WO2021125182A1 - ハイブリッド型電解コンデンサ及びその製造方法 - Google Patents

ハイブリッド型電解コンデンサ及びその製造方法 Download PDF

Info

Publication number
WO2021125182A1
WO2021125182A1 PCT/JP2020/046800 JP2020046800W WO2021125182A1 WO 2021125182 A1 WO2021125182 A1 WO 2021125182A1 JP 2020046800 W JP2020046800 W JP 2020046800W WO 2021125182 A1 WO2021125182 A1 WO 2021125182A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cathode
conductive layer
electrolytic capacitor
anode
Prior art date
Application number
PCT/JP2020/046800
Other languages
English (en)
French (fr)
Inventor
良弥 小関
和宏 長原
健治 町田
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Priority to JP2021565595A priority Critical patent/JPWO2021125182A1/ja
Priority to US17/786,143 priority patent/US11929214B2/en
Priority to CN202080087836.3A priority patent/CN114868217A/zh
Publication of WO2021125182A1 publication Critical patent/WO2021125182A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors

Definitions

  • the present invention relates to a hybrid electrolytic capacitor having a composite electrolyte layer having a solid electrolyte layer containing a conductive polymer and an electrolytic solution impregnated in a gap between the solid electrolyte layers, and a method for manufacturing the same.
  • capacitors used in power supply circuits, etc. also have high capacitance, low equivalent series resistance (hereinafter, equivalent series resistance is referred to as "ESR"), excellent high frequency characteristics, and High high temperature durability has come to be required.
  • ESR equivalent series resistance
  • the anode which is made of a valve metal such as aluminum, tantalum, and niobium and has an oxide film as a dielectric on the surface of a surface-expanded substrate, is in contact with the oxide film and acts as a true cathode.
  • electrolytic capacitors equipped with an electrolyte and a cathode (apparent cathode) made of a valve metal in contact with the electrolyte, a monomer having a ⁇ -conjugated double bond such as substituted or unsubstituted thiophene, pyrrole, and aniline.
  • a solid electrolytic capacitor using a conductive polymer having a high conductivity and a high thermal decomposition temperature derived from the above as an electrolyte is a capacitor suitable for meeting the above-mentioned requirements.
  • the above-mentioned solid electrolytic capacitor has a problem that the defect portion of the oxide film as a dielectric is poorly repaired and the leakage current gradually increases.
  • an electrolytic capacitor having an electrolyte layer composed of only a conductive polymer is referred to as a "solid electrolytic capacitor", and a composite having a solid electrolyte layer containing the conductive polymer and an electrolytic solution impregnated in a gap between the solid electrolyte layers.
  • An electrolytic capacitor provided with an electrolyte layer is referred to as a "hybrid electrolytic capacitor”.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 11-186110
  • an electrolytic solution is applied after forming a conductive polymer layer in a capacitor element formed by winding an anodized foil and an opposing cathode foil via a separator.
  • a hybrid electrolytic capacitor obtained by impregnation is disclosed, and in this document, a conductive polymer layer is formed by chemical polymerization.
  • the leakage current of this hybrid type electrolytic capacitor is significantly smaller before and after the high temperature load test at 105 ° C. and 1000 hours than that of the solid electrolytic capacitor having an electrolyte layer made of only a conductive polymer. It has been shown to be.
  • Patent Document 2 Japanese Unexamined Patent Publication No.
  • particles of a conductive polymer are wound around a capacitor element in which an anode foil on which a dielectric oxide film is formed and an opposing cathode foil are wound via a separator.
  • a hybrid electrolytic capacitor obtained by impregnating a dispersion containing a substance and a solvent and drying the conductive polymer layer to form a conductive polymer layer and then impregnating the gaps between the conductive polymer layers with an electrolytic solution is disclosed. Has been done. It has been shown that the leakage current of this hybrid type electrolytic capacitor is much smaller than that of the hybrid type electrolytic capacitor in which a conductive polymer layer is formed by chemical polymerization.
  • the conductive polymer does not enter the defective portion of the body oxide film, but instead the electrolytic solution enters, so that the repairing action of the dielectric oxide film is enhanced.
  • the particles of the conductive polymer penetrate into the etching pores of the anode, so that the capacitance at a frequency of 120 Hz increases, and the electrolytic solution is impregnated. Therefore, it is also shown that the ESR at a frequency of 100 kHz is reduced.
  • the capacitance (C) of the solid electrolytic capacitor becomes the combined capacitance of the anode capacitance (Ca) and the cathode capacitance (Cc) as shown in the following formula (1), and the anode capacitance is increased by the etching process.
  • the capacitance of the capacitor will be smaller than the anode capacitance.
  • the valve metal foil of the cathode has also been etched.
  • the etching is excessive, the surface of the valve metal foil is melted at the same time, which hinders the increase in the surface expansion ratio, and an oxide film is likely to be formed on the surface of the valve metal foil.
  • a method has been proposed in which a film of a conductive material that does not easily form an oxide film is formed on the surface of the valve metal foil of the cathode to increase the cathode capacity and suppress the growth of the oxide film.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2000-114109
  • a chemical oxide film is formed on the surface of a valve metal foil subjected to an etching treatment, and TiN, ZrN, which is difficult to form an oxide film on the chemical oxide film, are described.
  • a solid electrolytic capacitor including a cathode foil in which a film made of a metal nitride such as TaN is formed by a vapor deposition method is disclosed.
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2005-109270 describes TiC and WC.
  • a solid electrolytic capacitor including a cathode foil formed by a vapor deposition method of a film made of a metal carbide having a low specific electrical resistance such as ZrC is disclosed, and Patent Document 5 (Japanese Unexamined Patent Publication No. 2006-190878) discloses a valve.
  • a solid electrolytic capacitor including a cathode in which a carbon film is formed on a metal surface by a dry plating method such as an ion plating method is disclosed, and Patent Document 6 (Japanese Unexamined Patent Publication No. 2007-095865) discloses.
  • a cathode foil formed by a coating method of a carbon film is disclosed.
  • the capacitance (C) of the capacitor is the combined capacitance of the anode capacitance (Ca) and the cathode capacitance (Cc) as shown in the above equation (1). It has been proposed to bring the cathode capacitance closer to infinity and bring the capacitor (C) represented by the above equation closer to the anode capacitance (Ca) by using the methods shown in 3 to 6.
  • Patent Document 7 WO2016 / 174806A1
  • an inorganic conductive layer containing an inorganic conductive material such as carbon, nickel, nickel nitride, nickel carbide, titanium, titanium nitride, and titanium carbide is deposited.
  • a hybrid electrolytic capacitor having a cathode foil formed by a method or a coating method is disclosed.
  • a solid electrolyte layer is formed between an anode foil and a cathode foil using a polymer solution containing a raw material of a conductive polymer
  • the film of the conductive polymer is too dense, so that the electrolyte solution is applied to the surface of the anode foil.
  • the problem is that it is difficult to spread and the repairability of the defective dielectric layer is inferior. Therefore, a dispersion in which fine particles of the conductive polymer are dispersed in a dispersion medium or a solution in which the conductive polymer is dissolved in a solvent is used. A solid electrolyte layer is formed using this.
  • the obtained solid electrolyte layer is homogeneous, highly flexible, and has excellent retention of the electrolytic solution, the adhesion between the solid electrolyte layer and the anode foil or the cathode foil is low, and the above-mentioned especially when the electrolytic solution is used is described above.
  • the problem is that it is difficult to increase the capacity and reduce the ESR of the capacitor because the electrolytic solution easily penetrates between the inorganic conductive layer and the solid electrolyte layer and hinders contact. Therefore, the surface of the cathode foil is etched or the like.
  • the inorganic conductive layer after roughening the surface, the adhesion between the solid electrolyte layer and the inorganic conductive layer is enhanced. Then, the capacitance at a frequency of 120 Hz and the ESR at a frequency of 100 kHz were measured for the obtained hybrid electrolytic capacitor, and it has been reported that the capacitor has been increased in capacity and reduced in ESR.
  • the problem of an increase in leakage current in the solid electrolytic capacitor is solved, and a high capacitance is achieved by providing an inorganic conductive layer on the cathode of this capacitor.
  • the evaluation of the capacitance of the capacitor is generally performed only under the condition of a frequency of 120 Hz as shown in Patent Documents 2 and 7, and the evaluation in the high frequency region is insufficient. Therefore, the inventors have found that a hybrid electrolysis having the same configuration as the capacitor of Patent Document 7 having a cathode provided with a titanium carbide film or a carbon vapor deposition film as an inorganic conductive layer on a valve metal foil subjected to an etching treatment.
  • an object of the present invention is to provide a hybrid electrolytic capacitor capable of responding to the above-mentioned request.
  • FIG. 2 is a diagram illustrating a resistance component and a capacitance component in the cathode and the vicinity of the cathode of a hybrid type electrolytic capacitor having a configuration similar to that in the prior literature
  • FIG. 3 is a diagram showing a hybrid type in a low frequency region and a high frequency region. It is a figure explaining the structure of the equivalent circuit of an electrolytic capacitor.
  • the capacitance of the capacitor represented by C in the above equation (1) is shown by using the Cap symbol in FIG. 3, and the capacitance of the anode represented by Ca in the above equation (1) is shown in FIG. Is shown using the C AOX symbol, and the capacitance of the anode represented by Cc in the above equation (1) is shown using the C COX symbol in FIG.
  • the circuit configuration of the cathode and the vicinity of the cathode of the hybrid electrolytic capacitor shall be described by the interface resistance R IN , the cathode oxide film resistance R COX, and the cathode oxide film capacitance C COX connected in parallel. Can be done. Since the cathode oxide film resistance R COX is usually significantly larger than the interfacial resistance R IN in the low frequency f region, the equivalent circuit of the hybrid electrolytic capacitor is simplified as shown in the left figure of FIG. As a result, the capacitance Cap of the capacitor is approximately equal to the anodic oxide film capacitance C AOX, Koyo capacity as shown in the prior art is achieved.
  • the capacitance Cap of the capacitor becomes a composite capacitance of the anodized film capacitance C AOX and cathode oxide film capacitance C COX, it becomes smaller than the anodized film capacitance C AOX.
  • the inventors have adopted it in conventional hybrid electrolytic capacitors as a method of reducing the interfacial resistance R IN , in other words, as a method of obtaining an equivalent circuit as shown in the left figure of FIG. 3 even in a high frequency region. It was examined to provide a conductive polymer layer having a low impregnation property of the electrolytic solution, which was not present, on the inorganic conductive layer of the cathode. Then, it was confirmed that the region where the cathode oxide film resistance R COX was significantly larger than the interfacial resistance R IN could be expanded to the high frequency region, and the capacity could be increased even in the high frequency region.
  • the present invention first A cathode substrate made of a valve metal, an oxide layer made of an oxide of the valve metal provided on the surface of the cathode substrate, and an inorganic conductive layer containing an inorganic conductive material provided on the surface of the oxide layer.
  • the present invention relates to a hybrid type electrolytic capacitor, which comprises an electrolytic solution filled between the two, and a composite electrolyte layer having the same.
  • the cathode substrate may or may not have an etching pit, and if an etching pit is present, it may be a tunnel pit or a spongy pit, and is a penetrating pit. May be a residual core type pit.
  • the oxide layer provided on the surface of the cathode substrate may be a chemical oxide film or a natural oxide film.
  • a feature of the present invention is that an organic conductive layer containing a conductive polymer is provided on the cathode.
  • the organic conductive layer is preferably dense, specifically in the range of 1.15 to 1.80 g / cm 3 , preferably in the range of 1.20 to 1.80 g / cm 3 , and particularly preferably 1. It preferably has a density in the range of 60-1.80 g / cm 3.
  • the contact of the above-mentioned dense organic conductive layer with the composite electrolyte layer preferably provides the high capacitance, low ESR, excellent high frequency characteristics and high high temperature durability of the hybrid electrolytic capacitor.
  • the density of the organic conductive layer of the cathode is less than 1.15 g / cm 3 , it becomes difficult to obtain the effect of the present invention, and it is difficult to produce a conductive polymer layer having a density of more than 1.80 g / cm 3.
  • the density in the dense organic conductive layer described above is higher than the density of the solid electrolyte layer in the state of holding the electrolytic solution, and therefore most of the electrolytic solution in the composite electrolyte layer is held in the solid electrolyte layer.
  • the organic conductive layer at the cathode can be formed on the inorganic conductive layer with good adhesion by electrolytic polymerization using the constituent elements including the cathode substrate, the oxide layer, and the inorganic conductive layer as working electrodes. Therefore, in a preferred embodiment of the present invention, the organic conductive layer is an electrolytic polymerization film.
  • the component composed of the cathode substrate, the oxide layer, and the inorganic conductive layer is represented as a "support”, and the component composed of the cathode substrate and the oxide layer is "collected". Sometimes referred to as "electric body".
  • the same method as the conventional method that is, a dispersion liquid containing the particles of the conductive polymer and the dispersion medium is filled between the dielectric layer of the anode and the organic conductive layer of the cathode. It can be obtained by a method of impregnating the obtained solid electrolyte layer with an electrolytic solution after forming a solid electrolyte layer by drying.
  • the present invention also At the stage of forming an inorganic conductive layer using an inorganic conductive material on the surface of an oxide layer made of an oxide of the valve metal provided on the surface of a cathode substrate made of a valve metal, and on the surface of the inorganic conductive layer.
  • a step of forming a cathode which comprises forming an organic conductive layer containing a conductive polymer through electrolytic polymerization of a monomer having a ⁇ -conjugated double bond.
  • An anode forming step in which a dielectric layer is formed by oxidizing the surface of an anode substrate made of a valve metal.
  • a step of forming a solid electrolyte layer by filling a dispersion liquid containing conductive polymer particles and a dispersion medium between the organic conductive layer of the cathode and the dielectric layer of the anode and drying the mixture, and the above.
  • a step of forming a composite electrolyte layer which includes a step of impregnating a solid electrolyte layer with an electrolytic solution.
  • the present invention relates to a method for manufacturing a hybrid electrolytic capacitor, which comprises.
  • the organic conductive layer having a density in the range of 1.15 to 1.80 g / cm 3 is a ⁇ -conjugated double with a solvent composed of 100 to 80% by mass of water and 0 to 20% by mass of an organic solvent. It can be preferably obtained by using an electrolytic polymer solution containing a monomer having a bond and a supporting electrolyte.
  • the types of the conductive polymer in the organic conductive layer and the conductive polymer in the solid electrolyte layer are not particularly limited, and a conductive polymer derived from a known monomer having a ⁇ -conjugated double bond is applied. can do. Both may be the same type of polymer (polymer derived from the same monomer) or different types of polymer (polymer derived from different monomers), but both are poly (3). , 4-ethylenedioxythiophene) is preferable because it provides particularly high conductivity and high temperature durability.
  • the effect of the present invention can be obtained regardless of the presence or absence of etching in the cathode substrate and the type of the inorganic conductive layer.
  • the inorganic conductive material constituting the inorganic conductive layer is carbon, the high temperature load test is performed. This is preferable because the change in capacitance before and after is small in both the low frequency region and the high frequency region.
  • a valve as an electrode body used as a cathode of an electrolytic capacitor that expresses a good capacity.
  • a cathode body made of an working metal and having a surface expansion layer formed on the surface thereof and a carbon layer formed on the surface expansion layer are provided, and the boundary between the surface expansion layer and the carbon layer has an uneven shape.
  • a slurry containing carbon particles is applied to the surface of the cathode body, dried, and then pressed. The method of application is disclosed.
  • the performance of the wet electrolytic capacitor using the electrode body as a cathode is described in detail in PCT / JP2019 / 022741, the performance of the capacitor when the electrode body is applied for the hybrid type electrolytic capacitor is described. Not listed.
  • the inventors used an electrode body having the above-mentioned suitable performance as a support for obtaining an organic conductive layer at a cathode by electrolytic polymerization, and evaluated the performance of the obtained hybrid type electrolytic capacitor. It was found that the change in capacitance before and after the test was particularly small in both the low frequency region and the high frequency region.
  • the cathode substrate has an etching pit
  • the inorganic conductive layer is a carbon coating layer containing carbon particles
  • the carbon coating layer is the etching pit. It has an intruding portion that penetrates into the inside and a penetrating portion that penetrates the oxide layer and conducts with the cathode substrate.
  • the hybrid electrolytic capacitor of the present invention exhibits high capacitance, low ESR, excellent high frequency characteristics and high high temperature durability.
  • the configuration of the hybrid electrolytic capacitor of the present invention is schematically shown in FIG.
  • the hybrid type electrolytic capacitor 1 includes a cathode base 11 made of a valve metal, an oxide layer 12 made of an oxide of the valve metal provided on the surface of the cathode base 11, and an inorganic material provided on the surface of the oxide layer 12.
  • a cathode 10 having an inorganic conductive layer 13 containing a conductive material and an organic conductive layer 14 containing a conductive polymer provided on the surface of the inorganic conductive layer 13, an anode base 21 made of a valve metal, and an anode base.
  • An anode 20 having a dielectric layer 22 made of an oxide of a valve metal forming an anode substrate provided on the surface of 21 and an organic conductive layer 14 of the cathode 10 and a dielectric layer 22 of the anode 20.
  • the solid electrolyte layer 31 containing the conductive polymer particles 31a provided between them and in contact with them, and the electrolytic solution 32 filled between the conductive polymer particles 31a in the solid electrolyte layer 31.
  • the organic conductive layer 14 containing the conductive polymer in the cathode 10 is preferably dense, and specifically, has a density in the range of 1.15 to 1.80 g / cm 3 , preferably 1.20 to 1.80 g. / cm 3 range, particularly preferably have a density in the range of 1.60 ⁇ 1.80 g / cm 3.
  • the contact of the dense organic conductive layer 14 with the composite electrolyte layer 30 preferably provides the hybrid electrolytic capacitor 1 with high capacitance, low ESR, excellent high frequency characteristics, and high high temperature durability.
  • the density of the organic conductive layer 14 at the cathode 10 is less than 1.15 g / cm 3 , it becomes difficult to obtain the effect of the present invention, and it is difficult to produce a conductive polymer layer having a density exceeding 1.80 g / cm 3. is there.
  • the hybrid electrolytic capacitor of the present invention can be manufactured by a method including the following, a cathode forming step, an anode forming step, and a composite electrolyte layer forming step. Hereinafter, each step will be described in detail.
  • Electrode forming step In the cathode forming step, an inorganic conductive layer is formed on the surface of an oxide layer made of an oxide of the valve metal provided on the surface of a cathode substrate made of a valve metal by using an inorganic conductive material.
  • the steps include a step of forming an organic conductive layer containing a conductive polymer on the surface of the inorganic conductive layer through electrolytic polymerization of a monomer having a ⁇ -conjugated double bond.
  • a substrate made of a valve metal which is used as a cathode substrate in a conventional hybrid electrolytic capacitor, can be used without particular limitation.
  • foils made of valve metals such as aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth and antimony can be used, with aluminum foil being particularly preferred.
  • these foils may be used in the form of so-called plain foils without being etched, and foils having an increased surface area by being chemically or electrochemically etched should be used. Can be done.
