активное вещество наносили, как и в примере 1, при расходе на нанесение, равном 8,0 г на 100 см3носителя, с последующим прокаливанием в токе воздуха в электрической печи при 560оС в течение 6 ч с получением катализатора 1. Катализатор J получали как и катализатор 1, за исключением того, что количество однозамещенного фосфата аммония для использования составляло 30,89 г.
Реакция окисления. В железную реакционную трубку с внутренним диаметром 25 мм и длиной 3 м, погруженную в баню с расплавленной солью, поддерживаемую при 395оС, загружали катализатор J в качестве катализатора второй стадии до высоты 1 м, затем катализатор 1 в качестве катализатора первой стадии до высоты 1,5 м; нафталин, который смешивали при соотношении 85 г/нм3 (синтетического газа) с синтетическим газом, включающим 10 об. кислорода, 10 об. пара и 80 об. азота, вводили в верхнюю часть реакционной трубки с объемной скоростью 2500 ч-1 (STP), чтобы осуществить окисление. Результаты представлены в табл.2.
Сравнительный пример 3. Катализатор К и катализатор L получали как и катализаторы 1 и J в примере 3 (приготовление катализатора), за исключением того, что использовали 42,34 г трехокиси сурьмы вместо 52,93 г пятиокиси сурьмы, и дополнительное количество сульфата цезия составляло 5,44 г, реакцию окисления осуществляли как в примере 3 (реакция окисления). Катализаторные характеристики катализаторов К и L представлены в табл.1, а результаты реакции окисления в табл.2.
П р и м е р 4. Катализатор М катализатор N получали как в примере 3 (приготовление катализатора), за исключением того, что добавляли 31,04 г нитрата серебра, а дополнительное количество сульфата цезия составляло 2,72 г, реакцию окисления осуществляли как в примере 1 (реакция окисления). Катализаторные характеристики катализаторов М и N представлены в табл.1, а результаты реакции окисления в табл.2.
Сравнительный пример 4. Катализатор О и катализатор P получали как в примере 3 (приготовление катализатора), за исключением того, что добавляли также 31,04 г нитрата серебра, и использовали 42,34 г трехокиси сурьмы вместо 52,93 г пятиокиси сурьмы, реакцию окисления осуществляли как в примере 1 (реакция окисления). Катализаторные характеристики катализаторов О и Р представлены в табл.1, а результаты реакции окисления в табл.2.

Claims (1)

1. КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ ФТАЛЕВОГО АНГИДРИДА парофазным окислением о-ксилола и/или нафталина молекулярным кислородом или газом, содержащим молекулярный кислород, содержащий нанесенное на термостойкий неорганический носитель каталитически активное вещество в количестве 3 20 г на 100 см3 носителя, включающее компонент А, содержащий 1 20 мас. ч. пентоксида ванадия и 80 99 мас. ч. диоксида титана типа анатаза с удельной поверхностью 10 60 м2/г, и компонент В, содержащий пентоксид ниобия, пентоксид фосфора, оксид сурьмы и по крайней мере один оксид элемента, выбранного из калия, цезия, рубидия и таллия, отличающийся тем, что компонент В содержит в качестве оксида сурьмы пентоксид сурьмы при следующем содержании ингредиентов, мас. ч. на 100 мас. ч. компонента А:
Пентоксид ниобия 0,01 1,0
Оксид элемента, выбранного из калия, цезия, рубидия, и таллия 0,05 - 2,0
Пентоксид фосфора 0,2 1,2
Пентоксид сурьмы 0,55 5,5
2. Катализатор для получения фталевого ангидрида парофазным окислением о-ксилола и/или нафталина молекулярным кислородом или газом, содержащим молекулярный кислород, содержащий нанесенное на термостойкий неорганический носитель каталитически активное вещество в количестве 3 20 г на 100 см3 носителя, включающее компонент А, содержащий 1 20 мас. ч. пентоксида ванадия и 80 99 мас. ч. диоксида титана типа анатаза с удельной поверхностью 10 60 м2/г, и компонент С, содержащий пентоксид ниобия, пентоксид фосфора, оксид серебра, оксид сурьмы и по крайней мере один оксид элемента, выбранного из калия, цезия, рубидия и таллия, отличающийся тем, что компонент С содержит в качестве оксида сурьмы пентоксид сурьмы при следующем содержании компонентов, мас.ч. на 100 мас.ч. компонента А:
Пентоксид ниобия 0,01 1,0
Оксид элемента, выбранного из калия, цезия, рубидия, таллия 0,05 - 2,0
Пентоксид фосфора 0,2 1,2
Оксид серебра 0,05 2,0
Пентоксид сурьмы 0,55 5,5
3. Катализатор по п.1 или 2, отличающийся тем, что в слое каталитически активного вещества, нанесенном на термостойкий неорганический носитель, объем пор, занимаемый порами с диаметром 0,15 0,45 мкм, составляет 50% или более от суммарного объема мелких пор, занимаемого порами с диаметром 10 мкм или менее.
SU925052045A 1991-07-10 1992-07-07 Катализатор для получения фталевого ангидрида RU2043784C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3-169622 1991-07-10
JP16962291 1991-07-10

