WO2024070287A1 - 固体電解コンデンサ - Google Patents

固体電解コンデンサ Download PDF

Info

Publication number
WO2024070287A1
WO2024070287A1 PCT/JP2023/029438 JP2023029438W WO2024070287A1 WO 2024070287 A1 WO2024070287 A1 WO 2024070287A1 JP 2023029438 W JP2023029438 W JP 2023029438W WO 2024070287 A1 WO2024070287 A1 WO 2024070287A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
conductive polymer
solid electrolytic
weight
electrolytic capacitor
Prior art date
Application number
PCT/JP2023/029438
Other languages
English (en)
French (fr)
Inventor
健太 佐藤
健治 町田
克己 茂垣
恭平 吉岡
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Publication of WO2024070287A1 publication Critical patent/WO2024070287A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to a solid electrolytic capacitor whose electrolyte is a solid electrolyte layer or a solid electrolyte layer and a liquid component.
  • An electrolytic capacitor has anode and cathode foils made of valve metals such as tantalum or aluminum.
  • the anode foil is enlarged by forming the valve metal into a sintered or etched foil, and the enlarged surface has a dielectric film formed by a process such as anodizing.
  • An electrolyte is interposed between the anode and cathode foils.
  • Electrolytic capacitors also contain electrolyte in the form of an electrolytic solution.
  • the contact area of the electrolyte with the dielectric film of the anode foil increases, making it easier to further increase the capacitance of the electrolytic capacitor.
  • the electrolyte evaporates to the outside over time, and the electrolytic capacitor experiences a decrease in capacitance and an increase in dielectric tangent over time, causing it to dry out.
  • solid electrolytic capacitors using solid electrolytes have been attracting attention.
  • Manganese dioxide and 7,7,8,8-tetracyanoquinodimethane (TCNQ) complexes are known as solid electrolytes.
  • conductive polymers derived from monomers with ⁇ -conjugated double bonds such as poly(3,4-ethylenedioxythiophene) (PEDOT), which has a slow reaction rate and excellent adhesion to dielectric films, have rapidly become popular as solid electrolytes.
  • Conductive polymers use acid compounds such as polyanions as dopants, or have a partial structure within the monomer molecule that acts as a dopant, resulting in high conductivity. Therefore, solid electrolytic capacitors have the advantage of low equivalent series resistance (ESR).
  • solid electrolytic capacitors are poor at repairing defects in the anodized film, which acts as a dielectric, and there is a risk of increased leakage current.
  • so-called hybrid-type solid electrolytic capacitors have been proposed, in which a solid electrolyte layer is formed on a capacitor element in which an anode foil and a cathode foil face each other with a separator in between, and the gaps in the capacitor element are impregnated with a driving electrolyte.
  • Capacitors are used for a variety of purposes. For example, in the field of power electronics, power from an AC power source is converted to DC power by a converter circuit, and this DC power is then converted to the desired AC power by an inverter circuit. In this type of power supply circuit, smoothing capacitors are provided to suppress pulsations in the DC output from the converter circuit and smooth the DC before inputting it to the inverter circuit. In addition, decoupling capacitors are provided near semiconductor switching elements such as gallium nitride to ensure stable operation of the semiconductor switching elements and to remove noise.
  • the present invention has been proposed to solve the above problems, and its purpose is to provide a solid electrolytic capacitor that combines low ESR and high voltage resistance.
  • the solid electrolytic capacitor of the present embodiment includes a capacitor element having an anode foil, a cathode body, and an electrolyte
  • the anode foil has a surface enlarged by tunnel-shaped etching pits and has a dielectric coating on the surface
  • the cathode body faces the anode foil
  • the electrolyte includes a solid electrolyte layer containing a conductive polymer, and the weight of the conductive polymer is 11 mg/ cm3 or less per unit volume of the capacitor element.
  • the weight of the conductive polymer may be 2 mg/cm 3 or more and 11 mg/cm 3 or less per unit volume of the capacitor element.
  • the weight of the conductive polymer per unit volume of the capacitor element may be 6.2 mg/cm 3 or more and 9.0 mg/cm 3 or less.
  • It may also include a liquid component that fills the gaps in the capacitor element.
  • the conductive polymer may be dispersed or dissolved in a conductive polymer liquid, which may include a part or all of the conductive polymer and a solvent.
  • the solid electrolyte layer may contain a compound having a hydroxyl group.
  • the solid electrolytic capacitor achieves both low ESR and high voltage resistance.
  • Examples 1 to 8 are graph showing the relationship between the weight of a conductive polymer and the withstand voltage, and the relationship between the weight of a conductive polymer and ESR, in accordance with Examples 1 to 8.
  • 11 is a graph showing the relationship between the weight of a conductive polymer and the withstand voltage, and the relationship between the weight of a conductive polymer and ESR, relating to Examples 9 to 17.
  • a solid electrolytic capacitor has a pair of electrode bodies and an electrolyte layer.
  • One electrode body is an anode foil with a dielectric film formed on the foil surface.
  • the other electrode body is a cathode body.
  • the cathode body is positioned opposite the anode foil.
  • This pair of electrode bodies is positioned opposite each other with an electrolyte layer in between. The assembly of this pair of electrode bodies and electrolyte layer is called a capacitor element.
  • the capacitor element may include a separator.
  • the separator is placed between the pair of electrode bodies to isolate the anode foil and cathode body to prevent short circuits and to hold the electrolyte layer in place. If the shape of the electrolyte layer can be maintained by itself and the pair of electrode bodies can be isolated by the electrolyte layer, the separator can be omitted from the capacitor element.
  • An anode lead is connected to the anode foil, and a cathode lead is connected to the cathode body.
  • the solid electrolytic capacitor is electrically connected to the mounting circuit via these anode and cathode leads. By being conductive to the mounting circuit, the solid electrolytic capacitor becomes a passive element that obtains capacitance through the dielectric polarization action of the dielectric film and stores and discharges electric charge.
  • the electrode body is a foil body made of a valve metal.
  • a wound type a long strip shape obtained by stretching the valve metal is often used, while in the flat type, a flat plate obtained by stretching the valve metal is often used.
  • Valve metals include aluminum, tantalum, niobium, niobium oxide, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony. The purity is preferably 99.9% or more for the anode foil and 99% or more for the cathode body, but impurities such as silicon, iron, copper, magnesium, and zinc may be contained.
  • a surface expansion layer is formed on one or both sides of the anode foil.
  • the surface expansion layer is an etching layer having numerous tunnel-shaped etching pits.
  • the tunnel-shaped etching pits are holes dug in the thickness direction of the foil.
  • the tunnel-shaped pits may penetrate the foil, or may be long enough so that their deepest parts remain within the foil.
  • the tunnel-shaped etching pits are typically formed by passing a direct current in an acidic aqueous solution, such as hydrochloric acid, that contains halogen ions.
  • the tunnel-shaped etching pits are further enlarged by passing a direct current in an acidic aqueous solution, such as nitric acid.
  • the cathode body may be, for example, a foil-shaped cathode foil.
  • the cathode body may be a laminate of a metal layer such as silver and a carbon layer.
  • a surface expansion layer may be formed on one or both sides of the cathode foil.
  • a plain foil without a surface expansion layer may be used as the cathode foil.
  • the surface expansion layer of the cathode foil is an etching layer, a sintered layer formed by sintering valve metal powder, or a vapor deposition layer formed by vapor-depositing valve metal particles onto the foil.
  • the surface expansion layer of the cathode foil is made up of tunnel-shaped pits, spongy pits, or gaps between densely packed powder or particles.
  • the dielectric film is formed on the uneven surface of the surface expansion layer.
  • the dielectric film is typically an oxide film formed on the surface of the anode foil. If the anode foil is aluminum foil, it is an aluminum oxide layer formed by oxidizing the surface of the surface expansion layer.
  • a voltage is applied to the anode foil in a chemical conversion solution until the desired withstand voltage is achieved.
  • the chemical conversion solution is a solution that does not contain halogen ions, and examples of such solutions include phosphoric acid-based chemical conversion solutions such as ammonium dihydrogen phosphate, boric acid-based chemical conversion solutions such as ammonium borate, and adipic acid-based chemical conversion solutions such as ammonium adipate.
  • the cathode body may have a natural oxide film or a thin oxide film (about 1 to 10 V) formed by chemical conversion treatment.
  • the natural oxide film is formed when the cathode body reacts with oxygen in the air.
  • the electrolyte layer is attached to at least a part of the dielectric film of the anode foil, and serves as the true cathode of the solid electrolytic capacitor.
  • the electrolyte layer is in close contact with the entire dielectric film and is connected to the surface of the cathode body.
  • This electrolyte layer is a solid electrolyte layer, or is composed of a solid electrolyte layer and a liquid component.
  • the solid electrolyte layer contains a conductive polymer.
  • the liquid component is a driving electrolyte solution or a solvent portion of the electrolyte solution that is impregnated in the voids of the capacitor element on which the solid electrolyte layer is formed.
