WO2018123525A1 - 電解コンデンサ - Google Patents

電解コンデンサ Download PDF

Info

Publication number
WO2018123525A1
WO2018123525A1 PCT/JP2017/044299 JP2017044299W WO2018123525A1 WO 2018123525 A1 WO2018123525 A1 WO 2018123525A1 JP 2017044299 W JP2017044299 W JP 2017044299W WO 2018123525 A1 WO2018123525 A1 WO 2018123525A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
mold resin
sealing member
electrolytic capacitor
case
Prior art date
Application number
PCT/JP2017/044299
Other languages
English (en)
French (fr)
Inventor
椿 雄一郎
青山 達治
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018558985A priority Critical patent/JPWO2018123525A1/ja
Publication of WO2018123525A1 publication Critical patent/WO2018123525A1/ja
Priority to JP2022175683A priority patent/JP2023002812A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon

Definitions

  • the present disclosure relates to an electrolytic capacitor including a mold resin layer that covers a sealing member.
  • the electrolytic capacitor includes a capacitor element that includes a pair of electrodes, a case that houses the capacitor element, a sealing member that seals the opening of the case, and a pair of electrodes that are electrically connected to and pass through the sealing member. A pair of leads.
  • the electrolytic capacitor according to the first aspect of the present disclosure includes a capacitor element, an electrolytic solution, a case, a sealing member, and a mold resin layer.
  • the capacitor element includes a pair of electrodes.
  • the electrolytic solution is interposed between the pair of electrodes.
  • the case contains a capacitor element and an electrolytic solution, and has an opening.
  • the sealing member seals the opening.
  • the mold resin layer covers at least a part of the outer surface of the sealing member.
  • the solvent contained in the electrolytic solution contains a glycol compound.
  • the electrolytic capacitor according to the second aspect of the present disclosure includes a capacitor element, an electrolytic solution, a case, a sealing member, a pair of leads, and a mold resin layer.
  • the capacitor element includes a pair of electrodes.
  • the electrolytic solution is interposed between the pair of electrodes.
  • the case contains a capacitor element and an electrolytic solution, and has an opening.
  • the sealing member seals the opening.
  • the pair of leads are electrically connected to the pair of electrodes, respectively, and penetrate the sealing member.
  • the mold resin layer covers at least a part of the outer surface of the sealing member.
  • the mold resin layer has a recess on the mounting surface, and the average thickness of the thin portion of the mold resin layer in the recess is 0.1 mm or more. At least a part of the pair of leads is accommodated in the recess.
  • FIG. 1 is a schematic cross-sectional view of the electrolytic capacitor according to the first embodiment.
  • FIG. 2 is a schematic diagram for explaining the configuration of an example of the capacitor element.
  • FIG. 3 is a schematic cross-sectional view of the electrolytic capacitor according to the second embodiment.
  • FIG. 4 is a schematic cross-sectional view of the electrolytic capacitor according to the third embodiment.
  • FIG. 5 is a schematic cross-sectional view of the electrolytic capacitor according to the fourth embodiment.
  • the guaranteed life of the electrolytic capacitor can be extended. Be expected.
  • the provision of the mold resin layer increases the heat insulation of the exterior portion of the electrolytic capacitor, and makes it difficult to dissipate heat (radiate heat) generated inside the electrolytic capacitor. For this reason, problems are likely to occur due to self-heating due to ripple current. For example, at a high temperature, heat is accumulated in the case, so that the internal pressure is increased and the evaporation of the solvent is promoted. That is, the effect of suppressing the evaporation of the solvent by the mold resin layer is partially offset, and the expected guaranteed life of the electrolytic capacitor cannot be achieved.
  • the first aspect of the present disclosure described below provides an electrolytic capacitor that can extend the guaranteed life at high temperatures.
  • the electrolytic capacitor according to the first aspect of the present disclosure includes a capacitor element, an electrolytic solution, a case, a sealing member, and a pair of leads.
  • the capacitor element includes a pair of electrodes.
  • the electrolytic solution is interposed between the pair of electrodes.
  • the case contains a capacitor element and an electrolytic solution, and has an opening.
  • the sealing member seals the opening.
  • the pair of leads are electrically connected to the pair of electrodes, respectively, and penetrate the sealing member. At least a part of the outer surface of the sealing member facing the opening side of the case is covered with a mold resin layer.
  • the solvent contained in the electrolytic solution contains a glycol compound.
  • the mold resin layer is expected to have an effect of improving the reflow resistance and an effect of suppressing the transpiration of the solvent contained in the electrolyte solution over the long term.
  • the mold resin layer In the reflow process, since the electrolytic capacitor is heated to a high temperature, it is desired to suppress conduction of ambient heat into the electrolytic capacitor. Therefore, the mold resin layer generally has an excellent heat insulating effect.
  • the thermal conductivity of the mold resin layer is, for example, 1.0 W / mK or less, and preferably 0.8 W / mK or less. The thermal conductivity may be measured, for example, by a disc heat flow meter method based on ASTM E1530.
  • ethylene glycol (EG) has a thermal conductivity approximately twice as large as that of ⁇ -butyrolactone (GBL), sulfolane (SL), etc., which are frequently used as a solvent for the electrolytic solution of electrolytic capacitors. It becomes easier to transfer heat from the liquid to the case.
  • the content ratio of the glycol compound contained in the solvent is preferably 5% by mass or more.
  • the mold resin layer does not necessarily need to cover the entire outer surface of the sealing member.
  • a minute region that does not have a mold resin layer may be provided on the outer surface of the sealing member around the through hole for allowing the lead to pass therethrough.
  • the mold resin layer preferably has a mounting surface.
  • the mounting surface is a surface having a flat portion facing the substrate when mounted on a circuit board or the like.
  • the mold resin layer having the mounting surface becomes a barrier when heat is released from the electrolytic capacitor to the circuit board in the long term, heat due to self-heating of the electrolytic capacitor is more likely to be accumulated in the case.
  • the maximum distance (maximum thickness of the mold resin layer covering the outer surface of the sealing member) T max from the interface between the sealing member and the mold resin layer to the mounting surface of the mold resin layer in the normal direction of the interface is 4. If it is larger than 0 mm, a lot of heat is likely to be accumulated in the case.
  • the maximum distance T max is preferably 1.0 mm or more, and more preferably 1.3 mm or more. Further, from the viewpoint of reducing the size of the electrolytic capacitor and facilitating the release of heat in the case, the maximum distance Tmax is preferably 4 mm or less, more preferably 3 mm or less, and even more preferably 2 mm or less.
  • the mold resin layer covers at least a part of the side surface following the opening of the case in addition to the outer surface of the sealing member.
  • a barrier is also formed in a path for releasing heat from the case to the outside. Therefore, it is preferable to cover the side surface of the case as small as possible with the mold resin layer to the extent that the sealing performance can be improved.
  • the ratio of the area (S x ) of the side surface covered with the mold resin layer to the total area (S 0 ) of the side surface of the case is sufficient if it is 10% or more, and further 20% or more.
  • the content of glycol compound in the electrolyte is increased as much as possible, and the thermal conductivity of the electrolyte is increased. It is preferable to improve.
  • the content of the glycol compound contained in the solvent in the electrolytic solution is preferably 30% by mass or more, more preferably 40% by mass or more, and still more preferably 50% by mass or more. Thereby, the quantity of heat escaping from the case to the outside can be sufficiently increased.
  • content of the glycol compound contained in a solvent shall be 90 mass% or less so that components other than a glycol compound can also be included in the solvent in electrolyte solution.
  • a recess may be provided on the mounting surface, and at least a part of the pair of leads may be accommodated in the recess.
  • the shape of the recess is not particularly limited. At this time, from the viewpoint of releasing as much heat as possible from the mounting surface to the circuit member, the region where the recess is formed is preferably 80% or less of the mounting surface. As a result, a sufficient contact area between the mounting surface and the circuit member is ensured, so that heat easily moves between the mounting surface and the circuit member.
  • the recess may have a region provided for other purposes as well as a region for accommodating the lead.
  • the electrolytic solution may be a solvent alone or a mixture of a solvent and an ionic substance (solute) dissolved in the solvent.
  • the solvent is preferably a non-aqueous solvent or an organic solvent, and contains a glycol compound as an essential component.
  • glycol compound for example, alkylene glycol or polyalkylene glycol having a weight average molecular weight of less than 300 is preferable. More specifically, ethylene glycol, propylene glycol, butylene glycol, pentylene glycol, hexylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol and the like can be mentioned. These may be used alone or in combination of two or more.
  • the glycol compound is preferably ethylene glycol (EG). Since ethylene glycol has a low viscosity among glycol compounds, it easily dissolves solutes. In addition, ethylene glycol has particularly high thermal conductivity and excellent heat dissipation when ripple current is generated. Even when a plurality of types of glycol compounds are used, the proportion of ethylene glycol in the entire glycol compound is preferably 10% by mass or more, more preferably 20% by mass or more, and the entire glycol compound is substantially ethylene glycol. Good.
  • EG ethylene glycol
  • ⁇ -butyrolactone In addition to the glycol compound, ⁇ -butyrolactone (GBL), N-methylacetamide and the like can also be used as a solvent. Among them, ⁇ -butyrolactone is preferable because it is easy to improve low temperature characteristics, and ⁇ -butyrolactone may occupy 90% by mass or less (for example, 10% by mass or more) of components other than the glycol compound in the solvent.
  • the sulfone compound is an organic compound having a sulfonyl group (—SO 2 —) in the molecule.
  • the sulfone compound include chain sulfone and cyclic sulfone.
  • Examples of the chain sulfone include dimethyl sulfone, diethyl sulfone, dipropyl sulfone, and diphenyl sulfone.
  • the cyclic sulfone include sulfolane (SL), 3-methylsulfolane, 3,4-dimethylsulfolane, and 3,4-diphenimethylsulfolane.
  • the sulfone compound is preferably sulfolane from the viewpoint of solute dissociation and thermal stability. Since sulfolane has a low viscosity among sulfone compounds, it is easy to dissolve solutes. For example, sulfolane may account for 90% by mass or less (for example, 10% by mass or more) of components other than the glycol compound in the solvent.
  • the solvent may contain other components than the above.
  • other components include carbonate compounds such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), and fluoroethylene carbonate (FEC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • EC ethylene carbonate
  • PC propylene carbonate
  • FEC fluoroethylene carbonate
  • the type and composition of the solvent contained in the electrolytic solution can be analyzed by liquid chromatography, gas chromatography, or the like.
  • the electrolytic solution may contain a solute.
  • the solute it is preferable to use primary to tertiary ammonium salts of organic carboxylic acids, quaternary amidinium salts of organic carboxylic acids, quaternary ammonium salts of organic carboxylic acids, and the like.
  • the electrolytic solution containing such a solute is excellent in the function of repairing a defective portion of the dielectric layer (oxide film) of the anode body.
  • trimethylamine maleate triethylamine borodisalicylate, triethylamine phthalate, ethyldimethylamine phthalate, mono 1,2,3,4-tetramethylimidazolinium phthalate, mono 1,3 phthalate -Dimethyl-2-ethylimidazolinium and the like.
  • a solute may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the mold resin layer preferably contains a cured product of the curable resin composition.
  • the curable resin composition may contain a filler (filler), a curing agent, a polymerization initiator, a catalyst, and the like.
  • a thermosetting resin is preferable.
  • a curing agent, a polymerization initiator, a catalyst, etc. are suitably selected according to the kind of curable resin.
  • the thermal conductivity of the mold resin layer can be controlled to a desired value by using a curable resin, a filler, an additive, or the like.
  • the curable resin examples include epoxy resin, phenol resin, urea resin, polyimide, polyamideimide, polyurethane, diallyl phthalate, and unsaturated polyester.
  • the curable resin composition may include a plurality of curable resins. Usually, an epoxy resin composition having a glass transition temperature of 80 ° C. or higher is used.
  • the filler for example, at least one of insulating particles (inorganic or organic) and fibers is preferable.
  • the insulating material constituting the filler include silica, alumina, glass, talc, mica, and clay.
  • the mold resin layer may contain one or more of these fillers.
  • the content rate of the filler in a mold resin layer is 10 mass% or more and 90 mass% or less, for example, and 20 mass% or more and 80 mass% or less are preferable.
  • the mold resin layer may contain a thermoplastic resin or a composition containing the same.
  • a thermoplastic resin for example, polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), or the like can be used.
  • the structure of the lead is not particularly limited, but the lead preferably has a tab portion and a lead portion extending from one end thereof.
