WO2016174807A1 - 電解コンデンサ - Google Patents
電解コンデンサ Download PDFInfo
- Publication number
- WO2016174807A1 WO2016174807A1 PCT/JP2016/001334 JP2016001334W WO2016174807A1 WO 2016174807 A1 WO2016174807 A1 WO 2016174807A1 JP 2016001334 W JP2016001334 W JP 2016001334W WO 2016174807 A1 WO2016174807 A1 WO 2016174807A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- conductive
- conductive polymer
- foil
- electrolytic capacitor
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 120
- 239000011888 foil Substances 0.000 claims abstract description 158
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 90
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 55
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000006185 dispersion Substances 0.000 claims abstract description 18
- 239000008151 electrolyte solution Substances 0.000 claims description 69
- 239000002904 solvent Substances 0.000 claims description 48
- 239000000243 solution Substances 0.000 claims description 20
- 238000009835 boiling Methods 0.000 claims description 8
- 229920005862 polyol Polymers 0.000 claims description 7
- 150000003077 polyols Chemical class 0.000 claims description 7
- 239000003792 electrolyte Substances 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 description 30
- 239000002184 metal Substances 0.000 description 30
- 239000007788 liquid Substances 0.000 description 28
- 238000000034 method Methods 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- 239000002019 doping agent Substances 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 11
- -1 aluminum Chemical class 0.000 description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- 238000007789 sealing Methods 0.000 description 9
- 238000005470 impregnation Methods 0.000 description 8
- 238000004804 winding Methods 0.000 description 8
- 235000011187 glycerol Nutrition 0.000 description 7
- 229920000447 polyanionic polymer Polymers 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 229910010272 inorganic material Inorganic materials 0.000 description 6
- 239000011147 inorganic material Substances 0.000 description 6
- 239000007800 oxidant agent Substances 0.000 description 6
- 229920000123 polythiophene Polymers 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 5
- 239000003125 aqueous solvent Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 4
- 229920000767 polyaniline Polymers 0.000 description 4
- 229920000414 polyfuran Polymers 0.000 description 4
- 229920000128 polypyrrole Polymers 0.000 description 4
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000007788 roughening Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000003586 protic polar solvent Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 2
- FLDCSPABIQBYKP-UHFFFAOYSA-N 5-chloro-1,2-dimethylbenzimidazole Chemical compound ClC1=CC=C2N(C)C(C)=NC2=C1 FLDCSPABIQBYKP-UHFFFAOYSA-N 0.000 description 2
- 239000001741 Ammonium adipate Substances 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 235000019293 ammonium adipate Nutrition 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000000010 aprotic solvent Substances 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 150000002314 glycerols Chemical class 0.000 description 2
- 229920002681 hypalon Polymers 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 239000002608 ionic liquid Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- HCZWNJMKAQGNDP-UHFFFAOYSA-N n,n-dimethylethanamine;phthalic acid Chemical compound CCN(C)C.OC(=O)C1=CC=CC=C1C(O)=O HCZWNJMKAQGNDP-UHFFFAOYSA-N 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- JIQFWTXMZHSPAA-ODZAUARKSA-N (z)-but-2-enedioic acid;n,n-dimethylmethanamine Chemical compound CN(C)C.OC(=O)\C=C/C(O)=O JIQFWTXMZHSPAA-ODZAUARKSA-N 0.000 description 1
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- OJABCMGXJODFDG-UHFFFAOYSA-N C(C=1C(C(=O)O)=CC=CC1)(=O)O.CN1C(N(C=C1)C)CC Chemical compound C(C=1C(C(=O)O)=CC=CC1)(=O)O.CN1C(N(C=C1)C)CC OJABCMGXJODFDG-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- FYMCOOOLDFPFPN-UHFFFAOYSA-K iron(3+);4-methylbenzenesulfonate Chemical compound [Fe+3].CC1=CC=C(S([O-])(=O)=O)C=C1.CC1=CC=C(S([O-])(=O)=O)C=C1.CC1=CC=C(S([O-])(=O)=O)C=C1 FYMCOOOLDFPFPN-UHFFFAOYSA-K 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- PBOROENWALOVKZ-UHFFFAOYSA-N phthalate;1,2,3,4-tetramethylimidazolidin-1-ium Chemical compound CC1C[NH+](C)C(C)N1C.CC1C[NH+](C)C(C)N1C.[O-]C(=O)C1=CC=CC=C1C([O-])=O PBOROENWALOVKZ-UHFFFAOYSA-N 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
- H01G9/0036—Formation of the solid electrolyte layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/025—Solid electrolytes
- H01G9/028—Organic semiconducting electrolytes, e.g. TCNQ
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/035—Liquid electrolytes, e.g. impregnating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/042—Electrodes or formation of dielectric layers thereon characterised by the material
- H01G9/0425—Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
- H01G9/055—Etched foil electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/145—Liquid electrolytic capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/15—Solid electrolytic capacitors
- H01G9/151—Solid electrolytic capacitors with wound foil electrodes
Definitions
- the present invention relates to an electrolytic capacitor including a capacitor element having a conductive polymer layer and an electrolytic solution.
- an electrolytic capacitor including an anode body having a dielectric layer formed thereon and a conductive polymer layer formed so as to cover at least a part of the dielectric layer is promising. ing.
- Patent Document 1 an anode foil in which a dielectric layer is formed, a cathode foil, a separator interposed therebetween, and a conductive polymer layer formed on the surface of the dielectric layer, the separator and the cathode foil.
- electrolytic capacitor in which a capacitor element is impregnated with an electrolytic solution.
- Patent Document 2 proposes forming an intervening layer containing aluminum carbide between aluminum and a carbon-containing layer formed on the surface of the cathode of a solid electrolytic capacitor from the viewpoint of improving adhesion. .
- An object of the present invention is to secure a high capacity and reduce a leakage current while suppressing an increase in ESR in an electrolytic capacitor using an electrolytic solution.
- One aspect of the present invention includes a capacitor element and an electrolytic solution
- the capacitor element is An anode foil having a dielectric layer formed thereon; Cathode foil formed with a conductive layer facing the anode foil and comprising a carbon layer containing conductive carbon; A conductive polymer layer interposed between the anode foil and the cathode foil and containing a conductive polymer; The conductive polymer layer is formed using a dispersion or solution containing the conductive polymer,
- the present invention relates to an electrolytic capacitor, wherein the electrolytic solution has a water content (water content) of 0.1 to 6.0 mass%.
- a high capacity can be secured, an increase in ESR can be suppressed, and a leakage current can be reduced.
- FIG. 1 is a schematic cross-sectional view of an electrolytic capacitor according to an embodiment of the present invention.
- FIG. 2 is a schematic developed view of a part of the capacitor element included in the electrolytic capacitor.
- the electrolytic capacitor includes a capacitor element 10 and is housed in an outer case (specifically, a bottomed case 11) together with an electrolytic solution (not shown).
- the exterior case includes a bottomed case 11 that houses the capacitor element 10 therein, an insulating sealing member 12 that closes the opening of the bottomed case 11, and a seat plate 13 that covers the sealing member 12. The vicinity of the open end of the bottomed case 11 is drawn inward, and the open end is curled so as to be crimped to the sealing member 12.
- the capacitor element 10 includes an anode foil 21 connected to the lead tab 15A, a cathode foil 22 connected to the lead tab 15B, and a separator 23.
- the anode foil 21 and the cathode foil 22 are wound through a separator 23.
- the wound anode foil, cathode foil, and separator are also called a wound body.
- the outermost periphery of the capacitor element 10 is fixed by a winding tape 24.
- FIG. 2 shows a state where a part of the capacitor element 10 is unfolded before stopping the outermost periphery.
- the anode foil 21 is a metal foil roughened so that the surface has irregularities, and a dielectric layer is formed on the metal foil having irregularities.