  • Conductive polymers are self-doped conjugated polymers doped with dopant molecules within the molecule or doped with external dopant molecules.
  • Conjugated polymers are obtained by chemical oxidative polymerization or electrolytic oxidative polymerization of monomers or their derivatives having ⁇ -conjugated double bonds.
  • Doped conjugated polymers exhibit high electrical conductivity. In other words, electrical conductivity is exhibited by adding a small amount of dopant, such as an acceptor that easily accepts electrons or a donor that easily gives electrons, to a conjugated polymer.
  • the solid electrolyte layer is formed using a conductive polymer liquid.
  • the conductive polymer liquid is a liquid in which conductive polymer particles or powder are dispersed or dissolved. Additives are added to the conductive polymer liquid as necessary. At least the anode foil, the pair of electrode bodies and the separator, or the capacitor element are immersed in the conductive polymer liquid and then dried. In addition to immersion, the conductive polymer liquid may be applied by dripping or spraying. This causes the conductive polymer and additives to adhere to the surface, forming a solid electrolyte layer.
  • the solid electrolyte layer may contain some or all of the unvolatilized solvent from the conductive polymer liquid.
  • the weight of the conductive polymer contained in the solid electrolyte layer is 11 mg/ cm3 or less per unit volume of the capacitor element. When the weight is 11 mg/cm3 or less per unit volume of the capacitor element, low ESR and high withstand voltage are both achieved.
  • the weight of the conductive polymer is preferably 2 mg/ cm3 or more per unit volume of the capacitor element. When the weight is in the range of 2 mg/cm3 or more and 11 mg/cm3 or less , the ESR is particularly low.
  • the weight of the conductive polymer is preferably 6.2 mg/ cm3 or more and 9 mg/ cm3 or less per unit volume of the capacitor element.
  • the ESR is particularly low and minimized, and the withstand voltage is particularly high and maximized.
  • the ESR increases compared to this range, and the withstand voltage decreases compared to this range, although the absolute values of the ESR and withstand voltage are low.
  • the weight of the conductive polymer in the solid electrolyte layer can be adjusted by adjusting the amount of conductive polymer dispersed or dissolved in the conductive polymer liquid, or the amount of the dispersion medium or solvent.
  • the weight of the conductive polymer actually contained in the solid electrolyte layer is first measured by measuring the weight of the capacitor element before and after the formation of the solid electrolyte layer and calculating the difference.
  • the weight of the conductive polymer contained in the solid electrolyte layer can then be calculated from the difference value and the concentration of the conductive polymer contained in the conductive polymer liquid.
  • the solid electrolytic capacitor can be disassembled to extract only the conductive polymer.
  • any known conjugated polymer can be used without any particular limitation.
  • Examples include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, polyphenylene, polyphenylenevinylene, polyacene, polythiophenevinylene, etc.
  • conjugated polymers may be used alone, or two or more types may be combined, or they may be copolymers of two or more types of monomers.
  • conjugated polymers formed by polymerizing thiophene or its derivatives
  • conjugated polymers formed by polymerizing 3,4-ethylenedioxythiophene i.e., 2,3-dihydrothieno[3,4-b][1,4]dioxine
  • 3-alkylthiophene 3-alkoxythiophene
  • 3-alkyl-4-alkoxythiophene 3,4-alkylthiophene, 3,4-alkoxythiophene, or derivatives thereof.
  • thiophene derivative a compound selected from thiophenes having substituents at the 3rd and 4th positions is preferred, and the substituents at the 3rd and 4th positions of the thiophene ring may form a ring together with the carbons at the 3rd and 4th positions.
  • the alkyl group or alkoxy group preferably has 1 to 16 carbon atoms.
  • a polymer of 3,4-ethylenedioxythiophene called EDOT i.e., poly(3,4-ethylenedioxythiophene) called PEDOT
  • a substituent may be added to 3,4-ethylenedioxythiophene.
  • an alkylated ethylenedioxythiophene having an alkyl group having 1 to 5 carbon atoms added as a substituent may be used.
  • alkylated ethylenedioxythiophene examples include methylated ethylenedioxythiophene (i.e., 2-methyl-2,3-dihydro-thieno[3,4-b][1,4]dioxine), ethylated ethylenedioxythiophene (i.e., 2-ethyl-2,3-dihydro-thieno[3,4-b][1,4]dioxine), butylated ethylenedioxythiophene (i.e., 2-butyl-2,3-dihydro-thieno[3,4-b][1,4]dioxine), and 2-alkyl-3,4-ethylenedioxythiophene.
  • methylated ethylenedioxythiophene i.e., 2-methyl-2,3-dihydro-thieno[3,4-b][1,4]dioxine
  • ethylated ethylenedioxythiophene i
  • dopant can be used without any particular limitation.
  • a single dopant may be used, or two or more dopants may be used in combination.
  • a polymer or monomer may also be used.
  • dopants include inorganic acids such as polyanions, boric acid, nitric acid, and phosphoric acid, and organic acids such as acetic acid, oxalic acid, citric acid, tartaric acid, squaric acid, rhodizonic acid, croconic acid, salicylic acid, p-toluenesulfonic acid, 1,2-dihydroxy-3,5-benzenedisulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, borodisalicylic acid, bisoxalateborate acid, sulfonylimide acid, dodecylbenzenesulfonic acid, propylnaphthalenesulfonic acid, and butylnaphthalenesulfonic acid
  • Polyanions include, for example, substituted or unsubstituted polyalkylenes, substituted or unsubstituted polyalkenylenes, substituted or unsubstituted polyimides, substituted or unsubstituted polyamides, and substituted or unsubstituted polyesters, and include polymers consisting only of structural units having an anionic group, and polymers consisting of structural units having an anionic group and structural units not having an anionic group.
  • polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallylsulfonic acid, polyacrylic sulfonic acid, polymethacrylic acid, poly(2-acrylamido-2-methylpropanesulfonic acid), polyisoprene sulfonic acid, polyacrylic acid, polymethacrylic acid, and polymaleic acid.
  • the solvent for the conductive polymer liquid i.e., the remaining solvent in the solid electrolyte layer, is sufficient as long as the conductive polymer disperses or dissolves, and is preferably water or a mixture of water and an organic solvent.
  • organic solvents include polar solvents, alcohols, esters, hydrocarbons, carbonate compounds, ether compounds, chain ethers, heterocyclic compounds, and nitrile compounds.
  • Polar solvents include N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, etc.
  • Alcohols include methanol, ethanol, propanol, butanol, etc.
  • Esters include ethyl acetate, propyl acetate, butyl acetate, etc.
  • Hydrocarbons include hexane, heptane, benzene, toluene, xylene, etc.
  • Carbonate compounds include ethylene carbonate, propylene carbonate, etc.
  • Ether compounds include dioxane, diethyl ether, etc.
  • Chain ethers include ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc.
  • Heterocyclic compounds include 3-methyl-2-oxazolidinone, etc.
  • Nitrile compounds include acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, benzonitrile, etc.
  • Additives for the conductive polymer liquid include polyhydric alcohols, organic binders, surfactants, dispersants, defoamers, coupling agents, antioxidants, UV absorbers, etc.
  • polyhydric alcohols include sorbitol, ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, diethylene glycol, triethylene glycol, polyoxyalkylene glycol, glycerin, polyglycerin, polyoxyalkylene glycerin, xylitol, erythritol, mannitol, dipentaerythritol, pentaerythritol, sulfolane, methylsulfolane, or a combination of two or more of these.
  • the solvent, additive, or both that make up such a conductive polymer liquid are preferably compounds that have hydrophilic groups such as hydroxyl groups or hydrophilic molecules.
  • hydrophilic groups such as hydroxyl groups or hydrophilic molecules.
  • examples of compounds that have hydroxyl groups include polyhydric alcohols such as ethylene glycol and glycerin. Compounds that have hydroxyl groups cause changes in the higher-order structure of the conductive polymer, which reduces the ESR of the solid electrolytic capacitor and improves the voltage resistance.
  • polyhydric alcohols have a high boiling point and tend to remain in the electrolyte layer and form a solid electrolyte layer.
  • the liquid component is a driving electrolyte or a solvent portion of the driving electrolyte.
  • the solvent for the driving electrolyte include protic organic polar solvents and aprotic organic polar solvents, which may be used alone or in combination of two or more kinds.
  • Protic organic solvents that serve as solvents include monohydric alcohols, polyhydric alcohols, and oxyalcohol compounds.
  • monohydric alcohols include ethanol, propanol, butanol, pentanol, hexanol, cyclobutanol, cyclopentanol, cyclohexanol, and benzyl alcohol.
  • polyhydric alcohols and oxyalcohol compounds include alkylene oxide adducts of polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, glycerin, methyl cellosolve, ethyl cellosolve, methoxypropylene glycol, dimethoxypropanol, polyglycerin, polyethylene glycol, polyoxyethylene glycerin, and polypropylene glycol.
  • aprotic organic polar solvents include sulfones, amides, lactones, cyclic amides, nitriles, and sulfoxides.
  • sulfones include dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, sulfolane, 3-methyl sulfolane, and 2,4-dimethyl sulfolane.
  • amides include N-methylformamide, N,N-dimethylformamide, N-ethylformamide, N,N-diethylformamide, N-methylacetamide, N,N-dimethylacetamide, N-ethylacetamide, and N,N-diethylacetamide.
  • lactones and cyclic amides include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, N-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, butylene carbonate, and isobutylene carbonate.
  • nitriles include acetonitrile, 3-methoxypropionitrile, and glutaronitrile.
  • sulfoxides include dimethyl sulfoxide.
  • the solute of the driving electrolyte When the solute of the driving electrolyte is added to the liquid component, the solute is an anion component and a cation component.
