JP2018142668A - 固体電解コンデンサ - Google Patents

固体電解コンデンサ Download PDF

Info

Publication number
JP2018142668A
JP2018142668A JP2017037289A JP2017037289A JP2018142668A JP 2018142668 A JP2018142668 A JP 2018142668A JP 2017037289 A JP2017037289 A JP 2017037289A JP 2017037289 A JP2017037289 A JP 2017037289A JP 2018142668 A JP2018142668 A JP 2018142668A
Authority
JP
Japan
Prior art keywords
anode
lead terminal
layer
solid electrolytic
capacitor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017037289A
Other languages
English (en)
Inventor
正典 柏原
Masanori Kashiwabara
正典 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017037289A priority Critical patent/JP2018142668A/ja
Publication of JP2018142668A publication Critical patent/JP2018142668A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

【課題】固体電解コンデンサ素子の内部で発生した気体を、効率的に外部に排出させる。
【解決手段】孔質焼結体である陽極体1と、陽極体1の植立面1Xから植立する陽極ワイヤ2と、陽極体1上に形成された誘電体層3と、誘電体層3上に形成された固体電解質層4と、固体電解質層4上の一部に形成された陰極層5と、を有するコンデンサ素子10と、陽極体1と電気的に接続された陽極リード端子13と、前記陰極層5と電気的に接続された陰極リード端子14と、コンデンサ素子10を覆い、かつ、陽極リード端子13および前記陰極リード端子14の少なくとも一部をそれぞれ露出させる外装体11と、外装体11の内部にて延在する通気孔12と、を備える。植立面1Xの少なくとも一部が、陰極層5に覆われておらず、通気孔12が、外装体11の植立面1Xに対応する面に開口している。
【選択図】図1