- the cathode foil 22 facing the anode foil 21 is a metal foil, and a conductive layer is formed on the metal foil.
- the conductive layer formed on the cathode foil 22 includes a carbon layer containing conductive carbon.
- a conductive polymer is attached to at least a part of the surface of the dielectric layer on the anode foil 21 and at least a part of the surface of the conductive layer on the cathode foil 22 to form a conductive polymer layer. The conductive polymer may adhere to any position between the anode foil 21 and the cathode foil 22.
- the conductive polymer covers at least a part of the surface of the dielectric layer formed on the anode foil 21 and at least a part of the surface of the conductive layer on the cathode foil 22, and further, at least the surface of the separator 23. A part may be covered.
- the conductive polymer layer is interposed between the anode foil 21 and the cathode foil 22.
- a conductive polymer (specifically, a film containing a conductive polymer) covering at least a part of the surface of an anode foil, a cathode foil, a separator, or the like is used as a solid electrolyte layer (or Sometimes referred to as a conductive polymer layer).
- the capacitor element includes an anode foil having a dielectric layer formed thereon, a cathode foil having a conductive layer formed thereon, and a conductive polymer layer interposed between the anode foil and the cathode foil.
- the capacitor element may further include a separator as necessary.
- Capacitor element (Anode foil)
- the anode foil include a metal foil having a roughened surface.
- the kind of metal which comprises metal foil is not specifically limited, From the point that formation of a dielectric material layer is easy, it is preferable to use the alloy which contains valve action metals, such as aluminum, a tantalum, niobium, or a valve action metal.
- the roughening of the metal foil surface can be performed by a known method. By roughening, a plurality of irregularities are formed on the surface of the metal foil.
- the roughening is preferably performed, for example, by etching a metal foil.
- the etching treatment may be performed by, for example, a direct current electrolytic method or an alternating current electrolytic method.
- the dielectric layer is formed on the surface of the anode foil. Specifically, since the dielectric layer is formed on the surface of the roughened metal foil, the dielectric layer is formed along the inner wall surface of the hole or depression (pit) on the surface of the anode foil.
- the formation method of the dielectric layer is not particularly limited, but can be formed by chemical conversion treatment of the metal foil.
- the chemical conversion treatment may be performed, for example, by immersing the metal foil in a chemical conversion solution such as an ammonium adipate solution.
- a voltage may be applied in a state where the metal foil is immersed in the chemical conversion liquid as necessary.
- anode foil 21 having a dielectric layer formed thereon is prepared by cutting the treated foil into a desired size.
- a metal foil is used for the cathode foil 22.
- the type of metal is not particularly limited, but it is preferable to use a valve action metal such as aluminum, tantalum, or niobium or an alloy containing the valve action metal.
- a conductive polymer layer is formed on the surface of the cathode foil using a dispersion or solution containing a conductive polymer, a conductive polymer layer having high homogeneity and flexibility can be obtained.
- the conductive layer is preferably formed of a conductive inorganic material (metal, metal compound, and / or conductive carbon, etc.) as a whole, and what is a conductive polymer layer formed of an organic material? Differentiated. Since the conductive layer is formed of an inorganic material as a whole, it can also be referred to as an inorganic conductive layer.
- the conductive layer includes at least a carbon layer in contact with the conductive polymer layer.
- the carbon layer contains conductive carbon.
- the conductive carbon include amorphous carbon, carbon black such as acetylene black, carbon fiber such as soft carbon, hard carbon, graphite, and carbon nanotube.
- the carbon layer may contain one or more of these conductive carbons.
- the carbon layer may be a layer containing conductive carbon and a binder, but it is preferable that the ratio of conductive carbon is as high as possible.
- the amount of conductive carbon in the carbon layer is preferably 95% by mass or more or 99% by mass or more, for example.
- the carbon layer may be formed by forming a layer containing conductive carbon and a binder and removing the binder by heat treatment.
- the carbon layer is preferably a layer made of conductive carbon.
- a deposited film of conductive carbon is preferable.
- the conductive layer may include only a carbon layer, or may further include a conductive base layer from the viewpoint of improving adhesion.
- the base layer is formed on the surface of the cathode foil, and the carbon layer can be formed on the base layer.
- the carbon layer may be formed directly on the surface of the base layer, or may be formed on the base layer with another conductive layer interposed between the carbon layer and the base layer. Also good.
- the base layer constituting a part of the conductive layer includes, for example, a non-carbon conductive inorganic material such as a metal or a conductive metal compound.
- a non-carbon conductive inorganic material such as a metal or a conductive metal compound.
- the metal include titanium and / or nickel.
- the metal compound is preferably a metal nitride such as titanium nitride.
- the conductive layer formed on the cathode foil includes a carbide component such as aluminum carbide (aluminum carbide or the like), the life characteristics may be deteriorated.
- a carbide component such as aluminum carbide (aluminum carbide or the like)
- conductive aluminum carbide reacts with moisture in the electrolytic capacitor (especially in the electrolytic solution) to produce methane and insulating aluminum hydroxide, of which insulating aluminum hydroxide is It exists between the cathode foil and the conductive polymer layer.
- the conductive layer does not substantially contain a carbide component (such as aluminum carbide).
- the carbide component (such as aluminum carbide) in the conductive layer is preferably 1% by mass or less.
- the thickness of the conductive layer is, for example, 1 nm to 10 ⁇ m.
- the thickness of the conductive layer may be, for example, 1 nm to 100 nm.
- the thickness of the conductive layer May be, for example, 100 nm to 10 ⁇ m.
- the thickness of the conductive layer may be an average thickness obtained by averaging the thicknesses measured at a plurality of locations (for example, 10 locations) in the cross-sectional image.
- separator 23 for example, a nonwoven fabric containing fibers of cellulose, polyethylene terephthalate, vinylon, polyamide (for example, an aromatic polyamide such as aliphatic polyamide or aramid) may be used.
- polyamide for example, an aromatic polyamide such as aliphatic polyamide or aramid
- the capacitor element 10 can be manufactured by a known method.
- the anode foil 21 having a dielectric layer and the cathode foil 22 having a conductive layer are superposed via a separator 23, and then conductive between the anode foil 21 and the cathode foil 22. It may be produced by forming a conductive polymer layer.
- the anode foil 21 with the dielectric layer formed thereon and the cathode foil 22 with the conductive layer formed thereon are wound through the separator 23 to form a wound body as shown in FIG. You may produce by forming a conductive polymer layer between cathode foils 22.
- the lead tabs 15A and 15B may be planted from the wound body by winding while winding the lead tabs 15A and 15B as shown in FIG.
- the material of the lead tabs 15A and 15B is not particularly limited as long as it is a conductive material.
- the surface of the lead tabs 15A and 15B may be subjected to chemical conversion treatment.
- the part which contacts the sealing body 12 of lead tab 15A, 15B and the connection part with lead wire 14A, 14B may be covered with the resin material.
- the material of the lead wires 14A and 14B connected to each of the lead tabs 15A and 15B is not particularly limited, and a conductive material or the like may be used.
- the cathode foil 22 and the separator 23 the end portion of the outer surface of the one located in the outermost layer of the wound body (the cathode foil 22 in FIG. 2) is fixed with a winding tape 24.
- the anode foil 21 is prepared by cutting a large metal foil, in order to provide a dielectric layer on the cut surface of the anode foil 21, the capacitor element in a state such as a wound body is further formed. Processing may be performed.
- the conductive polymer layer is interposed between the anode foil 21 and the cathode foil 22.
- the conductive polymer layer is preferably formed on at least a part of the surface of the dielectric layer formed on the surface of the anode foil 21 so as to cover the dielectric layer, and covers as much area as possible of the dielectric layer. It is more preferable to form as described above.