  • the solute is typically a salt of an organic acid, a salt of an inorganic acid, or a salt of a complex compound of an organic acid and an inorganic acid, and is used alone or in combination of two or more kinds.
  • An acid that becomes an anion and a base that becomes a cation may be added separately to the solvent.
  • Organic acids that act as anionic solutes include carboxylic acids such as oxalic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, toluic acid, enanthic acid, malonic acid, 1,6-decanedicarboxylic acid, 1,7-octanedioic acid, azelaic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, t-butyl adipic acid, 11-vinyl-8-octadecenedioic acid, resorcylic acid, phloroglucinic acid, gallic acid, gentisic acid, protocatechuic acid, pyrocatechuic acid, trimellitic acid, and pyromellitic acid, as well as phenol
  • Inorganic acids include boric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, and silicic acid.
  • Examples of composite compounds of organic acids and inorganic acids include borodisalicylic acid, borodioxalic acid, borodiglycolic acid, borodimalonic acid, borodisuccinic acid, borodiadipic acid, borodiazelaic acid, borodibenzoic acid, borodimaleic acid, borodilactic acid, borodimalic acid, boroditartaric acid, borodicitric acid, borodiphthalic acid, borodi(2-hydroxy)isobutyric acid, borodiresorcylic acid, borodimethylsalicylic acid, borodinaphthoic acid, borodimandelic acid, and borodi(3-hydroxy)propionic acid.
  • examples of at least one salt of an organic acid, an inorganic acid, or a complex compound of an organic acid and an inorganic acid include ammonium salts, quaternary ammonium salts, quaternary amidinium salts, amine salts, sodium salts, potassium salts, etc.
  • examples of quaternary ammonium ions of quaternary ammonium salts include tetramethylammonium, triethylmethylammonium, tetraethylammonium, etc.
  • Examples of quaternary amidinium include ethyldimethylimidazolinium, tetramethylimidazolinium, etc.
  • Examples of amine salts include salts of primary amines, secondary amines, and tertiary amines.
  • Examples of primary amines include methylamine, ethylamine, propylamine, etc.
  • examples of secondary amines include dimethylamine, diethylamine, ethylmethylamine, dibutylamine, etc.
  • examples of tertiary amines include trimethylamine, triethylamine, tributylamine, ethyldimethylamine, ethyldiisopropylamine, etc.
  • additives can be added to the electrolyte.
  • additives include alkylene oxide adducts of polyhydric alcohols such as polyethylene glycol and polyoxyethylene glycerin, complex compounds of boric acid and polysaccharides (mannitol, sorbitol, etc.), complex compounds of boric acid and polyhydric alcohols, boric acid esters, nitro compounds (o-nitrobenzoic acid, m-nitrobenzoic acid, p-nitrobenzoic acid, o-nitrophenol, m-nitrophenol, p-nitrophenol, p-nitrobenzyl alcohol, etc.), and phosphate esters. These may be used alone or in combination of two or more.
  • separator examples include cellulose papers such as kraft, Manila hemp, esparto, hemp, and rayon, and mixed papers thereof; polyester-based resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and derivatives thereof; polytetrafluoroethylene-based resins, polyvinylidene fluoride-based resins, vinylon-based resins, polyamide-based resins such as aliphatic polyamides, semi-aromatic polyamides, and fully aromatic polyamides; polyimide-based resins, polyethylene resins, polypropylene resins, trimethylpentene resins, polyphenylene sulfide resins, acrylic resins, and polyvinyl alcohol resins. These resins can be used alone or in combination.
  • Examples 1 to 8 The solid electrolytic capacitors of Examples 1 to 8 were fabricated as follows. The solid electrolytic capacitors of Examples 1 to 8 were of a non-hybrid type, and did not contain any liquid component in the electrolyte layer.
  • both electrodes were made of aluminum foil in the shape of a long strip. Tunnel-shaped pits were formed on both sides of the anode foil by DC etching. A dielectric film was also formed on the anode foil by chemical conversion. In the chemical conversion, the applied voltage reached 650V. Pits were formed on both sides of the cathode foil by AC etching, and an oxide film was formed by chemical conversion at a chemical conversion voltage of 3Vfs. Lead wires were connected to both electrodes, and the two electrodes were wound facing each other with a separator made of Manila hemp in between. A repair chemical conversion was then performed using an aqueous solution of ammonium borate.
  • the capacitor element was immersed in the conductive polymer liquid, and after the conductive polymer liquid was impregnated into the capacitor element, the capacitor element was dried at 110°C.
  • Polyethylenedioxythiophene doped with polystyrene sulfonic acid (PEDOT/PSS) was dispersed in the conductive polymer liquid as a conductive polymer.
  • the solvent for the conductive polymer liquid was a mixture of 90 wt% water and 10 wt% ethylene glycol.
  • Examples 1 to 8 differ in the weight of the conductive polymer in the solid electrolyte layer.
  • the weight of the conductive polymer is the weight per unit volume of the capacitor element, and hereinafter will be simply referred to as the conductive polymer weight.
  • the conductive polymer weight was adjusted by the concentration of PEDOT/PSS dispersed or dissolved in the conductive polymer liquid.
  • the solid electrolytic capacitors of Examples 1 to 8 were manufactured with the same configuration, composition, manufacturing method, and manufacturing conditions, except for the conductive polymer.
  • the withstand voltage of the solid electrolytic capacitors of Examples 1 to 8 was measured.
  • the method for measuring the withstand voltage was as follows. That is, a voltage was applied to the solid electrolytic capacitor at 105° C. The initial voltage was 200 V, and the applied voltage was increased by 1 V every 10 seconds. The voltage when the current flowing through the solid electrolytic capacitor reached 1 mA was defined as the withstand voltage.
  • the ESR of the solid electrolytic capacitors of Examples 1 to 8 was also measured.
  • the method for measuring the withstand voltage is as follows.
  • the ESR was measured at room temperature using an LCR meter manufactured by NF Corporation.
  • the measurement frequency was 100 kHz, and the AC amplitude was a sine wave of 0.5 Vms.
  • Table 1 The measurement results of the withstand voltage and ESR are shown in Table 1 below, together with the weight of the conductive polymer of Examples 1 to 8.
  • Table 1 the weight of the conductive polymer is expressed as the conductive polymer molecular weight per unit volume of the element. (Table 1)
  • the conductive polymer weight is the weight converted to per unit volume of the capacitor element (mg/ cm3 ), and was varied from 1.2 mg/ cm3 to 11.0 mg/ cm3 so that Examples 1 to 8 had unique values. Note that the weight of each conductive polymer was calculated by subtracting the weight of the capacitor element before immersion from the weight of the capacitor element after immersion in the conductive polymer liquid and before drying, and multiplying the difference by the concentration of PEDOT/PSS.
  • the withstand voltage exceeds 200 V in the entire range of the conductive polymer weight up to 11.0 mg/ cm3 .
  • the withstand voltage maintains a high level of more than 500 V up to 9.0 mg/ cm3 .
  • the ESR is good in the entire range up to 11.0 mg/ cm3 , but the ESR at 2.0 mg/ cm3 is nearly half that of 1.2 mg/ cm3 .
  • the ESR is minimized from 6.2 mg/ cm3 to 9.0 mg/ cm3 , but from 10.3 mg/ cm3 onwards, although the absolute value is good, it rises sharply compared to the range from 8.6 mg/ cm3 to 9.0 mg/ cm3 .
  • the solid electrolytic capacitor achieves both low ESR and high withstand voltage. Furthermore, when the conductive polymer weight is 2 mg/ cm3 or more and 11 mg/ cm3 or less, the non-hybrid solid electrolytic capacitor achieves both an even lower ESR and high withstand voltage. Furthermore, when the conductive polymer weight is 6.2 mg/ cm3 or more and 9.0 mg/ cm3 or less, both maximized withstand voltage and minimized ESR are obtained.
  • Example 9 to 17 Furthermore, solid electrolytic capacitors of Examples 9 to 17 were produced.
  • the solid electrolytic capacitors of Examples 9 to 17 were hybrid type, and the electrolyte layer was composed of a solid electrolyte layer and a liquid component.
  • the liquid component was 59.4 wt% ethylene glycol, 39.6 wt% polyethylene glycol, and 1 wt% ammonium azelaate.
  • the average molecular weight of the polyethylene glycol was 1000.
  • the liquid component was impregnated into the capacitor element.
  • the other configurations, compositions, manufacturing methods, and manufacturing conditions were the same as those of Examples 1 to 8, except for the weight of the conductive polymer.
  • the conductive polymer weight is the weight converted per unit volume of the capacitor element (mg/ cm3 ), and was changed from 1.2 mg/ cm3 to 11 mg/ cm3 so that Examples 9 to 17 had unique values.
  • Table 2 the relationship between the conductive polymer weight and the withstand voltage, and the relationship between the conductive polymer weight and the ESR are shown in the graph of Figure 2.
  • the black plots represent the withstand voltage
  • the white plots represent the ESR. Note that the ESR is expressed in logarithm.
  • the withstand voltage exceeds 200 V in the entire range of conductive polymer weight up to 11.0 mg/ cm3 .
  • the withstand voltage is maintained at a high level of more than 500 V up to 9.0 mg/ cm3 .
  • the ESR is good in the entire range up to 11.0 mg/ cm3 , but the ESR at 2.0 mg/ cm3 is nearly half that of 1.2 mg/ cm3 .
  • the ESR is minimized from 6.2 mg/ cm3 to 9.0 mg/ cm3 .
  • a conductive polymer weight of 11 mg/ cm3 or less achieves both low ESR and high withstand voltage. Also, even if the solid electrolytic capacitor is of the hybrid type, a conductive polymer weight of 2 mg/ cm3 or more and 11 mg/ cm3 or less achieves both an even lower ESR and high withstand voltage, and a conductive polymer weight of 6.2 mg/ cm3 or more and 9.0 mg/ cm3 or less achieves both maximized withstand voltage and minimized ESR.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

