WO2024004616A1 - 電解コンデンサおよびその製造方法 - Google Patents

電解コンデンサおよびその製造方法 Download PDF

Info

Publication number
WO2024004616A1
WO2024004616A1 PCT/JP2023/021737 JP2023021737W WO2024004616A1 WO 2024004616 A1 WO2024004616 A1 WO 2024004616A1 JP 2023021737 W JP2023021737 W JP 2023021737W WO 2024004616 A1 WO2024004616 A1 WO 2024004616A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
conductive polymer
electrolytic capacitor
foil
length
Prior art date
Application number
PCT/JP2023/021737
Other languages
English (en)
French (fr)
Inventor
染井秀徳
山田一樹
Original Assignee
エルナー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022103605A external-priority patent/JP2024004120A/ja
Priority claimed from JP2022103606A external-priority patent/JP2024004121A/ja
Application filed by エルナー株式会社 filed Critical エルナー株式会社
Publication of WO2024004616A1 publication Critical patent/WO2024004616A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to an electrolytic capacitor and a method for manufacturing the same.
  • Solid electrolytic capacitors that use valve metal foil such as aluminum use a conductive polymer with significantly higher electrical conductivity than the driving electrolyte, instead of the driving electrolyte that is present in ordinary electrolytic capacitors.
  • the ESR equivalent series resistance
  • the ESR is reduced by forming a solid electrolyte layer between the two electrodes and making them conductive.
  • the solid electrolyte layer is wound with an anode foil having an anodic oxide film formed on its surface and a cathode foil facing each other with a separator in between.
  • the monomer is impregnated into the capacitor element provided with the monomer, and then solidified by polymerization or the like, so that the monomer exists between the two foils.
  • 3,4-dialkoxythiophene as a monomer, adding an acetylene glycol surfactant, adding an appropriate amount of a polymerization initiator such as iron toluenesulfonate, and heating, 3,4- Polymerizing dialkoxythiophene.
  • a conductive polymer layer with reduced surface resistivity is formed by doping polymerized 3,4-dialkoxythiophene with a separately polymerized polyanion to form a solid electrolyte layer (see, for example, Patent Document 1). .
  • a separator layer including a high-density solid electrolyte layer made of a conductive polymer for example, see Patent Document 2.
  • an electrolytic capacitor with a small size, large capacity, and low ESR (equivalent series resistance)
  • an anode foil with a dielectric layer formed on it and a conductive film with high electrical conductivity formed to cover at least a portion of the dielectric layer.
  • An electrolytic capacitor that includes a polymer layer and an electrolytic solution that has the ability to repair the anodic oxide film (a liquid that consists of at least a solute and a solvent and has electrical conductivity that has the ability to repair the anodic oxide film) is called a hybrid electrolytic capacitor. It is seen as promising as an electronic component for automotive products.
  • a capacitor element is impregnated with a dispersion containing a conductive polymer, a polymer dopant, a base component, and a solvent, and then a portion of the solvent is removed to form a conductive polymer layer.
  • a method for manufacturing an aluminum electrolytic capacitor is described.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an electrolytic capacitor that can realize sufficiently low ESR and a method for manufacturing the same.
  • a first separator, an anode foil connected to the lead terminal and having an anodic oxide film on the surface, a second separator, and a cathode foil connected to the lead lead terminal are arranged in this order, and conductive.
  • each of the first separator and the second separator protrudes from and faces the anode foil in a plane direction in a state in which the first separator and the second separator are provided with the conductive polymer, and
  • the first separator and the second separator are at least partially fixed in a state of being electrically connected to each other by the conductive polymer to form an adhesive portion.
  • the adhesive portion may be an electrical short-circuit path of the cathode foil.
  • each of the first separator and the second separator is provided with a protrusion that protrudes from the anode foil in a plane direction and faces the anode foil and includes the conductive polymer, and the protrusion of the first separator
  • the protruding length of the protruding portion of the second separator is a length a
  • the protruding length of the protruding portion of the second separator is a length a′
  • the thickness of the foil is defined as thickness b
  • the relationship of length a+length a' ⁇ thickness b is established, and the conductive polymer is connected to at least a part of the protrusion of the first separator and the first separator. 2 may be fixed to at least a portion of the protrusion of the separator.
  • each of the length a and the length a' may be 0.2 mm or more.