  • the etching pit on the cathode substrate may be a tunnel pit or a spongy pit, a penetrating pit or a residual core type pit, and is appropriately selected according to the application of the hybrid electrolytic capacitor. Will be done. These etching pits can be formed by using a known AC electrolysis method, DC electrolysis method, or the like.
  • the oxide layer provided on the surface of the cathode substrate may be a natural oxide film generally existing on the surface of the cathode substrate, and in addition, an aqueous solution of ammonium borate, an aqueous solution of ammonium adipate, and ammonium phosphate
  • a chemical conversion oxide film may be formed on the surface of the cathode substrate by a chemical conversion treatment using a chemical conversion solution such as an aqueous solution, and this chemical conversion oxide film may be used as an oxide layer.
  • an inorganic conductive layer is formed on the surface of the oxide layer using an inorganic conductive material to obtain a support.
  • the inorganic conductive layer may be one layer, or two or more inorganic conductive layers may be formed by using different inorganic conductive materials.
  • sufficient adhesion with the oxide layer at the cathode can be ensured, and in the next step, the surface of the inorganic conductive layer is formed.
  • the organic conductive layer can be formed with good adhesion, there is no particular limitation.
  • inorganic conductive materials such as carbon, titanium, platinum, gold, silver, cobalt, nickel, and iron are laminated on an oxide film by means such as vacuum deposition, sputtering, ion plating, coating, electrolytic plating, and electroless plating. By doing so, the inorganic conductive layer can be provided. It is preferable to use carbon as the inorganic conductive material because the change in capacitance before and after the high temperature load test is small in both the low frequency region and the high frequency region.
  • the cathode substrate has an etching pit
  • the inorganic conductive layer is a carbon coating layer containing carbon particles
  • the carbon coating layer enters the etching pit.
  • a penetrating portion that penetrates the oxide layer and conducts with the cathode substrate.
  • This particularly suitable inorganic conductive layer is obtained by applying a carbon slurry containing carbon particles to the surface of the oxide layer and drying it to form a slurry layer, and by applying a pressing treatment to the slurry layer.
  • the carbon particles can be formed by pushing the carbon particles into the etching pits of the cathode substrate and performing a pressing step of causing the carbon particles to break through the oxide layer.
  • the carbon slurry used in the coating stage contains at least carbon particles, a binder, and a dispersion medium.
  • carbon particles carbon particles having various shapes such as fibrous, spherical, and scaly can be used without particular limitation, and porous carbon such as carbon nanotubes, carbon nanofibers, carbon nanohorns, and activated carbon, and kechen. Examples thereof include carbon blacks such as black, furnace black, channel black and acetylene black, amorphous carbon, natural graphite, artificial graphite, graphitized Ketjen black, and mesoporous carbon. These carbon particles may be used alone or in combination of two or more.
  • the carbon slurry for forming the carbon coating layer having the invading portion entering the etching pit naturally contains at least carbon particles having a particle size capable of entering the etching pit of the cathode substrate. Is done.
  • the carbon slurry further contains carbon particles having a particle size that makes it impossible to enter the etching pits of the cathode substrate.
  • the carbon particles may be composed of the same type of carbon, in other words, the same type of carbon having a wide particle size distribution, for example, acetylene black having a wide particle size distribution may be used.
  • a mixture of different types of carbon such as a mixture of scaly graphite and acetylene black, may be used to obtain a wide particle size distribution of carbon particles.
  • binder known binders such as polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, polyvinyl fluoride, carboxymethyl cellulose, and styrene-butadiene rubber are used alone or in combination of two or more. be able to.
  • dispersion medium a dispersion medium that does not adversely affect other components such as N-methylpyrrolidone, dimethylformamide, tetrahydrofuran, isopropyl alcohol, and water can be used without particular limitation.
  • the wet mixing method of the carbon particles, the binder, and the dispersion medium for obtaining the carbon slurry is not particularly limited, and may be performed by hand mixing using a mortar, and a known mixing device such as a stirrer or a homogenizer. May be used. As long as a uniform carbon slurry is obtained, there is no particular limitation on the mixing time.
  • the obtained carbon slurry is applied to the surface of the oxide layer provided on the surface of the cathode substrate by using a known coating method such as a doctor blade method or a casting method under normal pressure or reduced pressure, and dried. To form a slurry layer. Next, a pressing step of applying pressure to the obtained slurry layer is carried out.
  • a base layer made of a conductive inorganic material such as carbon, titanium nitride, or titanium carbide may be provided on the surface of the oxide layer by a vapor deposition method such as vacuum deposition or ion plating.
  • the base layer formed by the vapor deposition method is formed only on the surface of the oxide layer on the outer surface of the cathode substrate among the surfaces of the oxide layer, and is not formed on the surface of the oxide layer on the surface of the etching pit. ..
  • the pressing step can be performed by a roll press or a vertical press, but it is necessary to push the carbon particles into the etching pits of the cathode substrate and apply pressure so that the carbon particles penetrate the oxide layer.
  • the base layer is provided on the outer surface of the cathode substrate, it is necessary to apply pressure to the carbon particles so as to penetrate the base layer and the oxide layer.
  • the pressure at the pressing stage is preferably adjusted so that the interfacial resistance of the support is 10 m ⁇ cm 2 or less, preferably 6 m ⁇ cm 2 or less, more preferably 3 m ⁇ cm 2 or less, and the average length of the invading portion in the carbon coating layer is average.
  • the value is preferably adjusted to be 1/5 or more, preferably 1/4 or more of the average value of the lengths of the etching pits.
  • the "interface resistance in the support” means an interface resistance depending on all the interfaces contained in the support, which is measured between the carbon coating layer and the cathode substrate, and is obtained by a known measuring method. It can be obtained, for example, by the following method. First, a support having a carbon coating layer having a thickness of 20 to 30 ⁇ m is formed. Next, from an array consisting of a plurality of measurement test needles for measuring the potential on the surface of the carbon coating layer at many positions and an application test needle for applying an electric current to a support provided around this array.
  • a probe equipped with the above-mentioned arrangement is brought into contact with the surface of the carbon coating layer, a predetermined direct current is applied between the inspection needles for application, and the potential generated on the surface of the carbon coating layer when the current is applied is inspected for measurement.
  • the measured value of the potential distribution is obtained by measuring at many positions with a needle.
  • a model formula was constructed with the measured thickness of the current collector, the resistance of the current collector, and the thickness of the carbon coating layer as fixed values, and the resistance of the carbon coating layer and the interfacial resistance as variables, and the variables were changed. While doing so, calculate the potential distribution in the model formula.
  • the interfacial resistance when the calculated value of the potential distribution obtained from the model formula and the measured value of the potential distribution match is the "interfacial resistance in the support".
  • the electrode resistance measurement system RM2610 manufactured by Hioki Electrochemical Co., Ltd. can be mentioned.
  • the thickness of the carbon coating layer is not particularly limited as long as the entire surface of the oxide layer and the cathode substrate to be coated by the carbon coating layer is covered, and can be, for example, an average thickness of 0.5 to 30 ⁇ m. ..
  • a carbon coating layer having a thickness of 20 to 30 ⁇ m is used, but the value of the interfacial resistance in the support obtained by pressing the thinner carbon coating layer with the same pressure. Is similar to the value of interfacial resistance in a support with a carbon coating layer with a thickness of 20-30 ⁇ m.
  • the carbon coating layer contains particles having a particle size that cannot enter the etching pit as carbon particles
  • the particles are substantially present in the region of the carbon coating layer excluding the entry portion.
  • the particles compress and deform the etching pits to preferably improve the adhesion between the carbon coating layer and the current collector in contact with the carbon coating layer, and collect the particles with the carbon coating layer. It plays a role of suitably reducing the interfacial resistance with the electric body, and also plays a role of preferably pushing carbon particles having a particle size capable of entering the etching pit into the etching pit.
  • the carbon particles having a particle size capable of entering the etching pit are filled not only in the entry portion of the carbon coating layer but also in the gaps between the large carbon particles existing only in the region other than the entry portion. It will be present throughout the carbon coating layer.
  • the scaly graphite is oriented so as to overlap each other's basal surfaces and compresses and deforms the etching pit. In addition to being easy to etch, it easily breaks through the oxide layer and conducts with the cathode substrate.
  • carbon black is easily pushed into the etching pits and between scaly graphite, and is particularly dense, has excellent conductivity, and has excellent adhesion to the current collector. Layers are formed.
  • an organic conductive layer containing a conductive polymer is formed on the surface of the inorganic conductive layer.
  • the organic conductive layer is preferably dense, specifically in the range of 1.15 to 1.80 g / cm 3 , preferably in the range of 1.20 to 1.80 g / cm 3 , particularly preferably 1.60. It preferably has a density in the range of ⁇ 1.80 g / cm 3. If a dense organic conductive layer having a density in this range is formed, the method for forming the dense organic conductive layer is not particularly limited, but the dense organic conductive layer can be suitably obtained through electrolytic polymerization.
  • a support composed of a cathode substrate, an oxide layer, and an inorganic conductive layer is introduced into a polymerization solution containing at least a monomer, a supporting electrolyte, and a solvent, together with counter electrodes such as a platinum plate and a nickel plate. This is done by applying a voltage between the working electrode and the counter electrode.
  • the anion released from the supporting electrolyte is contained in the conductive polymer layer as a dopant.
  • a solvent that can dissolve a desired amount of monomer and supporting electrolyte and does not adversely affect electrolytic polymerization can be used, but has a high density of 1.15 to 1.80 g / cm.
  • a solvent composed of 100 to 80% by mass of water and 0 to 20% by mass of an organic solvent (hereinafter, 100 to 80% by mass of water and 0 to 20) is obtained. It is preferable to use a solvent composed of a mass% organic solvent (referred to as "water-rich solvent").
  • Examples of the organic solvent mixed with water include methanol, ethanol, isopropanol, butanol, ethylene glycol, acetonitrile, acetone, tetrahydrofuran, methyl acetate and the like.
  • the density of the organic conductive layer increases, and when water alone is used as the solvent, a particularly preferable organic conductive layer having a density in the range of 1.60 to 1.80 g / cm 3 is obtained. Obtainable.
  • a monomer having a ⁇ -conjugated double bond conventionally used for producing a conductive polymer can be used without particular limitation.
  • Typical monomers are shown below. These monomers may be used alone or as a mixture of two or more.
  • thiophene and thiophene derivatives such as 3-alkylthiophene such as 3-methylthiophene and 3-ethylthiophene, 3,4-dialkylthiophene such as 3,4-dimethylthiophene and 3,4-diethylthiophene, 3-methoxy.
  • 3-alkoxythiophene such as thiophene and 3-ethoxythiophene
  • 3,4-dialkoxythiophene such as 3,4-dimethoxythiophene and 3,4-diethoxythiophene
  • 3,4-methylenedioxythiophene 3,4- 3,4-alkylenedioxythiophene
  • N-alkylpyrroles such as N-methylpyrrole and N-ethylpyrrole
  • 3-alkylpyrroles such as 3-methylpyrrole and 3-ethylpyrrole, 3-methoxypyrrole, 3-ethoxypyrrole and the like.
  • aniline and aniline derivatives such as 2,5-dialkylaniline such as 2,5-dimethylaniline and 2-methyl-5-ethylaniline, 2,5-dimethoxyaniline, 2-methoxy-5-ethoxyaniline and the like.
  • 2,3,5-Trialkoxyaniline such as 2,5-dialkoxyaniline, 2,3,5-trimethoxyaniline, 2,3,5-triethoxyaniline, 2,3,5,6-tetramethoxyaniline , 2,3,5,6-tetraethoxyaniline and the like
  • 2,3,5,6-tetraalkoxyaniline and furan and furan derivatives such as 3-methylfuran, 3-ethylfuran and the like 3-alkylfuran.
  • 3,4-Dialkylfuran such as 3,4-dimethylfuran and 3,4-diethylfuran
  • 3-alkoxyfuran such as 3-methoxyfuran and 3-ethoxyfuran
  • 3,4-dimethoxyfuran 3,4- Examples thereof include 3,4-dialkoxyfurans such as diethoxyfuran.
  • the monomer it is preferable to use a monomer selected from the group consisting of thiophene having substituents at the 3- and 4-positions.
  • the substituents at the 3- and 4-positions of the thiophene ring may form a ring together with the carbons at the 3- and 4-positions.
  • 3,4- (ethylenedioxythiophene) is preferable because it provides a conductive polymer having high conductivity and excellent heat resistance.
  • a compound that emits a dopant contained in a conventional conductive polymer can be used without particular limitation.
  • inorganic acids such as boric acid, nitric acid and phosphoric acid
  • organic acids such as acetic acid, oxalic acid and citric acid
  • sulfonic acids such as methanesulfonic acid, dodecylsulfonic acid and p-toluenesulfonic acid and salts thereof. Is exemplified.
  • polycarboxylic acids such as polyacrylic acid, polymethacrylic acid and polymaleic acid
  • polysulfonic acids such as polystyrene sulfonic acid and polyvinyl sulfonic acid
  • salts thereof can also be used as supporting electrolytes.
  • boron complexes such as borodisalicylic acid, borodioxalic acid and borodimalonic acid, sulfonylimide acids and salts thereof can also be used as supporting electrolytes.
  • the salt include alkali metal salts such as lithium salt, sodium salt and potassium salt, and alkyl ammonium salts such as ammonium salt, ethyl ammonium salt and butyl ammonium salt.
  • these supporting electrolytes may be used alone or in combination of two or more, and may be used in an amount equal to or less than the saturated solubility in the polymerization solution and for electrolytic polymerization, depending on the type of supporting electrolyte. It is used at a concentration that provides sufficient current.
  • the polymerization solution for electrolytic polymerization may contain other components that do not adversely affect the electrolytic polymerization.
  • the monomer can be used as a water-rich solvent.
  • An anionic surfactant for solubilizing or emulsifying may be included.
  • an anionic surfactant stable in a water-rich solvent can be used without particular limitation. Typical anionic surfactants are illustrated below.
  • fatty acid salt-type surfactants for example, sodium laurate, sodium palmitate and sodium stearate
  • amino acid type surfactants for example, sodium lauroyl glutamate, sodium lauroyl aspartate and sodium lauroyl methylalanine
  • sulfate ester type surfactants for example, alkyl sulfates such as sodium dodecyl sulfate and sodium myristyl sulfate, alkyl ether sulfates such as polyoxyethylene lauryl ether sulfate and polyoxyethylene alkyl ether sulfate. Can be mentioned.
  • sulfonic acid type surfactants for example, alkane sulfonates such as sodium decane sulfonate and sodium dodecane sulfonate, alkyl benzene sulfonates such as sodium octylbenzene sulfonate and sodium dodecylbenzene sulfonate, isopropylnaphthalene.
  • alkane sulfonates such as sodium decane sulfonate and sodium dodecane sulfonate
  • alkyl benzene sulfonates such as sodium octylbenzene sulfonate and sodium dodecylbenzene sulfonate
  • isopropylnaphthalene isopropylnaphthalene.
  • Alkylnaphthalene sulfonates such as sodium sulfonate and sodium butylnaphthalene sulfonate, high molecular sulfonates such as sodium polystyrene sulfonate, olefin sulfonates such as sodium tetradecene sulfonate, such as sodium dioctyl sulfosuccinate.
  • Sulfonic acid ester salts can be mentioned.
  • alkyl phosphate ester type surfactants for example, sodium lauryl phosphate, sodium myristyl phosphate and sodium polyoxyethylene lauryl phosphate can be mentioned.
  • the anionic surfactant may be used alone or as a mixture of two or more, and is used in an amount sufficient to solubilize or emulsify the monomer. It is preferable that the anionic surfactant is a sulfonic acid type surfactant and / or a sulfate ester type surfactant because it leads to a hybrid type electrolytic capacitor having particularly excellent frequency characteristics.
  • Electropolymerization is carried out by any of a constant potential method, a constant current method, and a potential sweep method.
  • the constant potential method depends on the type of monomer, but a potential of 1.0 to 1.5 V is preferable with respect to the saturated calomel electrode, and when the constant current method is used, it depends on the type of monomer.
  • a current value of 1 to 10000 ⁇ A / cm 2 is preferable, and in the case of the potential sweep method, the range of 0 to 1.5 V is 5 to 200 mV / with respect to the saturated calomel electrode, although it depends on the type of monomer. It is preferable to sweep at a rate of seconds.
  • the polymerization temperature is not strictly limited, but is generally in the range of 10 to 60 ° C.
  • the polymerization time is not strictly limited, but is generally in the range of 1 minute to 10 hours.
  • the thickness of the organic conductive layer is generally in the range of 10 to 2000 nm, preferably 35 to 700 nm, and particularly preferably 70 to 350 nm.
  • the organic conductive layer after electrolytic polymerization is washed with water, ethanol, etc. and dried to obtain a cathode for the hybrid electrolytic capacitor of the present invention.
  • a dielectric layer is formed by oxidizing the surface of an anode substrate made of a valve metal.
  • a substrate made of a valve metal which is used as an anode substrate in a conventional solid electrolytic capacitor, can be used without particular limitation.
  • a foil made of a valve metal such as aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth and antimony, the surface surface of which has been increased by applying a chemical or electrochemical etching treatment.
  • Foil can be used, and aluminum foil is particularly preferred.
  • the etching pit in the anode substrate may be a tunnel pit or a sponge-like pit, and may be a through-type pit or a residual core type pit, and is appropriately selected according to the application of the hybrid electrolytic capacitor. Will be done. These etching pits can be formed by a known AC electrolysis method, DC electrolysis method, or the like.
  • the dielectric layer on the surface of the anode substrate can be formed by a known method of subjecting the anode substrate to a chemical conversion treatment using a chemical conversion solution such as an aqueous solution of ammonium borate, an aqueous solution of ammonium adipate, or an aqueous solution of ammonium phosphate.
  • a dispersion liquid containing conductive polymer particles and a dispersion medium is filled between the organic conductive layer of the cathode and the dielectric layer of the anode. It includes a step of forming a solid electrolyte layer by drying and a step of impregnating the solid electrolyte layer with an electrolytic solution.
  • a separator is placed between the organic conductive layer of the cathode and the dielectric layer of the anode, and the separator holds a solid electrolyte layer in contact with both the organic conductive layer of the cathode and the dielectric layer of the anode.
  • the strip-shaped cathode and the anode are laminated via a separator so that the organic conductive layer of the cathode and the dielectric layer of the anode face each other, and then wound to form a capacitor element, which is then solid.
  • An electrolyte layer can be formed.
  • a solid electrolyte layer after forming a capacitor element by laminating the cathode and the anode having a desired shape so that the organic conductive layer of the cathode and the dielectric layer of the anode face each other via a separator. it can. Further, a solid electrolyte layer is formed after forming a capacitor element in which a plurality of sets of cathodes and an anode are alternately laminated so that the organic conductive layer of the cathode and the dielectric layer of the anode face each other with a separator sandwiched between them. Can be done.
  • a woven cloth or a non-woven fabric composed of cellulose fibers, for example, Manila paper, kraft paper, esparto paper, hemp paper, cotton paper, rayon and mixed papers thereof, polyethylene terephthalate, polybutylene terephthalate, polyethylene na Polyester-based resins such as phthalates and derivatives thereof, polytetrafluoroethylene-based resins, polyvinylidene-fluorinated resins, vinylon-based resins, aliphatic polyamides, semi-aromatic polyamides, all-aromatic polyamides and other polyamide-based resins, polyimide-based resins , Polyethylene resin, polypropylene resin, trimethylpentene resin, polyphenylene sulfide resin, acrylic resin and the like, woven cloth or non-woven fabric, glass paper, glass paper and Manila paper, mixed paper of kraft paper and the like can be used.
  • cellulose fibers for example, Manila paper, kraft paper, esparto paper, hemp paper,
  • the solid electrolyte layer is formed by filling a dispersion liquid containing conductive polymer particles and a dispersion medium between the organic conductive layer of the cathode and the dielectric layer of the anode and drying the mixture.
  • a dispersion medium those that do not dissolve or hardly dissolve the particles of the conductive polymer contained in the dispersion liquid are selected and used, and water is particularly preferably used.