低ESRと高耐電圧を両立する固体電解コンデンサを提供する。固体電解コンデンサは、陽極箔と陰極体と電解質を有するコンデンサ素子を備える。陽極箔は、トンネル状のエッチングピットで表面が拡面化され、表面に誘電体皮膜を有する。陰極体は、陽極箔に対向する。電解質は、導電性高分子を含む固体電解質層を含む。導電性高分子の重量は、コンデンサ素子の単位体積当たり11mg/cm3以下である。

Description

固体電解コンデンサ
 本発明は、電解質が固体電解質層又は固体電解質層と液状成分の固体電解コンデンサに関する。
 電解コンデンサは、タンタルあるいはアルミニウム等のような弁作用金属を陽極箔及び陰極箔として備えている。陽極箔は、弁作用金属を焼結体あるいはエッチング箔等の形状にすることで拡面化され、拡面化された表面に陽極酸化等の処理によって誘電体皮膜を有する。陽極箔と陰極箔との間には電解質が介在する。
 この電解コンデンサは、陽極箔の拡面化により比表面積を大きくすることができ、他種のコンデンサと比べて大きな静電容量を得やすいメリットがある。また、電解コンデンサは、電解液の形態で電解質を備えている。電解液は、陽極箔の誘電体皮膜との接触面積が増える。そのため、電解コンデンサの静電容量は更に大きくし易い。しかしながら、電解液は時間経過と共に外部へ蒸発揮散し、電解コンデンサには経時的に静電容量の低下や誘電正接の増大が起こり、ドライアップを迎えてしまう。
 そこで、電解コンデンサのなかでも、固体電解質を用いた固体電解コンデンサが注目されている。固体電解質としては、二酸化マンガンや7,7,8,8-テトラシアノキノジメタン(TCNQ)錯体が知られている。近年は、反応速度が緩やかで、また誘電体皮膜との密着性に優れたポリ(3,4-エチレンジオキシチオフェン)(PEDOT)等の、π共役二重結合を有するモノマーから誘導された導電性高分子が固体電解質として急速に普及している。導電性高分子は、ポリアニオン等の酸化合物がドーパントとして用いられ、またはモノマー分子内にドーパントとして作用する部分構造を有し、高い導電性が発現する。そのため、固体電解コンデンサは、等価直列抵抗(ESR)が低くなる利点を有する。
 固体電解コンデンサは、コンデンサ素子に電解液を含浸させた液体型の電解コンデンサと比べて、誘電体である陽極酸化皮膜の欠陥部の修復作用に乏しく、漏れ電流が増大する虞がある。そこで、セパレータを介在させて陽極箔と陰極箔とを対向させたコンデンサ素子に固体電解質層を形成すると共に、コンデンサ素子の空隙に駆動用電解液を含浸させた所謂ハイブリッドタイプの固体電解コンデンサも提案されている。
特開2008-109068号公報 特許第4536625号公報
 コンデンサは各種用途で用いられる。例えばパワーエレクトロニクスの分野において、交流電源の電力をコンバータ回路で直流電力に変換し、この直流電力をインバータ回路にて所望の交流電力に変換する電源回路には、コンバータ回路から出力される直流の脈動を抑制して平滑化してからインバータ回路に入力するために、平滑コンデンサが設けられている。また、窒化ガリウム等の半導体スイッチング素子の安定動作やノイズ除去のために、デカップリングコンデンサが当該半導体スイッチング素子の近傍に設けられる。
 このような近年の大電力化に伴い、固体電解コンデンサには、より高い耐電圧が要望される。例えば、パワーエレクトロニクス等の分野によっては、少なくとも200Vを超えるような高耐電圧のコンデンサが期待されている。しかしながら、固体電解コンデンサの利点である低ESRを維持しながら、高耐圧化することは容易ではなかった。
 本発明は、上記課題を解決するために提案されたものであり、その目的は、低ESRと高耐電圧を両立する固体電解コンデンサを提供することにある。
 上記課題を解決すべく、本実施形態の固体電解コンデンサは、陽極箔と陰極体と電解質を有するコンデンサ素子を備え、前記陽極箔は、トンネル状のエッチングピットで表面が拡面化され、表面に誘電体皮膜を有し、前記陰極体は、前記陽極箔に対向し、前記電解質は、導電性高分子を含む固体電解質層を含み、前記導電性高分子の重量は、前記コンデンサ素子の単位体積当たり11mg/cm以下である。
 前記導電性高分子の重量は、前記コンデンサ素子の単位体積当たり2mg/cm以上11mg/cm以下であるようにしてもよい。
 前記導電性高分子の重量は、前記コンデンサ素子の単位体積当たり6.2mg/cm以上9.0mg/cm以下であるようにしてもよい。
 前記コンデンサ素子の空隙に充填される液状成分を含むようにしてもよい。
 前記導電性高分子が分散又は溶解する導電性高分子液内の前記導電性高分子及び溶媒の一部又は全部を含んで成るようにしてもよい。
 前記固体電解質層は、ヒドロキシ基を有する化合物を含むようにしてもよい。
 本発明によれば、固体電解コンデンサは低ESRと高耐電圧とを両立する。
実施例1乃至8に係り、導電性高分子の重量と耐電圧との関係、及び導電性高分子重量の重量とESRとの関係を示すグラフである。 実施例9乃至17に係り、導電性高分子の重量と耐電圧との関係、及び導電性高分子の重量とESRとの関係を示すグラフである。
 (固体電解コンデンサ)
 固体電解コンデンサは、一対の電極体と電解質層を有する。一方の電極体は陽極箔であり、箔表面に誘電体皮膜が形成されている。他方の電極体は陰極体である。陰極体は陽極箔と対向配置される。これら一対の電極体は電解質層を挟んで対向配置される。これら一対の電極体と電解質層を組み合わせたアセンブリをコンデンサ素子という。
 コンデンサ素子はセパレータを備える場合がある。セパレータは、一対の電極体との間に介在することで、陽極箔と陰極体を隔絶してショートを阻止し、また電解質層を保持する。電解質層の形状が自力で保持され、電解質層によって一対の電極体を隔離できる場合、セパレータをコンデンサ素子から省くことができる。
 陽極箔には陽極リードが接続され、陰極体には陰極リードが接続されている。固体電解コンデンサは、これら陽極リードと陰極リードを介して実装回路に電気的に接続される。実装回路と導通することで、固体電解コンデンサは、誘電体皮膜の誘電分極作用により静電容量を得て電荷の蓄電及び放電を行う受動素子となる。
 (電極体)
 このような固体電解コンデンサにおいて、電極体は、弁作用金属を材料とする箔体である。巻回型では、弁作用金属を延伸した長尺の帯形状が多用され、平板型では、弁作用金属を延伸した平板が多用される。弁作用金属は、アルミニウム、タンタル、ニオブ、酸化ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス及びアンチモン等である。純度は、陽極箔に関して99.9%以上、陰極体に関して99%以上が望ましいが、ケイ素、鉄、銅、マグネシウム、亜鉛等の不純物が含まれていてもよい。
 陽極箔の片面又は両面には、拡面層が形成されている。拡面層は、多数のトンネル状のエッチングピットを有するエッチング層である。トンネル状のエッチングピットは、箔厚み方向に掘り込まれた孔である。トンネル状のピットは箔を貫通してもよいし、最深部が箔内に留まる長さであってもよい。トンネル状のエッチングピットは、典型的には、塩酸等のハロゲンイオンが存在する酸性水溶液中で直流電流を流すことで形成される。トンネル状のエッチングピットは、更に、硝酸等の酸性水溶液中で直流電流を流すことで拡径される。
 陰極体としては例えば箔状である陰極箔を用いてもよい。その他、陰極体は、銀等の金属層とカーボン層の積層体であってもよい。陰極箔の片面又は両面にも拡面層が形成されていてもよい。拡面層のないプレーン箔を陰極箔として用いてもよい。陰極箔の拡面層は、エッチング層、弁作用金属の粉体を焼結した焼結層、又は箔に弁作用金属粒子を蒸着した蒸着層である。即ち、陰極箔の拡面層は、トンネル状のピット、海綿状のピット、又は密集した粉体若しくは粒子間の空隙により成る。
