KR20210148365A - 고체 전해 콘덴서 - Google Patents

고체 전해 콘덴서 Download PDF

Info

Publication number
KR20210148365A
KR20210148365A KR1020217038045A KR20217038045A KR20210148365A KR 20210148365 A KR20210148365 A KR 20210148365A KR 1020217038045 A KR1020217038045 A KR 1020217038045A KR 20217038045 A KR20217038045 A KR 20217038045A KR 20210148365 A KR20210148365 A KR 20210148365A
Authority
KR
South Korea
Prior art keywords
protective film
electrolytic capacitor
porous sintered
sintered body
solid electrolytic
Prior art date
Application number
KR1020217038045A
Other languages
English (en)
Inventor
도시유끼 나가이
Original Assignee
로무 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 로무 가부시키가이샤 filed Critical 로무 가부시키가이샤
Publication of KR20210148365A publication Critical patent/KR20210148365A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G2009/05Electrodes or formation of dielectric layers thereon characterised by their structure consisting of tantalum, niobium, or sintered material; Combinations of such electrodes with solid semiconductive electrolytes, e.g. manganese dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes

Abstract

고체 전해 콘덴서는, 밸브 작용 금속으로 이루어지는 다공질 소결체와, 상기 다공질 소결체에 일부가 진입하고, 또한, 상기 다공질 소결체로부터 돌출되는 양극 와이어와, 상기 다공질 소결체에 형성된 유전체층과, 상기 유전체층에 형성된 고체 전해질층과, 상기 고체 전해질층에 형성된 음극층과, 상기 음극층에 적어도 일부가 형성된 보호막을 구비한다. 상기 보호막의 유리 전이점은, 180℃ 이하이다.