  • the tab portion preferably has a flat portion connected to the electrode in the case and a rod-shaped portion penetrating the sealing member.
  • Such a flat portion of the tab portion is usually formed by rolling a part of a rod-like body, and a region that is not rolled becomes a rod-like portion.
  • the lead portion is connected to the tip of the rod-like portion by welding or the like.
  • the tab portion is accommodated in the case, the tab portion is preferably formed of a valve metal such as aluminum. It is preferable that the tab part is covered with the metal oxide film which comprises a tab part.
  • a CP wire or a Cu wire containing a transition metal such as iron, copper, nickel, or tin is used for the lead portion.
  • the capacitor element may include a solid electrolyte layer.
  • the solid electrolyte layer includes, for example, a manganese compound, a conductive polymer, and the like.
  • the conductive polymer for example, polypyrrole, polythiophene, polyaniline, and derivatives thereof can be used.
  • An electrolytic capacitor 1 shown in FIG. 1 includes a capacitor element 10, an electrolytic solution (not shown), and a case 11 that accommodates these and has an opening.
  • the electrolytic solution contains a glycol compound as an essential component.
  • the case 11 is, for example, a bottomed cylindrical shape. The opening of the case 11 is sealed with a sealing member 12.
  • the opening of the case 11 is sealed with the sealing member 12 and the mold resin layer 13 after accommodating the capacitor element 10.
  • the opening end of the case 11 is drawn to the sealing member 12 side and caulked to the inside.
  • the sealing member 12 is fixed to the opening of the case 11, and the case 11 is sealed by the sealing member 12.
  • the entire outer surface of the sealing member 12 facing the opening side of the case 11 is covered with the mold resin layer 13.
  • the maximum distance Tmax from the interface between the sealing member 12 and the mold resin layer 13 to the mounting surface 13S of the mold resin layer 13 in the normal direction (direction X) of the interface is set to, for example, 1.0 mm or more. .3 mm or more is preferable.
  • the maximum distance Tmax is set to 4 mm or less, for example, preferably 3 mm or less, and more preferably 2 mm or less.
  • the mold resin layer 13 covers a part of the side surface following the opening of the case 11 together with the opening of the case 11.
  • the ratio of the area S x of the side surface covered with the mold resin layer to the total area S 0 of the side surface of the case is such that the mold resin layer 13 on the case bottom side from the opening of the case 11 with respect to the height H of the case 11. It is represented by the ratio of the distance h to the end.
  • the ratio of h to H is set to, for example, 10% or more and 120% or less, preferably 10% or more and 80% or less.
  • the mold resin layer 13 can be formed using a molding technique such as injection molding, insert molding, or compression molding.
  • the mold resin layer 13 is formed, for example, by filling a predetermined mold with a curable resin composition and covering the opening of the case 11 together with the outer surface of the sealing member 12.
  • FIG. 2 shows an example of the configuration of a capacitor element having a wound body.
  • the wound body is formed by winding the anode 21 and the cathode 22 with a separator 23 interposed therebetween.
  • An anode lead 14A and a cathode lead 14B are electrically connected to the anode 21 and the cathode 22, respectively.
  • the outermost periphery of the wound body is fixed by a winding tape 24.
  • FIG. 2 has shown the state by which one part was expand
  • the anode lead 14A and the cathode lead 14B have tab portions 16A and 16B connected to the anode 21 and the cathode 22, respectively, and lead portions 15A and 15B welded to the tab portions 16A and 16B, respectively.
  • the tab portions 16A and 16B have rod-like portions 17A and 17B and flat portions 18A and 18B, respectively. By having the flat portion, each lead can be easily connected to the anode 21 or the cathode 22. Moreover, it becomes easy to let each lead penetrate the sealing member 12 by having a rod-shaped part. In FIG. 1, the tip portions of the rod-like portions 17A and 17B are embedded in the sealing member 12, but the tip portions of the rod-like portions 17A and 17B may protrude from the outer surface of the sealing member 12.
  • the mounting surface 13S of the mold resin layer 13 is provided with elongated recesses 13A and 13B.
  • the occupation ratio of the region where the recess is formed is set to 5% or more and 80% or less of the mounting surface.
  • the recesses 13A and 13B accommodate the lead portion 15A of the anode lead 14A and the lead portion 15B of the cathode lead 14B that extend in opposite directions along the mounting surface 13S direction of the mold resin layer 13.
  • a restoring force for returning to the original shape acts on the drawer portions 15A and 15B.
  • the bottom surfaces of the recesses 13A and 13B are inclined.
  • the inclination angle of the bottom surfaces 13a and 13b with respect to the mounting surface 13S is, for example, 3 ° or more and 30 ° or less. Note that the depths of the recesses 13A and 13B may be constant without inclining the bottom surfaces 13a and 13b.
  • a metal foil having a roughened surface is used as the anode 21 .
  • the kind of metal which comprises metal foil is not specifically limited, From the point that formation of a dielectric material layer is easy, it is preferable to use the alloy which contains valve action metals, such as aluminum, a tantalum, niobium, or a valve action metal.
  • the dielectric layer is formed on the surface of the anode 21. Specifically, since the dielectric layer is formed on the surface of the roughened metal foil, the dielectric layer is formed along the inner wall surface of the hole or recess (pit) on the surface of the anode 21.
  • the dielectric layer can be formed by chemical conversion treatment of the metal foil.
  • a metal foil is used for the cathode 22.
  • the type of metal is not particularly limited, but it is preferable to use a valve action metal such as aluminum, tantalum, or niobium or an alloy containing the valve action metal.
  • the cathode 22 may be subjected to at least one of roughening and chemical conversion treatment as necessary.
  • the separator 23 is not particularly limited, and for example, a nonwoven fabric containing fibers of cellulose, polyethylene terephthalate, vinylon, polyamide (for example, aromatic polyamide, aromatic polyamide such as aramid) may be used.
  • the capacitor element 10 may include a solid electrolyte layer that covers at least a part of the surface of the dielectric layer.
  • the solid electrolyte layer preferably includes a ⁇ -conjugated conductive polymer.
  • the ⁇ -conjugated conductive polymer can be formed, for example, by subjecting the raw material monomer to at least one of chemical polymerization and electrolytic polymerization on the dielectric layer. Alternatively, it can be formed by applying a solution in which a conductive polymer is dissolved or a dispersion in which a conductive polymer is dispersed to the dielectric layer.
  • a metal such as aluminum, stainless steel, copper, iron, brass, or an alloy thereof is used.
  • the sealing member 12 may be an insulating material.
  • an elastic body is preferable.
  • the sealing member 12 including an elastic body such as rubber high sealing performance can be ensured. From the viewpoint of easily obtaining high heat resistance, silicone rubber, fluorine rubber, ethylene propylene rubber, chlorosulfonated polyethylene rubber (Hypalon (registered trademark) rubber, etc.), butyl rubber, isoprene rubber and the like are preferable.
  • Etching was performed on an aluminum foil having a thickness of 105 ⁇ m to roughen the surface of the aluminum foil. Thereafter, a dielectric layer was formed on the surface of the aluminum foil by chemical conversion treatment. The chemical conversion treatment was performed by immersing an aluminum foil in an ammonium adipate solution and applying a voltage of 45 V thereto. Thereafter, the aluminum foil was cut to 5.3 mm ⁇ 180 mm to prepare an anode body.
  • the aluminum foil having a thickness of 50 ⁇ m was etched to roughen the surface of the aluminum foil. Thereafter, the aluminum foil was cut to 5.3 mm ⁇ 180 mm to prepare a cathode body.
  • the anode lead tab portion and the cathode lead tab portion were connected to the anode body and the cathode body, and the anode body and the cathode body were wound through the separator while winding the tab portion.
  • An anode lead portion and a cathode lead portion were connected to the end portions of the tab portions protruding from the wound body, respectively.
  • the formed wound body was subjected to a chemical conversion treatment again, and a dielectric layer was formed on the cut end portion of the anode body.
  • the end of the outer surface of the wound body was fixed with a winding tape to produce a wound body.
  • ethylene glycol (EG) as a glycol compound was used as an essential component
  • sulfolane (SL) as a sulfone compound and ⁇ -butyrolactone (GBL) as a lactone compound were used as optional components.
  • solute phthalic acid (ortho form) and triethylamine were used.
  • An electrolytic solution was prepared using the above solvent and solute. The content ratio of the solute in the electrolytic solution was 25% by mass.
  • Capacitor element sealing The capacitor element impregnated with the electrolytic solution was sealed to complete the electrolytic capacitor. Specifically, the capacitor element is housed in the bottomed case so that the lead is positioned on the opening side of the bottomed case, and the sealing member formed so that the lead penetrates (an elastic material mainly composed of butyl rubber) was placed above the capacitor element, and the capacitor element was sealed in the bottomed case. Drawing was performed near the open end of the bottomed case.
  • a mold resin layer 13 (having a thermal conductivity of 0) having elongated recesses 13A and 13B on the mounting surface side by injection molding of an epoxy resin composition containing 30% by mass of silica as a filler (Tg 105 ° C. of cured product). 0.5 W / mK), and an electrolytic capacitor as shown in FIG. 1 was completed. Thereafter, an aging treatment was performed at 100 ° C. for 2 hours while applying a voltage of 39V.
  • the depth of the recess was 0.5 mm, and the maximum thickness T max of the mold resin layer was 1.5 mm.
  • the area where the recesses are formed is set to 20% of the mounting surface, and the ratio of the area S x to the area S 0 (the ratio of the distance h to the height H of the case 11) is set to 40%.
  • ESR equivalent series resistance
  • ⁇ ESR (%) (X 1 ⁇ X 0 ) / X 0 ⁇ 100
  • the guaranteed life at high temperatures can be extended by adding a glycol compound to the solvent contained in the electrolytic solution.
  • the level of heat resistance required for electrolytic capacitors tends to increase, and it is becoming difficult to achieve both suppression of transpiration of electrolyte components and maintenance of low ESR.
  • the second aspect of the present disclosure described below provides an electrolytic capacitor capable of maintaining a high level of heat resistance while suppressing an increase in lead length.
  • the electrolytic capacitor according to the second aspect of the present disclosure includes a capacitor element, an electrolytic solution, a case, a sealing member, a pair of leads, and a mold resin layer.
  • the capacitor element includes a pair of electrodes.
  • the electrolytic solution is interposed between the pair of electrodes.
  • the case contains a capacitor element and an electrolytic solution, and has an opening.
  • the sealing member seals the opening.
  • the pair of leads are electrically connected to the pair of electrodes, respectively, and penetrate the sealing member.
  • the mold resin layer covers at least a part of the outer surface of the sealing member and has a mounting surface.
  • the mounting surface is a surface having a flat portion facing the substrate when mounted on a circuit board or the like.
  • the mold resin layer preferably covers the entire outer surface of the sealing member. However, a minute region not having the mold resin layer may be formed around the through hole through which the lead on the outer surface of the sealing member passes. . However, it is preferable that 95% or more of the outer surface of the sealing member is covered with the mold resin layer, and it is more preferable that substantially 100% is covered with the mold resin layer. That is, it is preferable that 95% or more and 100% or less of the outer surface of the sealing member is covered.
  • the mold resin layer covers at least a part of the side surface following the opening of the case in addition to the outer surface of the sealing member. Thereby, the airtightness in a case can further be improved.
  • the mold resin layer has a recess that is open on the mounting surface side.
  • the shape of the recess is not particularly limited, and the size of the region where the recess is formed is not particularly limited. However, from the viewpoint of maintaining the structural strength of the mold resin layer, the region where the recesses are opened is preferably 80% or less, more preferably 50% or less of the mounting surface.
  • the recess can accommodate at least part of the pair of leads.
  • the lead does not become longer with the thickness of the mold resin layer, and the low ESR can be easily maintained.
  • the area where the recesses are opened is preferably 120% or more and 200% or less with respect to the area occupied by the leads when the leads are projected onto the mounting surface.
  • the concave portion has not only a region for accommodating the lead but also an effect of suppressing the scattering of the solder.
  • the average thickness T ave of the thin portion of the mold resin layer in the recess is 0.1 mm or more, preferably 0.3 mm or more, and more preferably 0.5 mm or more.
  • the transpiration of the electrolyte component does not change so much even if the thickness of the thin part is increased to 0.1 mm or more, but when the thickness is less than 0.1 mm, the transpiration of the electrolyte component is remarkable. There is a tendency to become. In other words, the thickness of the mold resin layer that can easily maintain the lowest ESR and can sufficiently suppress the evaporation of the electrolyte component is 0.1 mm or more.
  • the average thickness T ave of the thin-walled portion is preferably 6.0 mm or less, more preferably 4.0 mm or less from the viewpoint of lowering the ESR and securing a sufficient space for accommodating the lead in the recess. More preferably 2.0 mm or less, particularly preferably 1.5 mm or less.