- the conductive polymer layer is preferably formed on at least a part of the surface of the conductive layer formed on the surface of the cathode foil 22 so as to cover the conductive layer, and so as to cover as many regions of the conductive layer as possible. More preferably.
- the conductive polymer layer may be formed not only on the surface of the dielectric layer and the conductive layer but also on the surface of the separator.
- the conductive polymer layer is produced by using a dispersion in which fine particles of a conductive polymer are dispersed in a dispersion medium or a solution in which a conductive polymer is dissolved in a solvent.
- a polymer precursor such as a monomer or oligomer that is a raw material for a conductive polymer
- a polymer precursor is polymerized in a state where the anode foil and the cathode foil are in contact with each other.
- the cathode foil and the anode foil corrode due to the strong reactivity of the oxidizer and the monomer itself for the polymerization reaction.
- the contact between the foil and the conductive polymer layer, and the cathode foil and the conductive layer As a result, the contact becomes worse, the capacity is lowered, and the ESR is raised. Oxidizing agents and monomers remaining after polymerization cannot be sufficiently removed even by washing, and adversely affect the life of the electrolytic capacitor.
- the conductive polymer layer is formed using a dispersion in which fine particles of the conductive polymer are dispersed in a dispersion medium or a solution in which the conductive polymer is dissolved in a solvent.
- a conductive polymer layer is formed by bringing the dispersion polymer or the solution into contact with the anode foil and the cathode foil so that the conductive polymer adheres to the periphery of the anode foil and the cathode foil.
- Examples of the conductive polymer contained in the conductive polymer layer include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, and polythiophene vinylene. These may be used alone or in combination of two or more, or may be a copolymer of two or more monomers.
- polypyrrole, polythiophene, polyfuran, polyaniline and the like mean polymers having a basic skeleton of polypyrrole, polythiophene, polyfuran, polyaniline and the like, respectively. Accordingly, polypyrrole, polythiophene, polyfuran, polyaniline and the like can also include respective derivatives.
- polythiophene includes poly (3,4-ethylenedioxythiophene) and the like.
- the conductive polymer one kind may be used alone, or two or more kinds may be used in combination.
- the weight average molecular weight of the conductive polymer is not particularly limited, but is, for example, 1,000 to 1,000,000.
- the conductive polymer layer may contain a dopant.
- the dopant may be contained in the conductive polymer layer in a state of being doped in the conductive polymer, or may be contained in the conductive polymer layer in a state of being bonded to the conductive polymer.
- a polyanion can be used as the dopant.
- polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacryl sulfonic acid, polymethacryl sulfonic acid, poly (2-acrylamido-2-methylpropane sulfonic acid), polyisoprene sulfonic acid, poly Anions such as acrylic acid can be mentioned.
- polyanions derived from polystyrene sulfonic acid are preferred. These may be used alone or in combination of two or more. These may be a single monomer polymer or a copolymer of two or more monomers.
- the weight average molecular weight of the polyanion is not particularly limited, but is 1,000 to 1,000,000, for example.
- Such a conductive polymer containing a polyanion tends to be uniformly dispersed in a solvent and easily adheres uniformly to the surface of a dielectric layer or a conductive layer.
- the amount of water in the electrolytic solution is set to 0.1% by mass or more so that the dielectric layer can be repaired.
- the leakage current can be reduced.
- the capacity decreases or the ESR increases with the passage of time of use of the electrolytic capacitor. These are considered to be due to a decrease in adhesion between the cathode foil and the conductive layer including the carbon layer due to moisture in the electrolytic solution.
- the conductive polymer layer is formed by polymerizing the conductive polymer precursor in contact with the cathode foil, the remaining oxidizing agent or precursor is used.
- the conductive polymer layer is formed using a dispersion or solution containing a conductive polymer, and the moisture in the electrolytic solution is 6.0% by mass or less, so that the cathode foil and the conductive layer are electrically conductive. It is possible to suppress a decrease in the adhesion between the layer and the anode foil or the adhesion between the conductive layer and the conductive polymer layer. Therefore, an increase in ESR can be suppressed while securing a high capacity.
- the water content in the electrolytic solution is 0.1% by mass or more and 6.0% by mass or less.
- the water content in the electrolytic solution is preferably 5.0% by mass or less.
- the water content in the electrolytic solution is preferably 0.5% by mass or more, and more preferably 1.0% by mass or more.
- the water in the electrolytic solution is not necessarily contained in the electrolytic solution used when assembling the electrolytic capacitor, and may be mixed in the electrolytic solution in the process of assembling the electrolytic capacitor.
- moisture may be contained in advance in the constituent elements of the electrolytic capacitor, or may be contained in a dispersion or solution containing a conductive polymer.
- the electrolytic solution is not particularly limited as long as it has the above-mentioned water content, and a nonaqueous solvent may be used, or a solution containing a nonaqueous solvent and an ionic substance (solute) dissolved in the nonaqueous solvent may be used.
- a nonaqueous solvent is a general term for liquids excluding water and liquids containing water, and includes organic solvents and ionic liquids.
- non-aqueous solvent contained in the electrolytic solution examples include polyols (alkylene glycols such as ethylene glycol and propylene glycol; polyalkylene glycols such as polyethylene glycol; glycerins such as glycerin and polyglycerin) and cyclic sulfones such as sulfolane.
- Lactones such as ⁇ -butyrolactone ( ⁇ BL), amides such as N-methylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, esters such as methyl acetate, 1,4-dioxane, etc.
- examples include ethers, ketones such as methyl ethyl ketone, and formaldehyde.
- a non-aqueous solvent may be used alone or in combination of two or more.
- the electrolytic solution preferably includes at least a solvent (first solvent) having no boiling point or having a high boiling point (for example, 180 ° C. or higher) among the non-aqueous solvents.
- first solvent a solvent having no boiling point or having a high boiling point (for example, 180 ° C. or higher) among the non-aqueous solvents.
- the boiling point of the first solvent may be 180 ° C. or higher, and may be 200 ° C. or higher.
- a polyol is preferable.
- Polyethylene glycol, polyglycerin, and the like may not have a boiling point depending on the molecular weight, but such a compound (however, a liquid one) is also preferable as the first solvent.
- the first solvent is not necessarily included in the electrolytic solution used when assembling the electrolytic capacitor, and may be included in the processing solution used in the process of assembling the electrolytic capacitor.
- a dispersion or solution containing a conductive polymer may contain the first solvent. Since the first solvent does not have a boiling point or has a high boiling point, it remains in the assembled electrolytic capacitor. Since the remaining first solvent oozes out into the electrolytic solution accommodated in the electrolytic capacitor, the first solvent is contained in the electrolytic solution in the electrolytic capacitor. From the viewpoint of easily ensuring the adhesion between the conductive polymer layer and the conductive layer, the amount of the first solvent contained in the dispersion is preferably 50% by mass or less of the dispersion or the solution.
- the amount of the first solvent contained in the electrolytic solution is preferably 3 to 90% by mass.
- the amount of the first solvent is within such a range, the adhesion between the conductive polymer layer and the conductive layer can be suppressed from being lowered, and the repair function of the dielectric layer can be further enhanced.
- Examples of the solute contained in the electrolytic solution include anion and cation salts, and an organic salt in which at least one of the anion and cation is an organic substance is preferable.
- Organic salts include trimethylamine maleate, triethylamine borodisalicylate, ethyldimethylamine phthalate, mono 1,2,3,4-tetramethylimidazolinium phthalate, mono 1,3-dimethyl-2-ethyl imidazole phthalate Examples include linium. Solutes may be used singly or in combination of two or more.
