WO2023054504A1 - 固体電解コンデンサ及び製造方法 - Google Patents

固体電解コンデンサ及び製造方法 Download PDF

Info

Publication number
WO2023054504A1
WO2023054504A1 PCT/JP2022/036245 JP2022036245W WO2023054504A1 WO 2023054504 A1 WO2023054504 A1 WO 2023054504A1 JP 2022036245 W JP2022036245 W JP 2022036245W WO 2023054504 A1 WO2023054504 A1 WO 2023054504A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
solid electrolytic
electrolytic capacitor
cathode
foil
Prior art date
Application number
PCT/JP2022/036245
Other languages
English (en)
French (fr)
Inventor
洙光 金
高史 三浦
祥紀 河合
克己 茂垣
健治 町田
健太 佐藤
一平 中村
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Publication of WO2023054504A1 publication Critical patent/WO2023054504A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to a solid electrolytic capacitor containing an electrolytic solution and a conductive polymer in an electrolyte layer, and a manufacturing method thereof.
  • Electrolytic capacitors are equipped with valve metals such as tantalum or aluminum as anode and cathode foils.
  • the anode foil is expanded by forming a valve metal into a sintered body or an etched foil, and has a dielectric oxide film layer on the expanded surface.
  • An electrolytic capacitor can be regarded as a series capacitor in which capacitance is developed on the anode side and the cathode side. Therefore, the capacity on the cathode side is also very important for efficient utilization of the capacity on the anode side.
  • the cathode foil is also etched to increase the surface area.
  • a film of a metal nitride such as titanium nitride is formed on the cathode foil.
  • titanium is evaporated by a vacuum arc deposition method, which is a kind of ion plating method, and titanium nitride is deposited on the surface of the cathode foil.
  • the metal nitride is inert, it is difficult to form a natural oxide film, and the cathode side capacity theoretically asymptotically approaches infinity.
  • the vapor deposition film is formed with minute irregularities, and the surface area of the cathode is enlarged.
  • Electrolyte intervenes between the anode foil and the cathode foil.
  • the electrolyte is in close contact with the uneven surface of the anode foil and functions as a true cathode.
  • the electrolytic solution uses, for example, ethylene glycol or ⁇ -butyrolactone as a solvent, and contains carboxylic acids such as 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid and azelaic acid or salts thereof as solutes.
  • Evaporation occurs in the electrolytic solution, in which it escapes to the outside of the electrolytic capacitor over time.
  • the capacitance of the electrolytic capacitor decreases over time toward dry-up, and the tangent (tan ⁇ ) of the loss angle increases over time, finally reaching the end of its life.
  • electrolytic capacitors in which a conductive polymer is interposed between the anode foil and the cathode foil are often used instead of the electrolytic solution.
  • Conductive polymers are derived from monomers with ⁇ -conjugated double bonds and doped with external dopant molecules. Examples of this conductive polymer include poly(3,4-ethylenedioxythiophene) (PEDOT). Dopants include polystyrene sulfonic acid.
  • electrolytic capacitors with a solid electrolyte are less effective in repairing defects in the dielectric oxide film than electrolytic capacitors with an electrolytic solution. Therefore, so-called hybrid type electrolytic capacitors in which a solid electrolyte is interposed between the anode foil and the cathode foil and are impregnated with an electrolytic solution are attracting attention.
  • a solid electrolytic capacitor has a large capacity compared to a film capacitor or a ceramic capacitor, and has good ESR because the conductive polymer has high conductivity. For this reason, solid electrolytic capacitors are being used in many cases, for example, for high-frequency smoothing applications. In recent years, digital equipment has come to operate in a high frequency range exceeding several tens of kHz, and it is demanded that the solid electrolytic capacitor also have a low ESR in the high frequency range.
  • the present invention has been proposed to solve the above problems, and the object thereof is to provide a solid electrolytic capacitor that exhibits low ESR even in a high frequency region and a manufacturing method thereof.
  • the solid electrolytic capacitor of the present embodiment is made of a valve metal and includes an anode foil having a dielectric oxide film formed on the surface thereof, a cathode body facing the anode foil, and the anode foil.
  • the phosphoric acid compound may be one or a mixture of two or more selected from the group consisting of dibutyl phosphate, tributyl phosphate, dibutyl phosphite, and tributyl phosphite.
  • the conductive layer may contain a carbon material, titanium, titanium nitride, titanium carbide, and composites or mixtures thereof.
  • the amount of the phosphoric acid compound may be 4 mmol or more per 100 g of the electrolytic solution.
  • the amount of the phosphoric acid compound may be 4 mmol or more and 16 mmol or less per 100 g of the electrolytic solution.
  • the electrolytic solution may contain one or more selected from the group of ethylene glycol, glycerin and sulfolane.
  • the cathode foil may have a surface-enlarging layer on the surface of the cathode foil, and the conductive layer may be formed in the shape of the surface-enlarging layer.
  • a method for manufacturing a solid electrolytic capacitor of the present embodiment is a method for manufacturing a solid electrolytic capacitor including an anode foil, a cathode body and an electrolyte layer, wherein the surface of the cathode foil containing a valve action metal is A step of preparing the cathode body by forming a conductive layer on the substrate, an electrolytic solution preparation step of preparing an electrolytic solution containing a phosphoric acid compound having an alkyl group having 1 to 10 carbon atoms, and the electrolytic solution and an electrolyte layer forming step of forming the electrolyte layer by interposing a conductive polymer between the anode foil and the cathode body.
  • the solid electrolytic capacitor has a low ESR at least in the high frequency range.
  • FIG. 4 is a graph showing ESR at each elapsed time of Example 1 and Comparative Examples 1, 2 and 3.
  • FIG. 4 is a graph showing ESR at each elapsed time in Example 2 and Comparative Examples 1, 2 and 4.
  • FIG. 4 is a graph showing ESR at each elapsed time in Example 2 and Comparative Examples 1, 2 and 4.
  • a solid electrolytic capacitor according to an embodiment will be described below.
  • this invention is not limited to embodiment described below.
  • a solid electrolytic capacitor is a passive element that stores and discharges electric charges by obtaining capacitance from the dielectric polarization action of a dielectric oxide film.
  • This solid electrolytic capacitor is formed by housing a capacitor element in a case and sealing the case opening with a sealing member.
  • a capacitor element comprises an anode foil, a cathode foil, a separator and an electrolyte layer.
  • the anode foil and the cathode body face each other with a separator interposed therebetween, and are wound or laminated.
  • a dielectric oxide film is formed on the surface of the anode foil.
  • the electrolyte layer is composed of a solid electrolyte layer containing a conductive polymer and an electrolytic solution.
  • the solid electrolyte layer is interposed between the anode foil and the cathode foil and adheres to the dielectric oxide film.
  • the electrolytic solution impregnates the voids of the capacitor element in which the solid electrolyte layer is formed.
  • the anode foil is a long foil body made by stretching a valve action metal.
  • Valve metals include aluminum, tantalum, niobium, niobium oxide, titanium, hafnium, zirconium, zinc, tungsten, bismuth and antimony.
  • the purity of the anode foil is desirably 99.9% or higher, but it may contain impurities such as silicon, iron, copper, magnesium and zinc.
  • the surface of the anode foil is enlarged as a molded body obtained by molding the powder of the valve metal, a sintered body obtained by sintering the molded body, or an etched foil obtained by etching a rolled foil.
  • the spreading structure consists of tunnel-like pits, spongy pits, or voids between dense particles.
  • the expanded surface structure is typically formed by direct current or alternating current etching or alternating current etching in an acidic aqueous solution in which halogen ions such as hydrochloric acid are present, or by depositing or sintering metal particles or the like on the core. It is formed by Incidentally, the etching pits may be formed so as to penetrate the anode foil.
  • the dielectric oxide film is typically an oxide film formed on the surface layer of the anode foil.
  • the dielectric oxide film is aluminum oxide with an oxidized surface expansion structure.
  • a dielectric oxide film is formed by chemical conversion treatment in which a voltage is applied in an aqueous solution of adipic acid, boric acid, phosphoric acid, or the like.
  • the cathode body includes a cathode foil, which is a foil body obtained by stretching a valve action metal.
  • the cathode foil preferably has a purity of 99% or more, but may contain impurities such as silicon, iron, copper, magnesium and zinc.
  • the cathode foil is a plain foil with a flat surface, or a surface-enlarging layer is formed on the surface by enlarging the surface.
  • An oxide film may be intentionally or naturally formed on the surface enlarging layer. Intentionally, a thin dielectric oxide film (about 1 to 10 Vfs) may be formed by chemical conversion treatment. A natural oxide film is formed when the cathode foil reacts with oxygen in the air.
  • This cathode body further comprises a conductive layer and has a laminate structure of the cathode foil and the conductive layer.
  • the conductive layer is a layer containing a conductive material and having higher conductivity than the oxide film.
  • This conductive layer is laminated on one side or both sides of the cathode foil and positioned as the outermost layer of the cathode body.
  • Examples of conductive materials include titanium, zirconium, tantalum, niobium, nitrides or carbides thereof, aluminum carbide, carbon materials, and composites or mixtures thereof. A plurality of layers may be laminated as this conductive layer, and each layer may be a different layer.
  • the carbon material is fibrous carbon, carbon powder, or a mixture thereof. It may be fibrous carbon or carbon powder that has been subjected to a porosification treatment such as an activation treatment or an opening treatment for forming pores.
  • Examples of carbon powder include activated carbon, ketjen black, acetylene black, channel black, etc., which are derived from natural plant tissues such as coconut shells, synthetic resins such as phenol, and fossil fuels such as coal, coke, and pitch.
  • Fibrous carbon includes, for example, carbon nanotubes, carbon nanofibers, and the like.
  • the carbon nanotube may be a single-walled carbon nanotube having a single graphene sheet, or a multi-walled carbon nanotube (MWCNT) having two or more graphene sheets rolled coaxially and having a multi-layered tube wall.
  • These conductive materials are applied to the cathode foil by coating, vapor deposition, heat treatment, or the like.
  • the coating method is suitable, for example, when forming a conductive layer of a carbon material, and a slurry containing a conductive material, a binder and a solvent is applied to the cathode body by a slurry casting method, a doctor blade method, a spray atomizing method, etc. and dried, If necessary, the cathode foil and the conductive layer are brought into close contact with each other by pressing.
  • the vapor deposition method is suitable for forming a metallic conductive layer such as titanium, and includes vacuum arc vapor deposition, sputtering vapor deposition, and electron beam vapor deposition. In the heat treatment, conductive material powder is adhered to the surface of the cathode foil and sintered.
  • Electron beam deposition involves irradiating a material source with an electron beam in a vacuum chamber to melt and vaporize the material source, reacting the vaporized material source with a reaction gas, and depositing the material source reacting with the reaction gas on the cathode foil.
  • a cathode body composed of a conductive layer and a cathode foil is sandwiched between press rollers to apply press line pressure.
  • a press pressure of about 0.01 to 100 t/cm is desirable.
  • This press work produces a press-contact structure in which the conductive material is pressed into the pores of the surface-enlarging layer, and a press-contact structure in which the conductive material is deformed along the uneven surface of the surface-enlarging layer.
  • This pressure contact structure improves the adhesion and fixability between the conductive layer and the cathode foil, and reduces the ESR of the solid electrolytic capacitor.
  • the conductive polymer of the solid electrolyte layer is a self-doped polymer doped with intramolecular dopant molecules or a conjugated polymer doped with external dopant molecules.
  • a conjugated polymer is obtained by subjecting a monomer having a ⁇ -conjugated double bond or a derivative thereof to chemical oxidation polymerization or electrolytic oxidation polymerization.
  • a conductive polymer expresses high conductivity by performing a doping reaction on a conjugated polymer. That is, by adding a small amount of a dopant, such as an acceptor that easily accepts electrons or a donor that easily donates electrons, to the conjugated polymer, conductivity is exhibited.
  • conjugated polymer any known one can be used without any particular limitation. Examples include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, polyphenylene, polyphenylenevinylene, polyacene, polythiophenevinylene and the like. These conjugated polymers may be used alone, may be used in combination of two or more types, and may be a copolymer of two or more types of monomers.
  • conjugated polymers obtained by polymerizing thiophene or derivatives thereof are preferable, and 3,4-ethylenedioxythiophene (that is, 2,3-dihydrothieno[3,4-b][ 1,4]dioxin), 3-alkylthiophenes, 3-alkoxythiophenes, 3-alkyl-4-alkoxythiophenes, 3,4-alkylthiophenes, 3,4-alkoxythiophenes, or conjugated high Molecules are preferred.
  • 3,4-ethylenedioxythiophene that is, 2,3-dihydrothieno[3,4-b][ 1,4]dioxin
  • 3-alkylthiophenes that is, 2,3-dihydrothieno[3,4-b][ 1,4]dioxin
  • 3-alkylthiophenes 3-alkoxythiophenes
  • 3-alkyl-4-alkoxythiophenes 3-alkyl-4-
  • the thiophene derivative is preferably a compound selected from thiophenes having substituents at the 3- and 4-positions, and the substituents at the 3- and 4-positions of the thiophene ring form a ring together with the carbon atoms at the 3- and 4-positions.
  • can be An alkyl group or an alkoxy group preferably has 1 to 16 carbon atoms.