Description

고체 전해 콘덴서
본 개시는, 고체 전해 콘덴서에 관한 것이다.
특허문헌 1에는, 종래의 고체 전해 콘덴서의 일례가 개시되어 있다. 고체 전해 콘덴서는, 다공질 소결체의 외표면 및 세공의 내표면에, 유전체층, 고체 전해질층 및 음극층을 적층하여, 밀봉 수지로 덮음으로써 형성되어 있다. 고체 전해 콘덴서는, 실장 시의 리플로우 처리에 의한 온도 변화에 의해, 고체 전해질층 음극층과의 사이에 균열이 발생하는 경우가 있다. 균열이 발생한 상태라면, 온도와 습도에 의해 고체 전해질층이 열화되어, 등가 직렬 저항(ESR)이 상승되는 경우가 있다. 또한, 다공질 소결체의 세공에 포함되는 수분이 많은 상태에서는, 리플로우 처리에 의한 열로 수분이 팽창되어, 밀봉 수지가 얇은 경우, 밀봉 수지에 균열이 발생할 가능성이 있다. 밀봉 수지에 균열이 발생하면, 외부로부터 수분이 침입하기 쉬워져, 고체 전해질층의 열화가 진행된다.
일본 특허 공개 제2018-101709호 공보
상기한 사정 하에서, 본 개시는, 고체 전해질층의 열화를 억제할 수 있는 고체 전해 콘덴서를 제공하는 것을 하나의 과제로 한다.
본 개시에 의해 제공되는 고체 전해 콘덴서는, 밸브 작용 금속으로 이루어지는 다공질 소결체와, 상기 다공질 소결체에 일부가 진입하고, 또한, 상기 다공질 소결체로부터 돌출되는 양극 와이어와, 상기 다공질 소결체 상에 형성된 유전체층과, 상기 유전체층 상에 형성된 고체 전해질층과, 상기 고체 전해질층 상에 형성된 음극층과, 상기 음극층 상에 적어도 일부가 형성된 보호막을 구비하고, 상기 보호막의 유리 전이점은, 100℃ 이하이다.
상술한 구성에 의하면, 보호막의 유리 전이점은, 100℃ 이하이고, 리플로우 처리 시의 온도와 비교해서 충분히 낮다. 따라서, 보호막은, 리플로우 처리 시에 연화하여, 고체 전해질층과 음극층 사이에 균열을 발생시키는 응력을 완화한다. 이에 의해, 고체 전해질층과 음극층 사이의 균열의 발생이 억제되므로, 고체 전해질층의 열화가 억제된다. 또한, 리플로우 처리 시에 밀봉 수지에 균열이 발생한 경우, 연화된 보호막이 당해 균열에 유입되어, 균열 부분을 막을 수 있다. 이에 의해, 균열로부터의 수분의 침입이 억제되어, 고체 전해질층의 열화가 억제된다.
본 개시의 그 밖의 특징 및 이점은, 첨부 도면을 참조하여 이하에 행하는 상세한 설명에 의해, 보다 명확해질 것이다.
도 1은 제1 실시 형태에 따른 고체 전해 콘덴서를 도시하는 평면도이다.
도 2는 도 1의 II-II선을 따르는 단면도이다.
도 3은 도 1의 III-III선을 따르는 단면도이다.
도 4는 도 1의 고체 전해 콘덴서를 도시하는 주요부 확대 단면도이다.
도 5는 도 1의 고체 전해 콘덴서를 도시하는 확대 단면도이며, 리플로우 처리 시에 밀봉 수지에 균열이 발생한 상태를 도시하는 도면이다.
도 6은 도 1의 고체 전해 콘덴서의 제조 방법의 일례를 나타내는 흐름도이다.
도 7은 도 1의 고체 전해 콘덴서의 제조 공정의 일 공정을 도시하는 단면도이다.
도 8은 도 1의 고체 전해 콘덴서의 제조 공정의 일 공정을 도시하는 단면도이다.
도 9는 도 1의 고체 전해 콘덴서의 제조 공정의 일 공정을 도시하는 단면도이다.
도 10은 도 1의 고체 전해 콘덴서의 제조 공정의 일 공정을 도시하는 단면도이다.
도 11은 제2 실시 형태에 따른 고체 전해 콘덴서를 도시하는 단면도이다.
도 12는 도 11의 고체 전해 콘덴서의 제조 방법의 일례를 나타내는 흐름도이다.
도 13은 도 11의 고체 전해 콘덴서의 제조 공정의 일 공정을 도시하는 단면도이다.
도 14는 도 11의 고체 전해 콘덴서의 제조 공정의 일 공정을 도시하는 단면도이다.
도 15는 제3 실시 형태에 따른 고체 전해 콘덴서를 도시하는 단면도이다.
도 16은 제3 실시 형태에 따른 고체 전해 콘덴서의 변형예를 도시하는 단면도이다.
이하, 본 개시의 바람직한 실시 형태에 대해서, 도면을 참조하여 구체적으로 설명한다.
도 1 내지 도 4는, 본 개시의 제1 실시 형태에 따른 고체 전해 콘덴서를 도시하고 있다. 고체 전해 콘덴서(A1)는, 콘덴서 소자(100), 양극 도통 부재(6), 음극 도통 부재(7), 보호막(8) 및 밀봉 수지(5)를 구비하고 있다. 각 도면에 있어서는, 평면에서 보면 고체 전해 콘덴서(A1)의 한쪽 변을 따르는 방향(도 1에 있어서의 좌측으로부터 우측으로의 방향)을 x 방향으로 하고, 다른 쪽의 변을 따르는 방향(도 1에 있어서의 하측으로부터 상측으로의 방향)을 y 방향으로 하고, 고체 전해 콘덴서(A1)의 두께 방향(도 2 및 도 3에 있어서의 하측으로부터 상측으로의 방향)을 z 방향으로 하여 설명한다. 고체 전해 콘덴서(A1)의 사이즈의 일례를 들면, x 방향 치수가 3.2㎜ 정도, y 방향 치수가 1.6㎜ 정도, z 방향 치수가 1.2㎜ 정도이다. 또한, 각 사이즈는 한정되지 않는다.
도 1은, 고체 전해 콘덴서(A1)를 도시하는 평면도이다. 도 1은, 밀봉 수지(5)를 투과하여, 밀봉 수지(5)의 외형을 상상선(이점쇄선)으로 나타내고 있다. 도 2는, 도 1의 II-II선을 따르는 단면도이다. 도 3는, 도 1의 III-III선을 따르는 단면도이다. 도 4는, 고체 전해 콘덴서(A1)를 도시하는 주요부 확대 단면도이다.
콘덴서 소자(100)는 다공질 소결체(1), 양극 와이어(11), 유전체층(2), 고체 전해질층(3) 및 음극층(4)을 구비하고 있다.
다공질 소결체(1)는 유전체층(2)에 대하여 양극을 이루는 것이며, 밸브 작용 금속인 예를 들어 Ta 또는 Nb 등으로 이루어진다. 본 실시 형태에 있어서는, 다공질 소결체(1)는 직육면체 형상이다. 도 4에 도시한 바와 같이, 다공질 소결체(1)는 그 내부에 미소한 다수의 세공(15)을 갖고 있다. 다공질 소결체(1)는 x 방향의 일방측을 향하는 면(1a)과, x 방향에 있어서 면(1a)과는 반대측을 향하는 면(1c)과, 면(1a) 및 면(1c)과 연결되는 4개의 면(1b)을 갖는다. 면(1a, 1b, 1c)은 각각, 직사각 형상이다.
양극 와이어(11)는, 다공질 소결체(1)의 내부에 그 일부가 x 방향으로 진입하고 있다. 양극 와이어(11)는, 예를 들어 밸브 작용 금속인 예를 들어 Ta 또는 Nb 등으로 이루어진다. 양극 와이어(11)의 재료는 한정되지 않지만, 다공질 소결체(1)를 형성하는 밸브 작용 금속과 동일한 밸브 작용 금속에 의해 형성되는 것이 바람직하다. 양극 와이어(11)는 다공질 소결체(1)의 면(1c)의 중심으로부터, x 방향을 향하여 다공질 소결체(1)에 진입하고, x 방향의 반대측을 향하여 돌출되어 있다. 즉, 양극 와이어(11)는 다공질 소결체(1)의 4개의 면(1b)에 대하여 평행해지도록 배치되고, z 방향에 있어서 다공질 소결체(1)의 중앙에 위치하고, y 방향에 있어서 다공질 소결체(1)의 중앙에 위치하고 있다. 양극 와이어(11)가 다공질 소결체(1)에 진입하고 있는 진입 길이는, 다공질 소결체(1)의 x 방향 치수의 75% 정도이다. 양극 와이어(11)의 면(1c)에 평행한 단면은 원 형상이다.