  • the average thickness T ave of the thin portion is defined as the average value of the distance T from the interface between the sealing member and the mold resin layer to the bottom surface of the recess in the normal direction of the interface (see FIG. 3). However, when the mold resin layer covers other than the outer surface of the sealing member, the region covering other than the outer surface is excluded.
  • the average thickness T ave of the thin wall portion is a distance T from the interface between the sealing member and the mold resin layer to the bottom surface of the recess in the normal direction of the interface in the region covering the outer surface of the sealing member of the mold resin layer.
  • the obtained integrated value may be obtained by dividing by the area of the bottom surface of the concave portion (the area obtained by projecting the bottom surface onto the outer surface of the sealing member).
  • the region covering the outer surface of the sealing member of the mold resin layer is a region of the mold resin layer that overlaps the interface between the sealing member and the mold resin layer when the mold resin layer is viewed from the mounting surface side. is there.
  • the maximum thickness (hereinafter, T max ) of the mold resin layer covering the outer surface of the sealing member is preferably 6.5 mm or less, preferably 4.5 mm or less, preferably 3 mm. The following is more preferable, and 2 mm or less is still more preferable.
  • T max corresponds to the maximum distance from the interface between the sealing member and the mold resin layer to the mounting surface of the mold resin layer in the normal direction of the interface.
  • the concave portion is formed so that the average thickness T ave of the thin portion is 0.1 mm or more, further 0.3 mm or more or 0.5 mm or more. Becomes difficult.
  • the maximum thickness T max of the mold resin layer is preferably 1.0 mm or more, more preferably 1.3 mm or more, or 1.5 mm or more.
  • the thick region other than the thin portion corresponding to the recess serves as a structural reinforcement portion. Therefore, it is possible to make the thin portion thinner as compared with the case where the entire thickness of the mold resin layer is similarly reduced, and it is easy to realize low ESR. For example, in the reflow process in which the electrolytic capacitor is heated to a high temperature, the internal pressure of the electrolytic capacitor greatly increases. At this time, the sealing member tends to expand so as to have a convex shape on the opening side of the case. On the other hand, since the mold resin layer having the recess can make the region other than the thin portion relatively thick, the mold resin layer is difficult to swell together with the sealing member, and the mold resin layer is prevented from being damaged.
  • the mold resin layer has a heat insulating action.
  • the thermal conductivity of the mold resin layer is preferably, for example, 1.0 W / mK or less, and more preferably 0.7 W / mK or less.
  • what is necessary is just to measure thermal conductivity by the disk heat flow meter method based on ASTME1530, for example.
  • the materials exemplified in the first aspect can be used in the exemplified blending ratio.
  • the materials exemplified in the structure exemplified in the first embodiment can be used.
  • An electrolytic capacitor 1A shown in FIG. 3 includes a capacitor element 10, an electrolytic solution (not shown), and a case 11 that accommodates these and has an opening.
  • the case 11 is, for example, a bottomed cylindrical shape.
  • the opening of the case 11 is sealed with a sealing member 12.
  • the entire outer surface of the sealing member 12 facing the opening side of the case 11 is covered with the mold resin layer 13.
  • the mold resin layer 13 is provided so as to cover the opening of the case 11 together with the outer surface of the sealing member 12, and further covers at least a part of the side surface following the opening of the case 11.
  • the opening of the case 11 is sealed with the sealing member 12 and the mold resin layer 13 after accommodating the capacitor element 10.
  • the opening end of the case 11 is drawn to the sealing member 12 side and caulked to the inside.
  • the sealing member 12 is fixed to the opening of the case 11, and the case 11 is sealed by the sealing member 12.
  • the mold resin layer 13 can be formed using a molding technique such as injection molding, insert molding, or compression molding.
  • the mold resin layer 13 is formed by filling a predetermined portion in the mold with the curable resin composition so as to cover the opening of the case 11 together with the outer surface of the sealing member 12 using a predetermined mold. Can do.
  • the configuration of the capacitor element 10 is the same as that of the first embodiment.
  • the mold resin layer 13 is provided with elongated recesses 13A and 13B so as to open toward the mounting surface 13S.
  • the recesses 13A and 13B accommodate the lead portion 15A of the anode lead 14A and the lead portion 15B of the cathode lead 14B that extend in opposite directions along the mounting surface 13S direction of the mold resin layer 13.
  • a restoring force for returning to the original shape acts on the drawer portions 15A and 15B.
  • the bottom surfaces of the recesses 13A and 13B are inclined.
  • the inclination angle of the bottom surfaces 13a and 13b with respect to the mounting surface 13S is, for example, 3 ° or more and 30 ° or less. Note that the depths of the recesses 13A and 13B may be constant without inclining the bottom surfaces 13a and 13b.
  • the bottom surfaces 13a and 13b of the recesses 13A and 13B are inclined so that the depths of the recesses 13A and 13B gradually increase from the center side to the outer edge side of the mounting surface 13S. That is, the thickness of the thin portion in the recess gradually decreases from the center side of the mounting surface 13S toward the outer edge side, and is thinnest at the outermost edge portion.
  • the region of the thin portion where the electrolyte component easily evaporates in the mold resin layer 13 is a region R partitioned so as to be sandwiched between the interface between the sealing member 12 and the mold resin layer 13 and the bottom surface of the recess. Since the portion where the lead protrudes from the bottom surface of the recess is very small, the portion including the portion where the lead protrudes may be handled as the bottom surface of the recess.
  • the average thickness T ave of the thin portion is determined from the region R of the thin portion and is formed to be 0.1 mm or more (preferably 0.3 mm or more or 0.5 mm or more).
  • sealing member 12 the same material and structure as in the first embodiment can be used.
  • Electrolytic capacitor 1A includes an electrolytic solution.
  • the electrolytic solution may be a non-aqueous solvent or a mixture of a non-aqueous solvent and an ionic substance (solute) dissolved in the non-aqueous solvent.
  • the non-aqueous solvent may be an organic solvent or an ionic liquid.
  • the non-aqueous solvent for example, ethylene glycol, propylene glycol, sulfolane, ⁇ -butyrolactone, N-methylacetamide and the like can be used.
  • organic salt examples include trimethylamine maleate, triethylamine borodisalicylate, triethylamine phthalate, ethyldimethylamine phthalate, mono 1,2,3,4-tetramethylimidazolinium phthalate, mono 1,3-phthalate And dimethyl-2-ethylimidazolinium.
  • a metal such as aluminum, stainless steel, copper, iron, brass, or an alloy thereof is used.
  • the electrolytic capacitor 1B shown in FIG. 4 has the same structure as that of the second embodiment except that the tip portions of the rod-like portions 17A and 17B of the tab portions 16A and 16B protrude from the outer surface of the sealing member 12. Therefore, the same components as those in the second embodiment shown in FIG. Also in the present embodiment, the thin-walled region R where the electrolytic solution easily evaporates is a region R partitioned so as to be sandwiched between the interface between the sealing member 12 and the mold resin layer 13 and the bottom surface of the recess.
  • the interface between the sealing member 12 and the mold resin layer 13 is reduced by the cross-sectional area of the rod-shaped portions 17A and 17B, but the portion where the rod-shaped portion protrudes from the sealing member is very small, and the rod-shaped portion protrudes. What is necessary is just to treat it as the interface of the sealing member 12 and the mold resin layer 13 including the part to perform. Further, the electrolyte component that evaporates diffuses inside the mold resin layer 13 via the interface between the sealing member 12 and the mold resin layer 13. Therefore, it is considered that the thickness of the thin portion in the substantially opposed region between the sealing member 12 and the mold resin layer 13 affects the evaporation of the electrolyte component rather than the size of the interface.
  • the mold resin layer 13 covers the entire outer surface of the sealing member 12, but the end portions of the rod-like portions 17A and 17B are not embedded in the mold resin layer 13 and are exposed to the outside. Such an exposed portion is formed by providing a deep portion having a large depth in the recesses 13A and 13B where the tip portions of the rod-like portions 17A and 17B protrude from the mold resin layer 13.
  • the thickness of the thin part in the deep part can be less than 0.1 mm.
  • the average thickness T ave of the thin portion is designed in the above range, the deep portion is limited to be a minute region. Therefore, it is possible to sufficiently suppress the evaporation of the electrolyte component.
  • Examples 12 to 20 In this example, a wound electrolytic capacitor ( ⁇ (diameter) 10.0 mm ⁇ L (length) 10.0 mm) having a rated voltage of 25 V and a rated capacitance of 330 ⁇ F was produced. Below, the specific manufacturing method of an electrolytic capacitor is demonstrated.
  • Etching was performed on an aluminum foil having a thickness of 105 ⁇ m to roughen the surface of the aluminum foil. Thereafter, a dielectric layer was formed on the surface of the aluminum foil by chemical conversion treatment. The chemical conversion treatment was performed by immersing an aluminum foil in an ammonium adipate solution and applying a voltage of 45 V thereto. Thereafter, the aluminum foil was cut to 5.3 mm ⁇ 180 mm to prepare an anode body.
  • the aluminum foil having a thickness of 50 ⁇ m was etched to roughen the surface of the aluminum foil. Thereafter, the aluminum foil was cut to 5.3 mm ⁇ 180 mm to prepare a cathode body.
  • the anode lead tab portion and the cathode lead tab portion were connected to the anode body and the cathode body, and the anode body and the cathode body were wound through the separator while winding the tab portion.
  • An anode lead portion and a cathode lead portion were connected to the end portions of the tab portions protruding from the wound body, respectively.
  • the formed wound body was subjected to a chemical conversion treatment again, and a dielectric layer was formed on the cut end portion of the anode body.
  • the end of the outer surface of the wound body was fixed with a winding tape to produce a wound body.
  • a solvent for the electrolytic solution a mixed solvent of ethylene glycol (EG), sulfolane (SL), and ⁇ -butyrolactone (GBL) in a volume ratio of 40:30:30 was used.
  • EG ethylene glycol
  • SL sulfolane
  • GBL ⁇ -butyrolactone
  • phthalic acid ortho form
  • triethylamine triethylamine
  • Capacitor element sealing The capacitor element impregnated with the electrolytic solution was sealed to complete the electrolytic capacitor. Specifically, the capacitor element is housed in the bottomed case so that the lead is positioned on the opening side of the bottomed case, and the sealing member formed so that the lead penetrates (an elastic material mainly composed of butyl rubber) was placed above the capacitor element, and the capacitor element was sealed in the bottomed case. Drawing processing was performed near the open end of the bottomed case.
  • a mold resin layer 13 (having a thermal conductivity of 0) having elongated recesses 13A and 13B on the mounting surface side by injection molding of an epoxy resin composition containing 30% by mass of silica as a filler (Tg 105 ° C. of cured product). .5 W / mK), and an electrolytic capacitor as shown in FIG. 3 was completed. Thereafter, an aging treatment was performed at 100 ° C. for 2 hours while applying a voltage of 39V.
  • the maximum thickness T max of the mold resin layer is changed in the range of 0.6 mm to 6.5 mm, and the average depth of the recesses opened on the mounting surface side is constant at 0.5 mm.
  • To A20 were prepared.
  • the lengths of the anode lead and the cathode lead were changed in accordance with the average thickness T ave of the thin portion in the recess. T ave and T max are shown in Table 2.
  • Comparative Example 4 An electrolytic capacitor B4 similar to the example was prepared except that a seat plate made of polyphenylene sulfide (PPS) resin having a through hole for passing a lead was not formed on the sealing member side without forming a mold resin layer. It was measured. The thickness of the seat plate was 1.0 mm, and the thickness of the thin portion in the recess in which the lead was accommodated was 0.5 mm. Similar to the example, the difference in the maximum distance from the bottom surface of the case to the outer surface of the sealing member before and after heating at 200 ° C. was determined as the amount of swelling of the sealing member. The results are shown in Table 2.
  • PPS polyphenylene sulfide
  • T ave needs to be 0.1 mm or more from the viewpoint of suppressing transpiration of the electrolyte component, and is preferably 0.3 mm or more, and more preferably 0.5 mm or more. .
  • Tmax is preferably 4.5 mm or less, and more preferably 2.0 mm or less from the viewpoint of achieving low ESR while suppressing transpiration of the electrolyte component.
  • an electrolytic capacitor that includes an electrolytic solution in a case and includes a sealing member and a mold resin layer, evaporation of the solvent in the electrolytic solution is suppressed, so that the electrolytic capacitor can withstand long-time use even at high temperatures. It can be used for various devices, cars, portable devices and the like.
  • Electrolytic capacitor 10 Capacitor element 11: Case 12: Sealing member 13: Mold resin layer 13S: Mounting surface 13A, 13B: Recess 13a, 13b: Bottom surface 14A: Anode lead 14B: Cathode lead 15A 15B: Lead-out part 16A, 16B: Tab part 17A, 17B: Rod-like part 18A, 18B: Flat part 21: Anode 22: Cathode 23: Separator 24: Winding tape