  • a polymer of 3,4-ethylenedioxythiophene called EDOT that is, poly(3,4-ethylenedioxythiophene) called PEDOT is particularly preferred.
  • alkylated ethylenedioxythiophene in which an alkyl group is added to 3,4-ethylenedioxythiophene such as methylated ethylenedioxythiophene (that is, 2-methyl-2,3-dihydro-thieno [ 3,4-b][1,4]dioxin), ethylated ethylenedioxythiophene (i.e., 2-ethyl-2,3-dihydro-thieno[3,4-b][1,4]dioxin), etc. mentioned.
  • a known dopant can be used without any particular limitation.
  • a dopant may be used independently and may be used in combination of 2 or more type.
  • polymers or monomers may be used.
  • dopants include polyanions, inorganic acids such as boric acid, nitric acid and phosphoric acid, acetic acid, oxalic acid, citric acid, tartaric acid, squaric acid, rhodizonic acid, croconic acid, salicylic acid, p-toluenesulfonic acid, 1,2 -dihydroxy-3,5-benzenedisulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, borodisalicylic acid, bisoxalateborate acid, sulfonylimidic acid, dodecylbenzenesulfonic acid, propylnaphthalenesulfonic acid, butylnaphthalenesulfonic acid, etc.
  • Polyanions are, for example, substituted or unsubstituted polyalkylenes, substituted or unsubstituted polyalkenylenes, substituted or unsubstituted polyimides, substituted or unsubstituted polyamides, substituted or unsubstituted polyesters, and have anionic groups.
  • Examples include a polymer consisting of only units, and a polymer consisting of a structural unit having an anionic group and a structural unit having no anionic group.
  • polyanions include polyvinylsulfonic acid, polystyrenesulfonic acid, polyallylsulfonic acid, polyacrylsulfonic acid, polymethacrylsulfonic acid, poly(2-acrylamido-2-methylpropanesulfonic acid), and polyisoprenesulfonic acid. , polyacrylic acid, polymethacrylic acid, and polymaleic acid.
  • the solid electrolyte layer may contain various additives such as polyhydric alcohol in addition to the conductive polymer.
  • Polyhydric alcohols include sorbitol, ethylene glycol, diethylene glycol, triethylene glycol, polyoxyethylene glycol, glycerin, polyglycerin, polyoxyethylene glycerin, xylitol, erythritol, mannitol, dipentaerythritol, pentaerythritol, or two of these. The above combination is mentioned. Since the polyhydric alcohol has a high boiling point, it can remain in the solid electrolyte layer even after the drying process, and effects of reducing ESR and improving withstand voltage can be obtained.
  • An electrolytic solution is a solution of an anion component and a cation component added to a solvent.
  • the anion component and the cation component are typically a salt of an organic acid, a salt of an inorganic acid, or a salt of a complex compound of an organic acid and an inorganic acid.
  • An acid as an anionic component and a base as a cationic component may be added separately to the solvent.
  • the electrolytic solution does not have to contain an anion component, a cation component, or both an anion component and a cation component in the solvent.
  • the electrolyte contains a phosphoric acid compound with an alkyl group.
  • the number of carbon atoms in the alkyl group is preferably 1 or more and 10 or less.
  • the balance between the solubility and chemical stability in the electrolyte solvent of the phosphoric acid compound having an alkyl group is good, and when the alkyl group is a butyl group, the solubility in the electrolyte solvent is improved. and chemical stability are particularly well balanced.
  • the phosphoric acid compound should just have at least one or more of this alkyl group.
  • phosphate compounds include dibutyl phosphate, tributyl phosphate, dibutyl phosphite and tributyl phosphite, triethyl phosphite, trimethyl phosphite, triisopropyl phosphate and diisopropyl phosphite.
  • the electrolyte should contain one or more of such phosphoric acid compounds.
  • the cathode body has a conductive layer and the electrolytic solution contains such a phosphoric acid compound, even if exposed to a high temperature environment such as 160° C., the solid electrolytic capacitor can operate at a high frequency range such as 100 kHz. shows good ESR.
  • the leakage current (LC) can be kept good even if it is exposed to a high temperature environment for a long time.
  • the phosphoric acid compound is preferably 4 mmol or more per 100 g of the electrolytic solution, more preferably 4 mmol or more and 16 mmol or less per 100 g of the electrolytic solution.
  • it is 4 mmol or more, even if the solid electrolytic capacitor is exposed to a high temperature environment, it exhibits good ESR in a high frequency range such as 100 kHz.
  • the change in ESR in a high temperature environment and in a high frequency range such as 100 kHz becomes poor. Therefore, in terms of other capacitor characteristics and cost, the phosphoric acid compound is more preferably 16 mmol or less per 100 g of the electrolytic solution.
  • the electrolyte may contain an organic acid, an inorganic acid, or a composite compound of an organic acid and an inorganic acid as an anion component.
  • Organic acids include oxalic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, toluic acid, enanthic acid, malonic acid, 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid, azelaic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, t-butyladipic acid, 11-vinyl-8-octadecenedioic acid, resorcinic acid, Carboxylic acids such as phloroglucic acid, gallic acid,
  • inorganic acids examples include boric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, and silicic acid.
  • Compound compounds of organic acids and inorganic acids include borodisalicylic acid, borodisaliic acid, borodiglycolic acid, borodimalonic acid, borodisuccinic acid, borodiadipic acid, borodiazelaic acid, borodibenzoic acid, borodimaleic acid, borodilactic acid, borodimalic acid, boroditartaric acid, borodicitric acid, borodiphthalic acid, borodi(2-hydroxy)isobutyric acid, borodiresorucic acid, borodimethylsalicylic acid, borodinaphthoic acid, borodimandelic acid and borodi(3-hydroxy)propionic acid.
  • Examples of at least one salt of an organic acid, an inorganic acid, and a composite compound of an organic acid and an inorganic acid include an ammonium salt, a quaternary ammonium salt, a quaternary amidinium salt, an amine salt, a sodium salt, a potassium salt, and the like. is mentioned.
  • the quaternary ammonium ion of the quaternary ammonium salt includes tetramethylammonium, triethylmethylammonium, tetraethylammonium and the like.
  • Quaternary amidinium salts include ethyldimethylimidazolinium, tetramethylimidazolinium, and the like.
  • Amine salts include salts of primary, secondary and tertiary amines.
  • primary amines include methylamine, ethylamine and propylamine
  • secondary amines include dimethylamine, diethylamine, ethylmethylamine and dibutylamine
  • examples of tertiary amines include trimethylamine, triethylamine, tributylamine and ethyldimethylamine
  • ethyldiisopropylamine include salts of primary, secondary and tertiary amines.
  • the solvent for the electrolytic solution is not particularly limited, but a protic organic polar solvent or an aprotic organic polar solvent can be used.
  • Protic organic solvents include monohydric alcohols, polyhydric alcohols and oxyalcohol compounds. Examples of monohydric alcohols include ethanol, propanol, butanol, pentanol, hexanol, cyclobutanol, cyclopentanol, cyclohexanol, and benzyl alcohol.
  • Polyhydric alcohols and oxyalcohol compounds include polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, glycerin, methyl cellosolve, ethyl cellosolve, methoxypropylene glycol, dimethoxypropanol, polyglycerin, polyethylene glycol and polyoxyethylene glycerin. alkylene oxide adducts of and the like.
  • sulfone-based, amide-based, lactones, cyclic amide-based, nitrile-based, sulfoxide-based, and the like may be used.
  • Sulfone-based solvents include dimethylsulfone, ethylmethylsulfone, diethylsulfone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, and the like.
  • amides include N-methylformamide, N,N-dimethylformamide, N-ethylformamide, N,N-diethylformamide, N-methylacetamide, N,N-dimethylacetamide, N-ethylacetamide, N,N- diethylacetamide, hexamethylphosphoricamide and the like.
  • Lactones and cyclic amides include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, N-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, butylene carbonate and isobutylene carbonate.
  • Nitrile type includes acetonitrile, 3-methoxypropionitrile, glutaronitrile and the like.
  • the sulfoxide type includes dimethyl sulfoxide and the like.
  • ethylene glycol, glycerin or sulfolane is contained as the solvent of the electrolytic solution or other species in the solvent.
  • Ethylene glycol, glycerin and sulfolane cause conformational changes in conductive polymers.
  • the initial ESR of the solid electrolytic capacitor is improved, and deterioration of the ESR in a high-temperature environment is suppressed.
  • Additives include complex compounds of boric acid and polysaccharides (mannite, sorbitol, etc.), complex compounds of boric acid and polyhydric alcohol, boric acid esters, nitro compounds (o-nitrobenzoic acid, m-nitrobenzoic acid, acid, p-nitrobenzoic acid, o-nitrophenol, m-nitrophenol, p-nitrophenol, p-nitrobenzyl alcohol, etc.). These may be used alone or in combination of two or more.
  • Separators are made of cellulose such as kraft, manila hemp, esparto, hemp, rayon, and mixed paper thereof, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyester resins such as their derivatives, polytetrafluoroethylene resin, polyfluoride, etc.
  • Polyamide resins such as vinylidene resins, vinylon resins, aliphatic polyamides, semi-aromatic polyamides, and wholly aromatic polyamides, polyimide resins, polyethylene resins, polypropylene resins, trimethylpentene resins, polyphenylene sulfide resins, acrylic resins, polyvinyl alcohol resins, etc., and these resins can be used singly or in combination.
  • Examples 1 and 2 Solid electrolytic capacitors of Comparative Examples 1 to 4 and Examples 1 and 2 were produced.
  • an anode foil and a cathode foil were produced using aluminum foil.
  • the anode foil was subjected to surface enlargement by etching treatment, and was subjected to chemical conversion treatment using an adipic acid aqueous solution at a chemical conversion voltage of 61.7 Vfs to form a dielectric oxide film.
  • the surface of the cathode foil was expanded by etching, and an oxide film was formed by chemical conversion treatment using an adipic acid aqueous solution at a chemical conversion voltage of 3 Vfs.
  • the cathode foils of Comparative Example 2, Example 1 and Example 2 were laminated with a conductive layer.
  • the conductive layer was a titanium carbide layer with a thickness of 100 nm and was formed on the surface of the cathode foil by vacuum deposition. In Comparative Examples 1, 3 and 4, no conductive layer was formed.
  • a lead wire was connected to each of the anode foil and the cathode foil or the cathode body, and the anode foil and the cathode foil or the cathode body were wound with the anode foil and the cathode foil or the cathode body facing each other with a cellulose separator interposed therebetween.
  • the wound body was immersed in an aqueous solution of ammonium dihydrogen phosphate for 20 minutes for repair chemical conversion. After that, it was dried at 105°C.
  • This wound body was immersed in a conductive polymer dispersion to attach the conductive polymer to the dielectric oxide film of the anode foil, the cathode foil and the separator.
  • a conductive polymer dispersion particles of poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonic acid were dispersed as a conductive polymer, and ethylene glycol was added.
  • the wound body was immersed in the conductive polymer dispersion for the first time, the wound body was dried at 125° C. for 30 minutes. Further, the wound body was immersed in the conductive polymer dispersion, and after the second immersion, the wound body was dried at 150° C. for 30 minutes.
  • the wound body to which the conductive polymer was attached was impregnated with an electrolytic solution.
  • the electrolytic solution of each example and comparative example contains ethylene glycol as a solvent.
  • the electrolytic solutions of Comparative Examples 1 and 2 contain only 16 mmol of azelaic acid per 100 g of the electrolytic solution, and the electrolytic solutions of Comparative Example 3 and Example 1 each contain 16 mmol of azelaic acid and dibutyl phosphoric acid per 100 g of the electrolytic solution.
  • the electrolytic solutions of Comparative Example 4 and Example 2 contain 16 mmol each of azelaic acid and tributyl phosphate per 100 g of the electrolytic solution.
  • the electrolytic solution of each example and comparative example contained 16 mmol of ammonia as a cation component of the solute.
  • a capacitor element impregnated with electrolyte was inserted into a bottomed cylindrical exterior case.
  • a sealing rubber was attached to the open end of the exterior case and sealed by caulking.
  • Each solid electrolytic capacitor was aged by voltage application.
  • Each of the produced solid electrolytic capacitors has a diameter of 10.0 mm and a height of 10.0 mm, a rated withstand voltage of 35 WV, a rated capacity of Comparative Examples 1, 3 and 4 of 330 ⁇ F, and a rated capacity of Comparative Example 2 and Examples 1 and 2.
  • the rated capacity was 390 ⁇ F.
  • the ESR of the solid electrolytic capacitors of Examples 1 and 2 and Comparative Examples 1 to 4 was measured. Each solid electrolytic capacitor was exposed to a temperature environment of 160° C., and ESR was measured for each elapsed time. The measurement frequency was set to 100 kHz, which is a high frequency region. Table 1 below shows the ESR immediately before exposure to a temperature environment of 160° C., that is, the ESR when the elapsed time is 0 hours, and the ESR after 800 hours have elapsed.
  • the ESR of Comparative Examples 1, 2, 3 and 1 are shown in the graph of FIG. 1, and the ESR of Comparative Examples 1, 2, 4 and 2 are shown in the graph of FIG. show.
  • the horizontal axis of the graphs of FIGS. 1 and 2 is elapsed time, and the vertical axis is ESR.
  • Comparative Examples 3 and 4 in which dibutyl phosphate or tributyl phosphate was added to the electrolytic solution, were higher than Comparative Example 1 at both zero and 800 hours of elapsed time. also achieves low ESR.
  • the difference between Comparative Examples 3 and 1 is 0.0015 ⁇ after 800 hours, and the difference between Comparative Examples 4 and 1 is 0.0016 ⁇ after 800 hours.
  • Comparative Example 2 which has a conductive layer on the cathode foil, has almost the same ESR as Comparative Example 1 at both 0 hours and 800 hours.
  • Examples 1 and 2 in which dibutyl phosphate or tributyl phosphate is added to the electrolytic solution, and the conductive layer is provided on the cathode foil, show a further 0% reduction than Comparative Examples 3 and 4 after 800 hours. It has a low ESR of 0.0012 ⁇ and 0.0007 ⁇ . Examples 1 and 2 show such good ESR even though the ESR of Comparative Example 2, which has a conductive layer on the cathode foil, is almost the same as that of Comparative Example 1 at both zero hours and 800 hours. have achieved