  • the first separator, the anode foil, the second separator, and the cathode foil are wound together to have a substantially columnar shape, and the first and second bottom surfaces of the substantially columnar shape are
  • the first bottom surface may include the lead terminal connected to the anode foil and the lead terminal connected to the cathode foil.
  • the anode foil may be an aluminum foil or an aluminum alloy foil
  • the cathode foil may be a valve metal foil, a valve metal alloy foil, or a foil with a conductive layer formed on the surface of the valve metal. good.
  • the protrusion length of the protrusion portions of the first separator and the second separator on the first bottom surface is longer than the protrusion length of the protrusion portions of the first separator and the second separator on the second bottom surface. It may be larger than that.
  • At least one of the first separator and the second separator may be inclined with respect to the cylindrical axis of the capacitor element.
  • the capacitor element may contain moisture inside.
  • an area covered with the conductive polymer in the exposed portion of the anode foil on the first bottom surface and an area covered with the conductive polymer in the exposed portion of the anode foil on the second bottom surface may be 48% or more of the total area of the exposed portion of the anode foil on the first bottom surface and the second bottom surface.
  • the area covered with the conductive polymer in the exposed portion of the anode foil on the first bottom surface is 45% or more of the area of the exposed portion of the anode foil on the first bottom surface. It may be.
  • the area where the exposed portion of the anode foil is covered with the conductive polymer increases from the center toward the outer periphery on at least one of the first bottom surface and the second bottom surface. Good too.
  • the amount of electrolyte per unit area of the first separator and the second separator is larger on the first bottom side and the second bottom side than on the center side. Good too.
  • the conductive polymer layer may be formed by polymerizing a precursor monomer.
  • the first separator and the second separator may be at least one type selected from cellulose, rayon, and glass fiber.
  • the adhesive portion may be formed at least in a half region on the side where the lead terminal connected to the cathode foil is located.
  • the capacitor element is impregnated with an electrolytic solution, and each of the first separator and the second separator protrudes from the anode foil and the cathode foil in a plane direction and faces each other, and has a high conductivity.
  • the protruding length of the protruding portion of the first separator is a length a
  • the protruding length of the protruding portion of the second separator is a length a′
  • the thickness of the anode foil at the location where the protrusions of the second separator face each other is defined as thickness b
  • the relationship of length a+length a' ⁇ thickness b holds true
  • the conductive polymer is At least a portion of the protruding portion of the first separator and at least a portion of the protruding portion of the second separator may be bonded together to form an adhesive portion.
  • the adhesive portion may be swollen and moist due to the electrolyte contained therein, and may have adhesive properties.
  • the adhesive portion has a structure that conducts through a short-circuit path of the cathode foil, and has a structure in which conduction occurs between the first separator and the second separator, between the separators, between the conductive polymers, or between the conductive polymers.
  • it may contain an electrolytic solution, swell, be wet, and have adhesive properties.
  • each of the length a and the length a' may be 0.2 mm or more.
  • the first separator, the anode foil, the second separator, and the cathode foil are sequentially laminated and wound together to have a substantially columnar shape, and the substantially columnar first bottom surface and The first bottom surface of the second bottom surface may include the lead terminal connected to the anode foil and the lead terminal connected to the cathode foil.
  • an area covered with the conductive polymer on an end surface of the anode foil on the first bottom surface and an area covered with the conductive polymer on the end surface of the anode foil on the second bottom surface may be 20% or more of the total area of the end surfaces of the anode foil on the first bottom surface and the second bottom surface.
  • the area covered with the conductive polymer on the end surface of the anode foil on the first bottom surface is 15% or more of the area of the end surface of the anode foil on the first bottom surface. There may be.
  • the area covered with the conductive polymer increases from the center toward the outer periphery on the end surface of the anode foil on at least one of the first bottom surface and the second bottom surface. Good too.
  • the amount of electrolyte per unit area of the first separator and the second separator is smaller on the first bottom surface side and the second separator than on the center side. There may be more on the bottom side.
  • the conductive polymer layer may be formed from a conductive polymer dispersion having a polymer concentration of 0.5 wt% or more or a viscosity of 10 mPa ⁇ s or more.
  • the first separator and the second separator may be made of one of cellulose, rayon, and glass fiber, or a paper mixture thereof.
  • the adhesive portion may be formed at least in one of the half regions on the side where the lead terminal connected to the cathode foil is located.