- the electrolytic capacitor includes a step of preparing a dispersion or solution (first treatment liquid) containing a conductive polymer (first step), a step of preparing an anode foil on which a dielectric layer is formed (second step), A step of preparing a cathode foil on which a conductive layer is formed (third step), and impregnating the anode foil, the cathode foil, and, if necessary, a separator interposed between the anode foil and the cathode foil with the first treatment liquid.
- the capacitor element can be obtained through a step (fourth step) and a step of impregnating the capacitor element with an electrolytic solution (fifth step).
- a conductive polymer layer can be formed through the fourth step.
- the solvent component may be removed at an appropriate stage.
- the first treatment liquid can be obtained, for example, by dispersing or dissolving the conductive polymer (and the dopant) in the second solvent.
- the first treatment liquid is obtained by, for example, polymerizing a raw material of a conductive polymer (for example, a precursor of a monomer and / or oligomer of a conductive polymer) in the second solvent in the presence of a dopant. It can also be obtained.
- polymerization you may remove an unreacted raw material and a by-product as needed.
- polymerizing using a part of 2nd solvent you may add the remainder of a 2nd solvent to the obtained mixture.
- the second solvent is not particularly limited, and may be water or a non-aqueous solvent (such as an organic solvent or an ionic liquid). Especially, it is preferable that a 2nd solvent is a polar solvent.
- the polar solvent may be a protic solvent or an aprotic solvent.
- protic solvents examples include monohydric alcohols (methanol, ethanol, propanol, butanol, etc.), polyols (alkylene glycols such as ethylene glycol and propylene glycol; polyalkylene glycols such as polyethylene glycol; glycerins such as glycerin and polyglycerin). Etc.), glycol monoethers such as diethylene glycol monobutyl ether, formaldehyde and water.
- monohydric alcohols methanol, ethanol, propanol, butanol, etc.
- polyols alkylene glycols such as ethylene glycol and propylene glycol
- polyalkylene glycols such as polyethylene glycol
- glycerins such as glycerin and polyglycerin
- glycol monoethers such as diethylene glycol monobutyl ether, formaldehyde and water.
- aprotic solvent examples include amides such as N-methylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, esters such as methyl acetate, ketones such as methyl ethyl ketone and ⁇ -butyrolactone, Examples thereof include ethers such as 1,4-dioxane (such as cyclic ethers), sulfones such as dimethyl sulfoxide and sulfolane, and carbonate compounds such as propylene carbonate (such as cyclic carbonates).
- amides such as N-methylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone
- esters such as methyl acetate
- ketones such as methyl ethyl ketone and ⁇ -butyrolactone
- ethers such as 1,4-dioxane (such as cyclic ethers), sulfones such as dimethyl sulfox
- the second solvent is preferably a protic solvent.
- the second solvent preferably contains water.
- the second solvent contains a polyol, the conductivity of the conductive polymer layer can be easily increased (that is, the ESR can be further decreased). Therefore, the case where the second solvent contains a polyol is also preferred, and the case where a second solvent containing at least water and a polyol is used is also preferred.
- a dispersion in which a conductive polymer (and a dopant) is dispersed in a second solvent is preferable.
- the conductive polymer and / or dopant is preferably particles (or powder).
- the average particle size of the particles dispersed in the dispersion is preferably 5 to 100 nm.
- the average particle size can be determined from, for example, a particle size distribution by a dynamic light scattering method.
- the amount of the dopant contained in the first treatment liquid is preferably 10 to 1000 parts by mass, more preferably 50 to 200 parts by mass with respect to 100 parts by mass of the conductive polymer.
- the concentration of the conductive polymer (including the dopant or polyanion) in the first treatment liquid is preferably 0.5 to 3% by mass, for example.
- the first treatment liquid having such a concentration is suitable for adhering an appropriate amount of the conductive polymer, and is easy to be impregnated, and thus is advantageous in improving productivity.
- the 1st processing liquid may contain a publicly known additive etc. as needed.
- Second Step In the second step, as described above, the surface of the anode foil is subjected to, for example, chemical conversion treatment, thereby forming a dielectric layer on the surface of the anode foil.
- Third Step In the third step, a cathode foil having a conductive layer including a carbon layer formed on the surface is prepared. More specifically, for example, the conductive layer can be formed by forming a carbon layer containing conductive carbon on the cathode foil.
- the carbon layer may be formed by attaching powdered conductive carbon to the surface of the cathode foil.
- the carbon layer may be formed by applying a mixture (for example, slurry) containing conductive carbon and a binder to the surface of the cathode foil to form a coating film, and drying the coating film. It may be formed by heat-treating and removing the binder.
- the conductive layer including the carbon layer is preferably formed by depositing conductive carbon on the surface of the cathode foil using a vapor phase method.
- a vapor phase method include chemical vapor deposition, vacuum deposition, sputtering, and ion plating.
- a conductive layer may be formed by forming a base layer on the surface of the cathode foil and forming a carbon layer on the base layer as described above.
- the base layer constituting the conductive layer can be formed using a non-carbonaceous conductive inorganic material in the same manner as the carbon layer.
- the base layer is preferably formed by depositing a non-carbonaceous conductive inorganic material on the surface of the cathode foil using a vapor phase method.
- the anode foil in which the dielectric layer is formed and the cathode foil in which the conductive layer is formed are wound with a separator interposed therebetween.
- the body may be impregnated with the first treatment liquid.
- the impregnation of the first treatment liquid may be performed by immersing the wound body in the first treatment liquid, or may be performed by injecting the first treatment liquid into the wound body.
- the impregnation with the first treatment liquid may be performed under atmospheric pressure, but may be performed under reduced pressure, for example, in an atmosphere of 10 to 100 kPa, preferably 40 to 100 kPa. Impregnation may be performed under ultrasonic vibration as necessary.
- the impregnation time depends on the size of the capacitor element 10, but is, for example, 1 second to 5 hours, preferably 1 minute to 30 minutes.
- the first treatment liquid may be impregnated into the anode foil and the cathode foil (further separator) and then dried as necessary. By drying, at least a part of the second solvent is removed. Drying may be performed under heating, and may be performed under reduced pressure as necessary.
- the impregnation of the electrolytic solution into the capacitor element 10 is not particularly limited and can be performed by a known method.
- the capacitor element 10 may be immersed in the electrolytic solution, or the electrolytic solution may be poured into a container that contains the capacitor element 10.
- the impregnation of the electrolytic solution into the capacitor element 10 may be performed under reduced pressure (for example, 10 to 100 kPa) as necessary.
- the capacitor element 10 may be sealed. More specifically, the capacitor element 10 is first housed in the bottomed case 11 so that the lead wires 14A and 14B are positioned on the upper surface of the bottomed case 11 that opens.
- a metal such as aluminum, stainless steel, copper, iron, brass, or an alloy thereof can be used.
- the sealing member 12 formed so that the lead wires 14 ⁇ / b> A and 14 ⁇ / b> B penetrate is disposed above the capacitor element 10, and the capacitor element 10 is sealed in the bottomed case 11.
- the sealing member 12 may be an insulating material.
- an elastic body is preferable, and among them, silicone rubber, fluorine rubber, ethylene propylene rubber, chlorosulfonated polyethylene rubber (hypalon rubber, etc.), butyl rubber, isoprene rubber and the like having high heat resistance are preferable.
- the wound type electrolytic capacitor has been described.
- the scope of the present invention is not limited to the above, and other electrolytic capacitors, for example, a chip type using a metal sintered body instead of the anode foil
- the present invention can also be applied to a multilayer electrolytic capacitor using a metal plate instead of the electrolytic capacitor of FIG.
- Example 1 In the following procedure, a wound electrolytic capacitor having a rated voltage of 35 V and a rated capacitance of 47 ⁇ F as shown in FIG. 1 was prepared and evaluated.
- a cathode foil having conductive layer was prepared in which a conductive layer was formed by ion plating of conductive carbon on the surface of an aluminum foil having a thickness of 30 ⁇ m. The thickness of the conductive layer was 3 nm.