Description

本発明は、外装体で封止された固体電解コンデンサに関し、詳細には、外装体に通気孔を備える固体電解コンデンサに関する。
近年、電子機器の小型化および軽量化に伴って、小型かつ大容量の高周波用コンデンサが求められている。このようなコンデンサとして、等価直列抵抗(ESR)が小さく、周波数特性に優れている固体電解コンデンサの開発が進められている。固体電解コンデンサを構成するコンデンサ素子は、例えば、陽極体と、陽極体の表面に形成された誘電体層と、誘電体層の表面に形成された固体電解質層と、固体電解質層の表面に形成された陰極層とを具備する。陽極体には陽極ワイヤが植立している。陽極体には、陽極ワイヤを介して陽極リード端子が電気的に接続されており、陰極層には陰極リード端子が電気的に接続されている。コンデンサ素子は、通常、外装体により封止されている。陽極リード端子および陰極リード端子は、固体電解コンデンサの外部に延出しており、外装体から露出している。
コンデンサ素子の内部に水分があると、固体電解コンデンサを基板等に実装した後、リフローを行う際や使用時にコンデンサ素子が加熱される際に、上記水分が加熱されて水蒸気となり、コンデンサ素子の内圧が高まる場合がある。コンデンサ素子の内圧が高まると、コンデンサ素子が膨張して、外装体が割れたり、ショートが発生したりする場合がある。特に、陽極体として多孔質焼結体を用いる場合、コンデンサ素子は、膨張し易い。そこで、特許文献1では、非実装面に向けて、外装体にガス抜き用の孔を形成している。
特開2000−299261号公報
リフロー等の際に発生する水蒸気等の気体は、コンデンサ素子の陽極ワイヤが植立している面(植立面)に向かって流れ易い。陽極ワイヤの埋設部分と陽極体との間には、隙間が生じ易いためである。通常、コンデンサ素子の植立面と、外装体の陽極リード端子が導出している面(導出面)とは対応している。
ここで、特許文献1における外装体の非実装面は、導出面とは異なる面である。つまり、特許文献1の孔は、気体が流れ易い植立面に対応する位置には形成されていない。そのため、気体の排出が不十分となり、コンデンサ素子の膨張を抑制することは難しい。
本発明の第一の局面は、多孔質焼結体である陽極体と、前記陽極体の植立面から植立する陽極ワイヤと、前記陽極体上に形成された誘電体層と、前記誘電体層上に形成された固体電解質層と、前記固体電解質層上の一部に形成された陰極層と、を有するコンデンサ素子と、前記陽極体と電気的に接続された陽極リード端子と、前記陰極層と電気的に接続された陰極リード端子と、前記コンデンサ素子を覆い、かつ、前記陽極リード端子および前記陰極リード端子の少なくとも一部をそれぞれ露出させる外装体と、前記外装体の内部にて延在する通気孔と、を備え、前記植立面の少なくとも一部が、前記陰極層に覆われておらず、前記通気孔が、前記外装体の前記植立面に対応する面に開口している、固体電解コンデンサに関する。
本発明によれば、コンデンサ素子の内部で発生した気体が外部に効率的に排出されるため、コンデンサ素子の内圧の上昇が抑制される。よって、品質の高い固体電解コンデンサが得られる。
本発明の一実施形態に係る固体電解コンデンサの断面模式図である。 本発明の一実施形態に係る陽極体およびこれから植立する陽極ワイヤを示す斜視図である。 図1に示す固体電解コンデンサの要部を拡大して示す断面模式図である。
本発明の一実施形態に係る固体電解コンデンサについて、図1〜図3を参照しながら説明する。図1は、本実施形態に係る固体電解コンデンサ20の断面模式図である。図2は、陽極体1およびこれから植立する陽極ワイヤ2を示す斜視図である。図3は、固体電解コンデンサ20の要部を拡大して示す断面模式図である。
<固体電解コンデンサ>
固体電解コンデンサ20は、六面体の外形を有するコンデンサ素子10と、コンデンサ素子10を封止する外装体11と、外装体11に設けられた通気孔12と、外装体11の外部にそれぞれ露出する陽極リード端子13および陰極リード端子14と、を備えている。固体電解コンデンサ20は、コンデンサ素子10と同じく、ほぼ六面体の外形を有する。
コンデンサ素子10は、例えば六面体の多孔質焼結体である陽極体1と、陽極ワイヤ2と、陽極体1上に形成された誘電体層3と、誘電体層3上に形成された固体電解質層4と、固体電解質層4の表面の一部を覆う陰極層5(5a、5b)を有している。
陽極ワイヤ2の一端を含む第一部分2aは、陽極体1の一面(植立面1X)から陽極体1の内部に埋設されている。陽極ワイヤ2の他端を含む第二部分2bは、外装体11で封止されている陽極リード端子13の第一部分13aと、溶接等により電気的に接続されている。一方、陰極層5は、外装体11で封止されている陰極リード端子14の第一部分14aと、導電性接着材8(例えば熱硬化性樹脂と金属粒子との混合物)を介して、電気的に接続されている。陽極リード端子13の第二部分13bは、外装体11の導出面11Xから引き出され、一方の主要平坦面(図1では下面)まで露出状態で延在している。陰極リード端子14の第二部分14bは、導出面11Xに対向する面から引き出され、陽極リード端子13と同じ面まで露出状態で延在している。この平坦面における各端子の露出箇所は、固体電解コンデンサ20を搭載すべき基板(図示せず)との半田接続等に用いられる。
次に、本実施形態に係るコンデンサ素子について、詳細に説明する。
<陽極部>
陽極体1および陽極ワイヤ2は、コンデンサ素子10の陽極部を構成する。