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

電解コンデンサは、コンデンサ素子と、電解液と、ケースと、封口部材と、モールド樹脂層と、を備えている。コンデンサ素子は、一対の電極を含む。電解液は、一対の電極間に介在する。ケースは、コンデンサ素子および電解液を収容し、開口を有する。封口部材は、開口を封止する。モールド樹脂層は、封口部材の外面の少なくとも一部を覆う。電解液に含まれる溶媒が、グリコール化合物を含む。

Description

電解コンデンサ
 本開示は、封口部材を覆うモールド樹脂層を備える電解コンデンサに関する。
 電解コンデンサは、一対の電極を含むコンデンサ素子と、コンデンサ素子を収容するケースと、ケースの開口を封止する封口部材と、一対の電極にそれぞれ電気的に接続され、かつ、封口部材を貫通する一対のリードとを備える。
 電解コンデンサが電解液を含む場合、電解液成分が封口部材を透過し、蒸散して、徐々に減少する傾向が見られる。そこで、ケース内の密閉性を高めるために、ケースの開口側を臨む封口部材の外面をモールド樹脂層で覆うことが提案されている(特許文献1)。
特開昭60-245106号公報
 本開示の第1の態様に係る電解コンデンサは、コンデンサ素子と、電解液と、ケースと、封口部材と、モールド樹脂層と、を備えている。コンデンサ素子は、一対の電極を含む。電解液は、一対の電極間に介在する。ケースは、コンデンサ素子および電解液を収容し、開口を有する。封口部材は、開口を封止する。モールド樹脂層は、封口部材の外面の少なくとも一部を覆う。電解液に含まれる溶媒が、グリコール化合物を含む。
 本態様によれば、高温下での保証寿命の長い電解コンデンサを提供することができる。
 本開示の第2の態様に係る電解コンデンサは、コンデンサ素子と、電解液と、ケースと、封口部材と、一対のリードと、モールド樹脂層と、を備えている。コンデンサ素子は、一対の電極を含む。電解液は、一対の電極間に介在する。ケースは、コンデンサ素子および電解液を収容し、開口を有する。封口部材は、開口を封止する。一対のリードは、一対の電極にそれぞれ電気的に接続され、かつ、封口部材を貫通する。モールド樹脂層は、封口部材の外面の少なくとも一部を覆う。モールド樹脂層が、実装面に凹部を有し、凹部におけるモールド樹脂層の薄肉部の平均厚さが、0.1mm以上である。凹部に、一対のリードの少なくとも一部が収容されている。
 本態様によれば、リードの長さの増大を抑制しつつ、高レベルの耐熱性を維持することができる。
図1は、第1実施形態に係る電解コンデンサの概略断面図である。 図2は、コンデンサ素子の一例の構成を説明するための概略図である。 図3は、第2実施形態に係る電解コンデンサの概略断面図である。 図4は、第3実施形態に係る電解コンデンサの概略断面図である。 図5は、第4実施形態に係る電解コンデンサの概略断面図である。
 特許文献1の電解コンデンサでは、封口部材の外面をモールド樹脂層で覆うことにより、電解液に含まれる溶媒の蒸散が長期的に抑制されるため、電解コンデンサの保証寿命を長くすることができると期待される。しかし、モールド樹脂層を設けることにより、電解コンデンサの外装部分の断熱性が高くなり、電解コンデンサ内部で発生する熱の発散(放熱)が困難になる。そのため、リップル電流による自己発熱によって不具合を生じやすくなる。例えば、高温下では、ケース内に熱が蓄積されることによって内部圧力が高くなり、溶媒の蒸散が促進される。つまり、モールド樹脂層による溶媒の蒸散を抑制する効果が一部相殺され、期待される電解コンデンサの保証寿命が達成されなくなる。
 上記問題に鑑み、以下に示す本開示の第1の態様は、高温下での保証寿命を長くすることができる電解コンデンサを提供する。
 本開示の第1の態様に係る電解コンデンサは、コンデンサ素子と、電解液と、ケースと、封口部材と、一対のリードとを備える。コンデンサ素子は、一対の電極を含む。電解液は、一対の電極間に介在する。ケースは、コンデンサ素子および電解液を収容し、開口を有する。封口部材は、開口を封止する。一対のリードは、一対の電極にそれぞれ電気的に接続され、かつ、封口部材を貫通する。ケースの開口側を臨む封口部材の外面の少なくとも一部は、モールド樹脂層で覆われている。電解液に含まれる溶媒は、グリコール化合物を含む。
 モールド樹脂層には、耐リフロー性を向上させる効果や、電解液に含まれる溶媒の蒸散を長期的に抑制する効果が期待される。リフロー工程では、電解コンデンサが高温に加熱されるため、周囲の熱の電解コンデンサ内への伝導を抑制することが望まれる。よって、モールド樹脂層は、優れた断熱作用を有することが一般的である。モールド樹脂層の熱伝導率は、例えば1.0W/mK以下であり、0.8W/mK以下が好ましい。なお、熱伝導率は、例えばASTM E1530に準拠した円板熱流計法により測定すればよい。
 ところが、電解コンデンサの断熱性が高くなると、ケース内で発生する熱の発散が困難になり、ケース内に熱が蓄積されやすくなる。これに対し、溶媒にグリコール化合物を含ませると、電解液の熱伝導性が高められ、電解液からケースを通じて熱が外部に逃げやすくなる。グリコール化合物の中でも、例えばエチレングリコール(EG)は、電解コンデンサの電解液の溶媒として多用されるγ-ブチロラクトン(GBL)、スルホラン(SL)などに比べると、熱伝導率が2倍程度大きく、電解液からケースに熱を移動させやすくなる。
 電解液の熱伝導性を十分に高める観点からは、溶媒に含まれるグリコール化合物の含有割合を5質量%以上とすることが好ましい。溶媒に含まれるグリコール化合物の含有割合が大きいほど、熱伝導性を高める効果が大きくなる。
 モールド樹脂層は、必ずしも封口部材の外面の全面を覆っている必要はない。例えば、封口部材の外面のうち、リードを通過させるための貫通孔の周囲には、モールド樹脂層を有さない微小領域を設けてもよい。ただし、溶媒の蒸散を低減する観点から、封口部材の外面の50%以上、更には95%以上がモールド樹脂層で覆われていることが好ましく、実質的に封口部材の外面の100%がモールド樹脂層で覆われていることがより好ましい。すなわち、封口部材の外面の50%以上、100%以下がモールド樹脂層で覆われていることが好ましく、更には封口部材の外面の95%以上、100%以下がモールド樹脂層で覆われていることがより好ましい。
 モールド樹脂層は、実装面を有することが好ましい。実装面とは、回路基板などに実装される際に基板と対向する平坦部を有する面である。モールド樹脂層に実装面を設けることで、電解コンデンサが高温に加熱されるリフロー工程では、回路基板からケース内への熱伝導が抑制され、ケース内の急激な圧力上昇が抑制される。よって、電解コンデンサの耐リフロー性が更に向上する。
 一方、実装面を有するモールド樹脂層は、長期的には、電解コンデンサから回路基板へ熱を逃がす際の障壁になるため、電解コンデンサの自己発熱による熱が、ケース内に更に蓄積されやすくなる。中でも、封口部材とモールド樹脂層との界面から、当該界面の法線方向におけるモールド樹脂層の実装面までの最大距離(封口部材の外面を覆うモールド樹脂層の最大厚さ)Tmaxが4.0mmより大きい場合には、ケース内に多くの熱が蓄積されやすい。
 電解コンデンサの密閉性を十分に高める観点からは、最大距離Tmaxは1.0mm以上が好ましく、1.3mm以上がより好ましい。また、電解コンデンサの小型化やケース内の熱を放出させやすくする観点からは、最大距離Tmaxは、4mm以下が好ましく、3mm以下がより好ましく、2mm以下が更に好ましい。
 ケース内の密閉性を高める観点からは、モールド樹脂層は、封口部材の外面に加え、ケースの開口に続く側面の少なくとも一部も覆っていることが好ましい。一方、ケースの側面の一部がモールド樹脂層で覆われると、ケースから熱を外部に逃がす経路にも障壁が形成される。よって、密閉性を向上させ得る程度で、ケースの側面のできるだけ小領域をモールド樹脂層で覆うことが好ましい。ケースの側面の全体の面積(S)に対するモールド樹脂層で覆われる側面の面積(S)の割合は、10%以上、更には20%以上であれば十分であり、できるだけ放熱性を損なわないように80%以下、更には50%以下とすることが好ましい。ケースの側面の一部をモールド樹脂層で覆う場合にも、電解液に十分量のグリコール化合物を含ませることで、保証寿命の向上と密閉性の向上とを好適な範囲で両立させることが可能である。
 以上のように、モールド樹脂層に実装面を設ける場合や、ケースの側面の一部をモールド樹脂層で覆う場合には、電解液におけるグリコール化合物の含有量をできるだけ高め、電解液の熱伝導性を向上させることが好ましい。例えば、電解液中の溶媒に含まれるグリコール化合物の含有量は、30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上が更に好ましい。これにより、ケースから外部に逃げる熱量を十分に多くすることができる。なお、電解液中の溶媒にグリコール化合物以外の成分も含ませ得るように、溶媒に含まれるグリコール化合物の含有量は、90質量%以下とすることが好ましい。
 実装面に凹部を設け、凹部に一対のリードの少なくとも一部を収容してもよい。凹部の形状は特に限定されない。このとき、実装面からも回路部材にできるだけ多くの熱を逃がす観点からは、凹部が形成される領域は、実装面の80%以下であることが好ましい。これにより、実装面と回路部材との接触面積が十分に確保されるため、実装面と回路部材に熱が移動しやすくなる。なお、凹部は、リードを収容する領域だけでなく、他の目的で設けられた領域を有してもよい。
 電解液は、溶媒のみであってもよく、溶媒とこれに溶解させたイオン性物質(溶質)との混合物でもよい。溶媒は、非水溶媒もしくは有機溶媒であることが好ましく、必須成分としてグリコール化合物を含む。
 グリコール化合物としては、例えば、アルキレングリコールや重量平均分子量が300未満のポリアルキレングリコールが好ましい。より具体的には、エチレングリコール、プロピレングリコール、ブチレングリコール、ペンチレングリコール、ヘキシレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコールなどが挙げられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 中でも、グリコール化合物は、エチレングリコール(EG)であることが好ましい。エチレングリコールは、グリコール化合物の中でも粘度が低いため、溶質を溶解しやすい。また、エチレングリコールは、特に熱伝導性が高く、リップル電流が発生したときの放熱性に優れている。複数種のグリコール化合物を用いる場合でも、グリコール化合物全体に占めるエチレングリコールの割合は、10質量%以上が好ましく、20質量%以上がより好ましく、グリコール化合物の全体が実質的にエチレングリコールであってもよい。
 グリコール化合物以外に、溶媒として、γ-ブチロラクトン(GBL)、N-メチルアセトアミドなどを用いることもできる。中でも、γ-ブチロラクトンは、低温特性を向上させやすい点で好ましく、溶媒中のグリコール化合物以外の成分の90質量%以下(例えば10質量%以上)をγ-ブチロラクトンが占めていてもよい。
 また、グリコール化合物以外に、溶媒として、スルホン化合物を用いることも好ましい。スルホン化合物は、分子内にスルホニル基(-SO-)を有する有機化合物である。スルホン化合物としては、例えば、鎖状スルホン、環状スルホンが挙げられる。鎖状スルホンとしては、例えば、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、ジフェニルスルホンが挙げられる。環状スルホンとしては、例えば、スルホラン(SL)、3-メチルスルホラン、3,4-ジメチルスルホラン、3,4-ジフェニメチルスルホランが挙げられる。中でも、溶質の解離性および熱安定性の観点から、スルホン化合物は、スルホランであることが好ましい。スルホランは、スルホン化合物の中でも粘度が低いため、溶質を溶解し易い。例えば、溶媒中のグリコール化合物以外の成分の90質量%以下(例えば10質量%以上)をスルホランが占めていてもよい。