  • the conductive layer formed on the surface of the cathode foil is provided on the cathode body, and the electrolyte contains a phosphoric acid compound having an alkyl group having 1 or more and 10 or less carbon atoms, so that the solid electrolytic capacitor It was confirmed that the ESR of was further reduced.
  • the ESR of the solid electrolytic capacitor is further reduced by including a phosphoric acid compound having a butyl group in the electrolytic solution.
  • Example 3-7 solid electrolytic capacitors of Examples 3 to 7 were produced.
  • the solid electrolytic capacitors of Examples 3 to 7 have titanium carbide as a conductive layer in the cathode body, as in Examples 1 and 2, but have a phosphoric acid compound of a different type from that in Examples 1 and 2.
  • the phosphoric acid compounds of Examples 3 to 7 have an alkyl group having 1 to 10 carbon atoms.
  • a solid electrolytic capacitor of Comparative Example 5 was produced, in which titanium carbide was provided as a cathode body and phosphoric acid was contained in the electrolyte.
  • the solid electrolytic capacitors of Examples 3 to 7 and Comparative Example 5 were manufactured by the same manufacturing method and under the same conditions as in Example 1, except for the type of phosphoric acid compound, and had the same configuration, composition and composition ratio.
  • Example 1 High frequency ESR and LC
  • ESR The ESR of the solid electrolytic capacitors of Example 1, Examples 3 to 7, and Comparative Example 5 was measured. Each solid electrolytic capacitor was exposed to a temperature environment of 150° C., and ESR was measured for each elapsed time. The measurement frequency was set to 100 kHz, which is a high frequency region. Table 2 below shows the ESR immediately before exposure to a temperature environment of 150° C., that is, the ESR when the elapsed time is 0 hours and the ESR after 260 hours.
  • the LC (leakage current) of the solid electrolytic capacitors of Example 1 and Comparative Example 5 were measured. Each solid electrolytic capacitor was left in a temperature environment of 150° C. for 2700 hours, and the leakage current after the standing was measured. The leakage current was obtained by applying a rated withstand voltage of 35 WV to each solid electrolytic capacitor and maintaining the voltage for 2 minutes. Leakage current results are shown in Table 2 below.
  • the phosphate compound of Example 1 is dibutyl phosphate.
  • Example 3 equimolar amounts of dibutyl phosphate and triisopropyl phosphate were mixed into the electrolyte.
  • the phosphate compound of Example 4 is dibutyl phosphite.
  • the phosphate compound of Example 5 is triethyl phosphite.
  • the phosphate compound of Example 6 is trimethyl phosphite.
  • the phosphate compound of Example 7 is triisopropyl phosphate.
  • Examples 3 and 4 like Examples 1 and 2, are solid electrolytic capacitors in which the electrolytic solution contains a phosphoric acid compound having a butyl group. Also in Examples 3 and 4, the ESR at zero elapsed time and the ESR after 260 hours elapsed are almost the same values as in Example 1 in Table 2.
  • Examples 4 to 7 are solid electrolytic capacitors in which the electrolytic solution contains a phosphoric acid compound having an alkyl group different from a butyl group. These Examples 4 to 7 have good ESR characteristics like the solid electrolytic capacitors of Examples 1, 3 and 4. Thus, when the conductive layer formed on the surface of the cathode foil is provided on the cathode body, and the electrolyte contains a phosphoric acid compound having an alkyl group having from 1 to 10 carbon atoms, the solid electrolytic capacitor to reduce the ESR of Moreover, Examples 1, 3 and 4 containing a phosphoric acid compound having a butyl group have particularly good ESR characteristics, and a butyl group is preferable as the alkyl group.
  • Example 8-10 Solid electrolytic capacitors of Examples 8 to 10 were produced.
  • the solid electrolytic capacitors of Examples 8 to 10 have different types of phosphoric acid compounds from those of Examples 1 and 2 as the phosphoric acid compounds, but differ from those of Examples 1 and 2 in the type of conductive layer.
  • solid electrolytic capacitors of Comparative Examples 6 to 8 which had the same type of conductive layer but did not contain a phosphoric acid compound in the electrolytic solution, were produced.
  • Example 8 The solid electrolytic capacitor of Example 8 and the solid electrolytic capacitor of Comparative Example 6 corresponding to Example 8 were produced as follows. That is, in Example 8, the conductive layer laminated on the cathode foil was a carbon nanotube layer with a thickness of 100 nm, which was formed on the surface of the cathode foil by vacuum deposition. The cathode foil of Comparative Example 6 was not laminated with a conductive layer. A cellulosic separator was sandwiched between the anode foil and the cathode body or cathode foil. Each of the produced solid electrolytic capacitors has a diameter of 10.0 mm, a height of 7.7 mm, a rated withstand voltage of 25 WV, and a rated capacity of 270 ⁇ F. Other manufacturing methods, manufacturing conditions, capacitor structures, compositions and composition ratios of Example 8 and Comparative Example 6 are the same as those of Example 1.
  • Example 9 The solid electrolytic capacitor of Example 9 and the solid electrolytic capacitor of Comparative Example 7 corresponding to Example 9 were produced as follows. That is, in Example 9, the conductive layer laminated on the cathode foil was a carbon black layer with a thickness of 100 nm, which was formed on the surface of the cathode foil by vacuum deposition. The cathode body was sandwiched between press rollers and press line pressure was applied. The cathode foil of Comparative Example 7 was not laminated with a conductive layer. A cellulosic separator was sandwiched between the anode foil and the cathode body or cathode foil.
  • Each of the produced solid electrolytic capacitors has a diameter of 10.0 mm and a height of 10.0 mm, a rated withstand voltage of 25 WV, and a rated capacity of 580 ⁇ F.
  • Other manufacturing methods, manufacturing conditions, capacitor structures, compositions and composition ratios of Example 9 and Comparative Example 7 are the same as those of Example 1.
  • Example 10 The solid electrolytic capacitor of Example 10 and the solid electrolytic capacitor of Comparative Example 8 corresponding to Example 10 were produced as follows. That is, in Example 10, the conductive layer laminated on the cathode foil was a titanium nitride layer with a thickness of 100 nm, which was formed on the surface of the cathode foil by vacuum deposition. The cathode foil of Comparative Example 8 was not laminated with a conductive layer. A cellulosic separator was sandwiched between the anode foil and the cathode body or cathode foil.
  • Each of the produced solid electrolytic capacitors has a diameter of 10.0 mm and a height of 10.0 mm, a rated withstand voltage of 25 WV, and a rated capacity of 470 ⁇ F.
  • Other manufacturing methods, manufacturing conditions, capacitor structures, compositions and composition ratios of Example 10 and Comparative Example 8 are the same as those of Example 1.
  • Example 1 and Comparative Example 2 Solid electrolytes of Example 1 and Comparative Example 2 in correspondence, Example 8 and Comparative Example 6 in correspondence, Example 9 and Comparative Example 7 in correspondence, and Example 10 and Comparative Example 8 in correspondence.
  • the ESR of the capacitor was measured.
  • Each solid electrolytic capacitor was exposed to a temperature environment of 150° C., and ESR was measured for each elapsed time.
  • the measurement frequency was set to 100 kHz, which is a high frequency region.
  • Table 3 below shows the ESR immediately before exposure to a temperature environment of 150° C., that is, the ESR when the elapsed time is zero hours and the ESR after 260 hours have elapsed.
  • Example 8 in which the conductive layer was a carbon nanotube layer, had a better ESR when used at high frequencies than Comparative Example 6, and when exposed to a high temperature environment, the ESR was better than Comparative Example 6. The difference from Example 6 was further widened and it became good.
  • Example 9 in which the conductive layer was a carbon black layer, had better ESR when used at high frequencies than Comparative Example 7, and its superiority did not change even when exposed to a high temperature environment.
  • Example 10 in which the conductive layer was a titanium nitride layer, exhibited better ESR than Comparative Example 8 when used at high frequencies.
  • the ESR of Comparative Example 6, which was exposed to a high-temperature environment deteriorated significantly, while the ESR of Example 10 maintained a low ESR even when exposed to a high-temperature environment.
  • the ESR at high frequencies is improved by forming a conductive layer containing, for example, a carbon material, titanium, titanium nitride, and composites or mixtures thereof without being limited to the type of conductive layer.
  • a conductive layer containing, for example, a carbon material, titanium, titanium nitride, and composites or mixtures thereof without being limited to the type of conductive layer.
  • the combination of the conductive layer of titanium nitride and the electrolytic solution containing the phosphoric acid compound having an alkyl group having 1 to 10 carbon atoms is superior to the case where the conductive layer of titanium nitride is simply laminated on the cathode foil. , which improves the ESR of solid electrolytic capacitors.
  • Example 11-16 solid electrolytic capacitors of Examples 11 to 16 were produced.
  • the solid electrolytic capacitors of Examples 11 to 16 differed from Example 1 only in the amount of the phosphoric acid compound added, and were manufactured by the same manufacturing method and under the same conditions as in Example 1 except for the amount of addition. They have the same configuration, the same composition and the same composition ratio.
  • the ESR of the solid electrolytic capacitors of Comparative Example 2, Example 1, and Examples 11 to 16 was measured. Each solid electrolytic capacitor was exposed to a temperature environment of 150° C., and ESR was measured for each elapsed time. The measurement frequency was set to 100 kHz, which is a high frequency region. Table 4 below shows the ESR immediately before exposure to a temperature environment of 150° C., that is, the ESR when the elapsed time is 0 hours and the ESR after 260 hours.
  • Comparative Example 2 does not contain a phosphoric acid compound.
  • the amount of dibutyl phosphate added per 100 g of the electrolytic solution is different from 2 mmol to 33 mmol.
  • the ESR after 260 hours is particularly good. Moreover, there is no change in the ESR after 260 hours when the added amount of the phosphoric acid compound is 16 mmol or 33 mmol per 100 g of the electrolytic solution.
  • Example 17-25 solid electrolytic capacitors of Examples 17 to 25 were produced.
  • the solid electrolytic capacitor of Example 17 differs from that of Example 1 only in the cation species contained in the electrolytic solution. They have the same structure, the same composition and the same composition ratio.
  • the solid electrolytic capacitors of Examples 18 to 25 differed from Example 17 only in the solvent type of the electrolytic solution, and were produced by the same manufacturing method and under the same conditions as in Example 1 except for the cation type and solvent type. and have the same configuration, composition and composition ratio. Further, as Comparative Example 9, a solid electrolytic capacitor was produced in the same manner as in Example 25, except that the electrolytic solution did not contain a phosphoric acid compound.
  • the ESR of the solid electrolytic capacitors of Comparative Example 9, Example 1, and Examples 17 to 25 was measured. Each solid electrolytic capacitor was exposed to a temperature environment of 150° C., and ESR was measured for each elapsed time. The measurement frequency was set to 100 kHz, which is a high frequency region. Table 5 below shows the ESR immediately before exposure to a temperature environment of 150° C., that is, the ESR when the elapsed time is 0 hours and the ESR after 260 hours.
  • the solid electrolytic capacitor of Example 17 differs from Example 1 in that triethylamine is added to the electrolytic solution instead of ammonia. Also in the solid electrolytic capacitors of Examples 18 to 25 and Comparative Example 9, triethylamine was added as a cationic species to the electrolytic solution.
  • the solvent species of the electrolytic solution are ethylene glycol and glycerin, ethylene glycol accounts for 90 wt % in the solvent, and glycerin accounts for 10 wt % in the solvent.
  • the solvent species of the electrolytic solution are ethylene glycol and glycerin, ethylene glycol accounts for 40 wt % in the solvent, and glycerin accounts for 60 wt % in the solvent.
  • the solvent species of the electrolytic solution is glycerin.
  • the solvent species of the electrolytic solution is sulfolane.
  • the solvent species of the electrolytic solution are equal amounts of sulfolane and polyethylene glycol having an average molecular weight of 300 in weight ratio.
  • the solvents of the electrolytic solution are glycerin and polyethylene glycol with an average molecular weight of 300, glycerin accounts for 70 wt % of the solvent, and polyethylene glycol with an average molecular weight of 300 accounts for 30 wt % of the solvent.
  • the solvent species of the electrolytic solution is ⁇ -butyrolactone.
  • Example 25 the solvents of the electrolytic solution are glycerin and polyethylene glycol with an average molecular weight of 300, and the weight ratio of glycerin and polyethylene glycol with an average molecular weight of 300 is equal. Comparative Example 9 does not contain dibutyl phosphate in the electrolytic solution, and the solvent species of the electrolytic solution is ⁇ -butyrolactone.
  • Example 1 As shown in Table 5, the ESR of Example 1 is equivalent to that of Example 17 before exposure to the high temperature environment, but is lower than that of Example 18 after exposure to the high temperature environment. That is, although any kind of cationic species added to the electrolytic solution does not hinder the reduction of ESR, ammonia is particularly preferable.
  • the ESR after being exposed to a high temperature environment was 0.0260 ⁇ or less.
  • the ESR after being exposed to a high temperature environment was 0.0330 ⁇ or higher.
  • any type of solvent does not hinder the reduction of ESR, but one or a mixture of two or more selected from the group of ethylene glycol, glycerin and sulfolane is used. Especially preferred.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