陽極体1は、弁作用金属等の粒子(以下、単に金属粒子と称す。)を焼結して得られる多孔質焼結体である。そのため、陽極体1の内部には多数の空隙が形成されており、水分や、コンデンサ素子10の作成時に使用した溶剤、熱により脱離したコンデンサ素子10の材料等が溜まり易い。固体電解コンデンサ20を加熱等することにより生じる気体は、主に、陽極体1の空隙に留まっていた水分や上記物質に起因すると考えられる。陽極ワイヤ2は、例えば、導電性を有するワイヤから構成されている。
陽極部は、例えば、陽極ワイヤ2の第一部分2aを金属粒子に埋め込み、その状態で六面体(図示例では、直方体)に加圧成形し、焼結することにより作製される。これにより、陽極体1の植立面1Xから、陽極ワイヤ2の第二部分2bが植立するように引き出される。
陽極体1は、植立面1Xと、植立面1Xのそれぞれ異なる一辺を共有する4面(面B〜面E)と、植立面1Xに対向する面Fとを備える。図示例では、各面B〜面Eは植立面1Xとそれぞれ直交しているが、これに限定されるものではない。例えば、各面B〜面Eと植立面1Xとの成す角度は、75〜110°程度であってもよい。また、図示例では、陽極ワイヤ2の第二部分2bは植立面1Xに対して垂直に植立しているが、これに限定されるものではない。例えば、植立面1Xの垂線と第二部分2bとの成す角度は、0〜20°程度であってもよい。第一部分2aの陽極ワイヤ2に対する割合、すなわち、陽極ワイヤ2のうち、埋設される部分の割合は特に限定されない。
陽極体1は、例えば、金属粒子を焼結して得られる直方体の多孔質焼結体である。上記金属粒子として、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)などの弁作用金属の粒子が用いられる。陽極体1には、1種または2種以上の金属粒子が用いられる。金属粒子は、2種以上の金属からなる合金であってもよい。例えば、弁作用金属と、ケイ素、バナジウム、ホウ素等とを含む合金を用いることができる。また、弁作用金属と窒素等の典型元素とを含む化合物を用いてもよい。弁作用金属の合金は、弁作用金属を主成分とし、弁作用金属を50原子%以上含むことが好ましい。
陽極ワイヤ2は、導電性材料から構成されている。陽極ワイヤ2の材料は特に限定されず、例えば、上記弁作用金属の他、銅、アルミニウム、アルミニウム合金等が挙げられる。陽極体1および陽極ワイヤ2を構成する材料は、同種であってもよいし、異種であってもよい。陽極ワイヤ2の断面形状は特に限定されず、円形、円形を押しつぶしたような形状(互いに平行な直線とこれら直線の端部同士を繋ぐ2本の曲線とからなる形状。以下、トラック形と称す。)、楕円形、矩形、多角形等が挙げられる。なかでも、陽極リード端子13との溶接の際、転がりが抑制されて、位置決めし易い点で、トラック形が好ましい。陽極ワイヤ2の直径(トラック形および楕円形の場合は長径)も特に限定されないが、例えば、0.1mm〜1.0mmである。
<誘電体層>
陽極体1の表面には、誘電体層3が形成されている。誘電体層3は、例えば、金属酸化物から構成されている。陽極体1の表面に金属酸化物を含む層を形成する方法として、例えば、化成液中に陽極体1を浸漬して陽極体1の表面を陽極酸化する方法や、陽極体1を、酸素を含む雰囲気下で加熱する方法が挙げられる。誘電体層3は、上記金属酸化物を含む層に限定されず、絶縁性を有していればよい。
<固体電解質層>
固体電解質層4は、誘電体層3の少なくとも一部を覆うように形成されており、植立面1Xの少なくとも一部、好ましくは全部を覆う。これにより、固体電解コンデンサ20の容量の増大が期待できる。
固体電解質層4には、例えば、マンガン化合物や導電性高分子が用いられる。導電性高分子としては、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、ポリフェニレン、ポリパラフェニレンビニレン、ポリアセン、ポリチオフェンビニレン、ポリフルオレン、ポリビニルカルバゾール、ポリビニルフェノール、ポリピリジン、あるいは、これらの高分子の誘導体などが挙げられる。これらは、単独で用いてもよく、複数種を組み合わせて用いてもよい。また、導電性高分子は、2種以上のモノマーの共重合体でもよい。これらのうちでは、導電性に優れる点で、ポリチオフェン、ポリアニリン、ポリピロールなどが好ましい。なかでも、撥水性に優れる点で、ポリピロールが好ましい。
上記導電性高分子を含む固体電解質層4は、例えば、原料モノマーを誘電体層3上で重合することにより、形成される。あるいは、上記導電性高分子を含んだ液を誘電体層3に塗布することにより形成される。固体電解質層4は、1層または2層以上の固体電解質層から構成されている。固体電解質層4が2層以上から構成されている場合、各層に用いられる導電性高分子の組成や形成方法(重合方法)等は異なっていてもよい。
なお、本明細書では、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどは、それぞれ、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどを基本骨格とする高分子を意味する。したがって、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどには、それぞれの誘導体も含まれ得る。例えば、ポリチオフェンには、ポリ(3,4−エチレンジオキシチオフェン)などが含まれる。