 誘電体皮膜は、拡面層の凹凸表面に形成されている。誘電体皮膜は、典型的には、陽極箔の表層に形成される酸化皮膜であり、陽極箔がアルミニウム箔であれば、拡面層の表面を酸化させた酸化アルミニウム層である。誘電体皮膜を形成する化成処理では、化成液中で陽極箔に対して、所望の耐電圧を目指して電圧印加する。化成液は、ハロゲンイオン不在の溶液であり、例えば、リン酸二水素アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液である。
 陰極体は、自然酸化皮膜、又は化成処理により形成された薄い酸化皮膜(1~10V程度)を有していてもよい。自然酸化皮膜は、陰極体が空気中の酸素と反応することにより形成される。
 (電解質層)
 電解質層は、少なくとも陽極箔の誘電体皮膜の一部に付着しており、固体電解コンデンサの真の陰極となっている。好ましくは、電解質層は、誘電体皮膜全域と密着し、陰極体の表面と接続する。この電解質層は、固体電解質層であり、又は固体電解質層と液状成分で構成されている。固体電解質層は、導電性高分子を含有している。液状成分は、固体電解質層が形成されたコンデンサ素子の空隙に含浸している駆動用電解液又は当該電解液の溶媒部である。
 (固体電解質層)
 導電性高分子は、分子内のドーパント分子によりドーピングされた自己ドープ型又は外部ドーパント分子によりドーピングされた共役系高分子である。共役系高分子は、π共役二重結合を有するモノマー又はその誘導体を化学酸化重合または電解酸化重合することによって得られる。ドーピングされた共役系高分子は、高い導電性を発現する。即ち、共役系高分子に電子を受け入れやすいアクセプター、もしくは電子を与えやすいドナーといったドーパントを少量添加することで導電性を発現する。
 固体電解質層は、導電性高分子液を用いて形成される。導電性高分子液は、導電性高分子の粒子又は粉末が分散又は溶解した液体である。導電性高分子液には、必要に応じて添加剤が添加されている。導電性高分子液に、少なくとも陽極箔、一対の電極体及びセパレータの各々、又はコンデンサ素子を浸漬し、浸漬後に乾燥させる。導電性高分子液は浸漬の他、滴下塗布又はスプレー塗布されてもよい。これにより、導電性高分子及び添加剤が付着し、固体電解質層を構成する。固体電解質層は、導電性高分子液から未揮発の溶媒の一部又は全部を含んでいてもよい。
 固体電解質層に含まれる導電性高分子の重量は、コンデンサ素子の単位体積当たり、11mg/cm以下である。コンデンサ素子の単位体積当たり、11mg/cm以下であると、低ESRと高耐電圧が両立する。また、導電性高分子の重量は、コンデンサ素子の単位体積当たり、2mg/cm以上であることが好ましい。2mg/cm以上11mg/cm以下の範囲では、ESRが特に低くなる。
 特に、導電性高分子の重量は、コンデンサ素子の単位体積当たり、6.2mg/cm以上9mg/cm以下が好ましい。導電性高分子の重量がこの範囲に収まると、ESRが特に低くなって極小化し、また耐電圧が特に高くなって極大化する。この範囲を上下に逸脱すると、絶対値としては低ESR及び高耐電圧ではあるものの、この範囲に比してESRが増加し、またこの範囲に比して耐電圧が低下する。
 固体電解質層中の導電性高分子の重量調整は、導電性高分子液に分散若しくは溶解させる導電性高分子の量、又は分散媒若しくは溶媒の量を調整すればよい。実際に固体電解質層に含まれる導電性高分子の重量については、まず、固体電解質層形成前後でコンデンサ素子の重量を計測して差分を計算する。そして、差分値と、導電性高分子液に含まれる導電性高分子の濃度とから、固体電解質層に含まれる導電性高分子の重量を計算すればよい。また、固体電解コンデンサを分解し、導電性高分子のみを抽出するようにしてもよい。
 このような固体電解質層において、共役系高分子としては、公知のものを特に限定なく使用することができる。例えば、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリチオフェンビニレンなどが挙げられる。これら共役系高分子は、単独で用いられてもよく、2種類以上を組み合わせても良く、更に2種以上のモノマーの共重合体であってもよい。
 上記の共役系高分子の中でも、チオフェン又はその誘導体が重合されて成る共役系高分子が好ましく、3,4-エチレンジオキシチオフェン(すなわち、2,3-ジヒドロチエノ[3,4-b][1,4]ジオキシン)、3-アルキルチオフェン、3-アルコキシチオフェン、3-アルキル-4-アルコキシチオフェン、3,4-アルキルチオフェン、3,4-アルコキシチオフェン又はこれらの誘導体が重合された共役系高分子が好ましい。チオフェン誘導体としては、3位と4位に置換基を有するチオフェンから選択された化合物が好ましく、チオフェン環の3位と4位の置換基は、3位と4位の炭素と共に環を形成していても良い。アルキル基やアルコキシ基の炭素数は1~16が適している。
 特に、EDOTと呼称される3,4-エチレンジオキシチオフェンの重合体、即ち、PEDOTと呼称されるポリ(3,4-エチレンジオキシチオフェン)が特に好ましい。また、3,4-エチレンジオキシチオフェンに置換基が付加されていてもよい。例えば、置換基として炭素数が1~5のアルキル基が付加されたアルキル化エチレンジオキシチオフェンが用いられてもよい。アルキル化エチレンジオキシチオフェンとしては、例えば、メチル化エチレンジオキシチオフェン(すなわち、2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)、エチル化エチレンジオキシチオフェン(すなわち、2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)、ブチル化エチレンジオキシチオフェン(すなわち、2-ブチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)、2-アルキル-3,4-エチレンジオキシチオフェンなどが挙げられる。
 ドーパントは、公知のものを特に限定なく使用することができる。ドーパントは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、高分子又は単量体を用いてもよい。例えば、ドーパントとしては、ポリアニオン、ホウ酸、硝酸、リン酸などの無機酸、酢酸、シュウ酸、クエン酸、酒石酸、スクアリン酸、ロジゾン酸、クロコン酸、サリチル酸、p-トルエンスルホン酸、1,2-ジヒドロキシ-3,5-ベンゼンジスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ボロジサリチル酸、ビスオキサレートボレート酸、スルホニルイミド酸、ドデシルベンゼンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸などの有機酸が挙げられる。
 ポリアニオンは、例えば、置換若しくは未置換のポリアルキレン、置換若しくは未置換のポリアルケニレン、置換若しくは未置換のポリイミド、置換若しくは未置換のポリアミド、置換若しくは未置換のポリエステルであって、アニオン基を有する構成単位のみからなるポリマー、アニオン基を有する構成単位とアニオン基を有さない構成単位とからなるポリマーが挙げられる。具体的には、ポリアニオンとしては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸などが挙げられる。
 導電性高分子液の溶媒、即ち固体電解質層内の残存溶媒は、導電性高分子が分散又は溶解すればよく、水又は水と有機溶媒の混合物が好ましい。有機溶媒としては、極性溶媒、アルコール類、エステル類、炭化水素類、カーボネート化合物、エーテル化合物、鎖状エーテル類、複素環化合物、ニトリル化合物等が挙げられる。