 溶媒は、上記以外の他成分を含んでもよい。他成分としては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、フルオロエチレンカーボネート(FEC)などのカーボネート化合物が挙げられるが、特に限定されない。
 電解液中に含まれる溶媒の種類および組成については、液体クロマトグラフィ、ガスクロマトグラフィ等により分析することができる。
 電解液は、溶質を含み得る。溶質としては、有機カルボン酸の第1級~第3級アンモニウム塩、有機カルボン酸の第4級アミジニウム塩、有機カルボン酸の第4級アンモニウム塩などを用いることが好ましい。このような溶質を含む電解液は、陽極体の誘電体層(酸化皮膜)の欠陥部を修復する機能に優れている。より具体的には、例えば、マレイン酸トリメチルアミン、ボロジサリチル酸トリエチルアミン、フタル酸トリエチルアミン、フタル酸エチルジメチルアミン、フタル酸モノ1,2,3,4-テトラメチルイミダゾリニウム、フタル酸モノ1,3-ジメチル-2-エチルイミダゾリニウムなどが挙げられる。溶質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 モールド樹脂層は、硬化性樹脂組成物の硬化物を含むことが好ましい。硬化性樹脂組成物は、硬化性樹脂に加え、フィラー(充填剤)、硬化剤、重合開始剤、触媒などを含んでいてもよい。硬化性樹脂としては、熱硬化性樹脂が好ましい。硬化剤、重合開始剤、触媒などは、硬化性樹脂の種類に応じて適宜選択される。モールド樹脂層の熱伝導率は、硬化性樹脂、フィラー、添加剤などにより、所望の数値になるように制御することができる。
 硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ユリア樹脂、ポリイミド、ポリアミドイミド、ポリウレタン、ジアリルフタレート、不飽和ポリエステルなどが挙げられる。硬化性樹脂組成物は、複数の硬化性樹脂を含んでもよい。通常は、硬化物のガラス転移温度が80℃以上のエポキシ樹脂組成物が用いられる。
 フィラーとしては、例えば、絶縁性の粒子(無機系、有機系)および繊維の少なくとも一方などが好ましい。フィラーを構成する絶縁性材料としては、例えば、シリカ、アルミナ、ガラス、タルク、マイカ、クレーなどが挙げられる。モールド樹脂層は、これらのフィラーを1種含んでもよく、2種以上含んでもよい。モールド樹脂層中のフィラーの含有割合は、例えば10質量%以上、90質量%以下であり、20質量%以上、80質量%以下が好ましい。
 モールド樹脂層は、熱可塑性樹脂もしくはこれを含む組成物を含んでいてもよい。熱可塑性樹脂としては、例えば、ポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT)などを用いることができる。
 リードの構造は、特に限定されないが、リードは、タブ部とその一端部から延出する引き出し部とを有することが好ましい。タブ部は、ケース内の電極に接続される扁平部と、封口部材を貫通する棒状部とを有することが好ましい。このようなタブ部の扁平部は、通常、棒状体の一部を圧延することにより形成され、圧延されない領域が棒状部となる。引き出し部は、棒状部の先端に溶接などにより接続される。
 タブ部は、ケース内に収容されるため、アルミニウムのような弁作用金属で形成されることが好ましい。タブ部は、タブ部を構成する金属の酸化被膜で覆われていることが好ましい。一方、引き出し部には、例えば、鉄、銅、ニッケル、錫などの遷移金属を含むCP線、Cu線などが用いられる。電解コンデンサを基板に実装する際には、引き出し部が、基板上の被接続電極と電気的に接続される。
 コンデンサ素子は、固体電解質層を備えてもよい。固体電解質層は、例えば、マンガン化合物、導電性高分子などを含む。導電性高分子としては、例えば、ポリピロール、ポリチオフェン、ポリアニリンおよびこれらの誘導体などを用いることができる。
 以下、本開示の実施形態に係る電解コンデンサについて、図面を参照しながら具体的に説明するが、本開示は、これに限定されるものではない。
 (第1実施形態)
 図1に示す電解コンデンサ1は、コンデンサ素子10、電解液(図示しない)およびこれらを収容するとともに開口を有するケース11を備える。電解液は、グリコール化合物を必須成分として含んでいる。ケース11は、例えば有底円筒形である。ケース11の開口は、封口部材12で封止されている。
 ケース11の開口は、コンデンサ素子10を収容した後、封口部材12およびモールド樹脂層13で封止される。ケース11の開口端部は、封口部材12側に絞り加工され、内側にかしめ加工されている。これにより、封口部材12がケース11の開口部に固定され、ケース11は封口部材12により密閉される。
 ケース11の開口側を臨む封口部材12の外面は、その全体がモールド樹脂層13で覆われている。封口部材12とモールド樹脂層13との界面から、当該界面の法線方向(方向X)におけるモールド樹脂層13の実装面13Sまでの最大距離Tmaxは、例えば1.0mm以上に設定され、1.3mm以上が好ましい。また、最大距離Tmaxは、例えば4mm以下に設定され、3mm以下が好ましく、2mm以下がより好ましい。
 モールド樹脂層13は、ケース11の開口とともにケース11の開口に続く側面の一部も覆っている。このとき、ケースの側面の全体の面積Sに対するモールド樹脂層で覆われる側面の面積Sの割合は、ケース11の高さHに対する、ケース11の開口からケース底部側のモールド樹脂層13の端部までの距離hの割合で表される。Hに対するhの割合は、例えば10%以上、120%以下、好ましくは10%以上、80%以下に設定される。
 モールド樹脂層13は、射出成形、インサート成形、圧縮成形などの成形技術を用いて形成することができる。モールド樹脂層13は、例えば、所定の金型内に硬化性樹脂組成物を充填し、封口部材12の外面とともにケース11の開口を覆うことにより形成される。
 図2に、巻回体を具備するコンデンサ素子の一例の構成を示す。巻回体は、陽極21と陰極22とを、これらの間にセパレータ23を介在させて捲回することにより形成されている。陽極21および陰極22には、それぞれ陽極リード14Aおよび陰極リード14Bが電気的に接続されている。巻回体の最外周は、巻止めテープ24により固定される。なお、図2は、巻回体の最外周を止めずに、一部が展開された状態を示している。
 陽極リード14Aおよび陰極リード14Bは、陽極21および陰極22にそれぞれ接続されたタブ部16A,16Bと、タブ部16A,16Bにそれぞれ溶接された引き出し部15A,15Bとを有する。タブ部16A,16Bは、それぞれ棒状部17A,17Bと扁平部18A,18Bとを有する。扁平部を有することで、各リードと、陽極21または陰極22との接続が容易になる。また、棒状部を有することで、各リードを封口部材12に貫通させやすくなる。なお、図1では、棒状部17A,17Bの先端部が封口部材12に埋設されているが、封口部材12の外面から棒状部17A,17Bの先端部が突出していてもよい。
 モールド樹脂層13の実装面13Sには、細長形状の凹部13A,13Bが設けられている。凹部が形成される領域の占有割合は、実装面の5%以上、80%以下に設定される。凹部13A,13Bには、モールド樹脂層13の実装面13S方向に沿って互いに逆方向に延在する陽極リード14Aの引き出し部15A,陰極リード14Bの引き出し部15Bを収容している。封口部材12から突出する引き出し部15A,15Bを、底面13a,13bに沿うように屈曲させると、引き出し部15A,15Bには、元の形状に戻ろうとする復元力が働く。この復元力を考慮して、凹部13A,13Bの底面には傾斜が設けられている。実装面13Sに対する底面13a,13bの傾斜角度は、例えば3°以上、30°以下である。なお、底面13a,13bを傾斜させずに、凹部13A,13Bの深さを一定にしてもよい。
 陽極21としては、表面が粗面化された金属箔が用いられる。金属箔を構成する金属の種類は特に限定されないが、誘電体層の形成が容易である点から、アルミニウム、タンタル、ニオブなどの弁作用金属、または弁作用金属を含む合金を用いることが好ましい。
 誘電体層は、陽極21の表面に形成される。具体的には、誘電体層は、粗面化された金属箔の表面に形成されるため、陽極21の表面の孔や窪み(ピット)の内壁面に沿って形成される。誘電体層は、金属箔を化成処理することにより形成することができる。
 陰極22には、金属箔が使用される。金属の種類は特に限定されないが、アルミニウム、タンタル、ニオブなどの弁作用金属または弁作用金属を含む合金を用いることが好ましい。陰極22には、必要に応じて、粗面化および化成処理の少なくとも一方を行ってもよい。
 セパレータ23としては、特に制限されず、例えば、セルロース、ポリエチレンテレフタレート、ビニロン、ポリアミド(例えば、脂肪族ポリアミド、アラミドなどの芳香族ポリアミド)の繊維を含む不織布などを用いてもよい。
 コンデンサ素子10は、誘電体層の表面の少なくとも一部を被覆する固体電解質層を備えてもよい。固体電解質層は、π共役系の導電性高分子を含むことが好ましい。π共役系の導電性高分子は、例えば、原料モノマーを誘電体層上で化学重合および電解重合の少なくとも一方をすることにより形成することができる。あるいは、導電性高分子が溶解した溶液または導電性高分子が分散した分散液を、誘電体層に塗布することにより形成することができる。
 ケース11の材料には、例えば、アルミニウム、ステンレス鋼、銅、鉄、真鍮などの金属あるいはこれらの合金が用いられる。
 封口部材12は、絶縁性物質であればよい。絶縁性物質としては弾性体が好ましい。ゴムなどの弾性体を含む封口部材12を用いることで、高い封止性を確保することができる。高い耐熱性が得られ易い観点からは、シリコーンゴム、フッ素ゴム、エチレンプロピレンゴム、クロロスルホン化ポリエチレンゴム(ハイパロン(登録商標)ゴムなど)、ブチルゴム、イソプレンゴムなどが好ましい。
 以下、実施例に基づいて、本開示をより詳細に説明するが、本開示は実施例に限定されるものではない。
 《実施例1~11、比較例1~3》
 本実施例では、定格電圧25V、定格静電容量330μFの巻回型の電解コンデンサ(Φ(直径)10.0mm×L(長さ)10.0mm)を作製した。以下に、電解コンデンサの具体的な製造方法について説明する。
 (陽極体の準備)
 厚さ105μmのアルミニウム箔にエッチング処理を行い、アルミニウム箔の表面を粗面化した。その後、アルミニウム箔の表面に、化成処理により、誘電体層を形成した。化成処理は、アジピン酸アンモニウム溶液にアルミニウム箔を浸漬し、これに45Vの電圧を印加することにより行った。その後、アルミニウム箔を5.3mm×180mmとなるように裁断して、陽極体を準備した。
 (陰極体の準備)
 厚さ50μmのアルミニウム箔にエッチング処理を行い、アルミニウム箔の表面を粗面化した。その後、アルミニウム箔を5.3mm×180mmとなるように裁断して、陰極体を準備した。
 (巻回体の作製)
 陽極体および陰極体に陽極リードのタブ部および陰極リードのタブ部を接続し、陽極体と陰極体とを、タブ部を巻き込みながら、セパレータを介して巻回した。巻回体から突出する各タブ部の端部には、陽極引き出し部および陰極引き出し部をそれぞれ接続した。そして、作製された巻回体に対して、再度化成処理を行い、陽極体の切断された端部に誘電体層を形成した。次に、巻回体の外側表面の端部を巻止めテープで固定して巻回体を作製した。
 (高分子分散体の調製)