  • a monomer, an acid that releases a dopant or a salt thereof, and an oxidizing agent are added to water as a dispersion medium, and the mixture is stirred until chemical oxidative polymerization is completed, and then ultrafiltration is performed. , Oxidizing agent and residual monomer are removed by purification means such as cation exchange and anion exchange, and then dispersion treatment such as ultrasonic dispersion treatment, high-speed fluid dispersion treatment, and high-pressure dispersion treatment is performed as necessary. be able to.
  • the monomer having the ⁇ -conjugated double bond shown for the organic conductive layer above can be used, and a monomer selected from the group consisting of thiophene having substituents at the 3- and 4-positions can be used. It can be preferably used.
  • the substituents at the 3- and 4-positions of the thiophene ring may form a ring together with the carbons at the 3- and 4-positions.
  • 3,4- (ethylenedioxythiophene) is preferable because it provides a conductive polymer having high conductivity and excellent heat resistance.
  • the compound exemplified as the supporting electrolyte above can be used, and a compound that releases a polyanion, particularly polystyrene sulfonic acid or a salt thereof can be preferably used.
  • the oxidizing agent include trivalent iron salts such as iron p-toluenesulfonate (III), iron naphthalene sulfonate (III) and iron anthraquinone sulfonate (III), or ammonium peroxodisulfate, sodium peroxodisulfate and the like. Persulfate or the like can be used.
  • the above-mentioned monomer and the above-mentioned acid that releases the above-mentioned dopant or a salt thereof are added to water as a dispersion medium, and electrolytic oxidation polymerization is carried out with stirring, followed by ultrafiltration, cation exchange, and anion exchange. It can be obtained by removing the residual monomer by a purification means such as, and then performing a dispersion treatment such as an ultrasonic dispersion treatment, a high-speed fluid dispersion treatment, and a high-pressure dispersion treatment, if necessary.
  • the liquid obtained by the above-mentioned chemical oxidation polymerization method or electrolytic polymerization method is filtered to separate aggregates, thoroughly washed, and then added to water for ultrasonic dispersion treatment, high-speed fluid dispersion treatment, and high-pressure dispersion treatment. It can be obtained by performing a distributed treatment such as.
  • the content of the conductive polymer particles in the dispersion is generally in the range of 1.0 to 3.0% by mass, preferably in the range of 1.5% by mass to 2.0% by mass. ..
  • the particle size of the conductive polymer in the dispersion is generally in the range of 10 to 1000 nm.
  • the drying temperature is not strictly limited, but is generally in the range of 50 to 200 ° C. There is no strict limit on the drying time, but it is generally in the range of 1 to 10 hours.
  • the conductive polymer in the organic conductive layer of the cathode and the conductive polymer in the solid electrolyte layer may be derived from the same monomer or different monomers. It was shown above that the conductive polymer in the organic conductive layer is preferably poly (3,4-ethylenedioxythiophene), but the conductive polymer in the solid electrolyte layer is also poly (3,4-ethylenedioxy). Oxythiophene) is preferable because it provides particularly high conductivity and high temperature durability.
  • the obtained solid electrolyte layer is impregnated with an electrolytic solution under normal pressure or reduced pressure to form a composite electrolyte layer between the organic conductive layer of the cathode and the dielectric layer of the anode.
  • the electrolytic solution a known electrolytic solution containing at least a solvent and a solute dissolved therein can be used, and is appropriately selected according to the requirements such as the operating temperature required for the hybrid type electrolytic capacitor.
  • the electrolytic solution include ⁇ -butyrolactone, ⁇ -valerolactone, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, methyl cellosolve, ethylene glycol monomethyl ether, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, and the like.
  • solvents such as propylene carbonate, acetonitrile, water, benzoate, butyrate, phthalate, isophthalate, terephthalate, salicylate, tartrate, oxalate, malonate, malate, glutaric acid Salts, adipates, azelites, maleates, fumarates, citrates, pyromellites, trimellites, 1,6-decandicarboxylates, formates, acetates, glycolates , Lactate, 1-naphthoate, mandelate, citric acid, 2,4-dihydroxybenzoate, 2,5-dihydroxybenzoate, 2,6-dihydroxybenzoate, borodisalicylate, borodi
  • An electrolytic solution in which a solute such as citrate or borodimalone salt is dissolved can be used.
  • the salt examples include quaternary ammonium salts such as ammonium salt, tetramethylammonium salt and triethylmethylammonium salt, quaternized amidinium salt such as ethyldimethylimidazolinium salt and tetramethylimidazolinium salt, trimethylamine salt and triethylamine.
  • Amine salts such as salts are exemplified.
  • the above solvent may be used alone or in combination of two or more.
  • the above solute may also be used alone or in combination of two or more.
  • known additives may be contained in these electrolytic solutions.
  • phosphorus such as phosphoric acid and phosphoric acid ester may be contained for the purpose of improving the withstand voltage resistance of the capacitor. It may contain an acid compound, a boric acid compound such as boric acid, a sugar alcohol such as mannit, a complex compound of boric acid and a sugar alcohol, a polyoxyalkylene polyol such as polyethylene glycol, polyglycerin, and polypropylene glycol.
  • nitro compounds such as nitrophenol, nitrobenzoic acid, nitroanisole, and nitrobenzyl alcohol may be contained for the purpose of absorbing hydrogen rapidly generated particularly at a high temperature.
  • the capacitor element to which the composite electrolyte layer is added is housed in the outer case and sealed to obtain the hybrid type electrolytic capacitor of the present invention.
  • the hybrid electrolytic capacitor of the present invention since the organic conductive layer containing the conductive polymer at the cathode comes into contact with the composite electrolyte layer, it has high capacitance, low ESR, excellent high frequency characteristics and high high temperature durability. Brings sex.
  • Example 1 As a cathode substrate for obtaining a cathode, an aluminum foil having spongy etching pits formed was used. The aluminum foil was subjected to a chemical conversion treatment using an aqueous solution of ammonium dihydrogen phosphate as a chemical conversion solution to form a chemical conversion oxide film (oxide layer) having a chemical conversion voltage of 5.0 Vfs on the surface of the aluminum foil. Next, a vapor deposition film made of titanium carbide was formed on the surface of the chemical oxide film by arc ion plating to obtain a support having a titanium carbide vapor deposition film (inorganic conductive layer).
  • the PEDOT layer (organic conductive layer) having a thickness of 35 nm and a density of about 1.6 g / cm 3 is formed into the above-mentioned inorganic conductive layer. Formed on top, a cathode for a hybrid electrolytic capacitor was obtained.
  • the thickness of the PEDOT layer constant current electrolytic polymerization under the condition of 0.1 mA / cm 2 was carried out a plurality of times at different times, and the thickness of the PEDOT layer obtained in each experiment was measured by an interatomic force microscope or a step.
  • An etched aluminum foil was used as the anode substrate for obtaining the anode.
  • This aluminum foil is subjected to chemical conversion treatment using an aqueous solution of ammonium adipate as a chemical conversion solution to form a chemical conversion oxide film (dielectric layer) with a chemical conversion voltage of 47.3 V fs on the surface of the aluminum foil, and an anode for a hybrid electrolytic capacitor is formed. Obtained.
  • Terminals were connected to each of the obtained anode and cathode, and the dielectric layer of the anode and the organic conductive layer of the cathode were laminated and wound so as to face each other via a separator.
  • the anode was repaired and formed for 15 minutes under the condition of an applied voltage of 40.5 V and 10 mA using an aqueous ammonium dihydrogen phosphate solution, and then dried at 105 ° C. for 30 minutes to obtain a capacitor element.
  • Fine particles of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid are dispersed in a dispersion medium in which 5% by mass of ethylene glycol is added to water to obtain a dispersion liquid for forming a solid electrolyte layer. It was.
  • the dispersion liquid obtained in the above capacitor element was impregnated under a pressure of 30 kPa for 120 seconds, and dried at 150 ° C. for 30 minutes. This dispersion impregnation and drying were repeated again to obtain a capacitor element to which a solid electrolyte layer was added.
  • An electrolytic solution prepared by dissolving 5% by mass of ammonium borodisalicylate in ethylene glycol.
  • the solid electrolyte layer was impregnated with the electrolytic solution by quantitatively discharging this electrolytic solution to the capacitor element to which the solid electrolyte layer was added to obtain a capacitor element to which the composite electrolyte layer was added.
  • the obtained element was enclosed in an outer case to obtain a hybrid electrolytic capacitor having a diameter of 8 mm and a height of 10 mm.
  • the obtained hybrid electrolytic capacitor was aged for 45 minutes by applying a voltage of 28.2V under the condition of 115 ° C. to obtain a hybrid electrolytic capacitor having a rated voltage of 25V.
  • the capacitance at 120 Hz and 20 kHz and the ESR at 20 kHz and 100 kHz were measured under the condition of 20 ° C.
  • a durability test a high temperature durability test in which a DC voltage of 25 V was applied for 4000 hours under a high temperature condition of 150 ° C. was performed, and then, as a characteristic after the durability test, again under the condition of 20 ° C. at 120 Hz and 20 kHz. Capacitance and ESR at 20 kHz and 100 kHz were measured.
  • Example 2 By performing constant current electrolytic polymerization for 2 minutes under the condition of 0.1 mA / cm 2 using the electrolytic polymerization solution used in Example 1, the thickness is 70 nm and the thickness is about 1.6 g / cm 3 .
  • the procedure of Example 1 was repeated except that a cathode having a dense PEDOT layer (organic conductive layer) on the titanium carbide vapor-deposited film (inorganic conductive layer) was obtained.
  • Example 3 Using the polymerization solution for electrolytic polymerization used in Example 1, constant current electrolytic polymerization was carried out under the condition of 0.1 mA / cm 2 for 4.5 minutes to have a thickness of 150 nm and about 1.6 g / cm. The procedure of Example 1 was repeated except that a cathode having a PEDOT layer (organic conductive layer) having a density of 3 on the titanium carbide vapor-deposited film (inorganic conductive layer) was obtained.
  • PEDOT layer organic conductive layer having a density of 3 on the titanium carbide vapor-deposited film (inorganic conductive layer) was obtained.
  • Example 4 By performing constant current electrolytic polymerization for 10 minutes under the condition of 0.1 mA / cm 2 using the electrolytic polymerization solution used in Example 1, the thickness is 350 nm and the thickness is about 1.6 g / cm 3 .
  • the procedure of Example 1 was repeated except that a cathode having a dense PEDOT layer (organic conductive layer) on the titanium carbide vapor-deposited film (inorganic conductive layer) was obtained.
  • Comparative Example 1 As a cathode substrate for obtaining a cathode, an aluminum foil having spongy etching pits formed was used. This aluminum foil is subjected to chemical conversion treatment using an aqueous solution of ammonium dihydrogen phosphate as a chemical conversion solution to form a chemical conversion oxide film (oxide layer) having a chemical conversion voltage of 3.0 Vfs on the surface of the aluminum foil, and an inorganic conductive layer and an organic layer are formed. A cathode having no conductive layer formed was obtained. The procedure of Example 1 was repeated except that the obtained cathode was used in place of the cathode in Example 1.
  • Comparative Example 2 As a cathode substrate for obtaining a cathode, an aluminum foil having spongy etching pits formed was used. The aluminum foil was subjected to a chemical conversion treatment using an aqueous solution of ammonium dihydrogen phosphate as a chemical conversion solution to form a chemical conversion oxide film (oxide layer) having a chemical conversion voltage of 5.0 Vfs on the surface of the aluminum foil. Next, a vapor deposition film made of titanium carbide was formed on the surface of the chemical oxide film by arc ion plating to obtain a cathode having a titanium carbide vapor deposition film (inorganic conductive layer) and no organic conductive layer formed. The procedure of Example 1 was repeated except that the obtained cathode was used in place of the cathode in Example 1.
  • Example 5 An aluminum foil having no etching pit was used as a cathode substrate for obtaining a cathode.
  • the chemical oxide film was not formed, and the natural oxide film was used as the oxide layer.
  • a vapor deposition film made of carbon was formed on the surface of the natural oxide film by sputtering to obtain a support having a carbon vapor deposition film (inorganic conductive layer).
  • the support and the counter electrode of a SUS mesh having an area of 10 cm 2 were introduced into the electrolytic polymerization solution used in Example 1, and constant current electrolytic polymerization was carried out under the condition of 0.1 mA / cm 2 for 10 minutes. After washing the working electrode after polymerization with water, it is dried at 100 ° C. for 30 minutes, and the PEDOT layer (organic conductive layer) having a thickness of 350 nm and a density of about 1.6 g / cm 3 is formed into the carbon vapor deposition film.
  • a cathode for a hybrid electrolytic capacitor was obtained by forming on (inorganic conductive layer). The procedure of Example 1 was repeated except that the obtained cathode was used in place of the cathode in Example 1.
  • Comparative Example 3 An aluminum foil having no etching pit was used as a cathode substrate for obtaining a cathode.
  • the chemical oxide film was not formed, and the natural oxide film was used as the oxide layer.
  • a vapor deposition film made of carbon was formed on the surface of the natural oxide film by sputtering to obtain a cathode having a carbon vapor deposition film (inorganic conductive layer) and no organic conductive layer formed. It was.
  • the procedure of Example 1 was repeated except that the obtained cathode was used in place of the cathode in Example 1.
  • Example 6 As a cathode substrate for obtaining a cathode, an aluminum foil having spongy etching pits formed was used. The aluminum foil was subjected to a chemical conversion treatment using an aqueous solution of ammonium dihydrogen phosphate as a chemical conversion solution to form a chemical conversion oxide film (oxide layer) having a chemical conversion voltage of 1.2 Vfs on the surface of the aluminum foil.
  • scaly graphite having an average particle size of 4.5 ⁇ m and acetylene black having an average primary particle size of 50 nm and an average secondary particle size of 0.3 ⁇ m were used.
  • a carbon slurry is prepared by mixing a mixture of these at a mass ratio of 75:25, styrene-butadiene rubber, and an aqueous solution of sodium carboxymethyl cellulose at a mass ratio of 84:10: 6 and dispersing them with a stirrer. did.
  • the obtained carbon slurry was applied onto the chemical conversion oxide film and dried to form a slurry layer.
  • a support for a hybrid electrolytic capacitor having a carbon coating film (inorganic conductive layer) having a thickness of 1 ⁇ m was obtained.
  • acetylene black had entered to a position of about 1/3 of the length of the etching pit.
  • the scaly graphites were oriented so that their basal surfaces overlapped with each other, and acetylene black was filled between the graphites.
  • the carbon slurry is applied onto the carbon coating film of the support for the hybrid type electrolytic capacitor and dried to prepare a support for confirmation having a carbon coating film having a thickness of 20 ⁇ m, and this support is provided.
  • the interfacial resistance in the body was measured using an electrode resistance measurement system (manufactured by Hioki Electrochemical Co., Ltd., model number RM2610) and found to be 1.78 m ⁇ cm 2. From this value, the carbon coating film of the support for the hybrid electrolytic capacitor was determined to be conducting with the aluminum of the cathode substrate.
  • the support and the counter electrode of a SUS mesh having an area of 10 cm 2 were introduced into the electrolytic polymerization solution used in Example 1, and constant current electrolytic polymerization was carried out under the condition of 0.1 mA / cm 2 for 10 minutes. After washing the working electrode after polymerization with water, it is dried at 100 ° C. for 30 minutes, and the PEDOT layer (organic conductive layer) having a thickness of 350 nm and a density of about 1.6 g / cm 3 is formed into the carbon coating film.
  • a cathode for a hybrid electrolytic capacitor was obtained by forming on (inorganic conductive layer). The procedure of Example 1 was repeated except that the obtained cathode was used in place of the cathode in Example 1.
  • Comparative Example 4 As a cathode substrate for obtaining a cathode, an aluminum foil having spongy etching pits formed was used. The aluminum foil was subjected to a chemical conversion treatment using an aqueous solution of ammonium dihydrogen phosphate as a chemical conversion solution to form a chemical conversion oxide film (oxide layer) having a chemical conversion voltage of 1.2 Vfs on the surface of the aluminum foil. Next, a carbon coating film was formed in the same procedure as the method shown in Example 6 to obtain a cathode having a carbon coating film (inorganic conductive layer) and no organic conductive layer formed. The procedure of Example 1 was repeated except that the obtained cathode was used in place of the cathode in Example 1.
  • Table 1 shows the values of capacitance at 20 ° C. obtained for the hybrid electrolytic capacitors of Examples 1 to 6 and Comparative Examples 1 to 4, and Table 2 shows the hybrids of Examples 1 to 6 and Comparative Examples 1 to 4. The values of ESR at 20 ° C. obtained for the type electrolytic capacitor are shown.
  • the countermeasure in the prior literature does increase the capacitance at 120 Hz, but does not increase the capacitance in the high frequency region (20 kHz).
  • the capacity of the capacitor provided with the cathode having the carbon coating film disclosed by the applicant in PCT / JP2019 / 022441 is also increasing in the high frequency region (20 kHz). This is because the carbon coating film has an invading portion that has entered the etching pit and a penetrating portion that penetrates the oxide layer and conducts with the cathode substrate.
  • the capacitance of the capacitors of Examples 1 to 4 provided with the cathode having a dense organic conductive layer containing a conductive polymer was compared with the capacitance of the corresponding capacitor of Comparative Example 2, and the capacitance of the capacitor of Example 5 was compared.
  • the capacitance of the capacitor of Example 1 does not depend on the type of the inorganic conductive layer of the cathode, whether the oxide layer is a chemical oxide film or a natural oxide film, and whether or not there is an etching pit on the cathode substrate. Not only that, the capacitance at 20 kHz is also increasing.
  • the change in capacitance before and after the extremely harsh high-temperature durability test of 150 ° C. for 4000 hours is observed in the low-frequency region as well as in the high-frequency region. There are few.
  • the change in capacitance before and after the high temperature durability test is more improved in the capacitor using the cathode whose inorganic conductive layer is made of carbon than in the capacitor using the cathode whose inorganic conductive layer is made of titanium carbide.
  • the capacitor of Example 6 provided with a cathode having a carbon coating film showed excellent high temperature durability.
  • the ESR of the hybrid electrolytic capacitor shown in Table 2 will be examined.
  • the ESR of the capacitor having a cathode having a titanium carbide vapor deposition film of Comparative Example 2 and the capacitor having a cathode having a carbon vapor deposition film of Comparative Example 3 was provided, and the cathode having no inorganic conductive layer of Comparative Example 1 was provided.
  • the inorganic conductive layer of the prior literature not only the ESR at 20 kHz but also the ESR at 100 kHz is increased, and the change in ESR before and after the high temperature durability test is also large. ..
  • An increase in the change in ESR before and after the high temperature durability test due to the use of a cathode having the inorganic conductive layer but not the organic conductive layer was also observed in the capacitor of Comparative Example 4.
  • the ESR of the capacitors of Examples 1 to 4 provided with a cathode having a dense organic conductive layer containing a conductive polymer is compared with the ESR of the corresponding capacitor of Comparative Example 2, and the ESR of the capacitor of Example 5 is compared.
  • the ESR of the capacitor of Example 6 is. Regardless of the type of the inorganic conductive layer of the capacitor, whether the oxide layer is a chemical conversion film or a natural oxide film, and whether or not there is an etching pit on the cathode substrate, only ESR at 20 kHz is possible.
  • the ESR at 100 kHz was also significantly reduced, and the change in ESR before and after the high temperature durability test was also significantly suppressed. This is because the cathode is provided with a dense organic conductive layer having excellent adhesion to both the composite electrolyte layer and the inorganic conductive layer, so that the interfacial resistance is reduced, and further, this reduction in the interfacial resistance is found in the high temperature durability test. Is due to the fact that it was also maintained.
  • a hybrid electrolytic capacitor having high capacitance, low ESR, excellent high frequency characteristics and high high temperature durability can be obtained.
  • Hybrid type electrolytic capacitor 10
  • Cathode 11
  • Cathode base 12
  • Oxide layer 13
  • Inorganic conductive layer 14
  • Organic conductive layer 20
  • Anode 21
  • Anode base 22
  • Dielectric layer 30
  • Composite electrolyte layer 31
  • Solid electrolyte layer 31a
  • Conductive polymer particles 32 Electrolyte