Publications (1)

Publication Number Publication Date
RU2043784C1 true RU2043784C1 (ru) 1995-09-20

Family

ID=15889919

Family Applications (1)

Application Number Title Priority Date Filing Date
SU925052045A RU2043784C1 (ru) 1991-07-10 1992-07-07 Катализатор для получения фталевого ангидрида

Country Status (10)

Country Link
US (1) US5235071A (ru)
EP (1) EP0522871B1 (ru)
JP (1) JP2654315B2 (ru)
KR (1) KR950009710B1 (ru)
CN (1) CN1030070C (ru)
AT (1) ATE116870T1 (ru)
BR (1) BR9202537A (ru)
DE (1) DE69201169T2 (ru)
ES (1) ES2066561T3 (ru)
RU (1) RU2043784C1 (ru)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510557A (en) * 1994-02-28 1996-04-23 Abb Lummus Crest Inc. Endothermic catalytic dehydrogenation process
WO1997024288A1 (fr) * 1995-12-27 1997-07-10 Tohkem Products Corporation Octahedrite stable et son procede de preparation
TW415939B (en) * 1996-10-23 2000-12-21 Nippon Steel Chemical Co Gas-phase oxidization process and process for the preparation of phthalic anhydride
DE19707943C2 (de) * 1997-02-27 1999-07-08 Basf Ag Verfahren zur Herstellung von Phthalsäureanhydrid und Katalysator hierfür
CN1059131C (zh) * 1997-10-29 2000-12-06 天津市西青区杨柳青镇工艺印刷厂 生产苯酐用催化剂
DE19823262A1 (de) 1998-05-26 1999-12-02 Basf Ag Verfahren zur Herstellung von Phthalsäureanhydrid
JP4557378B2 (ja) * 1999-06-24 2010-10-06 株式会社日本触媒 無水フタル酸の製造方法
CN1280979A (zh) 1999-06-24 2001-01-24 株式会社日本触媒 用于生产邻苯二甲酸酐的方法
US6528663B1 (en) 2001-12-05 2003-03-04 General Electric Company Methods for the preparation of 4-chlorophthalic anhydride
US6498224B1 (en) 2001-12-05 2002-12-24 General Electric Company Methods for the preparation poly(etherimide)s
US6576770B1 (en) 2001-12-05 2003-06-10 General Electric Company Preparation of substituted phthalic anhydrides and substituted phthalimides
US6657067B2 (en) 2002-03-22 2003-12-02 General Electric Company Method for the manufacture of chlorophthalic anhydride
US6649773B2 (en) 2002-03-22 2003-11-18 General Electric Company Method for the manufacture of halophthalic acids and anhydrides
US6657068B2 (en) 2002-03-22 2003-12-02 General Electric Company Liquid phase oxidation of halogenated ortho-xylenes
DE10232482A1 (de) * 2002-07-17 2004-01-29 Basf Ag Verfahren zum sicheren Betreiben einer kontinuierlichen heterogen katalysierten Gasphasen-Partialoxidation wenigstens einer organischen Verbindung
US7115776B2 (en) 2002-07-18 2006-10-03 Basf Aktiengesellschaft Heterogeneously catalyzed gas-phase partial oxidation of at least one organic compound
US6881815B2 (en) * 2002-09-25 2005-04-19 General Electric Company Method for the preparation poly(etherimide)s
DE10323818A1 (de) 2003-05-23 2004-12-09 Basf Ag Katalysatorsysteme zur Herstellung von Phthalsäureanhydrid
DE10323461A1 (de) * 2003-05-23 2004-12-09 Basf Ag Herstellung von Aldehyden, Carbonsäuren und/oder Carbonsäureanhydriden mittels Vanadiumoxid, Titandioxid und Antimonoxid enthaltender Katalysatoren
DE10334132A1 (de) 2003-07-25 2005-04-07 Basf Ag Silber, Vanadium und ein Promotormetall enthaltendes Multimetalloxid und dessen Verwendung
EP1514598A1 (en) * 2003-09-15 2005-03-16 Lonza S.p.A. Niobium doped vanadium/phosphorus mixed oxide catalyst
EP1748839B1 (de) 2004-05-07 2020-04-01 Basf Se Verfahren zur strukturierten befüllung von kontaktrohren eines kontaktrohrbündels
DE102004025445A1 (de) 2004-05-19 2005-02-10 Basf Ag Verfahren zum Langzeitbetrieb einer heterogen katalysierten Gasphasenpartialoxidation wenigstens einer organischen Verbindung
WO2006125468A1 (de) * 2005-05-22 2006-11-30 Süd-Chemie AG Mehrlagen-katalysator zur herstellung von phthalsäureanhydrid
DE102004026472A1 (de) * 2004-05-29 2005-12-22 Süd-Chemie AG Mehrlagen-Katalysator zur Herstellung von Phthalsäureanhydrid
WO2005115615A1 (de) * 2004-05-29 2005-12-08 Süd-Chemie AG Katalysator sowie verfahren zur herstellung von phthalsäureanhydrid