- the anode lead tab and the cathode lead tab were connected to the anode foil and the cathode foil, and the wound body was obtained by winding the anode foil and the cathode foil through the separator while winding the lead tab.
- An anode lead wire and a cathode lead wire were respectively connected to the end portions of the lead tabs protruding from the wound body.
- the produced wound body was subjected to a chemical conversion treatment again, and a dielectric layer was formed on the cut end portion of the anode foil.
- the end of the outer surface of the wound body was fixed with a winding tape.
- a mixed solution was prepared by dissolving 3,4-ethylenedioxythiophene and polystyrenesulfonic acid as a dopant in ion-exchanged water. While stirring the resulting solution, ferric sulfate and sodium persulfate (oxidant) dissolved in ion-exchanged water were added to perform a polymerization reaction. After the reaction, the resulting reaction solution is dialyzed to remove unreacted monomers and excess oxidizing agent, and a dispersion containing poly3,4-ethylenedioxythiophene (PEDOT-PSS) doped with polystyrene sulfonic acid Got.
- PEDOT-PSS poly3,4-ethylenedioxythiophene
- 5% by mass of ethylene glycol (first solvent) was added and stirred to prepare a dispersion-type first treatment liquid.
- the wound body was impregnated with the first treatment liquid for 5 minutes. Next, the wound body was heated at 150 ° C. for 20 minutes to remove the solvent component. In this way, a capacitor element in which a conductive polymer layer was formed between the anode foil and the cathode foil was produced. (Impregnation with electrolyte) Next, the capacitor element was impregnated with an electrolytic solution under reduced pressure.
- the initial capacitance ( ⁇ F) at a frequency of 120 Hz was measured for the electrolytic capacitor using an LCR meter for 4-terminal measurement.
- an ESR value (m ⁇ ) at a frequency of 100 kHz of the electrolytic capacitor was measured using an LCR meter for measuring four terminals.
- the electrostatic capacity ( ⁇ F) and ESR value (m ⁇ ) after a high temperature storage test at a temperature of 125 ° C. for 4000 hours were also measured in the same manner as in the case of the above initial characteristics.
- the leakage current ( ⁇ A) after a high temperature standing test at a temperature of 125 ° C. for 4000 hours was also measured in the same manner as in the case of the above initial characteristics.
- ⁇ Examples 2 to 6 and Comparative Examples 1 to 2 An electrolytic capacitor was produced and evaluated in the same manner as in Example 1 except that the amount of water in the electrolytic solution was adjusted so that the amount of water in the electrolytic solution of the assembled electrolytic capacitor became the value shown in Table 1. It was.
- the amount of the first solvent in the electrolytic solution of the assembled electrolytic capacitor was as follows.
- Example 2 76.0 mass%
- Example 3 75.8% by mass
- Example 4 75.6% by mass
- Example 5 75.7% by mass
- Example 6 75.6% by mass
- Comparative example 1 75.8 mass% Comparative Example 2: 75.1% by mass
- Comparative Example 3 >> Mix 1 part by weight of 3,4-ethylenedioxythiophene as a polymerizable monomer, 2 parts by weight of ferric p-toluenesulfonate as an oxidant and dopant component, and 4 parts by weight of n-butanol as a solvent To prepare a solution. The wound body produced in the same manner as in Example 1 was immersed in the obtained solution, pulled up, and then left at 85 ° C.
- Comparative Example 4 An electrolytic capacitor was produced and evaluated in the same manner as in Example 3 except that the conductive layer was not formed on the surface of the aluminum foil.
- Comparative Example 5 a solid electrolytic capacitor not using an electrolytic solution was produced. More specifically, as in Example 1, a capacitor element in which a conductive polymer layer was formed between an anode foil and a cathode foil was produced. The obtained capacitor element was housed in an outer case and sealed to obtain a solid electrolytic capacitor, which was evaluated in the same manner as in Example 1.
- Table 1 shows the results of Examples and Comparative Examples. Examples 1 to 6 are A1 to A6, and Comparative Examples 1 to 5 are B1 to B5.
- the present invention can be used for an electrolytic capacitor including a capacitor element having a conductive polymer layer and an electrolytic solution.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
前記コンデンサ素子は、
誘電体層が形成された陽極箔と、
前記陽極箔と対向し、かつ導電性カーボンを含むカーボン層を備える導電層が形成された陰極箔と、
前記陽極箔および前記陰極箔の間に介在し、かつ導電性高分子を含む導電性高分子層と、を備え、
前記導電性高分子層は、前記導電性高分子を含む分散体または溶液を用いて形成され、
前記電解液の水分量(水分含有量)は、0.1~6.0質量%である、電解コンデンサに関する。
≪電解コンデンサ≫
図1は、本発明の一実施形態に係る電解コンデンサの断面模式図である。図2は、同電解コンデンサが含むコンデンサ素子の一部を展開した概略図である。
(コンデンサ素子)
(陽極箔)