유전체층(2)은 다공질 소결체(1)의 표면에 적층되어 있다. 유전체층(2)은 양극 와이어(11)의 일부 표면에도 적층될 수 있다. 도 4에 도시한 바와 같이, 다공질 소결체(1)는 다수의 세공(15)을 갖는 구조이며, 유전체층(2)이 덮는 표면은, 다공질 소결체(1)의 외관에 나타나는 표면(면(1a, 1b, 1c))뿐만 아니라, 각각의 세공(15)의 내표면을 포함하고 있다. 도 2 및 도 3에 있어서는, 유전체층(2)은 이해의 편의상 다공질 소결체(1)를 외측으로부터 덮는 층으로서 기재되어 있지만, 실제로는, 다공질 소결체(1)의 외표면 및 세공(15) 내에 걸쳐서 형성되어 있다. 유전체층(2)은 일반적으로 밸브 작용 금속의 산화물로 이루어지고, 예를 들어 Ta2O5(오산화탄탈) 또는 Nb2O5(오산화니오븀) 등으로 이루어진다.
고체 전해질층(3)은 유전체층(2)을 덮고 있다. 고체 전해질층(3)은 유전체층(2)을 사이에 두고 다공질 소결체(1)와 전기적으로 콘덴서를 구성할 수 있는 것이면 된다. 도 4에 도시한 바와 같이, 고체 전해질층(3)은 내부층(31) 및 외부층(32)으로 이루어진다. 내부층(31)은 유전체층(2) 중, 다공질 소결체(1)의 세공(15)의 내표면을 덮고 있는 부분을 덮고 있고, 다공질 소결체(1)의 세공(15)을 매립하는 형태가 되어 있다. 내부층(31)은, 예를 들어 도전성 폴리머로 이루어진다. 외부층(32)은 내부층(31) 상에 적층되어 있고, 다공질 소결체(1)의 외부에 있어서 내부층(31)을 덮는 형태가 되어 있다. 본 실시 형태에 있어서는, 외부층(32)은 도전성 폴리머로 이루어진다. 고체 전해질층(3)은, 도전성 폴리머의 단일층에 의해 구성되어 있어도 된다.
음극층(4)은 고체 전해질층(3)의 외부층(32) 상에 적층되어 있고, 고체 전해질층(3)과 음극 도통 부재(7)의 도통을 도모하는 층이다. 음극층(4)은 적절한 도전성을 갖는 것이라면 그 구성은 특별히 한정되지 않는다. 본 실시 형태에서는, 음극층(4)은 다공질 소결체(1)의 면(1a) 및 4개의 면(1b)을 덮도록 형성되어 있고, 다공질 소결체(1)의 면(1c)의 부분에는 형성되어 있지 않다. 음극층(4)은 다공질 소결체(1)의 면(1c)도 덮도록 형성되어도 된다. 도 4에 도시한 바와 같이, 음극층(4)은 기초층(41) 및 상층(42)으로 이루어진다. 기초층(41)은, 예를 들어 그래파이트로 이루어지고, 고체 전해질층(3)을 직접 덮고 있다. 상층(42)은, 기초층(41) 상에 적층되어 있고, 예를 들어 Ag으로 이루어진다.
양극 도통 부재(6)는, 양극 와이어(11)에 접합되어 있고, 그 일부가 밀봉 수지(5)로부터 노출되어 있다. 양극 도통 부재(6)는, 예를 들어 Cu 도금이 실시된, 42 알로이 등의 Ni-Fe 합금으로 이루어진다. 양극 도통 부재(6) 중 밀봉 수지(5)로부터 노출된 부위는, 고체 전해 콘덴서(A1)를 면 실장하기 위한 외부 양극 단자(6a)로서 사용된다. 본 실시 형태에 있어서는, 양극 도통 부재(6)는 중간부(61) 및 노출부(62)에 의해 구성되어 있다. 중간부(61)는 그 모두가 밀봉 수지(5)로 덮여 있고, 양극 와이어(11)에 접합되어 있다. 노출부(62)는 판상 부재이며, 중간부(61)에 접합되어 있다. 노출부(62)는 그 일부가 밀봉 수지(5)로부터 노출됨으로써 외부 양극 단자(6a)를 구성하고 있다.
음극 도통 부재(7)는, 예를 들어 Ag 등으로 이루어지는 도전성 접합재(71)를 개재하여 음극층(4)에 접합되어 있고, 그 일부가 밀봉 수지(5)로부터 노출되어 있다. 음극 도통 부재(7)는, 예를 들어 Cu 도금이 실시된, 42 알로이 등의 Ni-Fe 합금으로 이루어지고, 본 실시 형태에 있어서는, 판상 부재이다. 음극 도통 부재(7) 중 밀봉 수지(5)로부터 노출된 면은, 고체 전해 콘덴서(A1)를 면 실장하기 위한 외부 음극 단자(7a)로서 사용된다. 양극 도통 부재(6)의 노출부(62) 및 음극 도통 부재(7)는 제조 시의 리드 프레임에서 유래한다.
밀봉 수지(5)는 콘덴서 소자(100), 양극 도통 부재(6) 및 음극 도통 부재(7)를 덮고 있고, 예를 들어 에폭시 수지로 이루어진다.
보호막(8)은, 콘덴서 소자(100), 양극 도통 부재(6) 및 음극 도통 부재(7)와, 밀봉 수지(5) 사이에 개재한다. 보호막(8)은, 콘덴서 소자(100)의 대부분에 있어서, 음극층(4) 상에 형성되어 있다. 본 실시 형태에 있어서, 보호막(8)은 콘덴서 소자(100) 중, 양극 도통 부재(6)에 접합되어 있는 양극 와이어(11)의 일부, 및, 음극 도통 부재(7)에 접합되어 있는 음극층(4)의 일부를 제외하는 모든 면을 덮고 있다.
보호막(8)은, 불소를 포함하는 폴리머로 이루어지고, 방수성을 갖는다. 따라서, 다공질 소결체(1)의 세공(15)에 포함되는 수분의 양이 너무 많아지는 것을 억제할 수 있다. Si를 포함하는 폴리머는 방수성이 너무 높고, 다공질 소결체(1)의 세공(15)에 포함되는 수분이 너무 적어진다. 고정 전해 콘덴서는, 리플로우 처리 시에는 세공(15)에 포함되는 수분이 적은 쪽이 바람직하지만, 리플로우 처리 후의 실제 사용 시에는, 소정량의 수분을 포함하고 있을 필요가 있다. 따라서, 본 실시 형태에서는, 보호막(8)은 Si를 포함하지 않는 폴리머를 채용하고 있다. 본 실시 형태에서는, 보호막(8)은 퍼플루오로알킬기로 탄소수가 6인 것(C6F13-R)을 갖고, 열 분해 온도가 200℃ 내지 300℃의 폴리머이다. 보호막(8)은 이에 한정되지 않는다. 보호막(8)의 두께는, 본 실시 형태에서는 0.5㎛ 정도이다. 보호막(8)의 두께는, 이에 한정되지 않지만, 0.01 내지 5㎛가 바람직하고, 0.1 내지 2㎛가 보다 바람직하다.
보호막(8)의 유리 전이점은, 35 내지 50℃이다. 보호막(8)의 유리 전이점은, 이에 한정되지 않고, 음극층(4)이나 밀봉 수지(5)의 유리 전이점 이하이면 된다. 밀봉 수지(5)의 유리 전이점은 110 내지 180℃ 정도이므로, 보호막(8)의 유리 전이점은, 180℃ 이하이면 되고, 110℃ 이하가 바람직하다. 보다 바람직하게는, 보호막(8)의 유리 전이점은, 35 내지 85℃이고, 더욱 바람직하게는, 35 내지 50℃다. 본 개시에 있어서의 유리 전이점은, DSC(Differential Scanning Calorimetry)법에 의해 검출된 것이다. 유리 전이점은, 다른 방법에 의해 검출되어도 된다.
도 5는, 고체 전해 콘덴서(A1)의 확대 단면도이며, 리플로우 처리 시에, 밀봉 수지(5)에 균열(5a)이 발생한 상태를 도시하는 도면이다. 소형화의 요청으로부터, 밀봉 수지(5)는 얇게 형성되어 있다. 보호막(8)은 완전 방수가 아니므로, 다공질 소결체(1)의 세공(15)에는, 어느 정도의 수분이 포함되어 있다. 따라서, 리플로우 처리에 의한 열로, 당해 수분이 팽창되어, 밀봉 수지(5)에 균열(5a)이 발생하는 경우가 있다. 리플로우 처리에서는, 예를 들어 260℃ 정도까지 가열되므로, 고체 전해 콘덴서(A1)의 내부 온도는, 보호막(8)의 유리 전이점을 초과한다. 따라서, 보호막(8)은 점도가 저하되어 유동성이 증가한다. 이에 의해, 도 5에 도시한 바와 같이, 연화한 보호막(8)의 일부(8a)가 밀봉 수지(5)의 균열(5a)에 유입되어, 균열(5a)을 막고 있다.
고체 전해 콘덴서(A1)의 제조 방법의 일례에 대해서, 도 6 내지 도 10을 참조하여 이하에 설명한다. 도 6은, 고체 전해 콘덴서(A1)의 제조 방법의 플로를 도시하는 도면이다. 도 7 내지 도 10은 모두, 고체 전해 콘덴서(A1)의 제조 방법에 관한 공정을 도시하는 단면도이며, 도 2에 대응하는 도면이다.
도 6에 도시한 바와 같이, 먼저, 다공질 소결체(1)를 형성한다(다공질 소결체 형성 공정). 이 공정에 있어서는, 먼저, 다공질체를 형성한다(다공질체 형성 공정).