 3,4-エチレンジオキシチオフェンと、高分子ドーパントであるポリスチレンスルホン酸(PSS、重量平均分子量10万)とを、イオン交換水(液状成分)に溶かし、混合溶液を調製した。混合溶液を撹拌しながら、イオン交換水に溶かした硫酸鉄(III)(酸化剤)を添加し、重合反応を行った。反応後、得られた反応液を透析し、未反応モノマーおよび過剰な酸化剤を除去し、約5質量%のPSSがドープされたポリ(3,4-エチレンジオキシチオフェン)(PEDOT/PSS)を含む高分子分散体を得た。
 (固体電解質層の形成)
 減圧雰囲気(40kPa)中で、所定容器に収容された高分子分散体に巻回体を5分間浸漬し、その後、高分子分散体から巻回体を引き上げた。次に、高分子分散体を含浸した巻回体を、150℃の乾燥炉内で20分間乾燥させ、誘電体層の少なくとも一部を被覆する固体電解質層を形成した。
 (電解液の調製)
 電解液の溶媒には、グリコール化合物であるエチレングリコール(EG)を必須成分として用い、スルホン化合物であるスルホラン(SL)とラクトン化合物であるγ-ブチロラクトン(GBL)とを任意成分として用いた。溶質には、フタル酸(オルト体)とトリエチルアミンを用いた。上記の溶媒および溶質を用いて、電解液を調製した。電解液中の溶質の含有割合は、25質量%とした。
 溶媒に含まれるEG、SL、GBLの割合を表1に示すように変化させ、実施例1~11のコンデンサA1~A11および比較例1~3のコンデンサB1~B3をそれぞれ作製した。
 (電解液の含浸)
 減圧雰囲気(40kPa)中で、電解液にコンデンサ素子を5分間浸漬し、コンデンサ素子に電解液を含浸させた。
 (コンデンサ素子の封止)
 電解液を含浸させたコンデンサ素子を封止して、電解コンデンサを完成させた。具体的には、有底ケースの開口側にリードが位置するようにコンデンサ素子を有底ケースに収納し、リードが貫通するように形成された封止部材(ブチルゴムを主成分とする弾性材料)をコンデンサ素子の上方に配置して、コンデンサ素子を有底ケース内に封止した。有底ケースの開口端近傍に絞り加工を施しした。
 次に、フィラーとしてシリカを30質量%含有するエポキシ樹脂組成物(硬化物のTg105℃)の射出成形により、実装面側に細長形状の凹部13A,13Bを有するモールド樹脂層13(熱伝導率0.5W/mK)を形成し、図1に示すような電解コンデンサを完成させた。その後、39Vの電圧を印加しながら、100℃で2時間エージング処理を行った。
 凹部の深さは0.5mm、モールド樹脂層の最大厚さTmaxは1.5mmとした。凹部が形成される領域は、実装面の20%に設定し、面積Sに対する面積Sの割合(ケース11の高さHに対する距離hの割合)は40%に設定した。
 [評価]
 (a)等価直列抵抗(ESR)の測定
 各実施例および比較例の電解コンデンサを10個ずつ準備した。まず、20℃の環境下で、4端子測定用のLCRメータを用いて、電解コンデンサの周波数100kHzにおけるESR値を測定し、10個の平均値(初期ESR値:X)(mΩ)を求めた。更に、長期安定性を評価するために、145℃の温度にて、電解コンデンサに定格電圧を1000時間印加した後、上記と同様の方法でESR値を測定し、10個の平均値(X(mΩ))を求めた。そして、ESRの増加率(ΔESR)を下記式より求めた。結果を表1に示す。
 ΔESR(%)=(X-X)/X×100
Figure JPOXMLDOC01-appb-T000001
 実施例1~11では、長期にわたり低ESRが維持され、優れた耐熱性が得られた。これは、リップル電流による熱がケース内に蓄積されにくく、高温下でも内部圧力が高くなりにくいため、溶媒の蒸散が抑制されたためである。
 一方、溶媒にEGを含まない比較例1~3のコンデンサは、高温に曝されることで溶媒が次第に揮散し、固体電解質層が酸化劣化したため、ΔESRの増大が早まったものと思われる。
 上記のように、モールド樹脂層を備えた電解コンデンサにおいて、電解液に含まれる溶媒にグリコール化合物を含有させることで、高温下での保証寿命を長くすることができる。一方、モールド樹脂層は、初期ESRを低減する観点から、できるだけ薄く形成することが望ましい。モールド樹脂層が厚くなると、リードが長くなり、ESRの低減が困難になるためである。しかし、電解コンデンサに要求される耐熱性のレベルは上昇する傾向にあり、電解液成分の蒸散の抑制と低ESRの維持とを両立することが困難になりつつある。
 上記問題に鑑み、以下に示す本開示の第2の態様は、リードの長さの増大を抑制しつつ、高レベルの耐熱性を維持することができる電解コンデンサを提供する。
 本開示の第2の態様に係る電解コンデンサは、コンデンサ素子と、電解液と、ケースと、封口部材と、一対のリードと、モールド樹脂層とを備える。コンデンサ素子は、一対の電極を含む。電解液は、一対の電極間に介在する。ケースは、コンデンサ素子および電解液を収容し、開口を有する。封口部材は、開口を封止する。一対のリードは、一対の電極にそれぞれ電気的に接続され、かつ、封口部材を貫通する。モールド樹脂層は、封口部材の外面の少なくとも一部を覆うとともに実装面を有する。実装面とは、回路基板などに実装される際に基板と対向する平坦部を有する面である。
 モールド樹脂層は、封口部材の外面の全面を覆っていることが好ましいが、封口部材の外面のリードを通過させる貫通孔の周囲に、モールド樹脂層を有さない微小領域が形成されてもよい。ただし、封口部材の外面の95%以上がモールド樹脂層で覆われていることが好ましく、実質的に100%がモールド樹脂層で覆われていることがより好ましい。すなわち、封口部材の外面の95%以上、100%以下が覆われていることが好ましい。
 モールド樹脂層は、封口部材の外面に加え、ケースの開口に続く側面の少なくとも一部を覆っていることが好ましい。これにより、ケース内の密閉性を更に高めることができる。
 モールド樹脂層は、実装面側に開口した凹部を備える。凹部の形状は特に限定されず、凹部が形成される領域の大きさも特に限定されない。ただし、モールド樹脂層の構造強度を維持する観点から、凹部が開口する領域は、実装面の80%以下、更には50%以下であることが好ましい。
 凹部には、一対のリードの少なくとも一部を収容することができる。凹部にリードの少なくとも一部を収容することで、モールド樹脂層の厚さに伴ってリードが長くなることがなく、低ESRの維持が容易になる。リードを収容する十分なスペースを確保する観点から、凹部が開口する領域は、リードを実装面に投影した場合のリードが占める面積に対して、120%以上、200%以下であることが好ましい。なお、凹部は、リードを収容する領域だけでなく、はんだの飛散を抑制する作用なども有する。
 凹部におけるモールド樹脂層の薄肉部の平均厚さTaveは、0.1mm以上であり、0.3mm以上が好ましく、0.5mm以上がより好ましい。電解液成分(特に電解液中の溶媒)の蒸散は、薄肉部の厚さを0.1mm以上に大きくしても、それほど変化しないが、0.1mm未満になると、電解液成分の蒸散が顕著になる傾向が見られる。換言すれば、最も低ESRを維持しやすく、かつ電解液成分の蒸散を充分に抑制できるモールド樹脂層の厚さは、0.1mm以上である。
 一方、ESRを低くするとともに、凹部にリードを収容する十分なスペースを確保する観点から、薄肉部の平均厚さTaveは、好ましくは6.0mm以下であり、より好ましくは4.0mm以下であり、更に好ましくは2.0mm以下であり、特に好ましくは1.5mm以下である。
 薄肉部の平均厚さTaveは、封口部材とモールド樹脂層との界面から、当該界面の法線方向における凹部の底面までの距離Tの平均値として定義される(図3参照)。ただし、モールド樹脂層が、封口部材の外面以外を覆っている場合、当該外面以外を覆っている領域は除外する。薄肉部の平均厚さTaveは、モールド樹脂層の封口部材の外面を覆っている領域において、封口部材とモールド樹脂層との界面から、当該界面の法線方向における凹部の底面までの距離Tを積分し、得られた積分値を当該凹部の底面の面積(底面を封口部材の外面に投影した面積)で除算して求めればよい。ここで、モールド樹脂層の封口部材の外面を覆っている領域とは、モールド樹脂層を実装面側から見たときに、封口部材とモールド樹脂層との界面と重複するモールド樹脂層の領域である。
 電解コンデンサの小型化もしくは低ESR化の観点からは、封口部材の外面を覆うモールド樹脂層の最大厚さ(以下、Tmax)は、6.5mm以下が好ましく、4.5mm以下が好ましく、3mm以下がより好ましく、2mm以下が更に好ましい。ここで、Tmaxは、封口部材とモールド樹脂層との界面から、当該界面の法線方向におけるモールド樹脂層の実装面までの最大距離に対応する。
 モールド樹脂層の最大厚さTmaxを小さくし過ぎると、薄肉部の平均厚さTaveが0.1mm以上、更には0.3mm以上もしくは0.5mm以上となるように、凹部を形成することが困難になる。モールド樹脂層の最大厚さTmaxは、1.0mm以上、更には1.3mm以上もしくは1.5mm以上とすることが好ましい。これにより、モールド樹脂層に凹部を形成するとともに、平均厚さTaveを電解液成分の蒸散を抑制できる範囲で、できるだけ小さくする設計が可能になる。このような設計によれば、モールド樹脂層の構造強度を良好に維持することができる。
 凹部を形成する場合、凹部に対応する薄肉部以外の厚肉領域は、構造的な補強部位となる。そのため、モールド樹脂層全体の厚さを同様に薄くする場合に比べ、薄肉部をより薄くすることが可能になり、低ESRを実現しやすくなる。例えば、電解コンデンサが高温に加熱されるリフロー工程では、電解コンデンサの内部圧力が大きく上昇する。このとき、封口部材は、ケースの開口側に凸形状になるように膨張しようとする。これに対し、凹部を有するモールド樹脂層は、薄肉部以外の領域を比較的厚くすることができるため、モールド樹脂層が封口部材とともに膨らみにくくなり、モールド樹脂層の破損が防止される。
 電解コンデンサが高温に加熱されるリフロー工程では、周囲の熱の電解コンデンサ内への伝導を抑制することが望ましい。従って、モールド樹脂層に断熱作用を持たせることが好ましい。モールド樹脂層の熱伝導率は、例えば1.0W/mK以下が好ましく、0.7W/mK以下がより好ましい。なお、熱伝導性は、例えばASTM E1530に準拠した円板熱流計法により測定すればよい。
 モールド樹脂層としては、第1の態様で例示された材料を例示された配合割合で用いることができる。
 また、リードの構造としては、第1の態様で例示された構造で例示された材料を用いることができる。
 以下、本開示の実施形態に係る電解コンデンサについて、図面を参照しながら具体的に説明するが、本開示は、これに限定されるものではない。
 (第2実施形態)
 図3に示す電解コンデンサ1Aは、コンデンサ素子10、電解液(図示しない)およびこれら収容するとともに開口を有するケース11を備える。ケース11は、例えば有底円筒形である。ケース11の開口は、封口部材12で封止されている。ケース11の開口側を臨む封口部材12の外面は、その全体がモールド樹脂層13で覆われている。モールド樹脂層13は、封口部材12の外面とともにケース11の開口を覆うように設けられ、更に、ケース11の開口に続く側面の少なくとも一部を覆っている。
 ケース11の開口は、コンデンサ素子10を収容した後、封口部材12およびモールド樹脂層13で封止される。ケース11の開口端部は、封口部材12側に絞り加工され、内側にかしめ加工されている。これにより、封口部材12がケース11の開口部に固定され、ケース11は封口部材12により密閉される。
 モールド樹脂層13は、射出成形、インサート成形、圧縮成形などの成形技術を用いて形成することができる。モールド樹脂層13は、例えば、所定の金型を用いて、硬化性樹脂組成物を封口部材12の外面とともにケース11の開口を覆うように、金型内の所定箇所に充填して形成することができる。