高周波領域でも低ESRとなる固体電解コンデンサ及び製造方法を提供する。固体電解コンデンサは、陽極箔と陰極体と電解質層を備える。陽極箔は、弁作用金属により成り、表面に誘電体酸化皮膜が形成されている。陰極体は、弁作用金属により成る陰極箔、及び当該陰極箔の表面に形成された導電層を有する。電解質層は、陽極箔と前記陰極箔との間に介在し、電解液及び導電性高分子を含む。電解液は、炭素数が1以上10以下のアルキル基を有するリン酸化合物を含む。

Description

固体電解コンデンサ及び製造方法
 本発明は、電解質層に電解液と導電性高分子を含む固体電解コンデンサ及び製造方法に関する。
 電解コンデンサは、タンタルあるいはアルミニウム等のような弁作用金属を陽極箔及び陰極箔として備えている。陽極箔は、弁作用金属を焼結体あるいはエッチング箔等の形状にすることで拡面化され、拡面化された表面に誘電体酸化皮膜層を有する。電解コンデンサは陽極側と陰極側に容量が発現する直列コンデンサと見做すことができる。従って、陽極側容量を効率良く活用するには陰極側容量も非常に重要である。
 陽極側容量を効率良く活用するために、陰極箔もエッチング処理により表面積を増大させている。しかし、陰極箔の厚みの観点から陰極箔の拡面化にも限界がある。そこで、窒化チタン等の金属窒化物の皮膜を陰極箔に形成した電解コンデンサが提案されている。窒素ガス環境下で、イオンプレーティング法の一種である真空アーク蒸着法によってチタンを蒸発させ、陰極箔の表面に窒化チタンを堆積させる。金属窒化物は不活性であるために自然酸化皮膜が形成され難く、陰極側容量は理論的には無限大に漸近する。また蒸着皮膜は微細な凹凸が形成されて陰極の表面積が拡大する。
 陽極箔と陰極箔の間には電解液が介在する。電解液は、陽極箔の凹凸面に密接し、真の陰極として機能する。電解液は、例えばエチレングリコ-ルやγ-ブチロラクトンを溶媒とし、1,6-デカンジカルボン酸、1,7-オクタンジカルボン酸、アゼライン酸等のカルボン酸又はその塩等を溶質として含有する。電解液には、時間経過とともに電解コンデンサの外部へ抜けてしまう蒸発揮散が起こる。そのため、電解コンデンサはドライアップに向けて経時的に静電容量が低下し、また経時的に損失角の正接(tanδ)が上昇し、ついには寿命を迎える。
 そこで、電解液に代えて陽極箔と陰極箔との間に導電性高分子を介在させた電解コンデンサも多用されている。導電性高分子は、π共役二重結合を有するモノマーから誘導され、外部ドーパント分子によりドーピングされている。この導電性高分子としては、例えばポリ(3,4-エチレンジオキシチオフェン)(PEDOT)が挙げられる。ドーパントとしては、ポリスチレンスルホン酸が挙げられる。
 但し、固体電解質を備えた電解コンデンサは、電解液を備えた電解コンデンサと比べて、誘電体酸化皮膜の欠陥部の修復作用に乏しい。そこで、陽極箔と陰極箔との間に固体電解質を介在させると共に、電解液を含浸させた所謂ハイブリッドタイプの電解コンデンサも注目されている。
特開2000-114108号公報 特開2008-10657号公報
 電子機器のディジタル化に伴い、小型、大容量でESR(等価直列抵抗)の小さいコンデンサが求められるようになってきた。固体電解コンデンサは、フィルムコンデンサやセラミックコンデンサと比べて大容量であり、また導電性高分子が高い導電性を有するため、良好なESRを有する。そのため、例えば高周波平滑用途等に固体電解コンデンサが採用される例が多くなっている。そして、近年、ディジタル機器は数十kHz超の高周波領域で作動するようになり、固体電解コンデンサにも高周波領域でも低ESRであることが要望される。
 本発明は、上記課題を解決するために提案されたものであり、その目的は、高周波領域でも低ESRとなる固体電解コンデンサ及び製造方法を提供することにある。
 上記課題を解決すべく、本実施形態の固体電解コンデンサは、弁作用金属により成り、表面に誘電体酸化皮膜が形成された陽極箔と、前記陽極箔に対向する陰極体と、前記陽極箔と前記陰極体との間に介在し、電解液及び導電性高分子を含む電解質層と、を備え、前記陰極体は、弁作用金属により成る陰極箔、及び当該陰極箔の表面に形成された導電層を有し、前記電解液は、炭素数が1以上10以下のアルキル基を有するリン酸化合物を含む。
 前記リン酸化合物は、ジブチルリン酸、トリブチルリン酸、亜リン酸ジブチル、亜リン酸トリブチルの群から選択される1種又は2種以上の混合であるようにしてもよい。
 前記導電層は、炭素材、チタン、窒化チタン、炭化チタン及びこれらの複合材又は混合材を含むようにしてもよい。
 前記リン酸化合物は、前記電解液100g当たり4mmol以上であるようにしてもよい。
 前記リン酸化合物は、前記電解液100g当たり4mmol以上16mmol以下であるようにしてもよい。
 前記電解液は、エチレングリコール、グリセリン及びスルホランの群から選ばれる1種又は2種以上を含むようにしてもよい。
 前記陰極箔は、当該陰極箔の表面に拡面層を有し、前記導電層は、前記拡面層状に形成されているようにしてもよい。
 また、上記課題を解決すべく、本実施形態の固体電解コンデンサの製造方法は、陽極箔、陰極体及び電解質層を備える固体電解コンデンサの製造方法であって、弁作用金属を含む陰極箔の表面に導電層を形成することで、前記陰極体を作製する工程と、炭素数が1以上10以下のアルキル基を有するリン酸化合物を含有する電解液を調製する電解液調製工程と、前記電解液と導電性高分子を前記陽極箔と前記陰極体との間に介在させることで、前記電解質層を形成する電解質層形成工程と、を含む。
 本発明によれば、固体電解コンデンサは少なくとも高周波領域で低ESRとなる。
実施例1並びに比較例1、2及び3の各経過時間におけるESRを示したグラフである。 実施例2並びに比較例1、2及び4の各経過時間におけるESRを示したグラフである。
 以下、実施形態に係る固体電解コンデンサについて説明する。なお、本発明は、以下に説明する実施形態に限定されるものでない。
 (固体電解コンデンサ)
 固体電解コンデンサは、誘電体酸化皮膜の誘電分極作用により静電容量を得て電荷の蓄電及び放電を行う受動素子である。この固体電解コンデンサは、コンデンサ素子をケースに収容して、封口体でケース開口を封止して成る。コンデンサ素子は、陽極箔、陰極箔、セパレータ及び電解質層を備える。陽極箔と陰極体はセパレータを介して対向し、巻回又は積層される。陽極箔の表面には誘電体酸化皮膜が形成されている。電解質層は、導電性高分子を含む固体電解質層と電解液とにより成る。固体電解質層は、陽極箔と陰極箔との間に介在し、誘電体酸化皮膜と密着する。電解液は、固体電解質層が形成されたコンデンサ素子の空隙に含浸する。
 (陽極箔)
 陽極箔は弁作用金属を延伸した長尺の箔体である。弁作用金属は、アルミニウム、タンタル、ニオブ、酸化ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス及びアンチモン等である。純度は、陽極箔に関して99.9%以上が望ましいが、ケイ素、鉄、銅、マグネシウム、亜鉛等の不純物が含まれていても良い。
 陽極箔は、弁作用金属の粉体を成形した成形体、成形体を焼結した焼結体、又は圧延された箔にエッチング処理を施したエッチング箔として、表面が拡面化される。拡面構造は、トンネル状のピット、海綿状のピット、又は密集した粉体間の空隙により成る。拡面構造は、典型的には、塩酸等のハロゲンイオンが存在する酸性水溶液中で直流又は交流を印加する直流エッチング又は交流エッチングにより形成され、若しくは芯部に金属粒子等を蒸着又は焼結することにより形成される。尚、エッチングピットは、陽極箔を貫通するように形成されていてもよい。
 誘電体酸化皮膜は、典型的には、陽極箔の表層に形成される酸化皮膜である。例えば、陽極箔がアルミニウム箔であれば、誘電体酸化皮膜は、拡面構造を酸化させた酸化アルミニウムである。誘電体酸化皮膜は、アジピン酸、ホウ酸又はリン酸等の水溶液中で電圧印加する化成処理により形成される。
 (陰極体)
 陰極体は、弁作用金属を延伸した箔体である陰極箔を備える。陰極箔の純度は、99%以上が望ましいが、ケイ素、鉄、銅、マグネシウム、亜鉛等の不純物が含まれていても良い。陰極箔は、表面が平坦なプレーン箔であり、又は拡面化により表面に拡面層が形成されている。拡面層には、酸化皮膜が意図的又は自然に形成されていてもよい。意図的には、化成処理により、薄い誘電体酸化皮膜(1~10Vfs程度)を形成してもよい。自然酸化皮膜は、陰極箔が空気中の酸素と反応することにより形成される。
 この陰極体は、更に導電層を備え、陰極箔と導電層の積層構造を有する。導電層は、導電性材料を含有し、酸化皮膜よりも高導電性の層である。この導電層は、陰極箔の片面又は両面に積層され、陰極体の最表層に位置する。導電性材料としては、例えばチタン、ジルコニウム、タンタル、ニオブ、これらの窒化物若しくは炭化物、炭化アルミニウム、炭素材、及びこれらの複合材又は混合材が挙げられる。この導電層は複数層が積層されてもよく、各層は異種の層であってもよい。
 炭素材としては、繊維状炭素、炭素粉末、又はこれらの混合である。賦活処理や孔を形成する開口処理などの多孔質化処理が施された繊維状炭素や炭素粉末であってもよい。炭素粉末は、例えば、やしがら等の天然植物組織、フェノール等の合成樹脂、石炭、コークス、ピッチ等の化石燃料由来のものを原料とする活性炭、ケッチェンブラック、アセチレンブラック、チャネルブラックなどのカーボンブラック、カーボンナノホーン、無定形炭素、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック、メソポーラス炭素等である。繊維状炭素は、例えば、カーボンナノチューブ、カーボンナノファイバ等である。カーボンナノチューブは、グラフェンシートが1層である単層カーボンナノチューブでも、2層以上のグラフェンシートが同軸状に丸まり、チューブ壁が多層をなす多層カーボンナノチューブ(MWCNT)でもよい。
 これら導電性材料は、陰極箔に塗布、蒸着又は熱処理等によって付着させる。塗布方法は、例えば炭素材料の導電層を形成する場合に好適であり、導電材料、バインダー及び溶媒を含むスラリーをスラリーキャスト法、ドクターブレード法又はスプレー噴霧法等によって陰極体に塗布及び乾燥させ、必要に応じてプレスにより陰極箔と導電層を密着させる。蒸着方法は、例えばチタン等の金属系の導電層を形成する場合に好適であり、真空アーク蒸着、スパッタ蒸着又は電子ビーム蒸着が挙げられる。熱処理は、陰極箔の表面に導電性材料の粉末を付着させ、焼結させる。