다공질체 형성 공정에서는, 예를 들어 Ta 또는 Nb 등의 밸브 작용 금속의 미분말을, 금형의 공간부에 충전한다. 이어서, 양극 와이어(11)로 되는 와이어 재료(92)의 선단 부분을, 공간부에 충전된 미분말 내에 진입시킨다. 이어서, 충전된 미분말에, 금형에 의해 압력을 가한다. 이에 의해, 미분말이 압축되어, 다공질체(93)가 가압 성형된다. 이어서, 도 7에 도시한 바와 같이, 와이어 재료(92)를 다공질체(93)로부터 이격된 소정의 위치에서 절단하여, 다공질체(93)를 취출한다. 이상에 의해, 와이어 재료(92)가 진입한 다공질체(93)가 얻어진다.
이어서, 이 다공질체(93) 및 와이어 재료(92)에 소결 처리를 실시한다. 이 소결 처리에 의해, 밸브 작용 금속의 미분말끼리가 소결되고, 다수의 세공(15)을 갖는 다공질 소결체(1) 및 양극 와이어(11)가 형성된다(소결 처리). 이때, 소결 처리에 수반하는 수축에 의해, 다공질체(93)의 외형보다도 다공질 소결체(1)의 외형은 작아진다. 이 수축을 고려하여, 다공질 소결체(1) 및 양극 와이어(11)가 소정의 치수가 되도록, 다공질체(93)는 성형된다.
이어서, 유전체층(2)을 형성한다(유전체층 형성 공정). 예를 들어, 양극 와이어(11)에 의해 다공질 소결체(1)를 지지하면서, 인산 수용액의 화성액에 다공질 소결체(1)를 담근다. 그리고, 이 화성액 중에 있어서, 다공질 소결체(1)에 대하여 양극 산화 처리를 실시한다. 이에 의해, 다공질 소결체(1)의 외표면 및 내표면을 덮도록 예를 들어 Ta2O5 또는 Nb2O5 등으로 이루어지는 유전체층(2)이 형성된다.
이어서, 고체 전해질층(3)을 형성한다(고체 전해질층 형성 공정). 고체 전해질층(3)을 형성하는 공정에 있어서는, 먼저, 내부층(31)을 형성한다(내부층 형성). 먼저, 폴리머 분산체와 용매를 혼합한다. 상기 폴리머 분산체는, 미리 중합 반응시킨 도전성 폴리머 입자이며, 예를 들어 폴리피롤, 폴리티오펜, 폴리(N-메틸 피롤), 폴리(3-메틸티오펜), 폴리(3-메톡시티오펜), 폴리(3,4-에틸렌디옥시티오펜)로부터 선택되는 1종 또는 2종으로 이루어지는 중합체 또는 공중합체가 도전율의 관점에서 적합하게 사용된다. 나아가, 폴리피리롤, 폴리(3,4-에틸렌디옥시티오펜)는 도전성을 보다 향상시킴과 함께, 내열성을 높이는 것이 가능한 점으로부터, 보다 바람직하다. 상기 용매는, 상기 폴리머 분산체를 균일하게 분산시킬 수 있는 것이며, 예를 들어 물, 에탄올, 유기 용제 등이 적절히 채용할 수 있다. 이에 의해, 분산체액이 얻어진다. 이어서, 유전체층(2)이 형성된 다공질 소결체(1)를 상기 분산체액에 침지하고, 인상한다. 이어서, 상기 분산체액을 예를 들어 건조시킴으로써, 상기 용매를 제거한다. 이에 의해, 도전성 폴리머로 이루어지는 내부층(31)이 형성된다.
다음에, 외부층(32)을 형성한다(외부층 형성). 내부층(31)이 형성된 다공질 소결체(1)를 기지의 산화제 및 모노머 용액에 각각 침지하고, 인상한 후에 건조시킨다. 이에 의해, 화학 중합 반응을 일으키게 한다. 그리고, 필요에 따라서 세정이나 재화성 처리를 행한다. 이에 의해, 도전성 폴리머로 이루어지는 외부층(32)이 형성된다. 또는, 모노머 및 도펀트를 포함하는 전해질액을 도포하고, 전류를 흘림으로써 도전성 폴리머로 이루어지는 외부층(32)을 형성하는 전해 중합법을 사용해도 된다.
이어서, 음극층(4)을 형성한다(음극층 형성 공정). 먼저, 기초층(41)을 형성한다(기초층 형성). 기초층(41)의 형성은, 예를 들어, 그래파이트와 유기 용제의 용액에 다공질 소결체(1)를 침지시키고, 인상한 후에 건조 혹은 소성한다. 이어서, 상층(42)을 형성한다(상층 형성). 상층(42)의 형성은, 예를 들어 Ag 필러와 유기 용제의 용액에 다공질 소결체(1)를 침지시키고, 인상한 후에, 건조 혹은 소성한다. 이에 의해, 상층(42)이 형성되고, 음극층(4)이 얻어진다. 이상에 의해, 도 8에 도시한 바와 같이, 콘덴서 소자(100)가 형성된다.
이어서, 콘덴서 소자(100)에, 양극 도통 부재(6) 및 음극 도통 부재(7)로 되는 재료를 접합한다(접합 공정). 먼저, 양극 도통 부재(6)의 중간부(61)가 되는 모재와 양극 와이어(11)를 용접한다. 그리고, 이 모재를 소정의 크기로 절단한다. 소정의 크기로 절단된 모재가 중간부(61)로 된다. 이어서, 양극 와이어(11)를 소정의 길이로 절단한다. 이어서, 도 9에 도시한 바와 같이, 양극 도통 부재(6)의 노출부(62)가 되는 리드 프레임(96)에 중간부(61)를 접합하고, 음극 도통 부재(7)가 되는 리드 프레임(97)에 콘덴서 소자(100)(음극층(4))를 접합한다. 리드 프레임(97)과 음극층(4)은 페이스트 등의 도전성 접합재(71)에 의해 접합된다.
이어서, 보호막(8)을 형성한다(보호막 형성 공정). 보호막(8)의 형성은, 예를 들어, 불소를 포함하는 폴리머 분산체와 용매를 혼합한 분산체액에, 리드 프레임(96, 97) 및 중간부(61)가 접합된 콘덴서 소자(100)를 침지시키고, 인상한 후에 건조 혹은 소성한다. 이에 의해, 도 10에 도시한 바와 같이, 콘덴서 소자(100), 리드 프레임(96, 97) 및 중간부(61)에, 보호막(8)이 형성된다. 보호막(8)은, 분산체액을 스프레이에 의해 도포하고, 건조 혹은 소성함으로써 형성해도 된다.
다음에, 예를 들어 트랜스퍼 몰드법 등에 의해, 밀봉 수지(5)를 형성한다(밀봉 수지 형성 공정). 그리고, 리드 프레임(96, 97)의 불필요 부분을 절단 제거한다. 이상의 공정을 거침으로써, 도 1 내지 도 4에 도시하는 고체 전해 콘덴서(A1)가 얻어진다.
다음에, 고체 전해 콘덴서(A1)의 작용에 대해서 설명한다.
본 실시 형태에 따르면, 보호막(8)의 유리 전이점은, 40 내지 50℃이고, 리플로우 처리 시의 온도와 비교해서 충분히 낮다. 따라서, 음극층(4)에 접하는 보호막(8)은 리플로우 처리 시에 연화하여, 고체 전해질층(3)과 음극층(4) 사이에 균열을 발생시키는 응력을 완화한다. 이에 의해, 고체 전해질층(3)과 음극층(4) 사이의 균열의 발생이 억제된다. 따라서, 고체 전해질층(3)과 음극층(4) 사이의 균열에서 유래되는 고체 전해질층(3)의 열화가 억제된다. 또한, 리플로우 처리 시에 밀봉 수지(5)에 균열(5a)이 발생한 경우, 연화된 보호막(8)의 일부(8a)가 당해 균열(5a)에 유입되어, 균열(5a)을 막을 수 있다(도 5 참조). 이에 의해, 균열(5a)로부터의 수분의 침입이 억제되므로, 고체 전해질층(3)의 열화가 억제된다.
본 실시 형태에 따르면, Si를 포함하지 않고, 불소를 포함하는 폴리머로 이루어지는 보호막(8)이 콘덴서 소자(100)를 덮고 있다. 보호막(8)은, 어느 정도의 방수성을 갖는다. 따라서, 보호막(8)이 형성되어 있지 않은 경우와 비교하여, 고체 전해질층(3)과 음극층(4) 사이에 발생한 균열에 수분이 침입하는 것을 억제할 수 있다. 이에 의해, 고체 전해질층(3)의 열화가 억제된다. 또한, 보호막(8)이 형성되어 있지 않는 경우와 비교하여, 다공질 소결체(1)의 세공(15)에 포함되는 수분의 양이 억제된다. 이에 의해, 리플로우 처리 시의 수분의 팽창에 의한 밀봉 수지(5)의 균열(5a)의 발생이 억제된다. 또한, 보호막(8)은 Si를 포함하지 않으므로, 다공질 소결체(1)의 세공(15)에 포함되는 수분의 양이 너무 적어지는 것을 억제할 수 있다.