陽極箔としては、例えば、表面が粗面化された金属箔が挙げられる。金属箔を構成する金属の種類は特に限定されないが、誘電体層の形成が容易である点から、アルミニウム、タンタル、ニオブなどの弁作用金属、または弁作用金属を含む合金を用いることが好ましい。
誘電体層は、陽極箔の表面に形成される。具体的には、誘電体層は、粗面化された金属箔の表面に形成されるため、陽極箔の表面の孔や窪み(ピット)の内壁面に沿って形成される。
陰極箔22にも、陽極箔と同様、金属箔が用いられる。金属の種類は特に限定されないが、アルミニウム、タンタル、ニオブなどの弁作用金属または弁作用金属を含む合金を用いることが好ましい。
導電層は、層全体として、導電性を有する無機材料(金属、金属化合物、および/または導電性カーボンなど)で形成されることが望ましく、有機系材料で形成される導電性高分子層とは区別される。導電層は、層全体として無機材料で形成されるため、無機系導電層と呼ぶこともできる。導電層は、導電性高分子層と接するカーボン層を少なくとも含む。
セパレータ23としては、例えば、セルロース、ポリエチレンテレフタレート、ビニロン、ポリアミド(例えば、脂肪族ポリアミド、アラミドなどの芳香族ポリアミド)の繊維を含む不織布などを用いてもよい。
導電性高分子層は、陽極箔21と陰極箔22との間に介在する。導電性高分子層は、陽極箔21の表面に形成された誘電体層の少なくとも一部の表面に、誘電体層を覆うように形成することが好ましく、誘電体層のできるだけ多くの領域を覆うように形成することがより好ましい。導電性高分子層は、陰極箔22の表面に形成された導電層の少なくとも一部の表面に、導電層を覆うように形成することが好ましく、導電層のできるだけ多くの領域を覆うように形成することがより好ましい。コンデンサ素子が、セパレータを含む場合、導電性高分子層は、誘電体層および導電層の表面だけでなく、セパレータの表面に形成されていてもよい。
導電性高分子層に含まれる導電性高分子としては、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリチオフェンビニレンなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよく、2種以上のモノマーの共重合体でもよい。
導電性高分子層は、ドーパントを含んでいてもよい。ドーパントは、導電性高分子にドープされた状態で導電性高分子層に含まれていてもよく、導電性高分子と結合した状態で導電性高分子層に含まれていてもよい。
固体電解コンデンサでは、電解液を用いると、誘電体層の修復性が高まり、漏れ電流を抑制できると期待される。しかし、実際にカーボン層と電解液とを組み合わせてみると、誘電体層の修復性を十分に得ることができない場合がある。
≪電解コンデンサの製造方法≫
以下に、本発明の実施形態に係る電解コンデンサの製造方法の一例について、工程ごとに説明する。
(i)第1工程
第1工程では、導電性高分子(およびドーパント)と、溶媒(第2溶媒)とを含む第1処理液を調製する。
(ii)第2工程
第2工程では、前述のように、陽極箔の表面を例えば化成処理することにより、陽極箔の表面に誘電体層を形成する。
(iii)第3工程
第3工程では、表面に、カーボン層を含む導電層が形成された陰極箔を準備する。より具体的には、例えば、陰極箔上に導電性カーボンを含むカーボン層を形成することで導電層を形成することができる。
(iv)第4工程
第4工程では、第1処理液を、誘電体層が形成された陽極箔、導電層が形成された陰極箔、および必要によりセパレータに含浸させる。より具体的には、第4工程では、誘電体層が形成された陽極箔と、導電層が形成された陰極箔とを、これらの間にセパレータを介在させた状態で巻回された巻回体に、第1処理液を含浸させてもよい。第1処理液の含浸は、巻回体を第1処理液に浸漬することにより行ってもよく、巻回体に第1処理液を注液することにより行ってもよい。
(v)第5工程
第5工程では、第4工程で得られたコンデンサ素子に、電解液を含浸させる。
(その他)
コンデンサ素子10は、封止してもよい。より具体的には、まず、リード線14A,14Bが有底ケース11の開口する上面に位置するように、コンデンサ素子10を有底ケース11に収納する。有底ケース11の材料としては、アルミニウム、ステンレス鋼、銅、鉄、真鍮などの金属あるいはこれらの合金を用いることができる。
《実施例1》
下記の手順で、図1に示すような、定格電圧35V、定格静電容量47μFの巻回型の電解コンデンサを作製し、評価を行った。
(1)電解コンデンサの製造
(誘電体層を有する陽極箔の準備)
厚さ100μmのアルミニウム箔にエッチング処理を行い、アルミニウム箔の表面を粗面化した。その後、アルミニウム箔の表面に、アジピン酸アンモニウム水溶液を用いる化成処理により、誘電体層を形成し、誘電体層を有する陽極箔を準備した。
厚さ30μmのアルミニウム箔の表面に、導電性カーボンのイオンプレーティングにより導電層が形成された陰極箔を準備した。導電層の厚みは、3nmであった。
陽極箔および陰極箔に陽極リードタブおよび陰極リードタブを接続し、陽極箔と陰極箔とを、リードタブを巻き込みながら、セパレータを介して巻回することにより巻回体を得た。巻回体から突出する各リードタブの端部には、陽極リード線および陰極リード線をそれぞれ接続した。そして、作製された巻回体に対して、再度化成処理を行い、陽極箔の切断された端部に誘電体層を形成した。次に、巻回体の外側表面の端部を巻止めテープで固定した。
3,4-エチレンジオキシチオフェンと、ドーパントとしてのポリスチレンスルホン酸とを、イオン交換水に溶かした混合溶液を調製した。得られた溶液を撹拌しながら、イオン交換水に溶解させた硫酸第二鉄および過硫酸ナトリウム(酸化剤)を添加し、重合反応を行った。反応後、得られた反応液を透析して、未反応モノマーおよび過剰な酸化剤を除去し、ポリスチレンスルホン酸がドープされたポリ3,4-エチレンジオキシチオフェン(PEDOT-PSS)を含む分散液を得た。分散液中のPEDOT-PSSの濃度は約2質量%であり、PSSとPEDOTとの質量比(=PSS:PEDOT)は、約2:1であった。得られた分散液に5質量%のエチレングリコール(第1溶媒)を添加して攪拌することにより、分散液状の第1処理液を調製した。
第1処理液を、巻回体に5分間含浸させた。次いで、巻回体を、150℃で20分間加熱することにより、溶媒成分を除去した。このようにして、陽極箔と陰極箔との間に導電性高分子層が形成されたコンデンサ素子を作製した。
(電解液の含浸)
次いで、コンデンサ素子に、減圧下で電解液を含浸させた。電解液としては、γBL:グリセリン:フタル酸モノ(エチルジメチルアミン)(溶質)=50:25:25(質量比)で含む溶液を用いた。使用するγBLおよびグリセリンに含まれる水分量を予め測定し、電解液中の水分が目的とする水分量となるように、電解液に水を添加したり、加温により水分を蒸発させたりすることにより、電解液中の水分量を調節した。電解液において、γBLおよびグリセリンは第1溶媒である。
(コンデンサ素子の封止)
電解液を含浸させたコンデンサ素子を、図1に示すような外装ケースに収容し、封止して、電解コンデンサを作製した。同様にして、合計300個の電解コンデンサを作製した。
(2)評価
ランダムに選択した120個の電解コンデンサについて、下記の評価を行い、平均値を算出した。
(a)水分量
組み立てた電解コンデンサから電解液を取り出して、カールフィッシャー法により、電解液中の水分量(質量%)を測定した。その結果、電解液中の水分量は、0.10質量%であった。
(b)電解液中の第1溶媒量
電解コンデンサから電解液を抜き出して、ガスクロマトグラフィーにより、電解液中に含まれる第1溶媒の量(質量%)を測定した。その結果、電解液中の第1溶媒の量は75.0質量%であった。
(c)静電容量およびESR値
電解コンデンサの初期特性として、静電容量(μF)およびESR値(mΩ)を測定した。具体的には、電解コンデンサについて4端子測定用のLCRメータを用いて、周波数120Hzにおける初期静電容量(μF)を測定した。また、4端子測定用のLCRメータを用いて、電解コンデンサの周波数100kHzにおけるESR値(mΩ)を測定した。
(d)漏れ電流(LC)
電解コンデンサの初期特性として、電解コンデンサに定格電圧を印加し、2分後の漏れ電流(μA)を測定した。
《実施例2~6および比較例1~2》
組み立てた電解コンデンサの電解液中の水分量が表1に示す値となるように、電解液中の水分量を調節した以外は、実施例1と同様に、電解コンデンサを作製し、評価を行った。組み立てた電解コンデンサの電解液中の第1溶媒の量は、以下の通りであった。
実施例3:75.8質量%
実施例4:75.6質量%
実施例5:75.7質量%
実施例6:75.6質量%
比較例1:75.8質量%
比較例2:75.1質量%
《比較例3》
重合性モノマーである3,4-エチレンジオキシチオフェン1質量部と、酸化剤兼ドーパント成分としてのp-トルエンスルホン酸第二鉄2質量部と、溶剤であるn-ブタノール4質量部とを混合して溶液を調製した。得られた溶液中に、実施例1と同様に作製した巻回体を浸漬し、引き上げた後、85℃で60分間放置することにより、陽極箔と陰極箔との間に導電性高分子層が形成されたコンデンサ素子を作製した。得られたコンデンサ素子を用いる以外は、実施例3と同様に、電解コンデンサを作製し、評価を行なった。
《比較例4》
比較例4では、アルミニウム箔の表面に導電層を形成しなかった以外は、実施例3と同様に、電解コンデンサを作製し、評価を行った。
《比較例5》
比較例5では、電解液を用いない固体電解コンデンサを作製した。より具体的には、実施例1と同様に、陽極箔と陰極箔との間に導電性高分子層が形成されたコンデンサ素子を作製した。得られたコンデンサ素子を外装ケースに収容し、封止して、固体電解コンデンサとし、実施例1と同様に評価を行なった。
Claims (5)
- コンデンサ素子と電解液とを備え、
前記コンデンサ素子は、
誘電体層が形成された陽極箔と、
前記陽極箔と対向し、かつ導電性カーボンを含むカーボン層を備える導電層が形成された陰極箔と、
前記陽極箔および前記陰極箔の間に介在し、かつ導電性高分子を含む導電性高分子層と、を備え、
前記導電性高分子層は、前記導電性高分子を含む分散体または溶液を用いて形成され、
前記電解液の水分量は、0.1~6.0質量%である、電解コンデンサ。 - 前記カーボン層は、前記導電性カーボンの堆積膜である、請求項1に記載の電解コンデンサ。
- 前記電解液は、沸点を有さないか、または沸点が180℃以上の第1溶媒を含む、請求項1または2に記載の電解コンデンサ。
- 前記第1溶媒はポリオールを含む、請求項3に記載の電解コンデンサ。
- 前記電解液中に含まれる前記第1溶媒の量は、3~90質量%である、請求項3または4に記載の電解コンデンサ。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017515366A JP7089874B2 (ja) | 2015-04-28 | 2016-03-10 | 電解コンデンサ |