 真空アーク蒸着は、真空チャンバ内で材料源に電圧をかけて溶融及び蒸発させ、蒸発した材料源を反応ガスと反応させ、反応ガスと反応した材料源を陰極箔に成膜する。スパッタ蒸着は、ターゲットが配置され、反応ガスが充填された環境下でプラズマを発生させ、ターゲットから材料源を叩き出しつつ、叩き出した材料源を反応ガスと反応させ、反応ガスと反応した材料源を陰極箔に成膜する。電子ビーム蒸着は、真空チャンバ内で材料源に電子ビームを照射して溶融及び蒸発させ、蒸発した材料源を反応ガスと反応させ、反応ガスと反応した材料源を陰極箔に成膜する。
 導電層と陰極箔とを積層した後は、プレス加工にて圧接することが好ましい。プレス加工では、例えば導電層と陰極箔とにより成る陰極体をプレスローラで挟んで、プレス線圧を加える。プレス圧力は0.01~100t/cm程度が望ましい。このプレス加工により、拡面層の細孔に導電性材料が押し込まれた圧接構造が生じ、また拡面層の凹凸面に沿って導電性材料が変形した圧接構造が生じる。この圧接構造は、導電層と陰極箔との密着性及び定着性を向上させ、固体電解コンデンサのESRを低減させる。
 (固体電解質層)
 固体電解質層の導電性高分子は、分子内のドーパント分子によりドーピングされた自己ドープ型又は外部ドーパント分子によりドーピングされた共役系高分子である。共役系高分子は、π共役二重結合を有するモノマー又はその誘導体を化学酸化重合または電解酸化重合することによって得られる。共役系高分子にドープ反応を行うことで導電性高分子は高い導電性を発現する。即ち、共役系高分子に電子を受け入れやすいアクセプター、もしくは電子を与えやすいドナーといったドーパントを少量添加することで導電性を発現する。
 共役系高分子としては、公知のものを特に限定なく使用することができる。例えば、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリチオフェンビニレンなどが挙げられる。これら共役系高分子は、単独で用いられてもよく、2種類以上を組み合わせても良く、更に2種以上のモノマーの共重合体であってもよい。
 上記の共役系高分子のなかでも、チオフェン又はその誘導体が重合されて成る共役系高分子が好ましく、3,4-エチレンジオキシチオフェン(すなわち、2,3-ジヒドロチエノ[3,4-b][1,4]ジオキシン)、3-アルキルチオフェン、3-アルコキシチオフェン、3-アルキル-4-アルコキシチオフェン、3,4-アルキルチオフェン、3,4-アルコキシチオフェン又はこれらの誘導体が重合された共役系高分子が好ましい。チオフェン誘導体としては、3位と4位に置換基を有するチオフェンから選択された化合物が好ましく、チオフェン環の3位と4位の置換基は、3位と4位の炭素と共に環を形成していても良い。アルキル基やアルコキシ基の炭素数は1~16が適している。
 特に、EDOTと呼称される3,4-エチレンジオキシチオフェンの重合体、即ち、PEDOTと呼称されるポリ(3,4-エチレンジオキシチオフェン)が特に好ましい。また、3,4-エチレンジオキシチオフェンにアルキル基が付加された、アルキル化エチレンジオキシチオフェンでもよく、例えば、メチル化エチレンジオキシチオフェン(すなわち、2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)、エチル化エチレンジオキシチオフェン(すなわち、2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)などが挙げられる。
 ドーパントは、公知のものを特に限定なく使用することができる。ドーパントは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、高分子又は単量体を用いてもよい。例えば、ドーパントとしては、ポリアニオン、ホウ酸、硝酸、リン酸などの無機酸、酢酸、シュウ酸、クエン酸、酒石酸、スクアリン酸、ロジゾン酸、クロコン酸、サリチル酸、p-トルエンスルホン酸、1,2-ジヒドロキシ-3,5-ベンゼンジスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ボロジサリチル酸、ビスオキサレートボレート酸、スルホニルイミド酸、ドデシルベンゼンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸などの有機酸が挙げられる。
 ポリアニオンは、例えば、置換若しくは未置換のポリアルキレン、置換若しくは未置換のポリアルケニレン、置換若しくは未置換のポリイミド、置換若しくは未置換のポリアミド、置換若しくは未置換のポリエステルであって、アニオン基を有する構成単位のみからなるポリマー、アニオン基を有する構成単位とアニオン基を有さない構成単位とからなるポリマーが挙げられる。具体的には、ポリアニオンとしては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸などが挙げられる。
 固体電解質層には、導電性高分子に加えて、多価アルコール等の各種添加物を含めてもよい。多価アルコールとしては、ソルビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリオキシエチレングリコール、グリセリン、ポリグリセリン、ポリオキシエチレングリセリン、キシリトール、エリスリトール、マンニトール、ジペンタエリスリトール、ペンタエリスリトール、又はこれらの2種以上の組み合わせが挙げられる。多価アルコールは沸点が高いために乾燥工程後も固体電解質層に残留させることができ、ESR低減や耐電圧向上効果が得られる。
 (電解液)
 電解液は、アニオン成分とカチオン成分が溶媒に添加した溶液である。アニオン成分とカチオン成分は、典型的には、有機酸の塩、無機酸の塩、又は有機酸と無機酸との複合化合物の塩であり、アニオン成分とカチオン成分に解離するイオン解離性塩によって溶媒に添加される。アニオン成分となる酸及びカチオン成分となる塩基が別々に溶媒に添加されてもよい。また、電解液は、アニオン成分又はカチオン成分、アニオン成分とカチオン成分の両者が溶媒に含まれていなくてもよい。
 電解液には、アルキル基を有するリン酸化合物が含まれる。アルキル基の炭素数は1以上10以下が好ましい。アルキル基の直鎖が長くなると、電解液の溶媒に溶解し難くなるが、加水分解し難くなり、化学的安定性が高まる。この範囲であれば、アルキル基を有するリン酸化合物の電解液の溶媒に対する溶解性と化学的安定性とのバランスが良好になり、アルキル基がブチル基であると、電解液の溶媒に対する溶解性と化学的安定性とのバランスが特に良好となる。リン酸化合物は、このアルキル基を少なくとも1つ以上有していればよい。
 このようなリン酸化合物として、ジブチルリン酸、トリブチルリン酸、亜リン酸ジブチル及び亜リン酸トリブチル、亜リン酸トリエチル、亜リン酸トリメチル、トリイソプロピルリン酸及び亜リン酸ジイソプロピルが挙げられる。
 電解液には、このようなリン酸化合物が1種又は2種以上含まれていればよい。陰極体が導電層を備えつつ、このようなリン酸化合物が電解液に含まれていると、例えば160℃等の高温環境下に晒されたとしても、固体電解コンデンサは、100kHz等の高周波領域で良好なESRを示す。また、陰極体が導電層を備えつつ、このようなリン酸化合物が電解液に含まれていると、高温環境下に長時間晒されていたとしても、漏れ電流(LC)が良好に保たれる。
 好ましくは、リン酸化合物は、電解液100g当たり4mmol以上であり、更に好ましくは電解液100g当たり4mmol以上16mmol以下である。4mmol以上であると、固体電解コンデンサが、高温環境下に晒されたとしても、100kHz等の高周波領域で良好なESRを示す。また、電解液100g当たり16mmol以上の範囲では、高温環境下及び100kHz等の高周波領域におけるESRの変化は乏しくなる。そのため、他のコンデンサ特性やコスト面から、リン酸化合物は、電解液100g当たり16mmol以下が更に好ましいものである。
 このリン酸化合物が含まれていれば、アニオン成分としては、有機酸、無機酸、又は有機酸と無機酸の複合化合物が電解液に含まれていてもよい。有機酸としては、シュウ酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、アジピン酸、安息香酸、トルイル酸、エナント酸、マロン酸、1,6-デカンジカルボン酸、1,7-オクタンジカルボン酸、アゼライン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、t-ブチルアジピン酸、11-ビニル-8-オクタデセン二酸、レゾルシン酸、フロログルシン酸、没食子酸、ゲンチシン酸、プロトカテク酸、ピロカテク酸、トリメリット酸、ピロメリット酸等のカルボン酸や、フェノール類、スルホン酸が挙げられる。また、無機酸としては、ホウ酸、リン酸、亜リン酸、次亜リン酸、炭酸、ケイ酸等が挙げられる。有機酸と無機酸の複合化合物としては、ボロジサリチル酸、ボロジ蓚酸、ボロジグリコール酸、ボロジマロン酸、ボロジコハク酸、ボロジアジピン酸、ボロジアゼライン酸、ボロジ安息香酸、ボロジマレイン酸、ボロジ乳酸、ボロジリンゴ酸、ボロジ酒石酸、ボロジクエン酸、ボロジフタル酸、ボロジ(2-ヒドロキシ)イソ酪酸、ボロジレゾルシン酸、ボロジメチルサリチル酸、ボロジナフトエ酸、ボロジマンデル酸及びボロジ(3-ヒドロキシ)プロピオン酸等が挙げられる。
 また、有機酸、無機酸、ならびに有機酸と無機酸の複合化合物の少なくとも1種の塩としては、例えばアンモニウム塩、四級アンモニウム塩、四級化アミジニウム塩、アミン塩、ナトリウム塩、カリウム塩等が挙げられる。四級アンモニウム塩の四級アンモニウムイオンとしては、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等が挙げられる。四級化アミジニウム塩としては、エチルジメチルイミダゾリニウム、テトラメチルイミダゾリニウム等が挙げられる。アミン塩としては、一級アミン、二級アミン、三級アミンの塩が挙げられる。一級アミンとしては、メチルアミン、エチルアミン、プロピルアミン等、二級アミンとしては、ジメチルアミン、ジエチルアミン、エチルメチルアミン、ジブチルアミン等、三級アミンとしては、トリメチルアミン、トリエチルアミン、トリブチルアミン、エチルジメチルアミン、エチルジイソプロピルアミン等が挙げられる。