본 실시 형태에 있어서는, 보호막(8)이 불소를 포함하고, 또한, Si를 포함하지 않는 폴리머로 이루어지는 경우에 대해서 설명했지만, 본 개시는 이에 한정되지 않는다. 보호막(8)은, 유리 전이점이 100℃ 이하이면, 그 밖의 구성이어도 된다. 이 경우에서도, 보호막(8)은 리플로우 처리 시에 연화하여, 고체 전해질층(3)과 음극층(4) 사이에 균열을 발생시키는 응력을 완화하므로, 고체 전해질층(3)과 음극층(4) 사이의 균열의 발생을 억제할 수 있다. 따라서, 고체 전해질층(3)과 음극층(4) 사이의 균열에서 유래되는 고체 전해질층(3)의 열화가 억제된다. 또한, 리플로우 처리 시에 밀봉 수지(5)에 균열(5a)이 발생한 경우, 연화된 보호막(8)의 일부(8a)가 당해 균열(5a)에 유입되어, 균열(5a)을 막을 수 있다(도 5 참조). 이에 의해, 균열(5a)로부터의 수분의 침입이 억제되므로, 고체 전해질층(3)의 열화가 억제된다.
도 11 내지 도 16은, 본 개시의 다른 실시 형태를 도시하고 있다. 이들의 도면에 있어서, 상기 실시 형태와 동일하거나 또는 유사한 요소에는, 상기 실시 형태와 동일한 부호를 부여하고 있다.
도 11은, 제2 실시 형태에 따른 고체 전해 콘덴서를 도시하는 단면도이며, 도 2에 대응하는 도면이다. 본 실시 형태의 고체 전해 콘덴서(A2)는, 보호막(8)이 콘덴서 소자(100)를 덮고 있지만, 양극 도통 부재(6) 및 음극 도통 부재(7)를 덮고 있지 않은 점에서 상술한 제1 실시 형태와 다르다.
본 실시 형태에 있어서, 보호막(8)은 콘덴서 소자(100)의 대부분을 덮고 있다. 구체적으로는, 보호막(8)은 다공질 소결체(1)의 전체와, 양극 와이어(11)의 다공질 소결체(1)로부터 돌출된 부분 중, 다공질 소결체(1)에 인접하는 일부를 덮고 있다. 양극 와이어(11)의 기단 부분(11a)(x 방향의 반대측 단부)은 보호막(8)에 의해 덮여 있지 않다. 기단 부분(11a)도 보호막(8)에 의해 덮여 있어도 된다. 보호막(8)은 다공질 소결체(1)의 면(1a) 및 4개의 면(1b)에 겹치는 부분에서는 음극층(4)에 접하고, 다공질 소결체(1)의 면(1c)에 겹치는 부분에서는 고체 전해질층(3)에 접한다. 즉, 보호막(8)은 다공질 소결체(1)의 각 면 중, 음극층(4)이 형성되어 있는 면(1a) 및 4개의 면(1b)의 전체면에 형성되어 있고, 음극층(4)의 전체면을 덮고 있다. 또한, 보호막(8)은 콘덴서 소자(100)와 음극 도통 부재(7) 사이에도 개재한다. 보호막(8)은 절연성을 갖지만, 두께가 1㎛ 이하인 경우, 음극층(4)과 음극 도통 부재(7) 사이의 실용적인 도통을 행할 수 있다.
다음에, 고체 전해 콘덴서(A2)의 제조 방법의 일례에 대해서, 도 12 내지 도 14를 참조하여 이하에 설명한다. 제1 실시 형태에 따른 고체 전해 콘덴서(A1)의 제조 방법과 마찬가지의 공정에 대해서는, 설명을 생략한다. 도 12는, 고체 전해 콘덴서(A2)의 제조 방법의 플로를 도시하는 도면이다. 도 13 및 도 14는 모두, 고체 전해 콘덴서(A2)의 제조 방법에 관한 공정을 도시하는 단면도이며, 도 2에 대응하는 도면이다.
도 12에 도시한 바와 같이, 고체 전해 콘덴서(A2)의 제조 방법은, 접합 공정 전에 보호막 형성 공정을 실시하는 점에서, 제1 실시 형태에 따른 고체 전해 콘덴서(A1)의 제조 방법과 다르다.
다공질 소결체 형성 공정, 유전체층 형성 공정, 고체 전해질층 형성 공정 및 음극층 형성 공정에 대해서는, 제1 실시 형태에 따른 제조 방법과 마찬가지이므로, 설명을 생략한다. 이들의 공정에 의해, 콘덴서 소자(100)가 형성된다.
이어서, 보호막(8)을 형성한다(보호막 형성 공정). 보호막(8)의 형성은, 예를 들어, 불소를 포함하는 폴리머 분산체와 용매를 혼합한 분산체액에, 콘덴서 소자(100)를 침지시키고, 인상한 후에 건조 혹은 소성한다. 콘덴서 소자(100)를 분산체액에 침지시킬 때에는, 양극 와이어(11)의 기단 부분(11a)은 분산체액에 침지시키지 않는다. 이에 의해, 도 13에 도시한 바와 같이, 콘덴서 소자(100) 중 기단 부분(11a) 이외의 부분에, 보호막(8)이 형성된다. 보호막(8)은 분산체액을 스프레이에 의해 도포하고, 건조 혹은 소성함으로써 형성해도 된다. 또한, 콘덴서 소자(100)에 보호막(8)을 형성한 후, 음극 도통 부재(7)가 접합되는 영역에 형성된 보호막(8)을 제거해도 된다.
이어서, 보호막(8)이 형성된 콘덴서 소자(100)에, 양극 도통 부재(6) 및 음극 도통 부재(7)로 되는 재료를 접합한다(접합 공정). 먼저, 양극 도통 부재(6)의 중간부(61)가 되는 모재와 양극 와이어(11)를 용접한다. 그리고, 이 모재를 소정의 크기로 절단한다. 소정의 크기로 절단된 모재가 중간부(61)로 된다. 이어서, 양극 와이어(11)를 소정의 길이로 절단한다. 이어서, 도 14에 도시한 바와 같이, 양극 도통 부재(6)의 노출부(62)가 되는 리드 프레임(96)에 중간부(61)를 접합하고, 음극 도통 부재(7)가 되는 리드 프레임(97)에 콘덴서 소자(100)(음극층(4))를 접합한다. 리드 프레임(97)과 음극층(4)은 페이스트 등의 도전성 접합재(71)에 의해 접합된다.
이어서, 예를 들어 트랜스퍼 몰드법 등에 의해, 밀봉 수지(5)를 형성한다(밀봉 수지 형성 공정). 그리고, 리드 프레임(96, 97)의 불필요 부분을 절단 제거한다. 이상의 공정을 거침으로써, 도 11에 도시하는 고체 전해 콘덴서(A2)가 얻어진다.
본 실시 형태에 있어서도, 보호막(8)은 콘덴서 소자(100)를 덮어, 음극층(4)에 접하여 형성되어 있다. 따라서, 보호막(8)은 리플로우 처리 시에 연화하여, 고체 전해질층(3)과 음극층(4) 사이에 균열을 발생시키는 응력을 완화한다. 이에 의해, 고체 전해질층(3)과 음극층(4) 사이의 균열의 발생이 억제된다. 따라서, 고체 전해질층(3)과 음극층(4) 사이의 균열에서 유래되는 고체 전해질층(3)의 열화가 억제된다. 또한, 리플로우 처리 시에 밀봉 수지(5)에 균열(5a)이 발생한 경우, 연화된 보호막(8)의 일부(8a)가 당해 균열(5a)에 유입되어, 균열(5a)을 막을 수 있다(도 5 참조). 이에 의해, 균열(5a)로부터의 수분의 침입이 억제되므로, 고체 전해질층(3)의 열화가 억제된다.
본 실시 형태에 있어서도, 보호막(8)은 방수성을 갖는다. 따라서, 보호막(8)이 형성되어 있지 않는 경우와 비교하여, 고체 전해질층(3)과 음극층(4) 사이에 발생한 균열에 수분이 침입하는 것을 억제할 수 있다. 이에 의해, 고체 전해질층(3)의 열화가 억제된다. 또한, 보호막(8)이 형성되어 있지 않는 경우와 비교하여, 다공질 소결체(1)의 세공(15)에 포함되는 수분의 양이 억제된다. 이에 의해, 리플로우 처리 시의 수분의 팽창에 의한 밀봉 수지(5)의 균열(5a)의 발생이 억제된다. 또한, 보호막(8)은 Si를 포함하지 않으므로, 다공질 소결체(1)의 세공(15)에 포함되는 수분의 양이 너무 적어지는 것을 억제할 수 있다.
도 15는, 제3 실시 형태에 따른 고체 전해 콘덴서를 도시하는 단면도이며, 도 2에 대응하는 도면이다. 본 실시 형태의 고체 전해 콘덴서(A3)는, 콘덴서 소자(100) 중, 다공질 소결체(1)의 면(1c)에 대응하는 면에 보호막(8)이 형성되어 있지 않은 점에서, 상술한 제2 실시 형태와 다르다.