 コンデンサ素子10の構成は、第1実施形態と同様である。
 モールド樹脂層13には、実装面13S側に開口するように、細長形状の凹部13A,13Bが設けられている。凹部13A,13Bは、モールド樹脂層13の実装面13S方向に沿って互いに逆方向に延在する陽極リード14Aの引き出し部15A,陰極リード14Bの引き出し部15Bを収容している。封口部材12から突出する引き出し部15A,15Bを、底面13a,13bに沿うように屈曲させると、引き出し部15A,15Bには、元の形状に戻ろうとする復元力が働く。この復元力を考慮して、凹部13A,13Bの底面には傾斜が設けられている。実装面13Sに対する底面13a,13bの傾斜角度は、例えば3°以上、30°以下である。なお、底面13a,13bを傾斜させずに、凹部13A,13Bの深さを一定にしてもよい。
 凹部13A,13Bの底面13a,13bは、実装面13Sの中央側から外縁側に向かって、徐々に凹部13A,13Bの深さが増大するように傾斜している。すなわち、凹部における薄肉部の厚さは、実装面13Sの中央側から外縁側に向かって徐々に減少し、最外縁部で最も薄くなっている。
 ここで、モールド樹脂層13において電解液成分が蒸散しやすい薄肉部の領域は、封口部材12とモールド樹脂層13との界面と凹部の底面とで挟まれるように区画される領域Rである。凹部の底面からリードが突出する部分は微小であるため、リードが突出する部分も含めて凹部の底面と扱えばよい。薄肉部の平均厚さTaveは、薄肉部の領域Rから決定され、0.1mm以上(好ましくは0.3mm以上もしくは0.5mm以上)になるように形成される。これにより、低ESRを維持しつつ、電解液成分の蒸散を充分に抑制可能となり、高温下でも長期間の使用に耐える長寿命の電解コンデンサを得ることができる。このとき、封口部材12の外面を覆うモールド樹脂層13の最大厚さTmaxを6.5mm以下、更には4.5mm以下、更には3mm以下もしくは2mm以下とすることで、より低いESRを達成しやすくなる。また、最大厚さTmaxを1.0mm以上、更には1.3mm以上とすることで、モールド樹脂層の構造強度が高められ、高い耐リフロー性を確保することができる。更に、モールド樹脂層の熱伝導率を1.0W/mK以下とすることで、更に高度な耐リフロー性を確保することができる。
 封口部材12としては、第1実施形態と同様の材料、構造を用いることができる。
 電解コンデンサ1Aは、電解液を備える。電解液としては、非水溶媒であってもよく、非水溶媒とこれに溶解させたイオン性物質(溶質)との混合物でもよい。非水溶媒は、有機溶媒でもよく、イオン性液体でもよい。非水溶媒としては、例えば、エチレングリコール、プロピレングリコール、スルホラン、γ-ブチロラクトン、N-メチルアセトアミドなどを用いることができる。有機塩としては、例えば、マレイン酸トリメチルアミン、ボロジサリチル酸トリエチルアミン、フタル酸トリエチルアミン、フタル酸エチルジメチルアミン、フタル酸モノ1,2,3,4-テトラメチルイミダゾリニウム、フタル酸モノ1,3-ジメチル-2-エチルイミダゾリニウムなどが挙げられる。
 ケース11の材料には、例えば、アルミニウム、ステンレス鋼、銅、鉄、真鍮などの金属あるいはこれらの合金が用いられる。
 (第3実施形態)
 図4に示す電解コンデンサ1Bは、タブ部16A,16Bの棒状部17A,17Bの先端部が、封口部材12の外面から突出している点以外、第2実施形態と同様の構造を有する。よって、図3に示した第2実施形態における構成要素と同じ構成要素に同じ符号を付している。本実施形態においても、電解液が蒸散しやすい薄肉部の領域Rは、封口部材12とモールド樹脂層13との界面と凹部の底面とで挟まれるように区画される領域Rである。
 本実施形態では、棒状部17A,17Bの断面積の分だけ、封口部材12とモールド樹脂層13の界面が減少するが、封口部材から棒状部が突出する部分は微小であり、棒状部が突出する部分も含めて封口部材12とモールド樹脂層13との界面と扱えばよい。また、蒸散する電解液成分は、封口部材12とモールド樹脂層13との界面を経由してモールド樹脂層13の内部を拡散する。従って、界面の大きさよりも、封口部材12とモールド樹脂層13との実質的な対向領域における薄肉部の厚さが電解液成分の蒸散に影響するものと考えられる。
 (第4実施形態)
 図5に示す電解コンデンサ1Cは、棒状部17A,17Bのうち、封口部材12の外面から突出する部位の先端が、モールド樹脂層13で覆われずに露出している。この点以外、第3実施形態と同様の構造を有する。ここでも、図3に示した第2実施形態における構成要素と同じ構成要素に同じ符号を付している。
 モールド樹脂層13は、封口部材12の外面を全面的に覆っているが、棒状部17A,17Bの先端部は、モールド樹脂層13に埋設されておらず、外部に露出している。このような露出部は、棒状部17A,17Bの先端部がモールド樹脂層13から突出する箇所において、凹部13A,13Bに深さの大きい深部を設けることにより形成される。
 深部における薄肉部の厚さは、0.1mm未満になり得る。ただし、薄肉部の平均厚さTaveを上記範囲に設計する場合、深部は微小領域になるように制限される。従って、電解液成分の蒸散を十分に抑制することが可能である。
 以下、実施例に基づいて、本開示をより詳細に説明するが、本開示は実施例に限定されるものではない。
 《実施例12~20》
 本実施例では、定格電圧25V、定格静電容量330μFの巻回型の電解コンデンサ(Φ(直径)10.0mm×L(長さ)10.0mm)を作製した。以下に、電解コンデンサの具体的な製造方法について説明する。
 (陽極体の準備)
 厚さ105μmのアルミニウム箔にエッチング処理を行い、アルミニウム箔の表面を粗面化した。その後、アルミニウム箔の表面に、化成処理により、誘電体層を形成した。化成処理は、アジピン酸アンモニウム溶液にアルミニウム箔を浸漬し、これに45Vの電圧を印加することにより行った。その後、アルミニウム箔を5.3mm×180mmとなるように裁断して、陽極体を準備した。
 (陰極体の準備)
 厚さ50μmのアルミニウム箔にエッチング処理を行い、アルミニウム箔の表面を粗面化した。その後、アルミニウム箔を5.3mm×180mmとなるように裁断して、陰極体を準備した。
 (巻回体の作製)
 陽極体および陰極体に陽極リードのタブ部および陰極リードのタブ部を接続し、陽極体と陰極体とを、タブ部を巻き込みながら、セパレータを介して巻回した。巻回体から突出する各タブ部の端部には、陽極引き出し部および陰極引き出し部をそれぞれ接続した。そして、作製された巻回体に対して、再度化成処理を行い、陽極体の切断された端部に誘電体層を形成した。次に、巻回体の外側表面の端部を巻止めテープで固定して巻回体を作製した。
 (高分子分散体の調製)
 3,4-エチレンジオキシチオフェンと、高分子ドーパントであるポリスチレンスルホン酸(PSS、重量平均分子量10万)とを、イオン交換水(液状成分)に溶かし、混合溶液を調製した。混合溶液を撹拌しながら、イオン交換水に溶かした硫酸鉄(III)(酸化剤)を添加し、重合反応を行った。反応後、得られた反応液を透析し、未反応モノマーおよび過剰な酸化剤を除去し、約5質量%のPSSがドープされたポリ(3,4-エチレンジオキシチオフェン)(PEDOT/PSS)を含む高分子分散体を得た。
 (固体電解質層の形成)
 減圧雰囲気(40kPa)中で、所定容器に収容された高分子分散体に巻回体を5分間浸漬し、その後、高分子分散体から巻回体を引き上げた。次に、高分子分散体を含浸した巻回体を、150℃の乾燥炉内で20分間乾燥させ、誘電体層の少なくとも一部を被覆する固体電解質層を形成した。
 (電解液の調製)
 電解液の溶媒には、エチレングリコール(EG)と、スルホラン(SL)と、γ-ブチロラクトン(GBL)との体積比40:30:30の混合溶媒を用いた。溶質には、フタル酸(オルト体)とトリエチルアミンとを用いた。上記の溶媒および溶質を用いて、電解液を調製した。
 (電解液の含浸)
 減圧雰囲気(40kPa)中で、電解液にコンデンサ素子を5分間浸漬し、コンデンサ素子に電解液を含浸させた。
 (コンデンサ素子の封止)
 電解液を含浸させたコンデンサ素子を封止して、電解コンデンサを完成させた。具体的には、有底ケースの開口側にリードが位置するようにコンデンサ素子を有底ケースに収納し、リードが貫通するように形成された封止部材(ブチルゴムを主成分とする弾性材料)をコンデンサ素子の上方に配置して、コンデンサ素子を有底ケース内に封止した。有底ケースの開口端近傍には絞り加工を施した。
 次に、フィラーとしてシリカを30質量%含有するエポキシ樹脂組成物(硬化物のTg105℃)の射出成形により、実装面側に細長形状の凹部13A,13Bを有するモールド樹脂層13(熱伝導率0.5W/mK)を形成し、図3に示すような電解コンデンサを完成させた。その後、39Vの電圧を印加しながら、100℃で2時間エージング処理を行った。
 モールド樹脂層の最大厚さTmaxを0.6mm~6.5mmの範囲で変化させ、実装面側に開口する凹部の平均深さを0.5mmで一定として、実施例12~20のコンデンサA12~A20をそれぞれ作製した。凹部における薄肉部の平均厚さTaveに相応させて、陽極リードおよび陰極リードの長さを変化させた。TaveおよびTmaxを表2に示す。
 [評価]
 (a)ESRの測定
 各実施例の電解コンデンサを10個ずつ準備した。20℃の環境下で、4端子測定用のLCRメータを用いて、電解コンデンサの周波数100kHzにおけるESR値(mΩ)を測定し、10個の平均値(初期ESR値:X)を求めた。結果を表2に示す。
 (b)電解コンデンサの膨れ発生率の測定
 各実施例の電解コンデンサを10個ずつ準備し、ケース底面から実装面までの最大距離α1をマイクロゲージにより測定した。その後、電解コンデンサを、200℃に加熱した状態で5分間放置し、加熱後のケース底面から実装面までの最大距離α2を測定した。各コンデンサに関し、α2からα1を引いた差から封口部材の膨れ量を求め、10個の平均値を求めた。結果を表2に示す。封口部材の膨れ量が大きいほど、封口部材を透過する電解液成分が多く、電解液成分の蒸散が促進されると考えられる。
Figure JPOXMLDOC01-appb-T000002
 《比較例4》
 モールド樹脂層を形成せず、リードを通す貫通孔を有するポリフェニレンサルファイド(PPS)樹脂製の座板を、封口部材側に装着したこと以外、実施例と同様の電解コンデンサB4を作製し、ESRを測定した。座板の厚さは1.0mmであり、リードが収容される凹部における薄肉部の厚さは、0.5mmとした。実施例と同様に、200℃での加熱の前後におけるケース底面から封口部材の外面までの最大距離の差を、封口部材の膨れ量として求めた。結果を表2に示す。
 表2の結果から、電解液成分の蒸散を抑制する観点からは、Taveを0.1mm以上とすることが必要であり、0.3mm以上、更には0.5mm以上が好ましいことが理解できる。一方、電解液成分の蒸散を抑制しつつ、低ESRを達成する観点からは、Tmaxを4.5mm以下、更には2.0mm以下とすることが好ましいことが理解できる。
 本開示によれば、ケース内に電解液を含み、封口部材およびモールド樹脂層を備える電解コンデンサにおいて、電解液中の溶媒の蒸散が抑制されるため、高温下でも長時間の使用に耐える電解コンデンサとして各種の装置、車、携帯機器などに使用することができる。
1,1A,1B,1C:電解コンデンサ
10:コンデンサ素子
11:ケース
12:封口部材
13:モールド樹脂層
13S:実装面
13A,13B:凹部
13a,13b:底面
14A:陽極リード
14B:陰極リード
15A,15B:引き出し部
16A,16B:タブ部
17A,17B:棒状部
18A,18B:扁平部
21:陽極
22:陰極
23:セパレータ
24:巻止めテープ