 極性溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等が挙げられる。アルコール類としては、メタノール、エタノール、プロパノール、ブタノール等が挙げられる。エステル類としては、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。炭化水素類としては、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン等が挙げられる。カーボネート化合物としては、エチレンカーボネート、プロピレンカーボネート等が挙げられる。エーテル化合物としては、ジオキサン、ジエチルエーテル等が挙げられる。鎖状エーテル類としては、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等が挙げられる。複素環化合物としては、3-メチル-2-オキサゾリジノン等が挙げられる。ニトリル化合物としては、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等が挙げられる。
 導電性高分子液への添加剤は、多価アルコール、有機バインダー、界面活性剤、分散剤、消泡剤、カップリング剤、酸化防止剤、紫外線吸収剤等が挙げられる。多価アルコールとしては、ソルビトール、エチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、へプタンジオール、オクタンジオール、ジエチレングリコール、トリエチレングリコール、ポリオキシアルキレングリコール、グリセリン、ポリグリセリン、ポリオキシアルキレングリセリン、キシリトール、エリスリトール、マンニトール、ジペンタエリスリトール、ペンタエリスリトール、スルホラン、メチルスルホラン又はこれらの2種以上の組み合わせが挙げられる。
 このような導電性高分子液を構成する溶媒、添加剤又はこれらの両方としては、ヒドロキシ基などの親水性基又は親水性分子を有する化合物が好ましい。ヒドロキシ基を有する化合物としては、例えばエチレングリコール及びグリセリン等の多価アルコールが挙げられる。ヒドロキシ基を有する化合物により、導電性高分子の高次構造の変化を起こし、固体電解コンデンサのESR低減や耐電圧向上効果が得られる。また、多価アルコールは、沸点が高く電解質層に残留して固体電解質層を構成し易い。
 (液状成分)
 液状成分は、駆動用電解液、又は駆動用電解液の溶媒部である。駆動用電解液の溶媒としては、プロトン性の有機極性溶媒又は非プロトン性の有機極性溶媒が挙げられ、単独又は2種類以上が組み合わせられる。
 溶媒であるプロトン性の有機溶媒としては、一価アルコール類、多価アルコール類及びオキシアルコール化合物類などが挙げられる。一価アルコール類としては、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロブタノール、シクロペンタノール、シクロヘキサノール、ベンジルアルコール等が挙げられる。多価アルコール類及びオキシアルコール化合物類としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、メチルセロソルブ、エチルセロソルブ、メトキシプロピレングリコール、ジメトキシプロパノール、ポリグリセリン、ポリエチレングリコールやポリオキシエチレングリセリン、ポリプロピレングリコールなどの多価アルコールのアルキレンオキサイド付加物等が挙げられる。
 溶媒である非プロトン性の有機極性溶媒としては、スルホン系、アミド系、ラクトン類、環状アミド系、ニトリル系、スルホキシド系などが代表として挙げられる。スルホン系としては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等が挙げられる。アミド系としては、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N-ジエチルアセトアミド等が挙げられる。ラクトン類、環状アミド系としては、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、N-メチル-2-ピロリドン、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、イソブチレンカーボネート等が挙げられる。ニトリル系としては、アセトニトリル、3-メトキシプロピオニトリル、グルタロニトリル等が挙げられる。スルホキシド系としてはジメチルスルホキシド等が挙げられる。
 液状成分に駆動用電解液の溶質が添加される場合、溶質はアニオン成分及びカチオン成分である。溶質は、典型的には、有機酸の塩、無機酸の塩、又は有機酸と無機酸との複合化合物の塩であり、単独又は2種以上を組み合わせて用いられる。アニオンとなる酸及びカチオンとなる塩基を別々に溶媒に添加してもよい。
 溶質としてアニオン成分となる有機酸としては、シュウ酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、アジピン酸、安息香酸、トルイル酸、エナント酸、マロン酸、1,6-デカンジカルボン酸、1,7-オクタンジカルボン酸、アゼライン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、t-ブチルアジピン酸、11-ビニル-8-オクタデセン二酸、レゾルシン酸、フロログルシン酸、没食子酸、ゲンチシン酸、プロトカテク酸、ピロカテク酸、トリメリット酸、ピロメリット酸等のカルボン酸や、フェノール類、スルホン酸が挙げられる。
 また、無機酸としては、ホウ酸、リン酸、亜リン酸、次亜リン酸、炭酸、ケイ酸等が挙げられる。有機酸と無機酸の複合化合物としては、ボロジサリチル酸、ボロジ蓚酸、ボロジグリコール酸、ボロジマロン酸、ボロジコハク酸、ボロジアジピン酸、ボロジアゼライン酸、ボロジ安息香酸、ボロジマレイン酸、ボロジ乳酸、ボロジリンゴ酸、ボロジ酒石酸、ボロジクエン酸、ボロジフタル酸、ボロジ(2-ヒドロキシ)イソ酪酸、ボロジレゾルシン酸、ボロジメチルサリチル酸、ボロジナフトエ酸、ボロジマンデル酸及びボロジ(3-ヒドロキシ)プロピオン酸等が挙げられる。
 また、有機酸、無機酸、ならびに有機酸と無機酸の複合化合物の少なくとも1種の塩としては、例えばアンモニウム塩、四級アンモニウム塩、四級化アミジニウム塩、アミン塩、ナトリウム塩、カリウム塩等が挙げられる。四級アンモニウム塩の四級アンモニウムイオンとしては、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等が挙げられる。四級化アミジニウムとしては、エチルジメチルイミダゾリニウム、テトラメチルイミダゾリニウム等が挙げられる。アミン塩としては、一級アミン、二級アミン、三級アミンの塩が挙げられる。一級アミンとしては、メチルアミン、エチルアミン、プロピルアミン等、二級アミンとしては、ジメチルアミン、ジエチルアミン、エチルメチルアミン、ジブチルアミン等、三級アミンとしては、トリメチルアミン、トリエチルアミン、トリブチルアミン、エチルジメチルアミン、エチルジイソプロピルアミン等が挙げられる。
 さらに、電解液には他の添加剤を添加することもできる。添加剤としては、ポリエチレングリコールやポリオキシエチレングリセリンなどの多価アルコールのアルキレンオキサイド付加物、ホウ酸と多糖類(マンニット、ソルビットなど)との錯化合物、ホウ酸と多価アルコールとの錯化合物、ホウ酸エステル、ニトロ化合物(o-ニトロ安息香酸、m-ニトロ安息香酸、p-ニトロ安息香酸、o-ニトロフェノール、m-ニトロフェノール、p-ニトロフェノール、p-ニトロベンジルアルコールなど)、リン酸エステルなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (セパレータ)