導電性高分子を形成するための重合液、導電性高分子の溶液または分散液には、導電性高分子の導電性を向上させるために、様々なドーパントを添加してもよい。ドーパントは、特に限定されないが、1,5−ナフタレンジスルホン酸、1,6−ナフタレンジスルホン酸、1−オクタンスルホン酸、1−ナフタレンスルホン酸、2−ナフタレンスルホン酸、2,6−ナフタレンジスルホン酸、2,7−ナフタレンジスルホン酸、2−メチル−5−イソプロピルベンゼンスルホン酸、4−オクチルベンゼンスルホン酸、4−ニトロトルエン−2−スルホン酸、m−ニトロベンゼンスルホン酸、n−オクチルスルホン酸、n−ブタンスルホン酸、n−ヘキサンスルホン酸、o−ニトロベンゼンスルホン酸、p−エチルベンゼンスルホン酸、トリフルオロメタンスルホン酸、ハイドロオキシベンゼンスルホン酸、ブチルナフタレンスルホン酸、ベンゼンスルホン酸、ポリスチレンスルホン酸、ポリビニルスルホン酸、メタンスルホン酸、および、これらの誘導体などが挙げられる。誘導体としては、リチウム塩、カリウム塩、ナトリウム塩などの金属塩、メチルアンモニウム塩、ジメチルアンモニウム塩、トリメチルアンモニウム塩などのアンモニウム塩、ピペリジウム塩、ピロリジウム塩、ピロリニウム塩などが挙げられる。
導電性高分子が、粒子の状態で分散媒に分散している場合、その粒子の平均粒径D50は、例えば0.01μm〜0.5μmであることが好ましい。粒子の平均粒径D50がこの範囲であれば、陽極体1の内部にまで粒子が侵入し易くなる。
<陰極層>
陰極層5は、カーボン層5aと、カーボン層5aの表面に形成された金属(例えば、銀)ペースト層5bと、を有している。カーボン層5aは、固体電解質層4の一部を覆うように形成されている。カーボン層5aは、黒鉛などの導電性炭素材料を含む組成物により構成される。金属ペースト層5bは、例えば、銀粒子と樹脂とを含む組成物により構成される。なお、陰極層5の構成は、これに限られず、集電機能を有する構成であればよい。
陰極層5は、植立面1Xの少なくとも陽極ワイヤ2の周囲には形成されない。短絡を防止するためである。そのため、植立面1Xの陰極層5が形成されていない領域から、誘電体層3(あるいは固体電解質層4)が露出している。陽極体1の内部から生じる気体(水蒸気等)が、主に植立面1Xに向かって流れ易いことに加えて、植立面1Xに陰極層5が形成されていない領域が設けられていることにより、上記気体は、植立面1Xから外部に排出され易くなる。
(陽極リード端子)
陽極リード端子13は、陽極ワイヤ2の第二部分2bを介して、陽極体1と電気的に接続している。陽極リード端子13の材質は、電気化学的および化学的に安定であり、導電性を有するものであれば特に限定されず、金属であっても非金属であってもよい。その形状も特に限定されず、例えば、第1主面および第2主面を有する長尺かつ平板状である。この場合、陽極リード端子13の厚み(陽極リード端子13の主面間の距離)は、低背化の観点から、25〜200μmが好ましく、25〜100μmがより好ましい。
陽極リード端子13は、導電性接着材やはんだにより、陽極ワイヤ2に接合されてもよいし、抵抗溶接やレーザー溶接により、陽極ワイヤ2に接合されてもよい。導電性接着材は、例えば、熱硬化性樹脂と炭素粒子や金属粒子との混合物である。
(陰極リード端子)
陰極リード端子14は、陰極層5と電気的に接続している。陰極リード端子14の材質も、電気化学的および化学的に安定であり、導電性を有するものであれば、特に限定されず、金属であっても非金属であってもよい。その形状も特に限定されず、例えば、第1主面および第2主面を有する長尺かつ平板状である。この場合、陰極リード端子14の厚みは、低背化の観点から、25〜200μmが好ましく、25〜100μmがより好ましい。陰極リード端子14は、例えば、導電性接着材8を介して、陰極層5に接合される。
<外装体>
外装体11は、陽極リード端子13と陰極リード端子14とを電気的に絶縁するために設けられており、絶縁性の材料から構成されている。外装体11は、例えば、熱硬化性樹脂の硬化物を含む。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、ポリウレタン、ポリイミド、不飽和ポリエステル等が挙げられる。
外装体11は、例えば、上記熱硬化性樹脂と、陽極リード端子13および陰極リード端子14が接続されたコンデンサ素子10とを、金型に収容し、トランスファー成型法または圧縮成型法等により形成される。このとき、陽極リード端子13および陰極リード端子14の少なくとも一部が、外装体11から導出されるように、コンデンサ素子10は外装体11により被覆される。外装体11の外形は、例えば、直方体である。陽極リード端子13および陰極リード端子14の導出された部分(陽極リード端子13の第二部分13bおよび陰極リード端子14の第二部分14b)は、外装体11の外形に沿って折り曲げられて、外装体11の上記平坦面に配置される。
外装体11には通気孔12が設けられている。通気孔12の一方の端部である開口12aは、陽極リード端子13が導出されている面(導出面11X)に形成されている。導出面11Xは、陽極体1の植立面1Xに対応している。上記のような絶縁性の材料からなる外装体11は、通気性および透湿性をほとんど有さない。そのため、コンデンサ素子10(主に、陽極体1)から生じる気体は、流れ易い領域、つまり、隙間の生じ易い陽極ワイヤ2の第一部分2aと陽極体1との間に流入して、陽極ワイヤ2に沿うように植立面1Xに向かって流れ易い。開口12aは、陽極体1からの気体が流れる方向にある植立面1Xに対向するように配置されているため、上記気体は、非常に効率的に固体電解コンデンサ20の外部へと排出される。よって、コンデンサ素子10の内圧の上昇が抑制される。