Claims (8)

  1.  一対の電極を含むコンデンサ素子と、
     前記一対の電極間に介在する電解液と、
     前記コンデンサ素子および前記電解液を収容し、開口を有するケースと、
     前記開口を封止する封口部材と、
     前記封口部材の外面の少なくとも一部を覆うモールド樹脂層と、を備え、
     前記電解液に含まれる溶媒が、グリコール化合物を含む、電解コンデンサ。
  2.  前記溶媒に含まれる前記グリコール化合物の含有割合が、5質量%以上である、請求項1に記載の電解コンデンサ。
  3.  前記モールド樹脂層が、前記封口部材の前記外面とともに前記ケースの前記開口に続く側面の少なくとも一部を覆っている、請求項1または2に記載の電解コンデンサ。
  4.  前記モールド樹脂層が、実装面を有し、
     前記封口部材と前記モールド樹脂層との界面から、前記界面の法線方向における前記モールド樹脂層の実装面までの最大距離が、1.0mm以上である、請求項1~3のいずれか1項に記載の電解コンデンサ。
  5.  前記グリコール化合物が、エチレングリコールである、請求項1~4のいずれか1項に記載の電解コンデンサ。
  6.  一対の電極を含むコンデンサ素子と、
     前記一対の電極間に介在する電解液と、
     前記コンデンサ素子および前記電解液を収容し、開口を有するケースと、
     前記開口を封止する封口部材と、
     前記一対の電極にそれぞれ電気的に接続され、かつ、前記封口部材を貫通する一対のリードと、
     前記封口部材の外面の少なくとも一部を覆うとともに実装面を有するモールド樹脂層と、を備え、
     前記モールド樹脂層が、前記実装面に凹部を有し、
     前記凹部における前記モールド樹脂層の薄肉部の平均厚さが、0.1mm以上であり、
     前記凹部に、前記一対のリードの少なくとも一部が収容されている、電解コンデンサ。
  7.  前記封口部材の前記外面を覆う前記モールド樹脂層の最大厚さが、6.5mm以下である、請求項6に記載の電解コンデンサ。
  8.  前記モールド樹脂層の熱伝導率が、1.0W/mK以下である、請求項6または7に記載の電解コンデンサ。
PCT/JP2017/044299 2016-12-27 2017-12-11 電解コンデンサ WO2018123525A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018558985A JPWO2018123525A1 (ja) 2016-12-27 2017-12-11 電解コンデンサ
JP2022175683A JP2023002812A (ja) 2016-12-27 2022-11-01 電解コンデンサ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016254465 2016-12-27
JP2016-254465 2016-12-27
JP2016-255985 2016-12-28
JP2016255985 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123525A1 true WO2018123525A1 (ja) 2018-07-05

Family

ID=62709711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044299 WO2018123525A1 (ja) 2016-12-27 2017-12-11 電解コンデンサ

Country Status (2)

Country Link
JP (2) JPWO2018123525A1 (ja)
WO (1) WO2018123525A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193291A1 (ja) 2020-03-27 2021-09-30 日本ケミコン株式会社 電解コンデンサ
WO2021193282A1 (ja) 2020-03-27 2021-09-30 日本ケミコン株式会社 電解コンデンサ
EP3982383A4 (en) * 2019-06-06 2023-07-19 Nippon Chemi-Con Corporation CAPACITOR AND METHOD OF MANUFACTURE THEREOF AND CAPACITOR MOUNTING METHOD

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245106A (ja) * 1984-05-18 1985-12-04 松下電器産業株式会社 チツプ形アルミ電解コンデンサ
JP2012164777A (ja) * 2011-02-04 2012-08-30 Sanyo Chem Ind Ltd 電解コンデンサ用電解液およびそれを用いた電解コンデンサ
JP2014123685A (ja) * 2012-12-21 2014-07-03 Nippon Chemicon Corp 電解コンデンサ及びその製造方法
JP2016063186A (ja) * 2014-09-22 2016-04-25 日本ケミコン株式会社 電子部品およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182212A (ja) * 1985-02-07 1986-08-14 三菱油化株式会社 電解コンデンサ用電解液
US8228660B2 (en) * 2007-03-08 2012-07-24 Panasonic Corporation Case-molded capacitor and method for using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245106A (ja) * 1984-05-18 1985-12-04 松下電器産業株式会社 チツプ形アルミ電解コンデンサ
JP2012164777A (ja) * 2011-02-04 2012-08-30 Sanyo Chem Ind Ltd 電解コンデンサ用電解液およびそれを用いた電解コンデンサ
JP2014123685A (ja) * 2012-12-21 2014-07-03 Nippon Chemicon Corp 電解コンデンサ及びその製造方法
JP2016063186A (ja) * 2014-09-22 2016-04-25 日本ケミコン株式会社 電子部品およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3982383A4 (en) * 2019-06-06 2023-07-19 Nippon Chemi-Con Corporation CAPACITOR AND METHOD OF MANUFACTURE THEREOF AND CAPACITOR MOUNTING METHOD
WO2021193291A1 (ja) 2020-03-27 2021-09-30 日本ケミコン株式会社 電解コンデンサ
WO2021193282A1 (ja) 2020-03-27 2021-09-30 日本ケミコン株式会社 電解コンデンサ
KR20220158683A (ko) 2020-03-27 2022-12-01 닛뽄 케미콘 가부시끼가이샤 전해 콘덴서
KR20220159952A (ko) 2020-03-27 2022-12-05 닛뽄 케미콘 가부시끼가이샤 전해 콘덴서
EP4131301A4 (en) * 2020-03-27 2023-10-11 Nippon Chemi-Con Corporation ELECTROLYTIC CAPACITOR
EP4131302A4 (en) * 2020-03-27 2023-10-18 Nippon Chemi-Con Corporation ELECTROLYTIC CAPACITOR

Also Published As

Publication number Publication date
JPWO2018123525A1 (ja) 2019-10-31
JP2023002812A (ja) 2023-01-10

Similar Documents

Publication Publication Date Title
JP7182588B2 (ja) コンデンサアノードに使用するための鎖に結合した対イオンを有する導電性ポリマーと、鎖に結合していない対イオンを有する導電性ポリマーの混合物を含む分散液
JP7233015B2 (ja) 電解コンデンサおよびその製造方法
JP6145720B2 (ja) 電解コンデンサの製造方法及び電解コンデンサ
JP5995262B2 (ja) Pedot/pssを固体電解質として含有するコンデンサにおける電気パラメータをポリグリセロールによって改善するための方法
TWI478189B (zh) 固體電解電容器及其製造方法
WO2016174807A1 (ja) 電解コンデンサ
US10014118B2 (en) Electrolytic capacitor
JP2023002812A (ja) 電解コンデンサ
JP2011091408A (ja) 密閉されたコンデンサアセンブリ
WO2017208984A1 (ja) 電解コンデンサおよびその製造方法
TWI453778B (zh) 固態電解電容器及其製造方法
JP7117552B2 (ja) 電解コンデンサ
US8379369B2 (en) Base material for solid electrolytic capacitor, capacitor using the base material, and method for manufacturing the capacitor
US10236129B2 (en) Method for manufacturing electrolytic capacitor
JP7400123B2 (ja) 高信頼性用途のためのポリマーコンデンサの製造プロセス
WO2021200882A1 (ja) 固体電解コンデンサ及びその製造方法
WO2021085350A1 (ja) 電解コンデンサおよびその製造方法
JP2018142668A (ja) 固体電解コンデンサ
US20240128029A1 (en) Solid electrolytic capacitor and manufacturing method therefor
JP7294494B2 (ja) 固体電解コンデンサ及びその製造方法
US20240128026A1 (en) Solid-electrolyte capacitor and method for manufacturing same
WO2021172440A1 (ja) 電解コンデンサおよびその製造方法
JP2002083738A (ja) コンデンサ用リード線およびこれを用いた固体電解コンデンサとその製造方法
US20220028622A1 (en) Electrolytic capacitor and method for producing the same
WO2018159426A1 (ja) 電解コンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889249

Country of ref document: EP

Kind code of ref document: A1