Abstract

高い静電容量、低いESR、優れた高周波特性及び高い高温耐久性を有するハイブリッド型電解コンデンサを提供する。 弁金属から成る陰極基体11と、陰極基体11の表面に設けられた酸化物層12と、酸化物層12の表面に設けられた無機導電性材料を含む無機導電層13と、無機導電層13の表面に設けられた導電性高分子を含む有機導電層14と、を有する陰極10と、弁金属から成る陽極基体21と、該陽極基体の表面に設けられた誘電体層22と、を有する陽極20と、陰極10の有機導電層14と陽極20の誘電体層22との間に設けられてこれらと接触している導電性高分子の粒子31aを含む固体電解質層31と、固体電解質層31における導電性高分子の粒子31aの間に充填されている電解液32と、を有する複合電解質層30と、を備えたハイブリッド型電解コンデンサ1である。

Description

ハイブリッド型電解コンデンサ及びその製造方法
 本発明は、導電性高分子を含む固体電解質層とこの固体電解質層の隙間に含浸させた電解液とを有する複合電解質層を備えたハイブリッド型電解コンデンサ及びその製造方法に関する。
 電子機器の小型化・高速化に伴い、電源回路等に使用されるコンデンサにも、高い静電容量、低い等価直列抵抗(以下、等価直列抵抗を「ESR」と表す)、優れた高周波特性及び高い高温耐久性が求められるようになってきた。アルミニウム、タンタル、ニオブ等の弁金属から成り拡面化処理が施された基体の表面に誘電体としての酸化皮膜が設けられている陽極と、上記酸化皮膜と接しており真の陰極として作用する電解質と、この電解質と接している弁金属から成る陰極(見掛けの陰極)と、を備えた電解コンデンサの中でも、置換又は非置換のチオフェン、ピロール、アニリン等のπ-共役二重結合を有するモノマーから誘導された高い電導度と高い熱分解温度とを有する導電性高分子を電解質として用いた固体電解コンデンサは、上述の要求への対応に適したコンデンサである。しかし、上述の固体電解コンデンサには、誘電体としての酸化皮膜の欠陥部の修復作用に乏しく、漏れ電流が徐々に増加してしまうという問題がある。そこで、この問題を解決すべく、酸化皮膜の修復作用に優れた電解液を固体電解質層の隙間に含浸させた、いわゆるハイブリッド型電解コンデンサが提案されている。以下、導電性高分子のみから成る電解質層を有する電解コンデンサを「固体電解コンデンサ」と表し、導電性高分子を含む固体電解質層とこの固体電解質層の隙間に含浸させた電解液とを有する複合電解質層を備えた電解コンデンサを「ハイブリッド型電解コンデンサ」と表す。
 例えば、特許文献1(特開平11-186110号公報)には、陽極化成箔と対向陰極箔とをセパレータを介して巻回してなるコンデンサ素子内に導電性高分子層を形成した後に電解液を含浸することにより得られたハイブリッド型電解コンデンサが開示されており、この文献では導電性高分子層が化学重合により形成されている。そして、このハイブリッド型電解コンデンサの漏れ電流が、導電性高分子のみから成る電解質層を有する固体電解コンデンサのものに比較して、105℃、1000時間の高温負荷試験の前後のいずれにおいても著しく小さくなることが示されている。また、特許文献2(特開2008-010657号公報)には、誘電体酸化皮膜が形成された陽極箔と対向陰極箔とがセパレータを介して巻回してなるコンデンサ素子に導電性高分子の粒子と溶媒とを含む分散体を含浸させて乾燥することにより導電性高分子層を形成した後、この導電性高分子層の隙間に電解液を含浸させることにより得られたハイブリッド型電解コンデンサが開示されている。そして、このハイブリッド型電解コンデンサの漏れ電流は、化学重合により導電性高分子層を形成したハイブリッド型電解コンデンサのものに比較して、非常に小さくなることが示されており、その理由として、誘電体酸化皮膜の欠陥部に導電性高分子が入り込まず、代わりに電解液が入り込むため、誘電体酸化皮膜の修復作用が高くなることが挙げられている。また、この文献に示されたハイブリッド型電解コンデンサでは、導電性高分子の粒子が陽極のエッチングの細孔の中にまで進入するため周波数120Hzにおける静電容量が増大し、さらに電解液の含浸のため周波数100kHzにおけるESRが低下することも示されている。
 ところで、固体電解コンデンサにおける弁金属からなる陰極の表面には、酸化皮膜を設ける処理を行わなくても一般に自然酸化皮膜が存在する。そのため、固体電解コンデンサの静電容量(C)は、以下の式(1)に示すように、陽極容量(Ca)と陰極容量(Cc)との合成容量となり、陽極容量をエッチング処理により増大させても、陰極が容量を有する限り、コンデンサの容量が陽極容量より小さくなってしまう。
Figure JPOXMLDOC01-appb-M000001
 そのため、固体電解コンデンサの陰極容量の増大を目的として、陰極の弁金属箔にもエッチング処理を施すことが行われてきた。しかし、エッチングが過大になると弁金属箔の表面の溶解が同時に進行して却って拡面率の増大が妨げられる上に、弁金属箔の表面に酸化皮膜が形成されやすいため、エッチング処理による陰極容量の増大及び陰極容量の維持には限界があった。そこで、陰極の弁金属箔の表面に酸化皮膜を形成しにくい導電性材料の皮膜を形成することにより、陰極容量を増大させるとともに酸化皮膜の成長を抑制する方法が提案されている。
 例えば、特許文献3(特開2000-114109号公報)には、エッチング処理が施された弁金属箔の表面に化成酸化皮膜を形成し、さらにその上に酸化皮膜を形成しにくいTiN、ZrN、TaN等の金属窒化物から成る皮膜を蒸着法により形成した陰極箔を備えた固体電解コンデンサが開示されている。金属窒化物の蒸着により化成酸化皮膜の一部が除去されて金属窒化物と弁金属箔とが導通するため、陰極容量が無限大となり、上式で表されるコンデンサの容量(C)が陽極容量(Ca)と等しくなって最大となると説明されている。また、金属窒化物の皮膜に代えて他の材料を用いて同様の効果を得る固体電解コンデンサも知られており、例えば、特許文献4(特開2005-109270号公報)には、TiC、WC、ZrC等の比電気抵抗の低い金属炭化物から成る皮膜を蒸着法により形成した陰極箔を備えた固体電解コンデンサが開示されており、特許文献5(特開2006-190878号公報)には、弁金属の表面にカーボン皮膜をイオンプレーティング法のような乾式メッキ法を用いて形成した陰極を備えた固体電解コンデンサが開示されており、特許文献6(特開2007-095865号公報)には、カーボン皮膜を塗布法により形成した陰極箔が開示されている。
 そして、ハイブリッド型電解コンデンサにおいても、コンデンサの静電容量(C)は上の式(1)に示したように陽極容量(Ca)と陰極容量(Cc)との合成容量となるため、特許文献3~6に示されている方法を用いて陰極容量を無限大に近づけ、上式で表されるコンデンサの容量(C)を陽極容量(Ca)に近づけることが提案されている。例えば、特許文献7(WO2016/174806A1)には、カーボン、ニッケル、ニッケルの窒化物、ニッケルの炭化物、チタン、チタンの窒化物、チタンの炭化物のような無機導電性材料を含む無機導電層が蒸着法や塗布法により形成された陰極箔を備えたハイブリッド型電解コンデンサが開示されている。この文献では、陽極箔と陰極箔の間に導電性高分子の原料を含む重合液を用いて固体電解質層を形成すると、導電性高分子の被膜が緻密すぎるため電解液が陽極箔の表面に行き渡りにくく、欠損した誘電体層の修復性に劣ることが問題点として挙げられて、導電性高分子の微粒子を分散媒に分散させた分散体または導電性高分子を溶媒に溶解させた溶液を用いて固体電解質層が形成されている。また、得られた固体電解質層は均質で柔軟性が高く電解液の保持性に優れるものの、固体電解質層と陽極箔や陰極箔との密着性が低く、特に電解液を用いる場合には上述した無機導電層と固体電解質層の間に電解液が浸み込んで接触が妨げやすいためコンデンサの高容量化及び低ESR化が難しいことが問題点として挙げられて、上記陰極箔の表面をエッチング等により粗面化した上で無機導電層を形成することにより、固体電解質層と無機導電層との密着性を高めている。そして、得られたハイブリッド型電解コンデンサについて周波数120Hzにおける静電容量及び周波数100kHzにおけるESRが測定され、コンデンサの高容量化及び低ESR化が達成されたことが報告されている。
特開平11-186110号公報 特開2008-010657号公報 特開2000-114109号公報 特開2007-095865号公報 特開2006-190878号公報 特開2007-095865号公報 WO2016/174806A1
 ハイブリッド型電解コンデンサによると、固体電解コンデンサにおける漏れ電流の増加の問題が解決され、また、このコンデンサの陰極に無機導電層を設けることにより高容量化が達成されるが、これまでのハイブリッド型電解コンデンサの静電容量の評価は、一般に特許文献2及び特許文献7に示されているように周波数120Hzの条件下で行われているに過ぎず、高周波数領域における評価が不十分であった。そこで、発明者らは、エッチング処理が施された弁金属箔上に無機導電層として炭化チタン皮膜或いはカーボン蒸着膜を設けた陰極を備えた特許文献7のコンデンサと同様の構成を有するハイブリッド型電解コンデンサについて、20kHzにおける静電容量を測定したところ、いずれのコンデンサも比較的低い容量を示し、改善されるべきであることがわかった。また、上記ハイブリッド型電解コンデンサについて、周波数20kHzと100kHzの条件下でESRを測定したところ、いずれのコンデンサも比較的高いESRの値を示した上に、高温耐久試験後にはESRの顕著な上昇が認められ、やはり改善されるべきであることが分かった。一方、上述したように、ハイブリッド型電解コンデンサにも高い静電容量、低いESR、優れた高周波特性及び高い高温耐久性が要請されるようになってきた。
 そこで、本発明の目的は、上述の要請に答えることができるハイブリッド型電解コンデンサを提供することである。
 弁金属箔上に無機導電層を設けた陰極を備えた先行文献のハイブリッド型電解コンデンサについて、周波数120Hzでの静電容量の高容量化が達成されるものの、周波数20kHzでの静電容量の高容量化が達成されない理由を、図2及び図3を用いて説明する。図2は、先行文献における構成と同様の構成を有するハイブリッド型電解コンデンサの陰極及び陰極近傍における抵抗成分及び容量成分を説明した図であり、図3は、低周波領域及び高周波領域でのハイブリッド型電解コンデンサの等価回路の構成を説明した図である。上の式(1)においてCで示したコンデンサの静電容量は図3ではCapの記号を用いて示されており、上の式(1)においてCaで示した陽極の静電容量は図3ではCAOXの記号を用いて示されており、上の式(1)においてCcで示した陽極の静電容量は図3ではCCOXの記号を用いて示されている。
 図2に示したように、ハイブリッド型電解コンデンサの陰極及び陰極近傍の回路構成は、並列に接続された、界面抵抗RIN、陰極酸化皮膜抵抗RCOX及び陰極酸化皮膜容量CCOXによって説明することができる。そして、低い周波数fの領域では通常、陰極酸化皮膜抵抗RCOXが界面抵抗RINより著しく大きいため、ハイブリッド型電解コンデンサの等価回路は図3の左図のように簡略化される。その結果、コンデンサの静電容量Capは陽極酸化皮膜容量CAOXとほぼ等しくなり、先行文献に示されているように高容量化が達成される。ところが、高い周波数fの領域では、1/(ωCCOX)よりRINが大きくなり、CCOXが出現するようになり、ハイブリッド型電解コンデンサの等価回路は図3の右図のように示される。その結果、コンデンサの静電容量Capは、陽極酸化皮膜容量CAOXと陰極酸化皮膜容量CCOXとの合成容量となり、陽極酸化皮膜容量CAOXより小さくなってしまう。
 そこで、発明者らは、界面抵抗RINを低下させる方法、言い換えると、高周波領域においても図3の左図のような等価回路が得られる方法として、これまでのハイブリッド型電解コンデンサでは採用されてこなかった電解液の含浸性の低い導電性高分子層を陰極の無機導電層の上に設けることを検討した。そして、陰極酸化皮膜抵抗RCOXが界面抵抗RINより著しく大きくなる領域を高周波領域まで広げることができ、高周波領域においても高容量化が達成されることを確認し、さらに、得られたコンデンサが高温負荷試験の前後のいずれにおいても低いESRを示すことを確認し、本発明を完成させた。しかも、上述した効果はエッチングの有無や無機導電層の種類に依らずに得られることが分かった。
 したがって、本発明はまず、
 弁金属から成る陰極基体と、該陰極基体の表面に設けられた上記弁金属の酸化物から成る酸化物層と、該酸化物層の表面に設けられた無機導電性材料を含む無機導電層と、該無機導電層の表面に設けられた導電性高分子を含む有機導電層と、を有する陰極と、
 弁金属から成る陽極基体と、該陽極基体の表面に設けられた上記陽極基体を構成している弁金属の酸化物から成る誘電体層と、を有する陽極と、
 上記陰極の有機導電層と上記陽極の誘電体層との間に設けられてこれらと接触している導電性高分子の粒子を含む固体電解質層と、該固体電解質層における導電性高分子の粒子の間に充填されている電解液と、を有する複合電解質層と
 を備えたことを特徴とするハイブリッド型電解コンデンサに関する。
 本発明では、陰極基体はエッチングピットを有していてもいなくても良く、エッチングピットが存在する場合には、トンネルピットであっても海綿状ピットであっても良く、貫通型ピットであっても残芯型ピットであっても良い。また、陰極基体の表面に設けられた酸化物層は、化成酸化皮膜であっても自然酸化皮膜であっても良い。
 本発明の特徴は、陰極に導電性高分子を含む有機導電層を設けたことである。有機導電層は、緻密であることが好ましく、具体的には、1.15~1.80g/cmの範囲、好ましくは1.20~1.80g/cmの範囲、特に好ましくは1.60~1.80g/cmの範囲の密度を有することが好ましい。上述の緻密な有機導電層が複合電解質層と接触することにより、ハイブリッド型電解コンデンサの高い静電容量、低いESR、優れた高周波特性及び高い高温耐久性が好適に与えられる。陰極の有機導電層の密度が1.15g/cm未満であると、本発明の効果が得られにくくなり、密度が1.80g/cmを超える導電性ポリマー層の製造は困難である。上述した緻密な有機導電層における密度は、電解液を保持した状態の固体電解質層の密度と比較すると高く、したがって複合電解質層における電解液のほとんどが固体電解質層に保持されることになる。
 陰極における有機導電層は、上記陰極基体と上記酸化物層と上記無機導電層とから成る構成要素を作用極として用いた電解重合により、無機導電層上に密着性良く形成することができる。したがって、本発明の好適な形態では、上記有機導電層が電解重合膜である。なお、本明細書では、上記陰極基体と上記酸化物層と上記無機導電層とから成る構成要素が「支持体」と表され、上記陰極基体と上記酸化物層とから成る構成要素が「集電体」と表されることがある。
 一方、上記複合電解質層については、従来の方法と同様の方法、すなわち、導電性高分子の粒子と分散媒とを含む分散液を陽極の誘電体層と陰極の有機導電層との間に充填して乾燥することにより固体電解質層を形成した後、得られた固体電解質層に電解液を含浸させる方法により得ることができる。
 したがって、本発明はまた、
 弁金属から成る陰極基体の表面に設けられた上記弁金属の酸化物から成る酸化物層の表面に無機導電性材料を用いて無機導電層を形成する段階、及び、上記無機導電層の表面に、π-共役二重結合を有するモノマーの電解重合を介して、導電性高分子を含む有機導電層を形成する段階、を含む陰極形成工程、
 弁金属から成る陽極基体の表面を酸化することにより誘電体層を形成する、陽極形成工程、
 上記陰極の有機導電層と上記陽極の誘電体層との間に導電性高分子の粒子と分散媒とを含む分散液を充填して乾燥することにより固体電解質層を形成する段階、及び、上記固体電解質層に電解液を含浸させる段階、を含む複合電解質層形成工程、
 を含むことを特徴とするハイブリッド型電解コンデンサの製造方法に関する。そして、1.15~1.80g/cmの範囲の密度を有する有機導電層は、100~80質量%の水と0~20質量%の有機溶媒とから成る溶媒と、π-共役二重結合を有するモノマーと、支持電解質とを含む電解重合液の使用により、好適に得ることができる。