通気孔12は、陽極ワイヤ2の植立方向に沿って、外装体11の内部に延在していることが好ましい。これにより、気体の流れが通気孔12の延在方向と同じになって、気体はさらに効率的に排出される。なお、図示例では、陽極ワイヤ2と通気孔12とは平行であるが、これに限定されない。例えば、陽極ワイヤ2の中心軸と通気孔12の中心軸との成す角度は、0〜20°程度であってもよい。外装体11には、上記通気孔12以外の通気孔が形成されていてもよい。
陽極ワイヤ2の固定性や、陽極ワイヤ2の外的負荷からの保護を考慮すると、通気孔12は陽極ワイヤ2と接触していないことが好ましい。一方、気体を効果的に排出することを考慮すると、通気孔12と陽極ワイヤ2との距離D1は、0.1mm〜0.5mmであることが好ましく、0.1mm〜0.3mmであることがより好ましい。距離D1は、通気孔12から陽極ワイヤ2までの最短距離である。
通気孔12(開口12a)の直径は特に限定されず、固体電解コンデンサ20の大きさ等に応じて適宜設定すればよい。通気孔12を、外装体11の成型とともに、トランスファー成型法または圧縮成型法により形成する場合、その直径は、0.5mm以上であることが好ましい。通気孔12の形成が容易になるためである。一方、この場合の通気孔12の直径の上限は特に限定されず、コンデンサ素子10の大きさに応じて適宜設定すればよい。通気孔12を、外装体11を成型した後、ドリル等を用いて形成する場合、その直径は0.05mm以上、0.2mm以下であることが好ましい。通気孔12の直径がこの範囲であれば、コンデンサ素子10を損傷することなく形成可能であるとともに、コンデンサ素子10の内部で生じた気体を十分に排出することができる。なお、通気孔12の直径とは、長手方向に垂直な方向(断面)における平均の長さである。通気孔12の断面形状(開口12aの形状)も特に限定されず、円形、楕円形、多角形等であってもよい。なかでも、形成が容易である点で、円形が好ましい。
通気孔12の長さも特に限定されず、コンデンサ素子10まで到達していてもよいし、到達していなくてもよい。ただし、コンデンサ素子10から生じる気体を効率的に排出できる点で、通気孔12の他方の端部である底部12bとコンデンサ素子10とは近接していることが好ましい。通気孔12の他方の端部である底部12bとコンデンサ素子10との距離D2は、例えば、0.1mm以下であることが好ましく、0.05mm以下であることがより好ましい。距離D2は、通気孔12の底部12bからコンデンサ素子10の植立面1Xまでの最短距離である。
通気孔12は、空洞であってもよいし、多孔質材料により充填されていてもよい。なかでも、強度等を考慮すると、通気孔12の少なくとも一部を占めるように、多孔質材料が配置されていることが好ましい。特に、通気孔12の全体を埋めるように、多孔質材料が充填されていることが好ましい。多孔質材料としては、水蒸気等の気体が通過できる限り特に限定されず、発泡体であってもよいし、セラミックス等の粉末を焼結した焼結体であってもよい。多孔質材料の原料も特に限定されず、有機物であってもよいし、無機物であってもよい。有機物である多孔質材料の原料としては、例えば、ポリエチレン、ポリプロピレン、シリコーン等が挙げられる。無機物である多孔質材料の原料としては、例えば、セラミックス等が挙げられる。その他、通気孔12には、固体電解コンデンサ20の内部から外部に気体を排出するために、例えば、圧力弁や、温度条件によって形状が変化する材料(低いガラス転移点を有する樹脂、ゲル封止材等)が配置されてもよい。
本実施形態に係る固体電解コンデンサの製造方法の一例を、説明する。
≪固体電解コンデンサの製造方法≫
(1)陽極部の作製工程
金属粒子と陽極ワイヤ2とを、第一部分2aが金属粒子に埋め込まれるように型に入れ、加圧成形した後、真空中で焼結することにより、第一部分2aが多孔質焼結体の植立面1Xからその内部に埋設される陽極部が作製される。加圧成形の際の圧力は特に限定されず、例えば、10〜100N程度である。金属粒子には、必要に応じて、ポリアクリルカーボネート等のバインダを混合してもよい。
(2)誘電体層の形成工程
陽極体1上に誘電体層3を形成する。具体的には、電解水溶液(例えば、リン酸水溶液)が満たされた化成槽に、陽極体1を浸漬し、陽極ワイヤ2の第二部分2bを化成槽の陽極体に接続して、陽極酸化を行うことにより、陽極体1の表面に弁作用金属の酸化被膜からなる誘電体層3を形成することができる。電解水溶液としては、リン酸水溶液に限らず、硝酸、酢酸、硫酸などを用いることができる。
(3)固体電解質層の形成工程
本実施形態では、導電性高分子を含む固体電解質層4の形成工程を説明する。
導電性高分子を含む固体電解質層4は、例えば、誘電体層3が形成された陽極体1に、モノマーやオリゴマーを含浸させ、その後、化学重合や電解重合によりモノマーやオリゴマーを重合させる方法、あるいは、誘電体層3が形成された陽極体1に、導電性高分子の溶液または分散液を含浸し、乾燥させることにより、誘電体層3上の少なくとも一部に形成される。
(4)陰極層の形成工程
固体電解質層4の表面に、カーボンペーストおよび金属ペーストを順次、塗布することにより、カーボン層5aと金属ペースト層5bとで構成される陰極層5を形成することができる。このとき、陽極体1の植立面1Xに対応する面の少なくとも一部には、陰極層5を形成しない。なかでも、植立面1Xの全面に対応する領域には、陰極層5を形成しないことが好ましい。これにより、陽極体1から生じる気体が開口12aから排出され易くなって、内圧の上昇が抑制される。陰極層5の構成は、これに限られず、集電機能を有する構成であればよい。
(5)陽極リード端子の接合工程
陽極体1から植立する陽極ワイヤ2の一方の端部を、レーザー溶接や抵抗溶接などにより、陽極リード端子13と接合する。