 セパレータは、クラフト、マニラ麻、エスパルト、ヘンプ、レーヨン等のセルロースおよびこれらの混合紙、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、それらの誘導体などのポリエステル系樹脂、ポリテトラフルオロエチレン系樹脂、ポリフッ化ビニリデン系樹脂、ビニロン系樹脂、脂肪族ポリアミド、半芳香族ポリアミド、全芳香族ポリアミド等のポリアミド系樹脂、ポリイミド系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、トリメチルペンテン樹脂、ポリフェニレンサルファイド樹脂、アクリル樹脂、ポリビニルアルコール樹脂等が挙げられ、これらの樹脂を単独で又は混合して用いることができる。
 以下、実施例に基づいて本発明をさらに詳細に説明する。なお、本発明は下記実施例に限定されるものではない。
 (実施例1-8)
 次のようにして、実施例1乃至8の固体電解コンデンサを作製した。実施例1乃至8の固体電解コンデンサは、非ハイブリッド型であり、電解質層に液状成分は含まれない。
 まず、両電極体は、長尺帯形状のアルミニウム箔とした。陽極箔の両面に直流エッチングによってトンネル状のピットを形成した。また、陽極箔には化成処理により誘電体皮膜を形成した。化成処理では、印加電圧を650Vに到達させた。陰極箔については両面に交流エッチングによってピットを形成し、化成処理により3Vfsの化成電圧で酸化皮膜を形成した。両電極体にリード線を接続し、マニラ麻製のセパレータを介して両電極体を対向させて巻回した。そして、ホウ酸アンモニウム水溶液によって修復化成が施された。
 次に、コンデンサ素子を導電性高分子液に浸漬し、導電性高分子液をコンデンサ素子に含浸した後、コンデンサ素子を110℃で乾燥した。導電性高分子液には、導電性高分子としてポリスチレンスルホン酸がドープされたポリエチレンジオキシチオフェン(PEDOT/PSS)を分散させた。導電性高分子液の溶媒は90wt%の水及び10wt%のエチレングリコールの混合液である。
 これにより、コンデンサ素子内には固体電解質層が形成された。ここで、実施例1乃至8は、固体電解質層内の導電性高分子の重量が異なる。導電性高分子の重量は、コンデンサ素子の単位体積当たりの重量であり、以下、単に、導電性高分子重量という。導電性高分子重量は、導電性高分子液に分散又は溶解するPEDOT/PSSの濃度によって調整した。
 このように、実施例1乃至8の固体電解コンデンサは、導電性高分子量を除き、同一構成、同一組成、同一製造方法及び同一製造条件で作製された。
 (耐電圧及びESR)
 実施例1乃至8の固体電解コンデンサの耐電圧を測定した。耐電圧の測定方法は次の通りである。即ち、105℃において固体電解コンデンサに電圧を印加した。開始電圧は200Vであり、印加電圧を10秒ごとに1Vずつ昇圧していった。そして、固体電解コンデンサに流れた電流が1mAに到達したときの電圧を耐電圧とした。
 また、実施例1乃至8の固体電解コンデンサのESRを測定した。耐電圧の測定方法は次の通りである。ESRは、株式会社エヌエフ回路設計ブロック製のLCRメータを用いて室温下で測定した。測定周波数は100kHzであり、交流振幅は0.5Vmsの正弦波である。
 実施例1乃至8の導電性高分子重量と共に、耐電圧とESRの測定結果を下表1に示す。表1では、導電性高分子重量は、素子の単位体積あたりの導電性高分子量と表されている。
 (表1)
Figure JPOXMLDOC01-appb-I000001
 表1に示すように、導電性高分子重量は、コンデンサ素子の単位体積当たりに換算した重量(mg/cm)であり、1.2mg/cmから11.0mg/cmまで、実施例1乃至8が固有の値を取るように変化させた。尚、個々の導電性高分子重量は、導電性高分子液に浸漬後及び乾燥前のコンデンサ素子の重量から、浸漬前のコンデンサ素子の重量を差し引き、差分値にPEDOT/PSSの濃度を乗算することで算出した。
 この表1に基づき、導電性高分子重量と耐電圧との関係、及び導電性高分子重量とESRとの関係を図1のグラフに示す。図1中、黒色のプロットが耐電圧であり、白色のプロットがESRである。尚、ESRは対数で表されている。
 表1及び図1に示すように、耐電圧は、導電性高分子重量が11.0mg/cmまでの全範囲で耐電圧が200Vを超えている。特に、耐電圧は、9.0mg/cmまで500Vを超える高い水準を維持する。また、ESRは、11.0mg/cmまでの全範囲で良好であるが、特に2.0mg/cmのESRが1.2mg/cm比べて、半分近くに低下する。そして、ESRは、6.2mg/cmから9.0mg/cmにかけて極小化するが、10.3mg/cm以降は、絶対値としては良好であるものの、8.6mg/cmから9.0mg/cmの範囲と比べると、急上昇する。
 このように、固体電解コンデンサは、導電性高分子重量が11mg/cm以下であると、低ESRと高耐電圧を両立する。また、非ハイブリッド型の固体電解コンデンサは、導電性高分子重量が2mg/cm以上11mg/cm以下であると、更に低いESRと高耐電圧を両立する。また、導電性高分子重量が6.2mg/cm以上9.0mg/cm以下であると、ちょうど、極大化した耐電圧と極小化したESRの両方を得られる。
 (実施例9-17)
 更に、実施例9乃至17の固体電解コンデンサを作製した。実施例9乃至17の固体電解コンデンサは、ハイブリッド型であり、電解質層は固体電解質層と液状成分で構成される。液状成分は、59.4wt%のエチレングリコール、39.6wt%のポリエチレングリコールを、及び1wt%のアゼライン酸アンモニウムである。ポリエチレングリコールの平均分子量は1000である。コンデンサ素子に液状成分を含浸させた。その他の同一構成、同一組成、同一製造方法及び同一製造条件は、導電性高分子重量を除き、実施例1乃至8と同じである。
 (耐電圧及びESR)
 実施例9乃至17の固体電解コンデンサの耐電圧を測定した。耐電圧及びESRの測定方法及び条件は、実施例1乃至8と同一である。個々の導電性高分子重量の確認方法も、実施例1乃至8と同一である。
 実施例9乃至17の導電性高分子重量と共に、耐電圧とESRの測定結果を下表2に示す。表2では、導電性高分子重量は、素子の単位体積あたりの固体電解質量と表されている。
 (表2)
Figure JPOXMLDOC01-appb-I000002
 表2に示すように、導電性高分子重量は、コンデンサ素子の単位体積当たりに換算した重量(mg/cm)であり、1.2mg/cmから11mg/cmまで、実施例9乃至17が固有の値を取るように変化させた。この表2に基づき、導電性高分子重量と耐電圧との関係、及び導電性高分子重量とESRとの関係を図2のグラフに示す。図2中、黒色のプロットが耐電圧であり、白色のプロットがESRである。尚、ESRは対数で表されている。
 表2及び図2に示すように、耐電圧は、導電性高分子重量が11.0mg/cmまでの全範囲で耐電圧が200Vを超えている。特に、耐電圧は、9.0mg/cmまで500Vを超える高い水準を維持する。また、ESRは、11.0mg/cmまでの全範囲で良好であるが、特に2.0mg/cmのESRが1.2mg/cm比べて、半分近くに低下する。そして、ESRは、6.2mg/cmから9.0mg/cmにかけて極小化する。
 このように、固体電解コンデンサは、ハイブリッド型であっても、導電性高分子重量が11mg/cm以下であると、低ESRと高耐電圧を両立する。また、ハイブリッド型であっても、導電性高分子重量が2mg/cm以上11mg/cm以下であれば、更に低いESRと高耐電圧を両立し、導電性高分子重量が6.2mg/cm以上9.0mg/cm以下であると、ちょうど、極大化した耐電圧と極小化したESRの両方を得られる。