US7541489B2 (en) 2004-06-30 2009-06-02 Sabic Innovative Plastics Ip B.V. Method of making halophthalic acids and halophthalic anhydrides
JP5174462B2 (ja) * 2004-11-18 2013-04-03 ビーエーエスエフ ソシエタス・ヨーロピア 触媒を製造するための二酸化チタン混合物の使用
US7439389B2 (en) 2005-03-01 2008-10-21 Basf Aktiengesellschaft Process for preparing at least one organic target compound by heterogeneously catalyzed gas phase partial oxidation
TWI376266B (en) * 2005-03-02 2012-11-11 Sued Chemie Ag Process for manufacture of a multiple layer catalyst for producing phthalic acid anhydride
DE102005009473A1 (de) * 2005-03-02 2006-09-07 Süd-Chemie AG Mehrlagen-Katalysator zur Herstellung von Phthalsäureanhydrid
DE102006000996A1 (de) 2006-01-05 2007-07-12 Basf Ag Verfahren der heterogen katalysierten Gasphasen-Partialoxidation wenigstens einer organischen Ausgangsverbindung
EP1734030A1 (de) 2006-01-18 2006-12-20 BASF Aktiengesellschaft Verfahren zum Langzeitbetrieb einer heterogen katalysierten partiellen Gasphasenoxidation einer organischen Ausgangsverbindung
EP2059334A1 (de) * 2006-11-15 2009-05-20 Basf Se Verfahren zum betreiben einer exothermen heterogen katalysierten partiellen gasphasenoxidation einer organischen ausgangsverbindung zu einer organischen zielverbindung
DE102007004961A1 (de) 2007-01-26 2008-07-31 Basf Se Verfahren zur Herstellung von Katalysatorformkörpern, deren Aktivmasse ein Multielementoxid ist
DE102007017080A1 (de) 2007-04-10 2008-10-16 Basf Se Verfahren zur Beschickung eines Längsabschnitts eines Kontaktrohres
DE102007025869A1 (de) 2007-06-01 2008-07-03 Basf Se Verfahren der Wiederbeschickung der Reaktionsrohre eines Rohrbündelreaktors mit einem neuen Katalysatorfestbett
DE102007028333A1 (de) 2007-06-15 2008-12-18 Basf Se Verfahren zum Einbringen einer wenigstens einer Produktionscharge von ringförmigen Schalenkatalysatoren K entnommenen Teilmenge in ein Reaktionsrohr eines Rohrbündelreaktors
DE102007028332A1 (de) 2007-06-15 2008-12-18 Basf Se Verfahren zum Beschicken eines Reaktors mit einem Katalysatorfestbett, das wenigstens ringförmige Katalysatorformkörper K umfasst
DE102008011011A1 (de) 2008-02-01 2009-08-06 Breimair, Josef, Dr. Katalysator für die katalytische Gasphasenoxidation von aromatischen Kohlenwasserstoffen zu Aldehyden, Carbonsäuren und/oder Carbonsäureanhydriden, insbesondere zu Phthalsäureanhydrid
DE102008044890B4 (de) * 2008-08-29 2023-09-14 Stesatec Gmbh Katalysator für die katalytische Gasphasenoxidation von aromatischen Kohlenwasserstoffen zu Aldehyden, Carbonsäuren und/oder Carbonsäureanhydriden, insbesondere zu Phthalsäureanhydrid, sowie Verfahren zur Herstellung eines solchen Katalysators
CN101385970B (zh) * 2008-10-29 2011-09-21 黑龙江省科学院石油化学研究院 生产9-芴酮用催化剂及其制备方法和9-芴酮的生产方法
US8901320B2 (en) 2010-04-13 2014-12-02 Basf Se Process for controlling a gas phase oxidation reactor for preparation of phthalic anhydride
US8859459B2 (en) 2010-06-30 2014-10-14 Basf Se Multilayer catalyst for preparing phthalic anhydride and process for preparing phthalic anhydride
CN103025424B (zh) * 2010-07-30 2016-01-20 巴斯夫欧洲公司 用于使邻二甲苯和/或萘氧化成邻苯二甲酸酐的催化剂
US9212157B2 (en) 2010-07-30 2015-12-15 Basf Se Catalyst for the oxidation of o-xylene and/or naphthalene to phthalic anhydride
US9029289B2 (en) 2012-07-16 2015-05-12 Basf Se Catalyst for preparing carboxylic acids and/or carboxylic anhydrides
EP2987552A1 (en) 2014-08-22 2016-02-24 Basf Se Catalyst system for oxidation of o-xylene and/or naphthalene to phthalic anhydride
CN105992647A (zh) 2014-02-17 2016-10-05 巴斯夫欧洲公司 用于将邻二甲苯和/或萘氧化成邻苯二甲酸酐的催化剂体系
US9914716B2 (en) 2014-02-17 2018-03-13 Basf Se Catalyst system for oxidation of o-xylene and/or naphthalene to phthalic anhydride
EP3047904A1 (en) 2015-01-22 2016-07-27 Basf Se Catalyst system for oxidation of o-xylene and/or naphthalene to phthalic anhydride
US9675966B2 (en) 2015-07-16 2017-06-13 Ineos Europe Ag Catalyst for n-butane oxidation to maleic anhydride