(6)陰極リード端子の接合工程
陰極層5に導電性接着材8を塗布した後、陰極リード端子14を、導電性接着材8を介して陰極層5に接合する。
(7)コンデンサ素子の封止工程
次いで、コンデンサ素子10および樹脂(外装体11の材料。例えば、未硬化の熱硬化性樹脂およびフィラー)を金型に収容し、トランスファー成型法、圧縮成型法等により、コンデンサ素子10を外装体11で封止する。このとき、陽極リード端子13および陰極リード端子14の少なくとも一部を金型から露出させる。成型の条件は特に限定されず、使用される熱硬化性樹脂の硬化温度等を考慮して、適宜、時間および温度条件を設定すればよい。
(8)通気孔の形成工程
通気孔12は、外装体11を成型する際に形成されてもよいし、外装体11を成型した後に形成されてもよい。前者の場合、成型に用いられる金型の所定の位置に、通気孔12に対応する棒状の部材を配置し、外装体11の成型後、この部材を引き抜くことにより、通気孔12が形成される。後者の場合、外装体11の所定の位置に、ドリル等により穿孔すればよい。ただし、固体電解コンデンサ20にかかる負荷を低減できる点で、外装体11の成型とともに通気孔12を形成する方法が好ましい。
以上の方法により、固体電解コンデンサ20が製造される。
[実験例]
以下、陽極体1の内部から生じる気体が、主にコンデンサ素子10の植立面1Xに対向する面から外部に排出されることを、実験例により示す。
下記の要領でサンプルを作製した。
<工程1:陽極体の形成>
弁作用金属として、一次粒子の平均粒子径D50が約0.1μm、二次粒子の平均粒子径が約0.2μmであるタンタル金属粒子を用いた。銅からなる陽極ワイヤの一端がタンタル金属粒子に埋め込まれるように、タンタル金属粒子を上記方法により直方体に成形し、その後、成形体を真空中で焼結した。これにより、タンタルの多孔質焼結体からなる陽極体と、陽極体に一端が埋設され、残りの部分が陽極体の一面(植立面1X)から植立した陽極ワイヤと、を含む陽極部を得た。陽極ワイヤは、陽極体の植立面1Xから、植立面1Xの垂線とほぼ0°の角度を成して植立していた。
<工程2:誘電体層の形成>
電解水溶液であるリン酸水溶液が満たされた化成槽に、陽極体および陽極体から植立した陽極ワイヤの一部を浸漬し、陽極ワイヤの他端を化成槽の陽極体に接続した。そして、陽極酸化を行うことにより、陽極体の表面(孔の内壁面を含む多孔質焼結体の表面)および陽極ワイヤの一部の表面に、酸化タンタル(Ta25)の均一な誘電体層を形成した。陽極酸化は、陽極体を0.02質量%リン酸水溶液中で、化成電圧10V、温度60℃の条件で2時間行った。
<工程3:固体電解質層の形成>
ピロールと、ドーパントとしてのポリスチレンスルホン酸とを、イオン交換水に溶かした混合溶液を調製した。得られた混合溶液を撹拌しながら、イオン交換水に溶かした硫酸第二鉄と過硫酸ナトリウムとを添加し、重合反応を行った。反応後、得られた反応液を透析して、未反応モノマーおよび過剰な酸化剤を除去し、約3.0質量%のポリスチレンスルホン酸がドープされたポリピロールを含む分散液を得た。得られた分散液を誘電体層が形成された陽極体に5分間含浸させた後、150℃で30分間乾燥し、誘電体層上に固体電解質層を形成した。固体電解質層は、植立面1Xの全面を覆うように形成されていた。
<工程4:陰極層の形成>
固体電解質層の表面に、カーボンペーストを塗布することにより、カーボン層を形成した。次に、カーボン層の表面に、銀ペーストを塗布することにより、銀ペースト層を形成した。こうして、カーボン層と銀ペースト層とで構成される陰極層を形成した。陰極層は、植立面1Xの表面にも形成した。
<工程5:絶縁性材料の塗布>
コンデンサ素子の表面の一部または全部に、エポキシ樹脂を含む絶縁性材料(外装体の材料)を、厚さが1mmになるように塗布して、サンプルNo.1〜4を作製した。
<評価法>
得られた各サンプルを、昇温速度100℃/分で260℃になるまで加熱した。加熱前後のサンプルの質量を測定し、加熱後のサンプルの質量減少率を算出した。加熱により減少した質量は、コンデンサ素子から放出された気体の量に相当する。結果を表1に示す。なお、コンデンサ素子からは、水を主成分とする気体が排出されていた。
Figure 2018142668
絶縁性材料を面Bに対向する面以外の面に塗布したサンプルNo.2では、絶縁性材料を全面に塗布したサンプルNo.1と同様に、質量の減少がほとんど見られなかった。一方、植立面1Xに対向する面以外の面に塗布したサンプルNo.3では、絶縁性材料を塗布しなかったサンプルNo.4と同様に、質量が大きく減少した。このことから、陽極体1内部で発生した気体は、主に植立面1Xに対向する面から排出されることがわかる。
以上、外装体11の植立面1Xに対向する導出面11Xに通気孔12の開口12aを設けることにより、陽極体1内部で発生した気体は、効率よく外部に排出されることが理解できる。
本発明に係る電解コンデンサは、高い品質を備えるため、様々な用途に利用できる。
20:固体電解コンデンサ
10:コンデンサ素子
1:陽極体
1X:植立面
2:陽極ワイヤ
2a:陽極ワイヤの第一部分
2b:陽極ワイヤの第二部分
3:誘電体層
4:固体電解質層
5:陰極層
5a:カーボン層
5b:金属ペースト層
8:導電性接着材
11:外装体
11X:導出面
12:通気孔
12a:開口
12b:通気孔の底部
13:陽極リード端子
13a:陽極リード端子の第一部分
13b:陽極リード端子の第二部分
14:陰極リード端子
14a:陰極リード端子の第一部分
14b:陰極リード端子の第二部分