CN201911097518.0A CN110634679B (zh) | 2015-04-28 | 2016-03-10 | 电解电容器 |
CN201680023477.9A CN107533922B (zh) | 2015-04-28 | 2016-03-10 | 电解电容器 |
DE112016001994.7T DE112016001994T5 (de) | 2015-04-28 | 2016-03-10 | Elektrolytkondensator |
US15/725,353 US10453618B2 (en) | 2015-04-28 | 2017-10-05 | Electrolytic capacitor |
US16/569,889 US10790095B2 (en) | 2015-04-28 | 2019-09-13 | Electrolytic capacitor |
US16/909,150 US11094471B2 (en) | 2015-04-28 | 2020-06-23 | Electrolytic capacitor |
US17/374,281 US12062501B2 (en) | 2015-04-28 | 2021-07-13 | Electrolytic capacitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015091448 | 2015-04-28 | ||
JP2015-091448 | 2015-04-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/725,353 Continuation US10453618B2 (en) | 2015-04-28 | 2017-10-05 | Electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016174807A1 true WO2016174807A1 (ja) | 2016-11-03 |
Family
ID=57198246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/001334 WO2016174807A1 (ja) | 2015-04-28 | 2016-03-10 | 電解コンデンサ |
Country Status (5)
Country | Link |
---|---|
US (4) | US10453618B2 (ja) |
JP (3) | JP7089874B2 (ja) |
CN (2) | CN107533922B (ja) |
DE (1) | DE112016001994T5 (ja) |
WO (1) | WO2016174807A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022045122A1 (ja) * | 2020-08-28 | 2022-03-03 | 日本ケミコン株式会社 | 電解コンデンサ及び電解コンデンサの製造方法 |
WO2022065434A1 (ja) * | 2020-09-25 | 2022-03-31 | パナソニックIpマネジメント株式会社 | 電解コンデンサ |
WO2023162916A1 (ja) * | 2022-02-28 | 2023-08-31 | パナソニックIpマネジメント株式会社 | 電解コンデンサおよびその製造方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112016001994T5 (de) * | 2015-04-28 | 2018-01-04 | Panasonic Intellectual Property Management Co., Ltd. | Elektrolytkondensator |
WO2017090241A1 (ja) * | 2015-11-27 | 2017-06-01 | パナソニックIpマネジメント株式会社 | 電解コンデンサおよびその製造方法 |
DE102017124139B4 (de) * | 2017-10-17 | 2020-02-13 | Tdk Electronics Ag | Elektrolytkondensator |
JP7076844B2 (ja) * | 2018-07-26 | 2022-05-30 | サン電子工業株式会社 | 電解コンデンサ |
JP7513265B2 (ja) * | 2018-09-20 | 2024-07-09 | サン電子工業株式会社 | 電解コンデンサ |
WO2020158783A1 (ja) * | 2019-01-31 | 2020-08-06 | パナソニックIpマネジメント株式会社 | 導電性高分子分散液、電解コンデンサならびに電解コンデンサの製造方法 |
WO2020262439A1 (ja) * | 2019-06-28 | 2020-12-30 | パナソニックIpマネジメント株式会社 | 電解コンデンサおよびその製造方法 |
US11152161B2 (en) * | 2019-09-03 | 2021-10-19 | Kemet Electronics Corporation | Aluminum polymer capacitor with enhanced internal conductance and breakdown voltage capability |
CN110648849B (zh) * | 2019-09-26 | 2021-12-14 | 宇启材料科技南通有限公司 | 一种阀金属多孔体涂层电极箔及制作方法和电解电容器 |
CN111009419B (zh) * | 2019-09-26 | 2022-05-10 | 宇启材料科技南通有限公司 | 一种涂层电极箔及制作方法和电解电容器 |
WO2021125182A1 (ja) * | 2019-12-17 | 2021-06-24 | 日本ケミコン株式会社 | ハイブリッド型電解コンデンサ及びその製造方法 |
WO2024004616A1 (ja) * | 2022-06-28 | 2024-01-04 | エルナー株式会社 | 電解コンデンサおよびその製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006190878A (ja) * | 2005-01-07 | 2006-07-20 | Saga Sanyo Industries Co Ltd | 電解コンデンサ及びその製造方法 |
WO2014021333A1 (ja) * | 2012-07-31 | 2014-02-06 | 日本ケミコン株式会社 | 固体電解コンデンサ及びその製造方法 |
WO2014208607A1 (ja) * | 2013-06-28 | 2014-12-31 | カーリットホールディングス株式会社 | 電解コンデンサ用電解液及び電解コンデンサ |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61180420A (ja) * | 1985-02-05 | 1986-08-13 | 昭和アルミニウム株式会社 | 電解コンデンサ用陰極材料 |
JPS61214420A (ja) * | 1985-03-19 | 1986-09-24 | 昭和アルミニウム株式会社 | 電解コンデンサ用陰極材料 |
US4734821A (en) * | 1986-05-13 | 1988-03-29 | Asahi Glass Company Ltd. | Electrolytic capacitor |
JPH0529180A (ja) | 1991-07-22 | 1993-02-05 | Elna Co Ltd | 電解コンデンサ |
JP3439064B2 (ja) * | 1997-03-27 | 2003-08-25 | 三洋電機株式会社 | 固体電解コンデンサ |
JPH11283874A (ja) * | 1998-01-28 | 1999-10-15 | Matsushita Electric Ind Co Ltd | 電解コンデンサ |
JP3366268B2 (ja) * | 1998-12-01 | 2003-01-14 | ルビコン株式会社 | 電解コンデンサ駆動用電解液及びこれを使用した電解コンデンサ |
JP4074395B2 (ja) | 1998-12-09 | 2008-04-09 | ニチコン株式会社 | アルミニウム電解コンデンサ |
JP2000182898A (ja) | 1998-12-11 | 2000-06-30 | Matsushita Electric Ind Co Ltd | 電解コンデンサ及びその製造方法 |
US6519137B1 (en) | 1999-09-10 | 2003-02-11 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitor and production method thereof, and conductive polymer polymerizing oxidizing agent solution |
JP4560940B2 (ja) | 1999-11-04 | 2010-10-13 | パナソニック株式会社 | 固体電解コンデンサおよびその製造方法 |
US6304427B1 (en) * | 2000-01-07 | 2001-10-16 | Kemet Electronics Corporation | Combinations of materials to minimize ESR and maximize ESR stability of surface mount valve-metal capacitors after exposure to heat and/or humidity |
JP4808358B2 (ja) | 2001-05-11 | 2011-11-02 | 三菱化学株式会社 | 電解コンデンサ用電解液及びそれを用いた電解コンデンサ |
CN100394522C (zh) | 2001-05-11 | 2008-06-11 | 三菱化学株式会社 | 电解电容器用电解液及使用该电解液的电解电容器 |
JP2006525700A (ja) * | 2003-02-25 | 2006-11-09 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 電源雑音を決定するための方法および回路装置 |
US7163643B2 (en) * | 2003-06-26 | 2007-01-16 | Matsushita Electric Industrial Co., Ltd. | Driving electrolyte and electrolytic capacitor using the same |
JP2005109276A (ja) | 2003-09-30 | 2005-04-21 | Nippon Chemicon Corp | 固体電解コンデンサ |