 電解液の溶媒は、特に限定されるものではないが、プロトン性の有機極性溶媒又は非プロトン性の有機極性溶媒を用いることができる。プロトン性の有機溶媒としては、一価アルコール類、多価アルコール類及びオキシアルコール化合物類などが挙げられる。一価アルコール類としては、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロブタノール、シクロペンタノール、シクロヘキサノール、ベンジルアルコール等が挙げられる。多価アルコール類及びオキシアルコール化合物類としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、メチルセロソルブ、エチルセロソルブ、メトキシプロピレングリコール、ジメトキシプロパノール、ポリグリセリン、ポリエチレングリコールやポリオキシエチレングリセリンなどの多価アルコールのアルキレンオキサイド付加物等が挙げられる。
 非プロトン性の有機極性溶媒として、スルホン系、アミド系、ラクトン類、環状アミド系、ニトリル系、スルホキシド系などが用いられてもよい。スルホン系としては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等が挙げられる。アミド系としては、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N-ジエチルアセトアミド、ヘキサメチルホスホリックアミド等が挙げられる。ラクトン類、環状アミド系としては、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、N-メチル-2-ピロリドン、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、イソブチレンカーボネート等が挙げられる。ニトリル系としては、アセトニトリル、3-メトキシプロピオニトリル、グルタロニトリル等が挙げられる。スルホキシド系としてはジメチルスルホキシド等が挙げられる。
 好ましくは、電解液の溶媒又は溶媒中の他の種として、エチレングリコール、グリセリン又はスルホランを含有させる。エチレングリコール、グリセリン及びスルホランは、導電性高分子の高次構造の変化を起こす。そのため、固体電解コンデンサの初期のESRが良好になり、さらには高温環境下におけるESRの悪化も抑制される。
 さらに、電解液には他の添加剤を添加することもできる。添加剤としては、ホウ酸と多糖類(マンニット、ソルビットなど)との錯化合物、ホウ酸と多価アルコールとの錯化合物、ホウ酸エステル、ニトロ化合物(o-ニトロ安息香酸、m-ニトロ安息香酸、p-ニトロ安息香酸、o-ニトロフェノール、m-ニトロフェノール、p-ニトロフェノール、p-ニトロベンジルアルコールなど)などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (セパレータ)
 セパレータは、クラフト、マニラ麻、エスパルト、ヘンプ、レーヨン等のセルロース及びこれらの混合紙、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、それらの誘導体などのポリエステル系樹脂、ポリテトラフルオロエチレン系樹脂、ポリフッ化ビニリデン系樹脂、ビニロン系樹脂、脂肪族ポリアミド、半芳香族ポリアミド、全芳香族ポリアミド等のポリアミド系樹脂、ポリイミド系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、トリメチルペンテン樹脂、ポリフェニレンサルファイド樹脂、アクリル樹脂、ポリビニルアルコール樹脂等が挙げられ、これらの樹脂を単独で又は混合して用いることができる。
 以下、実施例の固体電解コンデンサをさらに詳細に説明する。なお、本発明は、以下に説明する実施例に限定されるものでない。
 (実施例1及び2)
 比較例1乃至4並びに実施例1及び2の固体電解コンデンサを作製した。まず、アルミニウム箔を用いて陽極箔及び陰極箔を作製した。陽極箔は、エッチング処理により拡面化し、アジピン酸水溶液を用いた化成処理により61.7Vfsの化成電圧で誘電体酸化皮膜を形成した。陰極箔は、エッチング処理により拡面化し、アジピン酸水溶液を用いた化成処理により3Vfsの化成電圧で酸化皮膜を形成した。比較例2、実施例1及び実施例2の陰極箔には導電層を積層した。導電層は厚さ100nmの炭化チタン層であり、陰極箔の表面に真空蒸着法により形成した。比較例1、比較例3及び比較例4には導電層は未形成とした。
 これら陽極箔と陰極箔又は陰極体の各々にリード線を接続し、セルロース系のセパレータを介して陽極箔と陰極箔又は陰極体を対向させて巻回した。巻回体に対しては、リン酸二水素アンモニウム水溶液に20分間浸漬されることで、修復化成が行われた。その後、105℃で乾燥させた。
 この巻回体を導電性高分子分散液に浸漬し、陽極箔の誘電体酸化皮膜、陰極箔及びセパレータに導電性高分子を付着させた。導電性高分子分散液には、ポリスチレンスルホン酸でドーピングされたポリ(3,4-エチレンジオキシチオフェン)の粒子を導電性高分子として分散させ、エチレングリコールを添加した。巻回体を1回目に導電性高分子分散液に浸漬した後、巻回体を125℃で30分間乾燥させた。更に、巻回体を導電性高分子分散液に浸漬し、2回目に浸漬した後、巻回体を150℃で30分間乾燥させた。
 更に、導電性高分子を付着させた巻回体に電解液を含浸させた。各実施例及び比較例の電解液は、エチレングリコールを溶媒として含有する。比較例1及び2の電解液には、電解液100gあたり16mmolのアゼライン酸のみが含有し、比較例3及び実施例1の電解液には、アゼライン酸とジブチルリン酸が電解液100gあたり各々16mmolずつ含有し、比較例4及び実施例2の電解液には、アゼライン酸とトリブチルリン酸が電解液100gあたり各々16mmolずつ含有する。また、各実施例及び比較例の電解液には、16mmolのアンモニアが溶質のカチオン成分として含まれている。
 電解液を含浸させたコンデンサ素子は、有底筒状の外装ケースに挿入された。外装ケースの開口端部には封口ゴムが装着され、加締め加工によって封止された。各固体電解コンデンサは、電圧印加によってエージング処理した。作製した各固体電解コンデンサは、直径10.0mmで高さ10.0mmであり、定格耐電圧は35WV、比較例1、3及び4の定格容量は330μF、比較例2および実施例1、2の定格容量は390μFであった。
 (高周波ESRその1)
 実施例1及び2並びに比較例1乃至4の固体電解コンデンサのESRを測定した。160℃の温度環境下に各固体電解コンデンサを晒し、経過時間ごとにESRを測定した。測定周波数は、高周波領域である100kHzとした。160℃の温度環境下に晒す直前、即ち経過時間がゼロ時間におけるESRと、800時間経過後のESRを下表1に示す。また、比較例1、比較例2、比較例3及び実施例1のESRを図1のグラフに示し、比較例1、比較例2、比較例4及び実施例2のESRを図2のグラフに示す。図1及び図2のグラフの横軸は経過時間であり、縦軸はESRである。
 (表1)
Figure JPOXMLDOC01-appb-I000001
 表1並びに図1及び図2に示すように、ジブチルリン酸又はトリブチルリン酸が電解液に添加された比較例3及び比較例4は、経過時間がゼロ時間及び800時間の両方で比較例1よりも低ESRを達成している。比較例3と比較例1の差は、800時間経過後において0.0015Ωであり、比較例4と比較例1の差は、800時間経過後において0.0016Ωである。陰極箔上に導電層を有する比較例2は、ゼロ時間及び800時間の両方でESRが比較例1と殆ど変わらない。
 これに対し、ジブチルリン酸又はトリブチルリン酸が電解液に添加され、且つ導電層を陰極箔上に備える実施例1及び2は、800時間経過後において、比較例3及び比較例4よりも更に0.0012Ω及び0.0007Ωの低ESRになっている。陰極箔上に導電層を有する比較例2のESRが、ゼロ時間及び800時間の両方で比較例1と殆ど変わらないにも関わらず、実施例1及び実施例2は、このような良好なESRを達成している。
 これにより、陰極箔の表面に形成された導電層を陰極体に備え、電解液は、炭素数が1以上10以下のアルキル基を有するリン酸化合物を電解液に含有させることで、固体電解コンデンサのESRをより低減させることが確認された。特に、ブチル基を有するリン酸化合物を電解液に含有させることで、固体電解コンデンサのESRをより低減させている。
 (実施例3-7)
 次に、実施例3乃至7の固体電解コンデンサを作製した。実施例3乃至7の固体電解コンデンサは、導電層として実施例1及び実施例2と同じく、炭化チタンを陰極体に備えているが、実施例1及び2と異なる種類のリン酸化合物を備える。但し、実施例3乃至7のリン酸化合物は、炭素数が1以上10以下のアルキル基を有する。また、炭化チタンを陰極体に備え、リン酸を電解液中に含む比較例5の固体電解コンデンサを作製した。実施例3乃至7並びに比較例5の固体電解コンデンサは、リン酸化合物の種類を除き、実施例1と同一製法及び同一条件で作製され、同一構成、同一組成及び同一組成比を有する。
 (高周波ESR及びLC)
 実施例1、実施例3乃至7、並びに比較例5の固体電解コンデンサのESRを測定した。150℃の温度環境下に各固体電解コンデンサを晒し、経過時間ごとにESRを測定した。測定周波数は、高周波領域である100kHzとした。150℃の温度環境下に晒す直前、即ち経過時間がゼロ時間におけるESRと、260時間経過後のESRを下表2に示す。
 また、実施例1及び比較例5の固体電解コンデンサのLC(漏れ電流)を測定した。各固体電解コンデンサを150℃の温度環境下に2700時間放置し、放置後の漏れ電流を測定した。漏れ電流は、各固体電解コンデンサに定格耐電圧である35WVを印加し、当該電圧を2分間保持したときに流れる電流値とした。漏れ電流の結果を下表2に示す。
 (表2)
Figure JPOXMLDOC01-appb-I000002
 表2に示すように、実施例1のリン酸化合物はジブチルリン酸である。実施例3では、等モル量のジブチルリン酸とトリイソプイロピルリン酸を電解液に混合した。実施例4のリン酸化合物は亜リン酸ジブチルである。実施例5のリン酸化合物は亜リン酸トリエチルである。実施例6のリン酸化合物は亜リン酸トリメチルである。実施例7のリン酸化合物はトリイソプロピルリン酸である。