Claims (5)

  1. 多孔質焼結体である陽極体と、
    前記陽極体の植立面から植立する陽極ワイヤと、
    前記陽極体上に形成された誘電体層と、
    前記誘電体層上に形成された固体電解質層と、
    前記固体電解質層上の一部に形成された陰極層と、を有するコンデンサ素子と、
    前記陽極体と電気的に接続された陽極リード端子と、
    前記陰極層と電気的に接続された陰極リード端子と、
    前記コンデンサ素子を覆い、かつ、前記陽極リード端子および前記陰極リード端子の少なくとも一部をそれぞれ露出させる外装体と、
    前記外装体の内部にて延在する通気孔と、を備え、
    前記植立面の少なくとも一部が、前記陰極層に覆われておらず、
    前記通気孔が、前記外装体の前記植立面に対応する面に開口している、固体電解コンデンサ。
  2. 前記通気孔が、前記陽極ワイヤの植立方向に沿って延在している、請求項1に記載の固体電解コンデンサ。
  3. 前記通気孔と前記陽極ワイヤとの距離D1が0.1mm〜0.5mmである、請求項1または2に記載の固体電解コンデンサ。
  4. 前記通気孔の底部と前記コンデンサ素子との距離D2が0.1mm以下である、請求項1〜3のいずれか一項に記載の固体電解コンデンサ。
  5. 前記通気孔が多孔質材料により充填されている、請求項1〜4のいずれか一項に記載の固体電解コンデンサ。
JP2017037289A 2017-02-28 2017-02-28 固体電解コンデンサ Pending JP2018142668A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017037289A JP2018142668A (ja) 2017-02-28 2017-02-28 固体電解コンデンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017037289A JP2018142668A (ja) 2017-02-28 2017-02-28 固体電解コンデンサ