 上記有機導電層における導電性高分子及び上記固体電解質層における導電性高分子の種類には特別な限定がなく、公知のπ-共役二重結合を有するモノマーから誘導された導電性高分子を適用することができる。両者は同一種類の高分子(同一のモノマーから誘導された高分子)であっても、異なる種類の高分子(異なるモノマーから誘導された高分子)であっても良いが、両者がポリ(3,4-エチレンジオキシチオフェン)であると、特に高い導電性と高温耐久性とが得られるため好ましい。
 上述したように、本発明の効果は陰極基体におけるエッチングの有無や無機導電層の種類に依らずに得られるが、無機導電層を構成する無機導電性材料がカーボンであると、高温負荷試験の前後における静電容量の変化が低周波領域においても高周波領域においても少ないため、好ましい。
 また、出願人は、本出願の優先権主張の基礎とされた出願の出願時には未公開であるPCT/JP2019/022741において、良好な容量を発現する電解コンデンサの陰極に用いられる電極体として、弁作用金属より成り、表面に拡面層が形成された陰極体と、上記拡面層に形成されたカーボン層と、を備え、上記拡面層と上記カーボン層との境界が凹凸形状を有することを特徴とする電極体を開示しており、また、好適な性能を有する電極体を製造するための方法として、上記陰極体の表面にカーボン粒子を含むスラリーを塗布して乾燥した後に押圧処理を施す方法を開示している。エッチング処理を施したアルミニウム箔を基体として用いてこの方法を実施すると、押圧処理により、カーボン粒子をアルミニウム箔のエッチングピット内に押し込むことができるとともに、カーボン粒子にアルミニウム箔上の酸化皮膜を突き破らせて、カーボン層と基体のアルミニウムとを導通させることができる。
 PCT/JP2019/022741には、上記電極体を陰極として用いた湿式電解コンデンサの性能については詳述されているものの、上記電極体をハイブリッド型電解コンデンサのために適用したときのコンデンサの性能については記載されていない。発明者らは、上述の好適な性能を有する電極体を、陰極における有機導電層を電解重合により得るための支持体として使用し、得られたハイブリッド型電解コンデンサの性能を評価したところ、高温負荷試験の前後における静電容量の変化が低周波領域においても高周波領域においても特に少ないことが分かった。したがって、本発明のハイブリッド型電解コンデンサにおける特に好ましい形態では、上記陰極基体がエッチングピットを有し、上記無機導電層が、カーボン粒子を含むカーボン被覆層であり、該カーボン被覆層が、上記エッチングピット内に進入している進入部と上記酸化物層を貫通して上記陰極基体と導通している貫通部とを有している。
 本発明のハイブリッド型電解コンデンサは、高い静電容量、低いESR、優れた高周波特性及び高い高温耐久性を示す。
本発明のハイブリッド型電解コンデンサの構成を模式的に示した概念図である。 先行技術のハイブリッド型電解コンデンサの陰極及び陰極近傍における抵抗成分及び容量成分を説明した図である。 先行技術のハイブリッド型電解コンデンサにおける低周波領域及び高周波領域での等価回路の構成を説明した図である。
 本発明のハイブリッド型電解コンデンサの構成を図1に模式的に示す。ハイブリッド型電解コンデンサ1は、弁金属から成る陰極基体11と、陰極基体11の表面に設けられた上記弁金属の酸化物から成る酸化物層12と、酸化物層12の表面に設けられた無機導電性材料を含む無機導電層13と、無機導電層13の表面に設けられた導電性高分子を含む有機導電層14と、を有する陰極10と、弁金属から成る陽極基体21と、陽極基体21の表面に設けられた陽極基体を構成している弁金属の酸化物から成る誘電体層22と、を有する陽極20と、陰極10の有機導電層14と陽極20の誘電体層22との間に設けられてこれらと接触している導電性高分子の粒子31aを含む固体電解質層31と、固体電解質層31における導電性高分子の粒子31aの間に充填されている電解液32と、を有する複合電解質層30と、を備えている。
 陰極10における導電性高分子を含む有機導電層14は緻密であることが好ましく、具体的には、1.15~1.80g/cmの範囲の密度、好ましくは1.20~1.80g/cmの範囲、特に好ましくは1.60~1.80g/cmの範囲の密度を有することが好ましい。この緻密な有機導電層14が複合電解質層30と接触することにより、ハイブリッド型電解コンデンサ1の高い静電容量、低いESR、優れた高周波特性及び高い高温耐久性が好適に与えられる。陰極10における有機導電層14の密度が1.15g/cm未満であると、本発明の効果が得られにくくなり、密度が1.80g/cmを超える導電性ポリマー層の製造は困難である。
 本発明のハイブリッド型電解コンデンサは、以下に示す、陰極形成工程、陽極形成工程、及び複合電解質層形成工程を含む方法により製造することができる。以下、各工程について詳細に説明する。
 (1)陰極形成工程
 陰極形成工程は、弁金属から成る陰極基体の表面に設けられた上記弁金属の酸化物から成る酸化物層の表面に無機導電性材料を用いて無機導電層を形成する段階、及び、上記無機導電層の表面に、π-共役二重結合を有するモノマーの電解重合を介して導電性高分子を含む有機導電層を形成する段階、を含む。
 陰極基体としては、従来のハイブリッド型電解コンデンサにおいて陰極基体として使用されている、弁金属から成る基体を特に限定なく使用することができる。例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス及びアンチモン等の弁金属から成る箔を使用することができ、アルミニウム箔が特に好ましい。陰極基体としては、これらの箔にエッチング処理を施さずにいわゆるプレーン箔の形態で使用しても良く、化学的或いは電気化学的なエッチング処理を施すことにより表面積を増大させた箔を使用することができる。陰極基体におけるエッチングピットは、トンネルピットであっても海綿状ピットであっても良く、貫通型ピットであっても残芯型ピットであっても良く、ハイブリッド型電解コンデンサの用途に応じて適宜選択される。これらのエッチングピットは、公知の交流電解法及び直流電解法などを用いて形成することができる。
 陰極基体の表面に設けられた酸化物層は、陰極基体の表面に一般に存在している自然酸化皮膜であっても良く、これに加えて、ホウ酸アンモニウム水溶液、アジピン酸アンモニウム水溶液、リン酸アンモニウム水溶液等の化成液を使用した化成処理により化成酸化皮膜を陰極基体の表面に形成し、この化成酸化皮膜を酸化物層としても良い。
 まず、上記酸化物層の表面に無機導電性材料を用いて無機導電層を形成し、支持体を得る。無機導電層は1層であっても良く、異なる無機導電性材料を用いて2層以上の無機導電層を形成しても良い。無機導電層を形成する無機導電性材料の種類及び無機導電層の形成方法には、陰極における酸化物層との十分な密着性を確保することができ、次の段階において無機導電層の表面に有機導電層を密着性良く形成することができれば、特別な限定がない。例えば、カーボン、チタン、白金、金、銀、コバルト、ニッケル、鉄等の無機導電性材料を真空蒸着、スパッタリング、イオンプレーティング、塗布、電解めっき、無電解めっき等の手段により酸化皮膜上に積層することにより無機導電層を設けることができる。無機導電性材料としてカーボンを使用すると、高温負荷試験の前後における静電容量の変化が低周波領域においても高周波領域においても少ないため、好ましい。
 陰極の特に好適な形態では、上記陰極基体がエッチングピットを有し、上記無機導電層が、カーボン粒子を含むカーボン被覆層であり、このカーボン被覆層が上記エッチングピット内に進入している進入部と上記酸化物層を貫通して上記陰極基体と導通している貫通部とを有している。この特に好適な無機導電層は、カーボン粒子を含むカーボンスラリーを上記酸化物層の表面に塗布して乾燥することによりスラリー層を形成する塗布段階、及び、該スラリー層に押圧処理を施すことにより、上記カーボン粒子を陰極基体のエッチングピット内に押し込むとともに上記カーボン粒子に上記酸化物層を突き破らせる押圧段階、を実施することにより、形成することができる。
 塗布段階において使用されるカーボンスラリーには、カーボン粒子と、バインダと、分散媒と、が少なくとも含まれる。カーボン粒子としては、繊維状、球状、鱗片状等、様々な形状を有するカーボン粒子を特に限定なく使用することができ、カーボンナノチューブ、カーボンナノファイバ、カーボンナノホーン、活性炭等の多孔質カーボン、ケッチェンブラック、ファーネスブラック、チャネルブラック及びアセチレンブラック等のカーボンブラック、無定形炭素、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック、メソポーラス炭素が例示される。これらのカーボン粒子は、単独で使用しても良く、2種以上を混合して使用しても良い。但し、エッチングピット内に進入している進入部を有するカーボン被覆層を形成するためのカーボンスラリーには、当然に陰極基体のエッチングピットに進入することが可能な粒子サイズを有するカーボン粒子が少なくとも含まれる。好適な形態では、陰極基体のエッチングピットに進入することが不可能な粒子サイズを有するカーボン粒子がカーボンスラリーにさらに含まれる。この好適な形態では、カーボン粒子が同一種類のカーボンにより構成されていても良く、言い換えると、幅広い粒度分布を有する同一種類のカーボン、例えば、幅広い粒度分布を有するアセチレンブラック、が用いられても良く、異なる種類のカーボンの混合物、例えば、鱗片状黒鉛とアセチレンブラックとの混合物、を用いてカーボン粒子の幅広い粒度分布を得ても良い。
 バインダとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレンコポリマー、ポリフッ化ビニル、カルボキシメチルセルロース、スチレンブタジエンゴムなどの公知のバインダを単独で或いは2種以上を混合して使用することができる。分散媒としては、N-メチルピロリドン、ジメチルホルムアミド、テトラヒドロフラン、イソプロピルアルコール、水等の他の構成要素に悪影響を及ぼさない分散媒を特に限定なく使用することができる。
 カーボンスラリーを得るための、カーボン粒子と、バインダと、分散媒との湿式混合方法には特別な限定がなく、乳鉢を用いて手混合により行っても良く、攪拌機、ホモジナイザー等の公知の混合装置を用いて行っても良い。均一なカーボンスラリーが得られれば混合時間には特別な限定がない。
 得られたカーボンスラリーを、常圧下或いは減圧下で、ドクターブレード法、キャスト法等の公知の塗布法を用いて、陰極基体の表面に設けられた酸化物層の表面に塗布し、乾燥することによりスラリー層を形成する。次いで、得られたスラリー層に圧力を印加する押圧段階を実施する。
 カーボンスラリーの塗布前に、カーボン、窒化チタン、炭化チタンなどの導電性無機材料からなるベース層を、真空蒸着やイオンプレーティングなどの蒸着法により、酸化物層の表面に設けても良い。蒸着法により形成されたベース層は、酸化物層の表面のうち、陰極基体の外表面上の酸化物層の表面にのみ形成され、エッチングピットの表面上の酸化物層の表面には形成されない。
 押圧段階は、ロールプレスや垂直プレスにより行うことができるが、カーボン粒子を陰極基体のエッチングピット内に押し込むとともにカーボン粒子に酸化物層を突き破らせるように圧力を印加する必要がある。陰極基体の外表面にベース層が設けられている場合には、カーボン粒子にベース層と酸化物層とを突き破らせるように圧力を印加する必要がある。押圧段階の圧力は、支持体における界面抵抗が10mΩcm以下、好ましくは6mΩcm以下、さらに好ましくは3mΩcm以下になるように調整されるのが好ましく、カーボン被覆層における進入部の長さの平均値がエッチングピットの長さの平均値の1/5以上、好ましくは1/4以上になるように調整されるのが好ましい。ここで、「支持体における界面抵抗」とは、カーボン被覆層と陰極基体との間で測定される、支持体に含まれる全ての界面に依存した界面抵抗を意味し、公知の測定方法によって得ることができ、例えば以下の方法によって得ることができる。まず、20~30μmの厚さのカーボン被覆層を有する支持体を形成する。次いで、カーボン被覆層の表面の電位を多くの位置で測定するための複数の測定用検査針から成る配列とこの配列の周囲に設けられた支持体に電流を印加するための印加用検査針から成る配列とを備えたプローブをカーボン被覆層の表面に接触させて、印加用検査針の間に所定の直流電流を印加するととともに、電流印加時にカーボン被覆層の表面に発生した電位を測定用検査針によって多くの位置で測定することにより、電位分布の実測値を得る。次に、実測された集電体の厚み、集電体の抵抗、及びカーボン被覆層の厚みを固定値とし、カーボン被覆層の抵抗及び界面抵抗を変数としたモデル式を構築し、変数を変化させながらモデル式における電位分布を計算する。そして、モデル式から求められた電位分布の計算値と電位分布の実測値とが一致したときの界面抵抗が「支持体における界面抵抗」である。支持体における界面抵抗を得るために好適な装置として、例えば日置電気化学株式会社製の電極抵抗測定システムRM2610が挙げられる。カーボン被覆層の厚みは、カーボン被覆層によって被覆されるべき酸化物層及び陰極基体の表面の全体が被覆されていれば特に限定がなく、例えば0.5~30μmの平均厚みとすることができる。上述した電位分布を利用した測定方法においては20~30μmの厚さのカーボン被覆層が用いられるが、より薄いカーボン被覆層を同一の圧力で押圧することにより得られた支持体における界面抵抗の値は、20~30μmの厚さのカーボン被覆層を備えた支持体における界面抵抗の値と類似している。
 カーボン被覆層が、カーボン粒子として、エッチングピットに進入することが不可能な粒子サイズを有する粒子を含んでいると、この粒子は実質的にカーボン被覆層のうちの進入部を除く領域に存在することになるが、この粒子は、押圧段階において、エッチングピットを圧縮変形させてカーボン被覆層とこれと接触している集電体との間の密着性を好適に向上させ、カーボン被覆層と集電体との間の界面抵抗を好適に低下させる役割を果たし、また、エッチングピットに進入することが可能な粒子サイズを有するカーボン粒子をエッチングピット内に好適に押し込む役割を果たす。一方、エッチングピットに進入することが可能な粒子サイズを有するカーボン粒子は、カーボン被覆層の進入部だけでなく、進入部を除く領域にのみ存在する大きなカーボン粒子の間の隙間にも充填され、カーボン被覆層の全体に存在することになる。そして、エッチングピットに進入することが不可能な粒子サイズを有するカーボン粒子が鱗片状黒鉛により構成されていると、鱗片状黒鉛どうしが互いのベーサル面が重なるように配向してエッチングピットを圧縮変形させやすい上に酸化物層を突き破って陰極基体と導通しやすい。また、鱗片状黒鉛とカーボンブラックとを併用すると、カーボンブラックがエッチングピット内や鱗片状黒鉛の間に押し込まれやすく、特に緻密で導電性に優れ且つ集電体との密着性に優れた無機導電層が形成される。
 次いで、上記無機導電層の表面に、導電性高分子を含む有機導電層を形成する。有機導電層は緻密であることが好ましく、具体的には、1.15~1.80g/cmの範囲、好ましくは1.20~1.80g/cmの範囲、特に好ましくは1.60~1.80g/cmの範囲の密度を有することが好ましい。この範囲の密度を有する緻密な有機導電層が形成されれば、その形成方法には特に限定がないが、この緻密な有機導電層は電解重合を介して好適に得ることができる。
 電解重合は、モノマーと支持電解質と溶媒とを少なくとも含む重合液に、陰極基体と酸化物層と無機導電層とから成る支持体を作用極として、白金板、ニッケル板などの対極と共に導入し、作用極と対極との間に電圧を印加することにより行われる。電解重合の過程で、支持電解質から放出されるアニオンがドーパントとして導電性高分子層に含まれる。
 電解重合用重合液の溶媒としては、所望量のモノマー及び支持電解質を溶解することができ電解重合に悪影響を及ぼさない溶媒を使用することができるが、緻密な1.15~1.80g/cmの範囲の密度を有する有機導電層を得るためには、100~80質量%の水と0~20質量%の有機溶媒とから成る溶媒(以下、100~80質量%の水と0~20質量%の有機溶媒とから成る溶媒を「水リッチ溶媒」と表す。)を使用することが好ましい。水と混合される有機溶媒としては、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、アセトニトリル、アセトン、テトラヒドロフラン、酢酸メチルなどが挙げられる。溶媒における水の含有量が増加するほど、有機導電層の密度が増大し、水のみを溶媒として用いると、1.60~1.80g/cmの範囲の密度を有する特に好ましい有機導電層を得ることができる。