Claims (6)

  1.  陽極箔と陰極体と電解質を有するコンデンサ素子を備え、
     前記陽極箔は、トンネル状のエッチングピットで表面が拡面化され、表面に誘電体皮膜を有し、
     前記陰極体は、前記陽極箔に対向し、
     前記電解質は、導電性高分子を含む固体電解質層を含み、
     前記導電性高分子の重量は、前記コンデンサ素子の単位体積当たり11mg/cm以下であること、
     を特徴とする固体電解コンデンサ。
  2.  前記導電性高分子の重量は、前記コンデンサ素子の単位体積当たり2mg/cm以上11mg/cm以下であること、
     を特徴とする請求項1記載の固体電解コンデンサ。
  3.  前記導電性高分子の重量は、前記コンデンサ素子の単位体積当たり6.2mg/cm以上9.0mg/cm以下であること、
     を特徴とする請求項1記載の固体電解コンデンサ。
  4.  前記コンデンサ素子の空隙に充填される液状成分を含むこと、
     を特徴とする請求項1乃至3の何れかに記載の固体電解コンデンサ。
  5.  前記固体電解質層は、前記導電性高分子が分散又は溶解する導電性高分子液内の前記導電性高分子及び溶媒の一部又は全部を含んで成ること、
     を特徴とする請求項1乃至3の何れかに記載の固体電解コンデンサ。
  6.  前記固体電解質層は、ヒドロキシ基を有する化合物を含むこと、
     を特徴とする請求項5記載の固体電解コンデンサ。
PCT/JP2023/029438 2022-09-29 2023-08-14 固体電解コンデンサ WO2024070287A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-156874 2022-09-29
JP2022156874A JP2024050184A (ja) 2022-09-29 2022-09-29 固体電解コンデンサ

Publications (1)

Publication Number Publication Date
WO2024070287A1 true WO2024070287A1 (ja) 2024-04-04

Family

ID=90477228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029438 WO2024070287A1 (ja) 2022-09-29 2023-08-14 固体電解コンデンサ

Country Status (3)

Country Link
JP (1) JP2024050184A (ja)
TW (1) TW202414466A (ja)
WO (1) WO2024070287A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199089A (ja) * 2010-03-23 2011-10-06 Nippon Chemicon Corp 固体電解コンデンサ
JP2013055308A (ja) * 2011-09-06 2013-03-21 Nippon Chemicon Corp 固体電解コンデンサ用分散液の製造方法及び固体電解コンデンサ用分散液、この分散液を用いた固体電解コンデンサの製造方法及び固体電解コンデンサ
JP2014123685A (ja) * 2012-12-21 2014-07-03 Nippon Chemicon Corp 電解コンデンサ及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199089A (ja) * 2010-03-23 2011-10-06 Nippon Chemicon Corp 固体電解コンデンサ
JP2013055308A (ja) * 2011-09-06 2013-03-21 Nippon Chemicon Corp 固体電解コンデンサ用分散液の製造方法及び固体電解コンデンサ用分散液、この分散液を用いた固体電解コンデンサの製造方法及び固体電解コンデンサ
JP2014123685A (ja) * 2012-12-21 2014-07-03 Nippon Chemicon Corp 電解コンデンサ及びその製造方法

Also Published As

Publication number Publication date
JP2024050184A (ja) 2024-04-10
TW202414466A (zh) 2024-04-01

Similar Documents

Publication Publication Date Title
TWI825130B (zh) 固體電解電容器
JP2023176004A (ja) 固体電解コンデンサ
WO2023054502A1 (ja) 固体電解コンデンサ
WO2024070287A1 (ja) 固体電解コンデンサ
WO2024070288A1 (ja) 固体電解コンデンサ及び製造方法
JP2024050386A (ja) 固体電解コンデンサ及び製造方法
WO2024181509A1 (ja) 固体電解コンデンサ及び製造方法
WO2024143420A1 (ja) 固体電解コンデンサ及び製造方法
JP7509337B1 (ja) 固体電解コンデンサ及び製造方法
WO2023171618A1 (ja) 固体電解コンデンサ用電解液、及び固体電解コンデンサ
EP4386797A1 (en) Solid electrolyte capacitor and method for manufacturing same
JP7571924B1 (ja) 固体電解コンデンサ、平滑回路及びフィルタ回路
WO2023149357A1 (ja) 固体電解コンデンサ及び製造方法
EP4383296A1 (en) Solid electrolytic capacitor and manufacturing method
WO2024070604A1 (ja) 固体電解コンデンサ及び製造方法
TW202437288A (zh) 固體電解電容器及製造方法
WO2024070603A1 (ja) 固体電解コンデンサ及び製造方法
JP2024093013A (ja) 固体電解コンデンサ
US20240013983A1 (en) Solid electrolytic capacitor, solid electrolyte, conductive polymer dispersion, oxidation accelerator, method for producing solid electrolytic capacitor, and method for producing conductive polymer dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871529

Country of ref document: EP

Kind code of ref document: A1