본 실시 형태에 있어서, 보호막(8)은 콘덴서 소자(100) 중, 다공질 소결체(1)의 면(1a) 및 4개의 면(1b)에 대응하는 면에만 형성되어 있다. 콘덴서 소자(100) 중 다공질 소결체(1)의 면(1c)에 대응하는 면과, 양극 와이어(11)는, 보호막(8)에 의해 덮여 있지 않다. 보호막(8)은 다공질 소결체(1)의 음극층(4)이 형성된 모든 면에 형성되고, 이들의 면에 있어서, 음극층(4)에 접하고 있다.
본 실시 형태에 있어서도, 보호막(8)은 다공질 소결체(1)의 음극층(4)이 형성된 모든 면에 형성되고, 이들의 면에 있어서, 음극층(4)에 접하고 있다. 보호막(8)은 리플로우 처리 시에 연화하여, 고체 전해질층(3)과 음극층(4) 사이에 균열을 발생시키는 응력을 완화하므로, 고체 전해질층(3)과 음극층(4) 사이의 균열의 발생을 억제할 수 있다. 따라서, 고체 전해질층(3)과 음극층(4) 사이의 균열에서 유래되는 고체 전해질층(3)의 열화가 억제된다. 또한, 보호막(8)은 밀봉 수지(5)가 얇게 형성되고, 균열(5a)이 발생하기 쉬운, 다공질 소결체(1)의 면(1a) 및 4개의 면(1b)에 대응하는 면에 형성되어 있다. 따라서, 리플로우 처리 시에 밀봉 수지(5)에 균열(5a)이 발생한 경우, 연화된 보호막(8)의 일부(8a)가 당해 균열(5a)에 유입되어, 균열(5a)을 막을 수 있다(도 5 참조). 이에 의해, 균열(5a)로부터의 수분의 침입이 억제되므로, 고체 전해질층(3)의 열화가 억제된다. 또한, 보호막(8)은 다공질 소결체(1)의 면(1c)에 대응하는 면에는 형성되어 있지 않지만, 당해 면에 접하는 보호막(8)은 두껍게 형성되어 있으므로, 균열(5a)이 발생하기 어렵다.
본 실시 형태에 있어서도, 보호막(8)이 다공질 소결체(1)의 면(1a) 및 4개의 면(1b)에 대응하는 면에 형성되어 있으므로, 보호막(8)이 형성되어 있지 않은 경우와 비교하여, 고체 전해질층(3)과 음극층(4) 사이에 발생한 균열에 수분이 침입하는 것을 억제할 수 있다. 이에 의해, 고체 전해질층(3)의 열화가 억제된다. 또한, 보호막(8)이 형성되어 있지 않은 경우와 비교하여, 다공질 소결체(1)의 세공(15)에 포함되는 수분의 양이 억제된다. 이에 의해, 리플로우 처리 시의 수분의 팽창에 의한 밀봉 수지(5)의 균열(5a)의 발생이 억제된다. 또한, 보호막(8)은 Si를 포함하지 않으므로, 다공질 소결체(1)의 세공(15)에 포함되는 수분의 양이 너무 적어지는 것을 억제할 수 있다.
본 실시 형태에 있어서는, 보호막(8)이 다공질 소결체(1)의 면(1b)에 대응하는 면의 전체면에 형성되어 있는 경우에 대해서 설명했지만, 본 개시는 이에 한정되지 않는다. 예를 들어 도 16에 도시한 바와 같이, 보호막(8)이 다공질 소결체(1)의 면(1b)에 대응하는 면의 일부(도 16에서는, x 방향의 반대측 일부)에 형성되어 있지 않아도 된다. 이 경우에서도, 보호막(8)은 리플로우 처리 시에 연화하여, 고체 전해질층(3)과 음극층(4) 사이에 균열을 발생시키는 응력을 어느 정도 완화할 수 있다. 또한, 밀봉 수지(5)의 보호막(8)에 겹치는 부분에 균열(5a)이 발생한 경우, 보호막(8)의 일부가 당해 균열(5a)에 유입되어 막을 수 있다. 또한, 보호막(8)은 형성되어 있지 않은 경우와 비교하여, 고체 전해질층(3)과 음극층(4) 사이에 발생한 균열에 수분이 침입하는 것을 억제할 수 있어, 다공질 소결체(1)의 세공(15)에 포함되는 수분의 양을 억제할 수 있다.
본 개시에 관한 고체 전해 콘덴서는, 상술한 실시 형태에 한정되는 것은 아니다. 본 개시에 관한 고체 전해 콘덴서의 각 부의 구체적인 구성은, 다양하게 설계 변경 가능하다.
부기 1.
밸브 작용 금속으로 이루어지는 다공질 소결체와,
상기 다공질 소결체에 일부가 진입하고, 또한, 상기 다공질 소결체로부터 돌출되는 양극 와이어와,
상기 다공질 소결체에 형성된 유전체층과,
상기 유전체층에 형성된 고체 전해질층과,
상기 고체 전해질층에 형성된 음극층과,
상기 음극층에 적어도 일부가 형성된 보호막
을 구비하고,
상기 보호막의 유리 전이점은, 180℃ 이하인, 고체 전해 콘덴서.
부기 2.
상기 보호막의 유리 전이점은, 110℃ 이하인, 부기 1에 기재된 고체 전해 콘덴서.
부기 3.
상기 보호막의 유리 전이점은, 35 내지 85℃인, 부기 2에 기재된 고체 전해 콘덴서.
부기 4.
상기 보호막의 유리 전이점은, 35 내지 50℃인, 부기 3에 기재된 고체 전해 콘덴서.
부기 5.
밸브 작용 금속으로 이루어지는 다공질 소결체와,
상기 다공질 소결체에 일부가 진입하고, 또한, 상기 다공질 소결체로부터 돌출되는 양극 와이어와,
상기 다공질 소결체에 형성된 유전체층과,
상기 유전체층에 형성된 고체 전해질층과,
상기 고체 전해질층에 형성된 음극층과,
상기 음극층에 적어도 일부가 형성된 보호막
을 구비하고,
상기 보호막은, 불소를 포함하는 폴리머로 이루어지는, 고체 전해 콘덴서.
부기 6.
상기 보호막은, Si를 포함하지 않는, 부기 5에 기재된 고체 전해 콘덴서.
부기 7.
상기 보호막은, 탄소수가 6인 퍼플루오로알킬기(C6F13-R)를 갖고, 열 분해 온도가 200℃ 내지 300℃의 폴리머로 이루어지는, 부기 5 또는 6에 기재된 고체 전해 콘덴서.
부기 8.
상기 보호막의 두께는, 0.01 내지 5㎛인, 부기 1 내지 7 중 어느 하나에 기재된 고체 전해 콘덴서.
부기 9.
상기 보호막의 두께는, 0.1 내지 2㎛인, 부기 8에 기재된 고체 전해 콘덴서.
부기 10.
상기 양극 와이어에 접합된 양극 도통 부재와,
상기 음극층에 접합된 음극 도통 부재
를 더 구비하는, 부기 1 내지 9 중 어느 하나에 기재된 고체 전해 콘덴서.
부기 11.
상기 보호막은, 적어도 일부가 상기 양극 도통 부재 및 상기 음극 도통 부재에 형성되어 있는, 부기 10에 기재된 고체 전해 콘덴서.
부기 12.
상기 보호막은, 적어도 일부가 상기 음극층과 상기 음극 도통 부재 사이에 개재하는, 부기 10에 기재된 고체 전해 콘덴서.
부기 13.
상기 보호막은, 상기 음극층의 전체면을 덮고 있는, 부기 12에 기재된 고체 전해 콘덴서.
부기 14.
상기 다공질 소결체 및 상기 양극 와이어의 전체를 덮는 밀봉 수지를 더 구비하고,
상기 양극 도통 부재는, 상기 밀봉 수지로 덮이고, 또한, 상기 양극 와이어에 접합되어 있는 중간부와, 판상 부재이며, 또한, 상기 중간부에 접합되어 있는 노출부를 구비하고,
상기 음극 도통 부재는, 판상 부재이며,
상기 노출부의 일부 및 상기 음극 도통 부재의 일부는, 상기 밀봉 수지로부터 노출되어 외부 단자를 구성하고 있는, 부기 10 내지 13 중 어느 하나에 기재된 고체 전해 콘덴서.
부기 15.
상기 다공질 소결체는 직육면체 형상인, 부기 1 내지 14 중 어느 하나에 기재된 고체 전해 콘덴서.
부기 16.
상기 다공질 소결체는, Ta 또는 Nb로 이루어지는, 부기 1 내지 15 중 어느 하나에 기재된 고체 전해 콘덴서.
A1 내지 A3:고체 전해 콘덴서
100:콘덴서 소자
1:다공질 소결체
1a, 1b, 1c:면
15:세공
11:양극 와이어
11a:기단 부분
2:유전체층
3:고체 전해질층
31:내부층
32:외부층
4:음극층
41:기초층
42:상층
5:밀봉 수지
5a:균열
6:양극 도통 부재
6a:외부 양극 단자
61:중간부
62:노출부
7:음극 도통 부재
7a:외부 음극 단자
71:도전성 접합재
8:보호막
92:와이어 재료
93:다공질체
96, 97:리드 프레임