JP2005223197A (ja) | 2004-02-06 | 2005-08-18 | Shoei Co Ltd | 電解コンデンサ |
JP4883903B2 (ja) * | 2004-05-10 | 2012-02-22 | 株式会社日本触媒 | 電解液材料 |
US7006347B1 (en) * | 2004-08-12 | 2006-02-28 | Pacesetter, Inc. | Low deformation electrolytic capacitor |
WO2006035569A1 (ja) | 2004-09-29 | 2006-04-06 | Toyo Aluminium Kabushiki Kaisha | キャパシタ用電極部材およびその製造方法ならびにその電極部材を備えたキャパシタ |
JP4392313B2 (ja) | 2004-09-29 | 2009-12-24 | 東洋アルミニウム株式会社 | 固体電解コンデンサ用電極部材とその製造方法、および固体電解コンデンサ用電極部材を用いた固体電解コンデンサ |
JP2006253405A (ja) * | 2005-03-10 | 2006-09-21 | Daicel Chem Ind Ltd | 電解コンデンサ駆動用電解液及び電解コンデンサ |
JP4555204B2 (ja) | 2005-09-28 | 2010-09-29 | ニチコン株式会社 | 電解コンデンサ用アルミニウム陰極箔 |
JP5305569B2 (ja) | 2006-06-29 | 2013-10-02 | 三洋電機株式会社 | 電解コンデンサの製造方法および電解コンデンサ |
JP2008066502A (ja) | 2006-09-07 | 2008-03-21 | Matsushita Electric Ind Co Ltd | 電解コンデンサ |
CN101752091B (zh) * | 2008-12-08 | 2012-03-14 | 财团法人工业技术研究院 | 复合阴极箔及包含此阴极箔的固态电解电容器 |
JP2011082313A (ja) * | 2009-10-06 | 2011-04-21 | Shin Etsu Polymer Co Ltd | 固体電解キャパシタ及びその製造方法 |
CN102763181B (zh) | 2010-02-15 | 2017-02-15 | 松下知识产权经营株式会社 | 电解电容器 |
JP5921802B2 (ja) | 2010-03-23 | 2016-05-24 | 日本ケミコン株式会社 | 固体電解コンデンサ |
JP2011253878A (ja) * | 2010-06-01 | 2011-12-15 | Holy Stone Polytech Co Ltd | 固体電解コンデンサ |
CN107403697B (zh) * | 2011-02-21 | 2018-11-09 | 日本蓄电器工业株式会社 | 电极箔、集电体、电极及使用这些对象的蓄电组件 |
JP5934878B2 (ja) * | 2011-07-25 | 2016-06-15 | パナソニックIpマネジメント株式会社 | 電解コンデンサおよびその製造方法 |
JP5988824B2 (ja) * | 2012-10-22 | 2016-09-07 | テイカ株式会社 | 電解コンデンサの製造方法 |
JP2014093417A (ja) * | 2012-11-02 | 2014-05-19 | Nichicon Corp | 固体電解コンデンサ及びその製造方法 |
JP2014130854A (ja) | 2012-12-28 | 2014-07-10 | Carlit Holdings Co Ltd | 電解コンデンサ用電解液及び電解コンデンサ |
JP6187740B2 (ja) | 2013-03-25 | 2017-08-30 | エルナー株式会社 | アルミニウム電解コンデンサの製造方法 |
JP2014007422A (ja) * | 2013-09-12 | 2014-01-16 | Shin Etsu Polymer Co Ltd | 固体電解キャパシタ及びその製造方法 |
CN104538180B (zh) * | 2014-12-24 | 2017-10-03 | 中国振华(集团)新云电子元器件有限责任公司 | 一种固体有机电解电容器的制作方法 |
DE112016001994T5 (de) * | 2015-04-28 | 2018-01-04 | Panasonic Intellectual Property Management Co., Ltd. | Elektrolytkondensator |
WO2016189779A1 (ja) | 2015-05-28 | 2016-12-01 | パナソニックIpマネジメント株式会社 | 電解コンデンサ |
-
2016
- 2016-03-10 DE DE112016001994.7T patent/DE112016001994T5/de active Pending
- 2016-03-10 CN CN201680023477.9A patent/CN107533922B/zh active Active
- 2016-03-10 JP JP2017515366A patent/JP7089874B2/ja active Active
- 2016-03-10 WO PCT/JP2016/001334 patent/WO2016174807A1/ja active Application Filing
- 2016-03-10 CN CN201911097518.0A patent/CN110634679B/zh active Active
-
2017
- 2017-10-05 US US15/725,353 patent/US10453618B2/en active Active
-
2019
- 2019-09-13 US US16/569,889 patent/US10790095B2/en active Active
-
2020
- 2020-06-23 US US16/909,150 patent/US11094471B2/en active Active
-
2021
- 2021-05-24 JP JP2021087044A patent/JP7361284B2/ja active Active
- 2021-07-13 US US17/374,281 patent/US12062501B2/en active Active
-
2023
- 2023-09-21 JP JP2023156119A patent/JP2023166604A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006190878A (ja) * | 2005-01-07 | 2006-07-20 | Saga Sanyo Industries Co Ltd | 電解コンデンサ及びその製造方法 |
WO2014021333A1 (ja) * | 2012-07-31 | 2014-02-06 | 日本ケミコン株式会社 | 固体電解コンデンサ及びその製造方法 |
WO2014208607A1 (ja) * | 2013-06-28 | 2014-12-31 | カーリットホールディングス株式会社 | 電解コンデンサ用電解液及び電解コンデンサ |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022045122A1 (ja) * | 2020-08-28 | 2022-03-03 | 日本ケミコン株式会社 | 電解コンデンサ及び電解コンデンサの製造方法 |
WO2022065434A1 (ja) * | 2020-09-25 | 2022-03-31 | パナソニックIpマネジメント株式会社 | 電解コンデンサ |
WO2023162916A1 (ja) * | 2022-02-28 | 2023-08-31 | パナソニックIpマネジメント株式会社 | 電解コンデンサおよびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107533922A (zh) | 2018-01-02 |
US20200321162A1 (en) | 2020-10-08 |
DE112016001994T5 (de) | 2018-01-04 |
US20180047521A1 (en) | 2018-02-15 |
CN107533922B (zh) | 2019-12-10 |
US12062501B2 (en) | 2024-08-13 |
US11094471B2 (en) | 2021-08-17 |
US10790095B2 (en) | 2020-09-29 |
JP7089874B2 (ja) | 2022-06-23 |
CN110634679B (zh) | 2023-11-03 |
JP2021121037A (ja) | 2021-08-19 |
US10453618B2 (en) | 2019-10-22 |
CN110634679A (zh) | 2019-12-31 |
US20210343480A1 (en) | 2021-11-04 |
JP2023166604A (ja) | 2023-11-21 |
US20200006010A1 (en) | 2020-01-02 |
JPWO2016174807A1 (ja) | 2018-02-22 |
JP7361284B2 (ja) | 2023-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7233015B2 (ja) | 電解コンデンサおよびその製造方法 | |
JP7361284B2 (ja) | 電解コンデンサの製造方法 | |
JP7233016B2 (ja) | 電解コンデンサおよびその製造方法 | |
JP6528087B2 (ja) | 電解コンデンサの製造方法 | |
JP6803519B2 (ja) | 電解コンデンサの製造方法 | |
JP2017175082A (ja) | 電解コンデンサおよびその製造方法 | |
JP7407371B2 (ja) | 電解コンデンサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16786089 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017515366 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016001994 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16786089 Country of ref document: EP Kind code of ref document: A1 |