 モノマーとしては、従来導電性高分子の製造のために用いられているπ-共役二重結合を有するモノマーを特に限定なく使用することができる。以下に代表的なモノマーを例示する。これらのモノマーは、単独で使用しても良く、2種以上の混合物として使用しても良い。
 まず、チオフェン及びチオフェン誘導体、例えば、3-メチルチオフェン、3-エチルチオフェン等の3-アルキルチオフェン、3,4-ジメチルチオフェン、3,4-ジエチルチオフェン等の3,4-ジアルキルチオフェン、3-メトキシチオフェン、3-エトキシチオフェン等の3-アルコキシチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェン等の3,4-ジアルコキシチオフェン、3,4-メチレンジオキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-(1,2-プロピレンジオキシ)チオフェン等の3,4-アルキレンジオキシチオフェン、3,4-メチレンオキシチアチオフェン、3,4-エチレンオキシチアチオフェン、3,4-(1,2-プロピレンオキシチア)チオフェン等の3,4-アルキレンオキシチアチオフェン、3,4-メチレンジチアチオフェン、3,4-エチレンジチアチオフェン、3,4-(1,2-プロピレンジチア)チオフェン等の3,4-アルキレンジチアチオフェン、チエノ[3,4-b]チオフェン、イソプロピルチエノ[3,4-b]チオフェン、t-ブチル-チエノ[3,4-b]チオフェン等のアルキルチエノ[3,4-b]チオフェン、を挙げることができる。
 また、ピロール及びピロール誘導体、例えば、N-メチルピロール、N-エチルピロール等のN-アルキルピロール、3-メチルピロール、3-エチルピロール等の3-アルキルピロール、3-メトキシピロール、3-エトキシピロール等の3-アルコキシピロール、N-フェニルピロール、N-ナフチルピロール、3,4-ジメチルピロール、3,4-ジエチルピロール等の3,4-ジアルキルピロール、3,4-ジメトキシピロール、3,4-ジエトキシピロール等の3,4-ジアルコキシピロールを挙げることができる。さらに、アニリン及びアニリン誘導体、例えば、2,5-ジメチルアニリン、2-メチル-5-エチルアニリン等の2,5-ジアルキルアニリン、2,5-ジメトキシアニリン、2-メトキシ-5-エトキシアニリン等の2,5-ジアルコキシアニリン、2,3,5-トリメトキシアニリン、2,3,5-トリエトキシアニリン等の2,3,5-トリアルコキシアニリン、2,3,5,6-テトラメトキシアニリン、2,3,5,6-テトラエトキシアニリン等の2,3,5,6-テトラアルコキシアニリン、及び、フラン及びフラン誘導体、例えば、3-メチルフラン、3-エチルフラン等の3-アルキルフラン、3,4-ジメチルフラン、3,4-ジエチルフラン等の3,4-ジアルキルフラン、3-メトキシフラン、3-エトキシフラン等の3-アルコキシフラン、3,4-ジメトキシフラン、3,4-ジエトキシフラン等の3,4-ジアルコキシフラン、を挙げることができる。
 モノマーとしては、3位と4位に置換基を有するチオフェンからなる群から選択されたモノマーを使用することが好ましい。チオフェン環の3位と4位の置換基は、3位と4位の炭素と共に環を形成していても良い。特に、3,4-(エチレンジオキシチオフェン)は、高い導電性を示し、耐熱性にも優れた導電性高分子を与えるため好ましい。
 支持電解質としては、従来の導電性高分子に含まれるドーパントを放出する化合物を特に限定なく使用することができる。例えば、ホウ酸、硝酸、リン酸等の無機酸、酢酸、シュウ酸、クエン酸等の有機酸に加えて、メタンスルホン酸、ドデシルスルホン酸、p-トルエンスルホン酸等のスルホン酸及びこれらの塩が例示される。また、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸等のポリカルボン酸、ポリスチレンスルホン酸、ポリビニルスルホン酸等のポリスルホン酸、及びこれらの塩も支持電解質として使用可能である。さらに、ボロジサリチル酸、ボロジ蓚酸、ボロジマロン酸等のホウ素錯体、スルホニルイミド酸及びこれらの塩も支持電解質として使用可能である。塩としては、リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩、アンモニウム塩、エチルアンモニウム塩、ブチルアンモニウム塩等のアルキルアンモニウム塩が例示される。なかでも、スルホン酸基又はスルホン酸塩基を有していない有機化合物であって該化合物のアニオンの分子量が200以上である少なくとも一種の化合物、特にボロジサリチル酸又はその塩、スルホニルイミド酸及びその塩は、耐熱性に優れた導電性高分子を与えるため好ましい。これらの支持電解質は、単独で使用しても良く、2種以上を混合して使用しても良く、支持電解質の種類に依存して、重合液に対する飽和溶解度以下の量で且つ電解重合のために充分な電流が得られる濃度で使用される。
 電解重合用の重合液には、必須成分としてのモノマー、支持電解質及び溶媒に加えて、電解重合に悪影響を与えない他の成分が含まれていても良く、例えば、モノマーを水リッチ溶媒に可溶化或いは乳化させるための陰イオン界面活性剤が含まれていても良い。陰イオン界面活性剤としては、水リッチ溶媒中で安定な陰イオン界面活性剤を特に限定なく使用することができる。以下に代表的な陰イオン界面活性剤を例示する。
 まず、脂肪酸塩型界面活性剤、例えば、ラウリン酸ナトリウム、パルミチン酸ナトリウム及びステアリン酸ナトリウムが挙げられる。次に、アミノ酸型界面活性剤、例えば、ラウロイルグルタミン酸ナトリウム、ラウロイルアスパラギン酸ナトリウム及びラウロイルメチルアラニンナトリウムが挙げられる。次に、硫酸エステル型界面活性剤、例えば、ドデシル硫酸ナトリウム及びミリスチル硫酸ナトリウムのようなアルキル硫酸エステル塩、ポリオキシエチレンラウリルエーテル硫酸ナトリウム及びポリオキシエチレンアルキルエーテル硫酸ナトリウムのようなアルキルエーテル硫酸エステル塩が挙げられる。次に、スルホン酸型界面活性剤、例えば、デカンスルホン酸ナトリウム及びドデカンスルホン酸ナトリウムのようなアルカンスルホン酸塩、オクチルベンゼンスルホン酸ナトリウム及びドデシルベンゼンスルホン酸ナトリウムのようなアルキルベンゼンスルホン酸塩、イソプロピルナフタレンスルホン酸ナトリウム及びブチルナフタレンスルホン酸ナトリウムのようなアルキルナフタレンスルホン酸塩、ポリスチレンスルホン酸ナトリウムのような高分子スルホン酸塩、テトラデセンスルホン酸ナトリウムのようなオレフィンスルホン酸塩、ジオクチルスルホコハク酸ナトリウムのようなスルホ脂肪酸エステル塩が挙げられる。さらに、アルキルリン酸エステル型界面活性剤、例えば、ラウリルリン酸ナトリウム、ミリスチルリン酸ナトリウム及びポリオキシエチレンラウリルリン酸ナトリウムが挙げられる。
 上記陰イオン界面活性剤は、単独で使用しても良く、2種以上の混合物として使用しても良く、上記モノマーを可溶化或いは乳化させるのに十分な量で使用される。上記陰イオン界面活性剤がスルホン酸型界面活性剤及び/又は硫酸エステル型界面活性剤であると、特に周波数特性に優れたハイブリッド型電解コンデンサへと導くため好ましい。
 電解重合は、定電位法、定電流法、電位掃引法のいずれかの方法により行われる。定電位法による場合には、モノマーの種類に依存するが、飽和カロメル電極に対して1.0~1.5Vの電位が好適であり、定電流法による場合には、モノマーの種類に依存するが、1~10000μA/cmの電流値が好適であり、電位掃引法による場合には、モノマーの種類に依存するが、飽和カロメル電極に対して0~1.5Vの範囲を5~200mV/秒の速度で掃引するのが好適である。重合温度には厳密な制限がないが、一般的には10~60℃の範囲である。重合時間にも厳密な制限はないが、一般的には1分~10時間の範囲である。有機導電層の厚みは、一般的には10~2000nm、好ましくは35~700nm、特に好ましくは70~350nmの範囲である。
 電解重合後の有機導電層を水、エタノール等で洗浄して乾燥し、本発明のハイブリッド型電解コンデンサのための陰極を得る。
 (2)陽極形成工程
 陽極形成工程では、弁金属から成る陽極基体の表面を酸化することにより誘電体層を形成する。陽極基体としては、従来の固体電解コンデンサにおいて陽極基体として使用されている、弁金属から成る基体を特に限定なく使用することができる。例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス及びアンチモン等の弁金属から成る箔であって、化学的或いは電気化学的なエッチング処理を施すことにより表面積を増大させた箔を使用することができ、アルミニウム箔が特に好ましい。陽極基体におけるエッチングピットは、トンネルピットであっても海綿状ピットであっても良く、貫通型ピットであっても残芯型ピットであっても良く、ハイブリッド型電解コンデンサの用途に応じて適宜選択される。これらのエッチングピットは公知の交流電解法及び直流電解法などにより形成することができる。陽極基体の表面の誘電体層は、陽極基体にホウ酸アンモニウム水溶液、アジピン酸アンモニウム水溶液、リン酸アンモニウム水溶液等の化成液を使用した化成処理を施す公知の方法により形成することができる。
 (3)複合電解質層形成工程
 複合電解質層形成工程は、上記陰極の有機導電層と上記陽極の誘電体層との間に導電性高分子の粒子と分散媒とを含む分散液を充填して乾燥することにより固体電解質層を形成する段階、及び、上記固体電解質層に電解液を含浸させる段階、を含む。
 通常、陰極の有機導電層と陽極の誘電体層との間にセパレータが配置され、このセパレータに陰極の有機導電層と陽極の誘電体層の両方に接触している固体電解質層が保持される。例えば、帯状の上記陰極と上記陽極とをセパレータを介して陰極の有機導電層と陽極の誘電体層とが対向するように積層した後にこれを巻回することによりコンデンサ素子を形成した後、固体電解質層を形成することができる。また、所望形状の上記陰極と上記陽極とをセパレータを介して陰極の有機導電層と陽極の誘電体層とが対向するように積層することによりコンデンサ素子を形成した後に固体電解質層を形成ことができる。また、複数組の陰極と陽極とをセパレータを間に挟んで陰極の有機導電層と陽極の誘電体層とが対向するように交互に積層したコンデンサ素子を形成した後に固体電解質層を形成することができる。セパレータとしては、セルロース系繊維で構成された織布又は不織布、例えば、マニラ紙、クラフト紙、エスパルト紙、ヘンプ紙、コットン紙、レーヨン及びこれらの混抄紙や、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート及びこれらの誘導体などのポリエステル系樹脂、ポリテトラフルオロエチレン系樹脂、ポリフッ化ビニリデン系樹脂、ビニロン系樹脂、脂肪族ポリアミド、半芳香族ポリアミド、全芳香族ポリアミド等のポリアミド系樹脂、ポリイミド系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、トリメチルペンテン樹脂、ポリフェニレンサルファイド樹脂、アクリル樹脂等で構成された織布又は不織布、ガラスペーパー、ガラスペーパーとマニラ紙、クラフト紙との混抄紙等を使用することができる。
 固体電解質層は、上記陰極の有機導電層と上記陽極の誘電体層との間に導電性高分子の粒子と分散媒とを含む分散液を充填して乾燥することにより形成される。分散媒としては、分散液に含まれる導電性高分子の粒子を溶解しないか或いはほとんど溶解しないものが選択されて使用され、特に水が好適に使用される。
 分散液の調製は、例えば、分散媒としての水に、モノマーと、ドーパントを放出する酸又はその塩と、酸化剤とを添加し、化学酸化重合が完了するまで攪拌し、次いで、限外濾過、陽イオン交換、及び陰イオン交換等の精製手段により酸化剤及び残留モノマーを除去した後、必要に応じて超音波分散処理、高速流体分散処理、高圧分散処理等の分散処理を施すことにより得ることができる。モノマーとしては、上で有機導電層のために示したπ-共役二重結合を有するモノマーを使用することができ、3位と4位に置換基を有するチオフェンからなる群から選択されたモノマーを好ましく使用することができる。チオフェン環の3位と4位の置換基は、3位と4位の炭素と共に環を形成していても良い。特に、3,4-(エチレンジオキシチオフェン)は、高い導電性を示し、耐熱性にも優れた導電性高分子を与えるため好ましい。ドーパントを放出する酸又はその塩としては、上で支持電解質として例示した化合物を使用することができ、ポリアニオンを放出する化合物、特にポリスチレンスルホン酸又はその塩を好適に使用することができる。酸化剤としては、p-トルエンスルホン酸鉄(III)、ナフタレンスルホン酸鉄(III)、アントラキノンスルホン酸鉄(III)等の三価の鉄塩、若しくは、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム等の過硫酸塩等を使用することができる。
 また、分散媒としての水に、上述のモノマーと、上述のドーパントを放出する酸又はその塩を添加し、攪拌しながら電解酸化重合し、次いで、限外濾過、陽イオン交換、及び陰イオン交換等の精製手段により残留モノマーを除去した後、必要に応じて超音波分散処理、高速流体分散処理、高圧分散処理等の分散処理を施すことにより得ることができる。さらに、上述した化学酸化重合法又は電解重合法により得られた液をろ過して凝集体を分離し、十分に洗浄した後水に添加し、超音波分散処理、高速流体分散処理、高圧分散処理等の分散処理を施すことにより得ることができる。分散液中の導電性高分子の粒子の含有量は、一般的には1.0~3.0質量%の範囲であり、好ましくは1.5質量%~2.0質量%の範囲である。分散液中の導電性高分子の粒径は、一般的には10~1000nmの範囲である。乾燥温度には厳密な制限がないが、一般的には50~200℃の範囲である。乾燥時間にも厳密な制限はないが、一般的には1~10時間の範囲である。
 陰極の有機導電層における導電性高分子と固体電解質層における導電性高分子とは、同一のモノマーから誘導されていても、異なるモノマーから誘導されていても良い。有機導電層における導電性高分子がポリ(3,4-エチレンジオキシチオフェン)であることが好ましいことを上で示したが、固体電解質層における導電性高分子もポリ(3,4-エチレンジオキシチオフェン)であると、特に高い導電性と高温耐久性とが得られるため好ましい。
 次いで、得られた固体電解質層に電解液を常圧下或いは減圧下で含浸させることにより、上記陰極の有機導電層と上記陽極の誘電体層との間に複合電解質層を形成する。
 電解液としては、溶媒とこれに溶解している溶質とを少なくとも含む公知の電解液を使用することができ、ハイブリッド型電解コンデンサに要求される使用温度などの要件に応じて適宜選択される。電解液としては、例えば、γ-ブチロラクトン、δ-バレロラクトン、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、メチルセロソルブ、エチレングリコールモノメチルエーテル、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、プロピレンカーボネート、アセトニトリル、水等の溶媒に、安息香酸塩、酪酸塩、フタル酸塩、イソフタル酸塩、テレフタル酸塩、サリチル酸塩、酒石酸塩、シュウ酸塩、マロン酸塩、リンゴ酸塩、グルタル酸塩、アジピン酸塩、アゼライン酸塩、マレイン酸塩、フマル酸塩、クエン酸塩、ピロメリット酸塩、トリメリット酸塩、1,6-デカンジカルボン酸塩、ギ酸塩、酢酸塩、グリコール酸塩、乳酸塩、1-ナフトエ酸塩、マンデル酸塩、シトラコン酸、2,4-ジヒドロキシ安息香酸塩、2,5-ジヒドロキシ安息香酸塩、2,6-ジヒドロキシ安息香酸塩、ボロジサリチル酸塩、ボロジ蓚酸塩、ボロジマロン酸塩等の溶質を溶解させた電解液を使用することができる。塩としては、アンモニウム塩、テトラメチルアンモニウム塩、トリエチルメチルアンモニウム塩のような四級アンモニウム塩、エチルジメチルイミダゾリニウム塩、テトラメチルイミダゾリニウム塩のような四級化アミジニウム塩、トリメチルアミン塩、トリエチルアミン塩のようなアミン塩が例示される。上記溶媒は、単独で使用しても良く、2種以上を混合して使用しても良い。上記溶質も、単独で使用しても良く、2種以上を混合して使用しても良い。これらの電解液には、上述した溶媒及び溶質に加えて、公知の添加物が含まれていても良く、例えば、コンデンサの耐電圧性の向上を目的として、リン酸、リン酸エステル等のリン酸化合物、ホウ酸等のホウ酸化合物、マンニット等の糖アルコール、ホウ酸と糖アルコールとの錯化合物、ポリエチレングリコール、ポリグリセリン、ポリプロピレングリコール等のポリオキシアルキレンポリオール等が含まれていても良く、さらに、特に高温下で急激に発生する水素を吸収する目的で、ニトロフェノール、ニトロ安息香酸、ニトロアニソール、ニトロベンジルアルコール等のニトロ化合物が含まれていても良い。