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1642921C3 (de) * 1965-05-18 1978-11-23 Basf Ag, 6700 Ludwigshafen Vanadium- und titanhaltiger Trägerkatalysator
GB1368626A (en) * 1970-08-26 1974-10-02 Rhone Progil Catalyst for the oxidation of ortho-xylene to phthalic anhydride
US3926846A (en) * 1972-08-25 1975-12-16 Nippon Catalytic Chem Ind Catalysts for the preparation of phthalic anhydride
JPS5238699B2 (ru) * 1972-08-28 1977-09-30
DE2260615A1 (de) * 1972-12-12 1974-06-20 Basf Ag Traegerkatalysator fuer die oxidation von o-xylol oder naphthalin zu phthalsaeureanhydrid
IT1001404B (it) * 1972-12-12 1976-04-20 Basf Ag Catalizzatore supportato per l os sidazione di o xilene o naftalina ad anidride ftalica
JPS5143732A (en) * 1974-10-11 1976-04-14 Nippon Catalytic Chem Ind Musuifutarusanno seizohoho
US4177161A (en) * 1974-10-22 1979-12-04 Ube Industries, Ltd. Catalytic oxidative process for producing maleic anhydride
US4162992A (en) * 1978-01-03 1979-07-31 Monsanto Company Oxidation and ammoxidation catalysts
JPS603307B2 (ja) * 1978-11-29 1985-01-26 株式会社日本触媒 無水フタル酸の製造方法
JPS591378B2 (ja) * 1979-12-03 1984-01-11 株式会社日本触媒 無水フタル酸製造用触媒
JPS608860B2 (ja) * 1980-12-22 1985-03-06 株式会社日本触媒 無水フタル酸製造用触媒
US4436922A (en) * 1981-07-06 1984-03-13 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for manufacture of high-purity phthalic anhydride
JPS591378A (ja) * 1982-06-17 1984-01-06 コニカ株式会社 粉体容器
JP2592490B2 (ja) * 1988-03-26 1997-03-19 株式会社日本触媒 芳香族炭化水素の酸化方法
US5169820A (en) * 1990-03-16 1992-12-08 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for producing phthalic anhydride