Publications (1)

Publication Number Publication Date
JP2018142668A true JP2018142668A (ja) 2018-09-13

Family

ID=63526830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017037289A Pending JP2018142668A (ja) 2017-02-28 2017-02-28 固体電解コンデンサ

Country Status (1)

Country Link
JP (1) JP2018142668A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113728408A (zh) * 2019-04-25 2021-11-30 罗姆股份有限公司 固态电解电容器
WO2022249715A1 (ja) * 2021-05-26 2022-12-01 株式会社村田製作所 固体電解コンデンサ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113728408A (zh) * 2019-04-25 2021-11-30 罗姆股份有限公司 固态电解电容器
US11915886B2 (en) 2019-04-25 2024-02-27 KYOCERA AVX Components Corporation Solid electrolytic capacitor
CN113728408B (zh) * 2019-04-25 2024-03-08 京瓷Avx元器件(曼谷)有限公司 固态电解电容器
WO2022249715A1 (ja) * 2021-05-26 2022-12-01 株式会社村田製作所 固体電解コンデンサ

Similar Documents

Publication Publication Date Title
CN110678946A (zh) 电解电容器及其制造方法
WO2020153242A1 (ja) 電解コンデンサおよびその製造方法
JP6854400B2 (ja) 固体電解コンデンサ
JP5623214B2 (ja) 固体電解コンデンサ
US11201016B2 (en) Electrolytic capacitor
JP2018142668A (ja) 固体電解コンデンサ
WO2018123525A1 (ja) 電解コンデンサ
JP5020020B2 (ja) 固体電解コンデンサの製造方法
JP7029670B2 (ja) 電解コンデンサ
CN108780705B (zh) 固体电解电容器
JP7382591B2 (ja) 電解コンデンサおよびその製造方法
JP7223968B2 (ja) 電解コンデンサ
WO2018159426A1 (ja) 電解コンデンサ
JP2019145696A (ja) 電解コンデンサ
JP2019067922A (ja) 電解コンデンサ
WO2023153177A1 (ja) 電解コンデンサ
JP7029666B2 (ja) 固体電解コンデンサ
JP2020072186A (ja) 電解コンデンサ
WO2023074376A1 (ja) 固体電解コンデンサ
WO2023120309A1 (ja) 電解コンデンサの製造方法
US20220028622A1 (en) Electrolytic capacitor and method for producing the same
JP6913875B2 (ja) 電解コンデンサ
JP2020072185A (ja) 電解コンデンサ
WO2024058159A1 (ja) 固体電解コンデンサ
JP2019067921A (ja) 電解コンデンサ

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180709