 次いで、複合電解質層が追加されたコンデンサ素子を外装ケースに収容して封止し、本発明のハイブリッド型電解コンデンサを得る。本発明のハイブリッド型電解コンデンサでは、上述したように、陰極における導電性高分子を含む有機導電層が複合電解質層と接触するため、高い静電容量、低いESR、優れた高周波特性及び高い高温耐久性がもたらされる。
 本発明を以下の実施例を用いて説明するが、本発明は以下の実施例に限定されない。
 実施例1
 陰極を得るための陰極基体として、海綿状エッチングピットが形成されているアルミニウム箔を用いた。このアルミニウム箔にリン酸二水素アンモニウム水溶液を化成液として用いて化成処理を施し、アルミニウム箔の表面に化成電圧5.0Vfsの化成酸化皮膜(酸化物層)を形成した。次いで、炭化チタンから成る蒸着膜をアークイオンプレーティングにより化成酸化皮膜の表面に形成し、炭化チタン蒸着膜(無機導電層)を有する支持体を得た。
 ガラス容器に蒸留水50mLを導入し、40℃に加熱した。この液に、0.021Mの3,4-(エチレンジオキシチオフェン)(以下、3,4-(エチレンジオキシチオフェン)を「EDOT」と表し、ポリ(3,4-(エチレンジオキシチオフェン))をPEDOTと表す。)と0.08Mのボロジサリチル酸アンモニウムを添加して撹拌し、電解重合用重合液を得た。次いで、この重合液に、上記支持体(作用極)と、10cmの面積を有するSUSメッシュの対極とを導入し、0.1mA/cmの条件で1分間定電流電解重合を行った。重合後の作用極を水で洗浄した後、100℃で30分間乾燥し、35nmの厚みを有し且つ約1.6g/cmの密度を有するPEDOT層(有機導電層)を上記無機導電層上に形成して、ハイブリッド型電解コンデンサのための陰極を得た。なお、PEDOT層の厚みは、0.1mA/cmの条件での定電流電解重合を時間を変えて複数回実施し、各回の実験において得られたPEDOT層の厚みを原子間力顕微鏡或いは段差計を用いて測定し、PEDOT層の厚みと電荷量との関係式を導出した後、導出した関係式を用いて電解重合の電荷量をPEDOT層の厚みに換算して求めた値である。
 陽極を得るための陽極基体として、エッチング処理を施されたアルミニウム箔を用いた。このアルミニウム箔にアジピン酸アンモニウム水溶液を化成液として化成処理を施し、アルミニウム箔の表面に化成電圧47.3Vfsの化成酸化皮膜(誘電体層)を形成し、ハイブリッド型電解コンデンサのための陽極を得た。
 得られた陽極と陰極のそれぞれに端子を接続し、セパレータを介して陽極の誘電体層と陰極の有機導電層とを対向させて積層し、巻回した。次いで、リン酸二水素アンモニウム水溶液を用いて印加電圧40.5V、10mAの条件下で15分間陽極の修復化成を行った後、105℃で30分間乾燥してコンデンサ素子を得た。
 ポリ(3,4-エチレンジオキシチオフェン)の微粒子とポリスチレンスルホン酸とを、水に5質量%のエチレングリコールを加えた分散媒に分散させて、固体電解質層を形成するための分散液を得た。上記コンデンサ素子に得られた分散液を30kPaの圧力下で120秒間含浸させ、150℃で30分間乾燥した。この分散液含浸と乾燥とを再度繰り返し、固体電解質層が追加されたコンデンサ素子を得た。
 エチレングリコールに5質量%のボロジサリチル酸アンモニウムを溶解させた電解液を調製した。この電解液を固体電解質層が追加されたコンデンサ素子に定量吐出することにより固体電解質層に電解液を含浸させ、複合電解質層が追加されたコンデンサ素子を得た。得られた素子を外装ケースに封入し、直径8mm、高さ10mmのハイブリッド型電解コンデンサを得た。
 得られたハイブリッド型電解コンデンサについて、115℃の条件下で28.2Vの電圧を印加して45分間エージング処理を行い、定格電圧25Vのハイブリッド型電解コンデンサを得た。得られたコンデンサの初期特性として、20℃の条件下で、120Hz及び20kHzでの静電容量と、20kHz及び100kHzでのESRとを測定した。次いで、耐久試験として150℃の高温条件下で25Vの直流電圧を4000時間印加する高温耐久試験を行った後、耐久試験後の特性として、再び、20℃の条件下で、120Hz及び20kHzでの静電容量と、20kHz及び100kHzでのESRとを測定した。
 実施例2
 実施例1において使用した電解重合用重合液を用いて、0.1mA/cmの条件で2分間定電流電解重合を行うことにより、70nmの厚みを有し且つ約1.6g/cmの密度を有するPEDOT層(有機導電層)を上記炭化チタン蒸着膜(無機導電層)上に有する陰極を得た点を除いて、実施例1の手順を繰り返した。
 実施例3
 実施例1において使用した電解重合用重合液を用いて、0.1mA/cmの条件で4.5分間定電流電解重合を行うことにより、150nmの厚みを有し且つ約1.6g/cmの密度を有するPEDOT層(有機導電層)を上記炭化チタン蒸着膜(無機導電層)上に有する陰極を得た点を除いて、実施例1の手順を繰り返した。
 実施例4
 実施例1において使用した電解重合用重合液を用いて、0.1mA/cmの条件で10分間定電流電解重合を行うことにより、350nmの厚みを有し且つ約1.6g/cmの密度を有するPEDOT層(有機導電層)を上記炭化チタン蒸着膜(無機導電層)上に有する陰極を得た点を除いて、実施例1の手順を繰り返した。
 比較例1
 陰極を得るための陰極基体として、海綿状エッチングピットが形成されているアルミニウム箔を用いた。このアルミニウム箔にリン酸二水素アンモニウム水溶液を化成液として用いて化成処理を施し、アルミニウム箔の表面に化成電圧3.0Vfsの化成酸化皮膜(酸化物層)を形成し、無機導電層及び有機導電層が形成されていない陰極を得た。得られた陰極を実施例1における陰極の代わりに用いた点を除いて、実施例1の手順を繰り返した。
 比較例2
 陰極を得るための陰極基体として、海綿状エッチングピットが形成されているアルミニウム箔を用いた。このアルミニウム箔にリン酸二水素アンモニウム水溶液を化成液として用いて化成処理を施し、アルミニウム箔の表面に化成電圧5.0Vfsの化成酸化皮膜(酸化物層)を形成した。次いで、炭化チタンから成る蒸着膜をアークイオンプレーティングにより化成酸化皮膜の表面に形成し、炭化チタン蒸着膜(無機導電層)を有し、有機導電層が形成されていない陰極を得た。得られた陰極を実施例1における陰極の代わりに用いた点を除いて、実施例1の手順を繰り返した。
 実施例5
 陰極を得るための陰極基体として、エッチングピットを有していないアルミニウム箔を用いた。この例では、化成酸化皮膜の形成を行わず、自然酸化皮膜を酸化物層として用いた。次いで、炭化チタン蒸着膜に代えて、カーボンから成る蒸着膜をスパッタリングにより自然酸化皮膜の表面に形成し、カーボン蒸着膜(無機導電層)を有する支持体を得た。
 実施例1で使用した電解重合液に、上記支持体と、10cmの面積を有するSUSメッシュの対極とを導入し、0.1mA/cmの条件で10分間定電流電解重合を行った。重合後の作用極を水で洗浄した後、100℃で30分間乾燥し、350nmの厚みを有し且つ約1.6g/cmの密度を有するPEDOT層(有機導電層)を上記カーボン蒸着膜(無機導電層)上に形成し、ハイブリッド型電解コンデンサのための陰極を得た。得られた陰極を実施例1における陰極の代わりに用いた点を除いて、実施例1の手順を繰り返した。
 比較例3
 陰極を得るための陰極基体として、エッチングピットを有していないアルミニウム箔を用いた。この例では、化成酸化皮膜の形成を行わず、自然酸化皮膜を酸化物層として用いた。次いで、炭化チタン蒸着膜に代えて、カーボンから成る蒸着膜をスパッタリングにより自然酸化皮膜の表面に形成し、カーボン蒸着膜(無機導電層)を有し、有機導電層が形成されていない陰極を得た。得られた陰極を実施例1における陰極の代わりに用いた点を除いて、実施例1の手順を繰り返した。
 実施例6
 陰極を得るための陰極基体として、海綿状エッチングピットが形成されているアルミニウム箔を用いた。このアルミニウム箔にリン酸二水素アンモニウム水溶液を化成液として用いて化成処理を施し、アルミニウム箔の表面に化成電圧1.2Vfsの化成酸化皮膜(酸化物層)を形成した。
 カーボン粒子として、平均粒径が4.5μmである鱗片状黒鉛と、平均一次粒子径が50nmであり平均二次粒子径が0.3μmであるアセチレンブラックとを用いた。これらを75:25の質量比で混合した混合物と、スチレンブタジエンゴムと、カルボキシメチルセルロースナトリウムの水溶液とを、84:10:6の質量比で混合し、攪拌機により分散させることにより、カーボンスラリーを調製した。
 得られたカーボンスラリーを上記化成酸化皮膜の上に塗布して乾燥することにより、スラリー層を形成した。このスラリー層に線圧5.38kNcm-1のロールプレスにより押圧処理を施すことにより、1μmの厚みのカーボン塗布膜(無機導電層)を有するハイブリッド型電解コンデンサ用の支持体を得た。この支持体の断面をSEM写真により観察したところ、アセチレンブラックがエッチングピットの長さの約1/3の位置まで進入していた。また、鱗片状黒鉛どうしが互いのベーサル面が重なるように配向しており、この黒鉛の間にアセチレンブラックが充填されていた。さらに、上記ハイブリッド型電解コンデンサ用の支持体のカーボン塗布膜上に上記カーボンスラリーを塗布して乾燥することにより、厚みが20μmのカーボン塗布膜を備えた確認用の支持体を作成し、この支持体における界面抵抗を電極抵抗測定システム(日置電気化学株式会社製、型番RM2610)を用いて測定したところ、1.78mΩcmであり、この値から、ハイブリッド型電解コンデンサ用の支持体のカーボン塗布膜が陰極基体のアルミニウムと導通していると判断された。
 実施例1で使用した電解重合液に、上記支持体と、10cmの面積を有するSUSメッシュの対極とを導入し、0.1mA/cmの条件で10分間定電流電解重合を行った。重合後の作用極を水で洗浄した後、100℃で30分間乾燥し、350nmの厚みを有し且つ約1.6g/cmの密度を有するPEDOT層(有機導電層)を上記カーボン塗布膜(無機導電層)上に形成し、ハイブリッド型電解コンデンサのための陰極を得た。得られた陰極を実施例1における陰極の代わりに用いた点を除いて、実施例1の手順を繰り返した。
 比較例4
 陰極を得るための陰極基体として、海綿状エッチングピットが形成されているアルミニウム箔を用いた。このアルミニウム箔にリン酸二水素アンモニウム水溶液を化成液として用いて化成処理を施し、アルミニウム箔の表面に化成電圧1.2Vfsの化成酸化皮膜(酸化物層)を形成した。次いで、実施例6に示した方法と同じ手順でカーボン塗布膜を形成し、カーボン塗布膜(無機導電層)を有し、有機導電層が形成されていない陰極を得た。得られた陰極を実施例1における陰極の代わりに用いた点を除いて、実施例1の手順を繰り返した。
 表1に実施例1~6及び比較例1~4のハイブリッド型電解コンデンサに関して得られた20℃における静電容量の値を示し、表2に実施例1~6及び比較例1~4のハイブリッド型電解コンデンサに関して得られた20℃におけるESRの値を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 まず、表1に示したハイブリッド型電解コンデンサの静電容量について検討する。無機導電層により陰極容量を無限大に近づけてコンデンサ容量を増大させることについては既に特許文献3~7において示されているが、これまでの評価は専ら120Hzの条件下でのみ行われており、高周波領域(20kHz)での静電容量については示されていない。そして、比較例2の炭化チタン蒸着膜を有する陰極を備えたコンデンサ及び比較例3のカーボン蒸着膜を有する陰極を備えたコンデンサの容量を、比較例1の無機導電層を有していない陰極を備えたコンデンサの容量と比較すると明らかなように、先行文献における対策では、120Hzでの容量は確かに増大するものの、高周波領域(20kHz)での静電容量が増大しない。これに対し、出願人がPCT/JP2019/022741において開示したカーボン塗布膜を有する陰極を備えたコンデンサの容量は、高周波領域(20kHz)においても増大している。これは、カーボン塗布膜がエッチングピット内に進入している進入部と酸化物層を貫通して陰極基体と導通している貫通部とを有していることに起因している。
 これに対し、導電性高分子を含む緻密な有機導電層を有する陰極を備えた実施例1~4のコンデンサの容量を対応する比較例2のコンデンサの容量と比較し、実施例5のコンデンサの容量を対応する比較例3のコンデンサの容量と比較し、また実施例6のコンデンサの容量を対応する比較例4のコンデンサの容量と比較すると明らかに把握されるように、実施例のコンデンサの容量は、陰極の無機導電層の種類に依らず、また酸化物層が化成酸化皮膜であるか自然酸化皮膜であるかによらず、また陰極基体のエッチングピットの有無によらず、120Hzでの容量ばかりでなく20kHzでの静電容量も増大している。これは、導電性高分子を含む緻密な有機導電層を陰極に設けたため、この有機導電層と複合電解質層との間の界面抵抗を低下させることができ、図3の左図に示したように陰極酸化皮膜抵抗RCOXが界面抵抗RINより著しく大きくなる領域を高周波領域まで広げることができたことに起因している。
 また、表1から把握されるように、実施例1~6のコンデンサについては、150℃4000時間という極めて過酷な高温耐久試験の前後における静電容量の変化が、低周波領域においても高周波領域においても少ない。高温耐久試験の前後における静電容量の変化は、無機導電層が炭化チタンで構成されている陰極を用いたコンデンサよりも、無機導電層がカーボンで構成されている陰極を用いたコンデンサにおいてより改善しており、特にカーボン塗布膜を有する陰極を備えた実施例6のコンデンサは優れた高温耐久性を示した。
 次に、表2に示したハイブリッド型電解コンデンサのESRについて検討する。比較例2の炭化チタン蒸着膜を有する陰極を備えたコンデンサ及び比較例3のカーボン蒸着膜を有する陰極を備えたコンデンサのESRを、比較例1の無機導電層を有していない陰極を備えたコンデンサのESRと比較すると明らかなように、先行文献の無機導電層では、20kHzでのESRばかりでなく100kHzでのESRも増大しており、高温耐久試験の前後におけるESRの変化も大きくなっていた。この無機導電層を有しているものの有機導電層を有していない陰極の使用による高温耐久試験の前後におけるESRの変化の増大は、比較例4のコンデンサにおいても認められた。
 しかし、導電性高分子を含む緻密な有機導電層を有する陰極を備えた実施例1~4のコンデンサのESRを対応する比較例2のコンデンサのESRと比較し、実施例5のコンデンサのESRを対応する比較例3のコンデンサのESRと比較し、また実施例6のコンデンサのESRを対応する比較例4のコンデンサのESRと比較すると明らかに把握されるように、実施例のコンデンサのESRは、陰極の無機導電層の種類に依らず、また酸化物層が化成皮膜であるか或いは自然酸化皮膜であるかによらず、また陰極基体のエッチングピットの有無によらず、20kHzでのESRばかりでなく100kHzでのESRも顕著に低下している上に、高温耐久試験の前後におけるESRの変化も顕著に抑制されていた。これは、複合電解質層と無機導電層との両方に対する密着性に優れた緻密な有機導電層を陰極に設けたため、界面抵抗が低下したこと、さらには、この界面抵抗の低下が高温耐久試験においても維持されたことに起因している。
 本発明により、高い静電容量、低いESR、優れた高周波特性及び高い高温耐久性を有するハイブリッド型電解コンデンサが得られる。
 1  ハイブリッド型電解コンデンサ
 10  陰極
  11  陰極基体
  12  酸化物層
  13  無機導電層
  14  有機導電層
 20  陽極
  21  陽極基体
  22  誘電体層
 30  複合電解質層
  31  固体電解質層
    31a  導電性高分子の粒子
  32  電解液