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Европейский патент N 447267, кл. C 07D 307/89, 1991. *

Also Published As

Publication number Publication date
JPH05239047A (ja) 1993-09-17
ATE116870T1 (de) 1995-01-15
CN1030070C (zh) 1995-10-18
DE69201169D1 (de) 1995-02-23
US5235071A (en) 1993-08-10
EP0522871A1 (en) 1993-01-13
EP0522871B1 (en) 1995-01-11
ES2066561T3 (es) 1995-03-01
BR9202537A (pt) 1993-03-16
DE69201169T2 (de) 1995-05-18
JP2654315B2 (ja) 1997-09-17
KR950009710B1 (ko) 1995-08-26
KR930001975A (ko) 1993-02-22
CN1069263A (zh) 1993-02-24

Similar Documents

Publication Publication Date Title
RU2043784C1 (ru) Катализатор для получения фталевого ангидрида
RU2047351C1 (ru) Катализатор для получения фталевого ангидрида
US4879387A (en) Method for manufacture of phthalic anhydride
US6362345B1 (en) Method for producing phthalic anhydride by means of catalytic vapor-phase oxidation of o-xylol/naphthalene mixtures
US5229527A (en) Method for production of phthalic anhydride by vapor-phase oxidation of mixture of ortho-xylene with naphthalene
US4481304A (en) Catalyst for producing phthalic anhydride
US4665200A (en) Method for preparing pyromellitic acid and/or pyromellitic anhydride
US4046780A (en) Preparation of phthalic anhydride
US4356112A (en) Catalyst for production of phthalic anhydride
US5504218A (en) Method for production pyromellitic anhydride
JPH0971561A (ja) ジシアノベンゼンの製造法
JPH0729056B2 (ja) 無水フタル酸製造用触媒
JPS608860B2 (ja) 無水フタル酸製造用触媒
JP2001276618A (ja) 酸化またはアンモ酸化用触媒
JP3298609B2 (ja) 無水フタル酸製造用触媒およびそれを用いてなる無水フタル酸の製造方法
JP3130681B2 (ja) オルソキシレンおよびナフタレンの混合物の気相酸化による無水フタル酸の製造方法
JP2821075B2 (ja) 芳香族炭化水素の気相接触酸化用流動層触媒
JP2690652B2 (ja) 芳香族炭化水素の気相接触酸化用流動触媒
JP4263815B2 (ja) 芳香族化合物の気相酸化用触媒
KR20230099704A (ko) 기상 접촉 암모산화 반응용 촉매 및 기상 접촉 암모산화 반응용 촉매의 제조 방법
JPH0731882A (ja) p−クレゾールの気相接触酸化用流動触媒
JPS63208575A (ja) シアノピリジンの製造方法
JPH05255181A (ja) 安息香酸製造用触媒及び安息香酸の製造方法
JPH11300206A (ja) 気相酸化触媒及びそれを用いた無水フタル酸の製造方法