Claims (16)

  1. 밸브 작용 금속으로 이루어지는 다공질 소결체와,
    상기 다공질 소결체에 일부가 진입하고, 또한, 상기 다공질 소결체로부터 돌출되는 양극 와이어와,
    상기 다공질 소결체에 형성된 유전체층과,
    상기 유전체층에 형성된 고체 전해질층과,
    상기 고체 전해질층에 형성된 음극층과,
    상기 음극층에 적어도 일부가 형성된 보호막
    을 구비하고,
    상기 보호막의 유리 전이점은, 180℃ 이하인, 고체 전해 콘덴서.
  2. 제1항에 있어서,
    상기 보호막의 유리 전이점은, 110℃ 이하인, 고체 전해 콘덴서.
  3. 제2항에 있어서,
    상기 보호막의 유리 전이점은, 35 내지 85℃인, 고체 전해 콘덴서.
  4. 제3항에 있어서,
    상기 보호막의 유리 전이점은, 35 내지 50℃인, 고체 전해 콘덴서.
  5. 밸브 작용 금속으로 이루어지는 다공질 소결체와,
    상기 다공질 소결체에 일부가 진입하고, 또한, 상기 다공질 소결체로부터 돌출되는 양극 와이어와,
    상기 다공질 소결체에 형성된 유전체층과,
    상기 유전체층에 형성된 고체 전해질층과,
    상기 고체 전해질층에 형성된 음극층과,
    상기 음극층에 적어도 일부가 형성된 보호막
    을 구비하고,
    상기 보호막은, 불소를 포함하는 폴리머로 이루어지는, 고체 전해 콘덴서.
  6. 제5항에 있어서,
    상기 보호막은, Si를 포함하지 않는, 고체 전해 콘덴서.
  7. 제5항 또는 제6항에 있어서,
    상기 보호막은, 탄소수가 6인 퍼플루오로알킬기(C6F13-R)를 갖고, 열 분해 온도가 200℃ 내지 300℃의 폴리머로 이루어지는, 고체 전해 콘덴서.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 보호막의 두께는, 0.01 내지 5㎛인, 고체 전해 콘덴서.
  9. 제8항에 있어서,
    상기 보호막의 두께는, 0.1 내지 2㎛인, 고체 전해 콘덴서.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 양극 와이어에 접합된 양극 도통 부재와,
    상기 음극층에 접합된 음극 도통 부재
    를 더 구비하는, 고체 전해 콘덴서.
  11. 제10항에 있어서,
    상기 보호막은, 적어도 일부가 상기 양극 도통 부재 및 상기 음극 도통 부재에 형성되어 있는, 고체 전해 콘덴서.
  12. 제10항에 있어서,
    상기 보호막은, 적어도 일부가 상기 음극층과 상기 음극 도통 부재 사이에 개재하는, 고체 전해 콘덴서.
  13. 제12항에 있어서,
    상기 보호막은, 상기 음극층의 전체면을 덮고 있는, 고체 전해 콘덴서.
  14. 제10항 내지 제13항 중 어느 한 항에 있어서,
    상기 다공질 소결체 및 상기 양극 와이어의 전체를 덮는 밀봉 수지를 더 구비하고,
    상기 양극 도통 부재는, 상기 밀봉 수지로 덮이고, 또한, 상기 양극 와이어에 접합되어 있는 중간부와, 판상 부재이며, 또한, 상기 중간부에 접합되어 있는 노출부를 구비하고,
    상기 음극 도통 부재는, 판상 부재이며,
    상기 노출부의 일부 및 상기 음극 도통 부재의 일부는, 상기 밀봉 수지로부터 노출되어 외부 단자를 구성하고 있는, 고체 전해 콘덴서.
  15. 제1항 내지 제14항 중 어느 한 항에 있어서,
    상기 다공질 소결체는 직육면체 형상인, 고체 전해 콘덴서.
  16. 제1항 내지 제15항 중 어느 한 항에 있어서,
    상기 다공질 소결체는, Ta 또는 Nb로 이루어지는, 고체 전해 콘덴서.
KR1020217038045A 2019-04-25 2020-04-22 고체 전해 콘덴서 KR20210148365A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019084021 2019-04-25
JPJP-P-2019-084021 2019-04-25
PCT/JP2020/017282 WO2020218319A1 (ja) 2019-04-25 2020-04-22 固体電解コンデンサ