Claims (8)

  1.  弁金属から成る陰極基体と、該陰極基体の表面に設けられた前記弁金属の酸化物から成る酸化物層と、該酸化物層の表面に設けられた無機導電性材料を含む無機導電層と、該無機導電層の表面に設けられた導電性高分子を含む有機導電層と、を有する陰極と、
     弁金属から成る陽極基体と、該陽極基体の表面に設けられた前記陽極基体を構成している弁金属の酸化物から成る誘電体層と、を有する陽極と、
     前記陰極の有機導電層と前記陽極の誘電体層との間に設けられてこれらと接触している導電性高分子の粒子を含む固体電解質層と、該固体電解質層における導電性高分子の粒子の間に充填されている電解液と、を有する複合電解質層と
     を備えたことを特徴とするハイブリッド型電解コンデンサ。
  2.  前記陰極における有機導電層が1.15~1.80g/cmの範囲の密度を有する、請求項1に記載のハイブリッド型電解コンデンサ。
  3.  前記陰極における有機導電層が電解重合膜である、請求項1又は2に記載のハイブリッド型電解コンデンサ。
  4.  前記陰極の有機導電層及び前記複合電解質層の固体電解質層における導電性高分子がポリ(3,4-エチレンジオキシチオフェン)である、請求項1~3のいずれか1項に記載のハイブリッド型電解コンデンサ。
  5.  前記無機導電層を構成する無機導電性材料がカーボンである、請求項1~4のいずれか1項に記載のハイブリッド型電解コンデンサ。
  6.  前記陰極基体がエッチングピットを有し、
     前記無機導電層が、カーボン粒子を含むカーボン被覆層であり、
     該カーボン被覆層が、前記エッチングピット内に進入している進入部と前記酸化物層を貫通して前記陰極基体と導通している貫通部とを有する、請求項1~5のいずれか1項に記載のハイブリッド型電解コンデンサ。
  7.  弁金属から成る陰極基体の表面に設けられた前記弁金属の酸化物から成る酸化物層の表面に無機導電性材料を用いて無機導電層を形成する段階、及び、前記無機導電層の表面に、π-共役二重結合を有するモノマーの電解重合を介して導電性高分子を含む有機導電層を形成する段階、を含む陰極形成工程、
     弁金属から成る陽極基体の表面を酸化することにより誘電体層を形成する、陽極形成工程、
     前記陰極の有機導電層と前記陽極の誘電体層との間に導電性高分子の粒子と分散媒とを含む分散液を充填して乾燥することにより固体電解質層を形成する段階、及び、前記固体電解質層に電解液を含浸させる段階、を含む複合電解質層形成工程、
     を含むことを特徴とするハイブリッド型電解コンデンサの製造方法。
  8.  前記有機導電層の密度が1.15~1.80g/cmの範囲である、請求項7に記載のハイブリッド型電解コンデンサの製造方法。
PCT/JP2020/046800 2019-12-17 2020-12-15 ハイブリッド型電解コンデンサ及びその製造方法 WO2021125182A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021565595A JPWO2021125182A1 (ja) 2019-12-17 2020-12-15
US17/786,143 US11929214B2 (en) 2019-12-17 2020-12-15 Hybrid electrolytic capacitor and method for manufacturing same
CN202080087836.3A CN114868217A (zh) 2019-12-17 2020-12-15 混合型电解电容器及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019227343 2019-12-17
JP2019-227343 2019-12-17

Publications (1)

Publication Number Publication Date
WO2021125182A1 true WO2021125182A1 (ja) 2021-06-24

Family

ID=76478772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046800 WO2021125182A1 (ja) 2019-12-17 2020-12-15 ハイブリッド型電解コンデンサ及びその製造方法

Country Status (5)

Country Link
US (1) US11929214B2 (ja)
JP (1) JPWO2021125182A1 (ja)
CN (1) CN114868217A (ja)
TW (1) TW202143266A (ja)
WO (1) WO2021125182A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054504A1 (ja) * 2021-09-30 2023-04-06 日本ケミコン株式会社 固体電解コンデンサ及び製造方法
JP7394507B1 (ja) 2023-02-13 2023-12-08 日本蓄電器工業株式会社 陰極集電体及び電解コンデンサ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805798A (zh) * 2018-08-10 2021-05-14 阿维科斯公司 包含聚苯胺的固体电解电容器
JPWO2021125182A1 (ja) * 2019-12-17 2021-06-24

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283086A (ja) * 1994-04-14 1995-10-27 Matsushita Electric Ind Co Ltd 電解コンデンサ及びその製造方法
JPH1154380A (ja) * 1997-07-31 1999-02-26 Nippon Chemicon Corp 固体電解コンデンサ
JP2001189242A (ja) * 1999-10-21 2001-07-10 Matsushita Electric Ind Co Ltd 固体電解コンデンサおよびその製造方法
JP2001196270A (ja) * 1999-11-04 2001-07-19 Matsushita Electric Ind Co Ltd 固体電解コンデンサおよびその製造方法
JP2001297952A (ja) * 2000-04-14 2001-10-26 Matsushita Electric Ind Co Ltd 電極金属材料の製造方法、及び電極金属材料を用いたキャパシタの製造方法
JP2016105497A (ja) * 2008-09-18 2016-06-09 パナソニックIpマネジメント株式会社 キャパシタ
WO2016174806A1 (ja) * 2015-04-28 2016-11-03 パナソニックIpマネジメント株式会社 電解コンデンサ
JP2019516241A (ja) * 2016-04-11 2019-06-13 ケメット エレクトロニクス コーポレーション ハイブリッドコンデンサ及びコンデンサの製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565577B2 (ja) 1994-04-04 2004-09-15 東京エレクトロン株式会社 処理装置
JP3459547B2 (ja) 1997-10-17 2003-10-20 三洋電機株式会社 電解コンデンサ及びその製造方法
US6493210B2 (en) 1998-01-23 2002-12-10 Matsushita Electric Industrial Co., Ltd. Electrode metal material, capacitor and battery formed of the material and method of producing the material and the capacitor and battery
DE69936537T2 (de) 1998-09-30 2008-03-13 Nippon Chemi-Con Corp., Ome Festkörperelektrolyt-kondensator und dessen herstellungsverfahren
JP4062787B2 (ja) 1998-09-30 2008-03-19 日本ケミコン株式会社 固体電解コンデンサとその製造方法
WO2001020625A1 (fr) * 1999-09-10 2001-03-22 Matsushita Electric Industrial Co., Ltd. Condensateur electrolytique solide, procede de production de celui-ci et solution d'agent oxydant de polymerisation de polymere conducteur
JP2005109270A (ja) 2003-09-30 2005-04-21 Nippon Chemicon Corp 固体電解コンデンサ
JP2006190878A (ja) 2005-01-07 2006-07-20 Saga Sanyo Industries Co Ltd 電解コンデンサ及びその製造方法
JP4555204B2 (ja) 2005-09-28 2010-09-29 ニチコン株式会社 電解コンデンサ用アルミニウム陰極箔
JP5305569B2 (ja) 2006-06-29 2013-10-02 三洋電機株式会社 電解コンデンサの製造方法および電解コンデンサ
JP5934878B2 (ja) * 2011-07-25 2016-06-15 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
JP2014123685A (ja) * 2012-12-21 2014-07-03 Nippon Chemicon Corp 電解コンデンサ及びその製造方法
JP7089874B2 (ja) * 2015-04-28 2022-06-23 パナソニックIpマネジメント株式会社 電解コンデンサ
JP6740579B2 (ja) * 2015-08-12 2020-08-19 日本ケミコン株式会社 固体電解コンデンサおよび固体電解コンデンサの製造方法
JP6878896B2 (ja) * 2016-03-31 2021-06-02 日本ケミコン株式会社 電解コンデンサ及びその製造方法
JP7161685B2 (ja) * 2017-10-04 2022-10-27 日本ケミコン株式会社 電解コンデンサ
JP7245990B2 (ja) * 2018-03-30 2023-03-27 パナソニックIpマネジメント株式会社 電解コンデンサの製造方法
JP7343847B2 (ja) * 2018-05-29 2023-09-13 日本ケミコン株式会社 電解コンデンサ及びその製造方法
JPWO2021125182A1 (ja) * 2019-12-17 2021-06-24

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283086A (ja) * 1994-04-14 1995-10-27 Matsushita Electric Ind Co Ltd 電解コンデンサ及びその製造方法
JPH1154380A (ja) * 1997-07-31 1999-02-26 Nippon Chemicon Corp 固体電解コンデンサ
JP2001189242A (ja) * 1999-10-21 2001-07-10 Matsushita Electric Ind Co Ltd 固体電解コンデンサおよびその製造方法
JP2001196270A (ja) * 1999-11-04 2001-07-19 Matsushita Electric Ind Co Ltd 固体電解コンデンサおよびその製造方法
JP2001297952A (ja) * 2000-04-14 2001-10-26 Matsushita Electric Ind Co Ltd 電極金属材料の製造方法、及び電極金属材料を用いたキャパシタの製造方法
JP2016105497A (ja) * 2008-09-18 2016-06-09 パナソニックIpマネジメント株式会社 キャパシタ
WO2016174806A1 (ja) * 2015-04-28 2016-11-03 パナソニックIpマネジメント株式会社 電解コンデンサ
JP2019516241A (ja) * 2016-04-11 2019-06-13 ケメット エレクトロニクス コーポレーション ハイブリッドコンデンサ及びコンデンサの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054504A1 (ja) * 2021-09-30 2023-04-06 日本ケミコン株式会社 固体電解コンデンサ及び製造方法
JP7394507B1 (ja) 2023-02-13 2023-12-08 日本蓄電器工業株式会社 陰極集電体及び電解コンデンサ

Also Published As

Publication number Publication date
US11929214B2 (en) 2024-03-12
CN114868217A (zh) 2022-08-05
JPWO2021125182A1 (ja) 2021-06-24
TW202143266A (zh) 2021-11-16
US20230017930A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2021125182A1 (ja) ハイブリッド型電解コンデンサ及びその製造方法
CN107533923B (zh) 电解电容器
JP2023166604A (ja) 電解コンデンサ
TW200523961A (en) Electrolytic capacitors with a polymeric outer layer
Zhou et al. A comparative study on long and short carbon nanotubes-incorporated polypyrrole/poly (sodium 4-styrenesulfonate) nanocomposites as high-performance supercapacitor electrodes
CN110797199B (zh) 导电高分子复合材料及电容器
WO2021125183A1 (ja) 固体電解コンデンサ及びその製造方法
KR102476089B1 (ko) 전해 콘덴서 및 그 제조 방법
JP2010245150A (ja) 固体電解コンデンサおよびその製造方法
JP6878896B2 (ja) 電解コンデンサ及びその製造方法
TWI822786B (zh) 電解電容器及其製造方法
KR101860755B1 (ko) 전기적 안정성이 우수한 울트라커패시터 전극용 조성물, 이를 이용한 울트라커패시터 전극의 제조방법 및 상기 제조방법을 이용하여 제조된 울트라커패시터
EP4336527A1 (en) Electrolytic capacitor, negative electrode body, and method for manufacturing electrolytic capacitor
EP4333004A1 (en) Electrolytic capacitor, negative electrode body and method for producing electrolytic capacitor
KR102337435B1 (ko) 전해 콘덴서 및 그 제조 방법
Hassan et al. Investigation of High Performance Conducting Polymer Parameters for Supercapacitor Electrode
WO2014087858A1 (ja) 蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565595

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901833

Country of ref document: EP

Kind code of ref document: A1