 表2に示すように、実施例3及び4は、実施例1と実施例2と同様に、ブチル基を有するリン酸化合物を電解液に含有させた固体電解コンデンサである。これら実施例3及び4についても、経過時間がゼロ時間におけるESRと、260時間経過後のESRが、表2中の実施例1と殆ど変わらない値となっている。
 また、実施例4乃至7は、ブチル基とは異なるアルキル基を有するリン酸化合物を電解液に含有させた固体電解コンデンサである。これら実施例4乃至7は、実施例1、実施例3及び4の固体電解コンデンサと同様に良好なESR特性を有している。このように、陰極箔の表面に形成された導電層を陰極体に備え、電解液は、炭素数が1以上10以下のアルキル基を有するリン酸化合物を電解液に含有させると、固体電解コンデンサのESRを低減させるものである。また、ブチル基を有するリン酸化合物を含有させた実施例1、実施例3及び4は特に良好なESR特性を有しており、アルキル基としてはブチル基が好ましい。
 尚、比較例5のように、電解液に炭素数が1以上10以下のアルキル基を有するリン酸化合物ではなく、リン酸を加えた場合、実施例1と比較し、漏れ電流(LC)が著しく悪くなってしまう。炭素数が1以上10以下のアルキル基を有するリン酸化合物を用いることで、比較例5のようなLCの悪化を防止することができる。
 (実施例8-10)
 実施例8乃至10の固体電解コンデンサを作製した。実施例8乃至10の固体電解コンデンサは、リン酸化合物として実施例1及び2と異なる種類のリン酸化合物を備えているが、実施例1及び2と導電層の種類が異なる。また、これら実施例8乃至10に対応させて、導電層の種類は同じであるが、リン酸化合物が電解液に非含有の比較例6乃至8の固体電解コンデンサを作製した。
 実施例8の固体電解コンデンサと、この実施例8に対応する比較例6の固体電解コンデンサは、次の通り作製された。即ち、実施例8において、陰極箔に積層する導電層は、厚さ100nmのカーボンナノチューブ層であり、陰極箔の表面に真空蒸着法により形成した。比較例6の陰極箔には導電層が未積層である。セルロース系セパレータを陽極箔と陰極体又は陰極箔との間に挟み込んだ。作製した各固体電解コンデンサは、直径10.0mmで高さ7.7mmであり、定格耐電圧は25WV、定格容量は270μFである。実施例8及び比較例6のその他の製造方法、製造条件、コンデンサ構造、組成及び組成比は、実施例1と同一である。
 実施例9の固体電解コンデンサと、この実施例9に対応する比較例7の固体電解コンデンサは、次の通り作製された。即ち、実施例9において、陰極箔に積層する導電層は、厚さ100nmのカーボンブラック層であり、陰極箔の表面に真空蒸着法により形成した。陰極体は、プレスローラで挟み込まれ、プレス線圧が加えられた。比較例7の陰極箔には導電層が未積層である。セルロース系セパレータを陽極箔と陰極体又は陰極箔との間に挟み込んだ。作製した各固体電解コンデンサは、直径10.0mmで高さ10.0mmであり、定格耐電圧は25WV、定格容量は580μFである。実施例9及び比較例7のその他の製造方法、製造条件、コンデンサ構造、組成及び組成比は、実施例1と同一である。
 実施例10の固体電解コンデンサと、この実施例10に対応する比較例8の固体電解コンデンサは、次の通り作製された。即ち、実施例10において、陰極箔に積層する導電層は、厚さ100nmの窒化チタン層であり、陰極箔の表面に真空蒸着法により形成した。比較例8の陰極箔には導電層が未積層である。セルロース系セパレータを陽極箔と陰極体又は陰極箔との間に挟み込んだ。作製した各固体電解コンデンサは、直径10.0mmで高さ10.0mmであり、定格耐電圧は25WV、定格容量は470μFである。実施例10及び比較例8のその他の製造方法、製造条件、コンデンサ構造、組成及び組成比は、実施例1と同一である。
 (高周波ESR)
 対応関係にある実施例1と比較例2、対応関係にある実施例8と比較例6、対応関係にある実施例9と比較例7、対応関係にある実施例10と比較例8の固体電解コンデンサのESRを測定した。150℃の温度環境下に各固体電解コンデンサを晒し、経過時間ごとにESRを測定した。測定周波数は、高周波領域である100kHzとした。150℃の温度環境下に晒す直前、即ち経過時間がゼロ時間におけるESRと、260時間経過後のESRを下表3に示す。
 (表3)
Figure JPOXMLDOC01-appb-I000003
 表3に示すように、導電層をカーボンナノチューブ層とした実施例8は、比較例6よりも、高周波で使用された際のESRは良好であり、高温環境下に晒された場合には比較例6と更に差が開いて良好となった。導電層をカーボンブラック層とした実施例9は、比較例7よりも、高周波で使用された際のESRは良好であり、また高温環境下に晒された場合にも優位性は変わらなかった。導電層を窒化チタン層とした実施例10は、比較例8よりも、高周波で使用された際のESRは良好であった。しかも、高温環境下に晒された比較例6は、ESRが著しく悪化したが、実施例10は、高温環境下に晒されても低いESRを維持した。
 このように、導電層の種類に限定されることなく、例えば炭素材、チタン、窒化チタン及びこれらの複合材又は混合材を含む導電層を形成することで、高周波でのESRが良好となる。特に、窒化チタンの導電層と、炭素数が1以上10以下のアルキル基を有するリン酸化合物を含む電解液の組み合わせは、単に窒化チタンの導電層を陰極箔に積層している場合と比べて、固体電解コンデンサのESRを良好にしている。
 (実施例11-16)
 次に、実施例11乃至16の固体電解コンデンサを作製した。実施例11乃至16の固体電解コンデンサは、実施例1と比べて、リン酸化合物の添加量のみが異なるものであり、添加量を除いて、実施例1と同一製法及び同一条件で作製され、同一構成、同一組成及び同一組成比を有する。
 (高周波ESR)
 比較例2、実施例1、及び実施例11乃至16の固体電解コンデンサのESRを測定した。150℃の温度環境下に各固体電解コンデンサを晒し、経過時間ごとにESRを測定した。測定周波数は、高周波領域である100kHzとした。150℃の温度環境下に晒す直前、即ち経過時間がゼロ時間におけるESRと、260時間経過後のESRを下表4に示す。
 (表4)
Figure JPOXMLDOC01-appb-I000004
 表4に示すように、比較例2はリン酸化合物が未添加である。実施例1、実施例11乃至16は、電解液100gあたりのジブチルリン酸の添加量が2mmolから33mmolの間で相違している。
 表4に示すように、リン酸化合物の添加量が電解液100gあたり4mmol以上になると、260時間経過後のESRが特に良好になる。また、リン酸化合物の添加量が電解液100gあたり16mmolと33mmolとは、260時間経過後のESRに変化がない。
 (実施例17-25)
 次に、実施例17乃至25の固体電解コンデンサを作製した。実施例17の固体電解コンデンサは、実施例1と比べて、電解液に含まれるカチオン種のみが異なるものであり、溶媒種を除いて、実施例1と同一製法及び同一条件で作製され、同一構成、同一組成及び同一組成比を有する。実施例18乃至25の固体電解コンデンサは、実施例17と比べて、電解液の溶媒種のみが異なるものであり、カチオン種と溶媒種を除いて、実施例1と同一製法及び同一条件で作製され、同一構成、同一組成及び同一組成比を有する。また、比較例9として、リン酸化合物が電解液に非含有である点を除き、実施例25と同一の固体電解コンデンサを作製した。
 (高周波ESR)
 比較例9、実施例1、及び実施例実施例17乃至25の固体電解コンデンサのESRを測定した。150℃の温度環境下に各固体電解コンデンサを晒し、経過時間ごとにESRを測定した。測定周波数は、高周波領域である100kHzとした。150℃の温度環境下に晒す直前、即ち経過時間がゼロ時間におけるESRと、260時間経過後のESRを下表5に示す。
 (表5)
Figure JPOXMLDOC01-appb-I000005
 表5に示すように、実施例17の固体電解コンデンサは、アンモニアに代えてトリエチルアミンを電解液に添加している点で、実施例1と異なる。実施例18乃至25並びに比較例9の固体電解コンデンサについても、カチオン種としてトリエチルアミンが電解液中に添加されている。実施例18は、電解液の溶媒種がエチレングリコールとグリセリンであり、溶媒中の90wt%をエチレングリコールが占め、溶媒中の10wt%をグリセリンが占める。実施例19は、電解液の溶媒種がエチレングリコールとグリセリンであり、溶媒中の40wt%をエチレングリコールが占め、溶媒中の60wt%をグリセリンが占める。
 実施例20は、電解液の溶媒種がグリセリンである。実施例21は、電解液の溶媒種がスルホランである。実施例22は、電解液の溶媒種が重量比で等量のスルホランと平均分子量が300のポリエチレングリコールである。実施例23は、電解液の溶媒種がグリセリンと平均分子量が300のポリエチレングリコールであり、溶媒中の70wt%をグリセリンが占め、溶媒中の30wt%を平均分子量が300のポリエチレングリコールが占める。実施例24は、電解液の溶媒種がγ-ブチロラクトンである。実施例25は電解液の溶媒種がグリセリンと平均分子量が300のポリエチレングリコールであり、グリセリンと平均分子量が300のポリエチレングリコールは重量比で等量である。比較例9は、ジブチルリン酸が電解液に非含有であり、電解液の溶媒種がγ-ブチロラクトンである。
 表5に示すように、実施例1のESRは、高温環境下に晒す前において実施例17と同等であるが、高温環境下に晒された後において実施例18よりも低くなっている。即ち、電解液に添加するカチオン種としては、何れの種類であってもESRの低減を妨げるものではないが、アンモニアが特に好ましい。
 また、表5に示すように、実施例17乃至23において、高温環境下に晒された後のESRは、0.0260Ω以下であった。実施例24において、高温環境下に晒された後のESRは、0.0330Ω以上であった。このように、電解液に添加する溶媒としては、何れの種類であってもESRの低減を妨げるものではないが、エチレングリコール、グリセリン及びスルホランの群から選ばれる1種又は2種以上の混合が特に好ましい。