Publications (1)

Publication Number Publication Date
KR20210148365A true KR20210148365A (ko) 2021-12-07

Family

ID=72942214

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217038045A KR20210148365A (ko) 2019-04-25 2020-04-22 고체 전해 콘덴서

Country Status (4)

Country Link
US (1) US11915886B2 (ko)
KR (1) KR20210148365A (ko)
CN (1) CN113728408B (ko)
WO (1) WO2020218319A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115136268A (zh) * 2020-02-26 2022-09-30 松下知识产权经营株式会社 电容器元件、电解电容器及绝缘材料、以及安装基板的制造方法
US11837415B2 (en) 2021-01-15 2023-12-05 KYOCERA AVX Components Corpration Solid electrolytic capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101709A (ja) 2016-12-21 2018-06-28 株式会社トーキン 固体電解コンデンサおよびその製造方法

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001655A (en) 1974-01-10 1977-01-04 P. R. Mallory & Co., Inc. Compressible intermediate layer for encapsulated electrical devices
US4039904A (en) 1976-01-02 1977-08-02 P. R. Mallory & Co., Inc. Intermediate precoat layer of resin material for stabilizing encapsulated electric devices
JPS63102309A (ja) 1986-10-20 1988-05-07 日本ケミコン株式会社 固体電解コンデンサの製造法
US4945452A (en) 1989-11-30 1990-07-31 Avx Corporation Tantalum capacitor and method of making same
JPH03280523A (ja) 1990-03-29 1991-12-11 Matsushita Electric Ind Co Ltd 固体電解コンデンサ
JPH04216608A (ja) 1990-12-18 1992-08-06 Nec Toyama Ltd 固体電解コンデンサの製造方法
US5111327A (en) 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
JP2765462B2 (ja) 1993-07-27 1998-06-18 日本電気株式会社 固体電解コンデンサおよびその製造方法
JPH07135126A (ja) 1993-11-10 1995-05-23 Nec Corp 固体電解コンデンサ及びその製造方法
JP2770746B2 (ja) 1994-09-02 1998-07-02 日本電気株式会社 固体電解コンデンサ及びその製造方法
JP3068430B2 (ja) 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
GB9700566D0 (en) 1997-01-13 1997-03-05 Avx Ltd Binder removal
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6072694A (en) 1998-09-30 2000-06-06 Kemet Electronics Corporation Electrolytic capacitor with improved leakage and dissipation factor
JP2001057321A (ja) * 1999-08-18 2001-02-27 Nec Corp チップ型固体電解コンデンサ
US6324051B1 (en) 1999-10-29 2001-11-27 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
JP3731639B2 (ja) 1999-11-15 2006-01-05 信越化学工業株式会社 フッ素含有ポリシロキサン、その製造方法、及び繊維処理剤組成物
DE10004725A1 (de) 2000-02-03 2001-08-09 Bayer Ag Verfahren zur Herstellung von wasserlöslichen pi-konjugierten Polymeren
TW507228B (en) 2000-03-07 2002-10-21 Sanyo Electric Co Solid phase electrolytic capacitor
US6737370B2 (en) 2000-03-21 2004-05-18 Rheinische Filztuchfabrik Gmbh Press pad containing fluoroelastomer or fluorosilicone elastomer priority claim
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
JP3876961B2 (ja) 2000-06-29 2007-02-07 信越化学工業株式会社 表面処理剤及び撥水・撥油性物品
US6449140B1 (en) 2000-07-07 2002-09-10 Showa Denko K.K. Solid electrolytic capacitor element and method for producing the same
PT1334498E (pt) 2000-11-06 2006-12-29 Cabot Corp Oxidos de metais de valvula modificados com reduzido teor de oxigenio
JP3541001B2 (ja) 2000-11-13 2004-07-07 Necトーキン富山株式会社 チップ型固体電解コンデンサ
JP4014819B2 (ja) 2001-05-14 2007-11-28 Necトーキン株式会社 チップ型コンデンサおよびその製造方法
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
WO2003034453A1 (fr) 2001-10-18 2003-04-24 Matsushita Electric Industrial Co., Ltd. Condensateur electrolytique solide et procede de production dudit condensateur
JP2003264129A (ja) 2002-03-12 2003-09-19 Sanyo Electric Co Ltd 固体電解コンデンサ
US6845004B2 (en) 2003-02-12 2005-01-18 Kemet Electronics Corporation Protecting resin-encapsulated components
EP1498391B1 (de) 2003-07-15 2010-05-05 H.C. Starck GmbH Niobsuboxidpulver
DE10333156A1 (de) 2003-07-22 2005-02-24 H.C. Starck Gmbh Verfahren zur Herstellung von Niobsuboxid
DE10347702B4 (de) 2003-10-14 2007-03-29 H.C. Starck Gmbh Sinterkörper auf Basis Niobsuboxid
ATE440373T1 (de) 2003-10-17 2009-09-15 Starck H C Gmbh Elektrolytkondensatoren mit polymerer aussenschicht
JP4462506B2 (ja) 2004-03-30 2010-05-12 日本ケミコン株式会社 固体電解コンデンサ
CN1737072B (zh) 2004-08-18 2011-06-08 播磨化成株式会社 导电粘合剂及使用该导电粘合剂制造物件的方法
TWI283879B (en) * 2005-02-17 2007-07-11 Sanyo Electric Co Solid electrolytic capacitor and manufacturing method thereof
DE102005028262B4 (de) 2005-06-17 2010-05-06 Kemet Electronics Corp. Kondensator mit einer Elektrode und Herstellungsverfahren für den Kondensator mit der Elektrode
JP4546415B2 (ja) 2005-09-01 2010-09-15 日本特殊陶業株式会社 配線基板、セラミックキャパシタ
JP2007287841A (ja) 2006-04-14 2007-11-01 Nec Tokin Corp 固体電解コンデンサ
US7483259B2 (en) 2007-03-21 2009-01-27 Avx Corporation Solid electrolytic capacitor containing a barrier layer
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer
JP4794521B2 (ja) * 2007-08-29 2011-10-19 三洋電機株式会社 固体電解コンデンサ及びその製造方法
JP4964102B2 (ja) * 2007-11-26 2012-06-27 三洋電機株式会社 固体電解コンデンサ
JP2009182157A (ja) 2008-01-31 2009-08-13 Sanyo Electric Co Ltd 固体電解コンデンサ
JP2009246138A (ja) 2008-03-31 2009-10-22 Hirosaki Univ 固体電解コンデンサおよびその製造方法
US9190214B2 (en) * 2009-07-30 2015-11-17 Kemet Electronics Corporation Solid electrolytic capacitors with improved ESR stability
JP5570864B2 (ja) * 2010-04-21 2014-08-13 ローム株式会社 固体電解コンデンサおよびその製造方法
JP5778450B2 (ja) * 2010-04-22 2015-09-16 ローム株式会社 固体電解コンデンサおよび固体電解コンデンサの製造方法
US8848342B2 (en) 2010-11-29 2014-09-30 Avx Corporation Multi-layered conductive polymer coatings for use in high voltage solid electrolytic capacitors
JP2012119427A (ja) 2010-11-30 2012-06-21 Sanyo Electric Co Ltd 固体電解コンデンサおよび固体電解コンデンサの製造方法
US8379371B2 (en) 2011-05-20 2013-02-19 Kemet Electronics Corporation Utilization of moisture in hermetically sealed solid electrolytic capacitor and capacitors made thereof
US9236192B2 (en) * 2013-08-15 2016-01-12 Avx Corporation Moisture resistant solid electrolytic capacitor assembly
US9236193B2 (en) 2013-10-02 2016-01-12 Avx Corporation Solid electrolytic capacitor for use under high temperature and humidity conditions
US9293263B2 (en) * 2014-01-29 2016-03-22 Kemet Electronics Corporation Solid electrolytic capacitor
JP2018142668A (ja) 2017-02-28 2018-09-13 パナソニックIpマネジメント株式会社 固体電解コンデンサ
EP3593367A4 (en) 2017-03-06 2021-01-20 AVX Corporation SOLID ELECTROLYTE CONDENSER ASSEMBLY
US10770238B2 (en) 2017-07-03 2020-09-08 Avx Corporation Solid electrolytic capacitor assembly with hydrophobic coatings
US20190392998A1 (en) 2018-06-21 2019-12-26 Jan Petrzilek Solid Electrolytic Capacitor
US20190392995A1 (en) 2018-06-21 2019-12-26 Avx Corporation Delamination-Resistant Solid Electrolytic Capacitor
US11222755B2 (en) 2019-05-17 2022-01-11 KYOCERA AVX Components Corporation Delamination-resistant solid electrolytic capacitor
JP7417714B2 (ja) 2019-09-18 2024-01-18 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション バリヤ被覆を含む固体電解キャパシタ
US11837415B2 (en) 2021-01-15 2023-12-05 KYOCERA AVX Components Corpration Solid electrolytic capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101709A (ja) 2016-12-21 2018-06-28 株式会社トーキン 固体電解コンデンサおよびその製造方法

Also Published As

Publication number Publication date
JPWO2020218319A1 (ko) 2020-10-29
US11915886B2 (en) 2024-02-27
US20220189706A1 (en) 2022-06-16
WO2020218319A1 (ja) 2020-10-29
CN113728408B (zh) 2024-03-08
CN113728408A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
CN109791844B (zh) 固体电解电容器
US7688571B2 (en) Solid electrolytic capacitor
KR101142312B1 (ko) 고체 전해 콘덴서 소자 및 그 제조방법
KR101119053B1 (ko) 고체 전해 콘덴서 및 그 제조 방법
US11295900B2 (en) Electrolytic capacitor having external electrodes with a resin electrode layer
CN111724994B (zh) 固体电解电容器
EP3226270B1 (en) Solid electrolytic capacitor
JP6856076B2 (ja) 固体電解コンデンサ
KR101442339B1 (ko) 고체 전해 콘덴서 및 그 제조 방법
US11881360B2 (en) Electrolytic capacitor
CN111724993A (zh) 固体电解电容器
JP2016181692A (ja) タンタル埋め込みマイクロチップ
KR20210148365A (ko) 고체 전해 콘덴서
US20230368980A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
US7957120B2 (en) Capacitor chip and method for manufacturing same
JP5570864B2 (ja) 固体電解コンデンサおよびその製造方法
US20160379761A1 (en) Method for fabricating solid electrolytic capacitors
JP7473537B2 (ja) 固体電解コンデンサ
CN108780705B (zh) 固体电解电容器
JP2015220247A (ja) 固体電解コンデンサおよび固体電解コンデンサの製造方法
KR20090056994A (ko) 고체 전해 콘덴서용 기재, 그것을 사용한 콘데서 및 그 제조방법
KR101116120B1 (ko) 고체 전해 콘덴서 소자 및 고체 전해 콘덴서
JP2018142668A (ja) 固体電解コンデンサ
CN113597654A (zh) 电解电容器
CN112466667B (zh) 固体电解电容器以及固体电解电容器的制造方法

Legal Events

Date Code Title Description
N231 Notification of change of applicant