Claims (8)

  1.  弁作用金属を含み、表面に誘電体酸化皮膜が形成された陽極箔と、
     前記陽極箔に対向する陰極体と、
     前記陽極箔と前記陰極体との間に介在し、電解液及び導電性高分子を含む電解質層と、
     を備え、
     前記陰極体は、弁作用金属を含む陰極箔、及び当該陰極箔の表面に形成された導電層を有し、
     前記電解液は、炭素数が1以上10以下のアルキル基を有するリン酸化合物を含むこと、
     を特徴とする固体電解コンデンサ。
  2.  前記リン酸化合物は、ジブチルリン酸、トリブチルリン酸、亜リン酸ジブチル、亜リン酸トリブチルの群から選択される1種又は2種以上の混合であること、
     を特徴とする請求項1記載の固体電解コンデンサ。
  3.  前記導電層は、炭素材、チタン、窒化チタン、炭化チタン及びこれらの複合材又は混合材を含むこと、
     を特徴とする請求項1又は2記載の固体電解コンデンサ。
  4.  前記リン酸化合物は、前記電解液100g当たり4mmol以上であること、
     を特徴とする請求項1又は2記載の固体電解コンデンサ。
  5.  前記リン酸化合物は、前記電解液100g当たり4mmol以上16mmol以下であること、
     を特徴とする請求項1又は2記載の固体電解コンデンサ。
  6.  前記電解液は、エチレングリコール、グリセリン及びスルホランの群から選ばれる1種又は2種以上を含むこと、
     を特徴とする請求項1又は2記載の固体電解コンデンサ。
  7.  前記陰極箔は、当該陰極箔の表面に拡面層を有し、
     前記導電層は、前記拡面層上に形成されていること、
     を特徴とする請求項1又は2記載の固体電解コンデンサ。
  8.  陽極箔、陰極体及び電解質層を備える固体電解コンデンサの製造方法であって、
     弁作用金属を含む陰極箔の表面に導電層を形成することで、前記陰極体を作製する工程と、
     炭素数が1以上10以下のアルキル基を有するリン酸化合物を含有する電解液を調製する電解液調製工程と、
     前記電解液と導電性高分子を前記陽極箔と前記陰極体との間に介在させることで、前記電解質層を形成する電解質層形成工程と、
     を含むこと、
     を特徴とする固体電解コンデンサの製造方法。
PCT/JP2022/036245 2021-09-30 2022-09-28 固体電解コンデンサ及び製造方法 WO2023054504A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-161152 2021-09-30
JP2021161152 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054504A1 true WO2023054504A1 (ja) 2023-04-06

Family

ID=85780744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036245 WO2023054504A1 (ja) 2021-09-30 2022-09-28 固体電解コンデンサ及び製造方法

Country Status (2)

Country Link
TW (1) TW202338874A (ja)
WO (1) WO2023054504A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114108A (ja) 1998-09-30 2000-04-21 Nippon Chemicon Corp 固体電解コンデンサとその製造方法
JP2008010657A (ja) 2006-06-29 2008-01-17 Sanyo Electric Co Ltd 電解コンデンサの製造方法および電解コンデンサ
WO2016174806A1 (ja) * 2015-04-28 2016-11-03 パナソニックIpマネジメント株式会社 電解コンデンサ
JP2017069537A (ja) * 2015-09-30 2017-04-06 カーリットホールディングス株式会社 電解コンデンサ
WO2021125182A1 (ja) * 2019-12-17 2021-06-24 日本ケミコン株式会社 ハイブリッド型電解コンデンサ及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114108A (ja) 1998-09-30 2000-04-21 Nippon Chemicon Corp 固体電解コンデンサとその製造方法
JP2008010657A (ja) 2006-06-29 2008-01-17 Sanyo Electric Co Ltd 電解コンデンサの製造方法および電解コンデンサ
WO2016174806A1 (ja) * 2015-04-28 2016-11-03 パナソニックIpマネジメント株式会社 電解コンデンサ
JP2017069537A (ja) * 2015-09-30 2017-04-06 カーリットホールディングス株式会社 電解コンデンサ
WO2021125182A1 (ja) * 2019-12-17 2021-06-24 日本ケミコン株式会社 ハイブリッド型電解コンデンサ及びその製造方法

Also Published As

Publication number Publication date
TW202338874A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
JP7196919B2 (ja) 固体電解コンデンサ
JP2023176004A (ja) 固体電解コンデンサ
WO2023054504A1 (ja) 固体電解コンデンサ及び製造方法
EP4383296A1 (en) Solid electrolytic capacitor and manufacturing method
KR20240068635A (ko) 고체 전해 콘덴서 및 제조 방법
WO2024058267A1 (ja) 固体電解コンデンサ及び製造方法
CN118160057A (zh) 固体电解电容器及制造方法
WO2022270492A1 (ja) 電解コンデンサ、陰極体及び電解コンデンサの製造方法
WO2024070288A1 (ja) 固体電解コンデンサ及び製造方法
WO2022270493A1 (ja) 電解コンデンサ、陰極体及び電解コンデンサの製造方法
WO2024070604A1 (ja) 固体電解コンデンサ及び製造方法
WO2024070603A1 (ja) 固体電解コンデンサ及び製造方法
WO2024070287A1 (ja) 固体電解コンデンサ
WO2023054502A1 (ja) 固体電解コンデンサ
TW202414465A (zh) 固體電解電容器及製造方法
WO2023013675A1 (ja) 電解コンデンサ
TWI838403B (zh) 固體電解電容器
WO2024029603A1 (ja) 電解コンデンサ及び製造方法
JP2024050386A (ja) 固体電解コンデンサ及び製造方法
TW202418319A (zh) 固體電解電容器及製造方法
TW202414467A (zh) 固體電解電容器及製造方法
JP2021163781A (ja) 固体電解コンデンサ及び製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876370

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551620

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022876370

Country of ref document: EP

Effective date: 20240308