  • the adhesive portion may be swollen when the capacitor element is impregnated with the electrolytic solution and have adhesiveness in a wet state.
  • a first separator, an anode foil having an anodized film on the surface to which the lead terminal is connected, a second separator, and a cathode foil to which the lead lead terminal is connected are sequentially arranged. and in a capacitor element in which each of the first separator and the second separator protrudes from and faces the anode foil in the surface direction, the first separator and the second separator are impregnated with a precursor monomer to form the capacitor element.
  • a conductive polymer is formed inside the conductive polymer, and at least a portion of the first separator and the second separator are fixed while being electrically connected by the conductive polymer to form an adhesive part. .
  • each of the first separator and the second separator is provided with a protrusion portion that protrudes from and faces the anode foil in a plane direction and includes the conductive polymer, and the first separator
  • the protruding length of the protruding part of the second separator is a length a
  • the protruding length of the second separator is a length a'
  • the protruding parts of the first separator and the second separator face each other.
  • the first separator and the second separator protrude.
  • the adhesive portion may also be formed by adhering the adhesive portion at the same time.
  • a conductive polymer is applied to the first separator and the second separator again. Adhesion may be increased by impregnation or deposition to form a solid electrolyte layer.
  • the protruding length of the protruding part of the first separator is a length a
  • the protruding length of the protruding part of the second separator is a length a'
  • the thickness of the anode foil at the location where the protrusions of the first separator and the second separator face each other is defined as thickness b
  • the relationship of length a+length a' ⁇ thickness b holds
  • a process of forming an adhesive part that connects the cathode foil through a short-circuit path, and impregnating the capacitor element with an electrolytic solution causes the conductive polymer forming the adhesive part to swell and become sticky and wet. It may include a step.
  • the moisture may be removed by drying.
  • the electrolytic solution when impregnating the capacitor element with an electrolytic solution, the electrolytic solution is injected into the conductive polymer to swell the conductive polymer forming the adhesive part and make it sticky. It may also be in a wet state with.
  • the capacitor element when the conductive polymer dispersion is used as the electrolyte, the capacitor element may be further injected with the electrolyte.
  • the conductive polymer dispersion when used as the electrolyte, may have at least one type of solution selected from water and organic solvents as a solvent. May be used.
  • the organic solvent is selected from at least one of glycol compounds, lactone compounds, and sulfolane having a boiling point of 150° C. or higher, and the weight ratio of the organic solvent and water is 1:99. It may be 50:50.
  • an electrolytic capacitor that can achieve sufficiently low ESR and a method for manufacturing the same.
  • FIG. 1 is a schematic diagram of an electrolytic capacitor according to a first embodiment.
  • (a) is a diagram of the anode foil developed into a sheet
  • (b) is a diagram of the cathode foil developed into a sheet
  • (c) is a diagram of the first separator developed into a sheet.
  • FIG. 2 is a diagram showing a cathode foil developed into a sheet.
  • (a) is a schematic cross-sectional view for explaining the laminated structure within the capacitor element
  • (b) is an enlarged cross-sectional view of the anode foil.
  • FIG. 3 is a diagram for explaining a configuration for forming an adhesive portion between two layers of cathode foil sandwiching an anode foil.
  • FIG. 1 is a schematic diagram of an electrolytic capacitor according to a first embodiment.
  • (a) is a diagram of the anode foil developed into a sheet
  • (b) is a diagram of the cathode foil developed into a sheet
  • (c)
  • FIG. 3 is a diagram illustrating how protrusions come into contact with each other with an anode foil in between.
  • (a) and (b) are diagrams for explaining the effect when an adhesive portion is formed in the radial direction on the upper surface of a capacitor element.
  • (a) is a diagram illustrating an image of the top surface of a capacitor element before formation of a conductive polymer
  • (b) is a diagram illustrating an image of the top surface of a capacitor element after formation of a conductive polymer.
  • 1 is a diagram illustrating a flow of a method for manufacturing an electrolytic capacitor 1.
  • FIG. FIG. 3 is a schematic diagram of an electrolytic capacitor according to a second embodiment.
  • FIG. 2 is a diagram showing a cathode foil developed into a sheet.
  • (a) is a schematic cross-sectional view for explaining the laminated structure within the capacitor element, and (b) is an enlarged cross-sectional view of the anode foil.
  • FIG. 3 is a diagram for explaining a configuration for forming an adhesive portion between two layers of cathode foil sandwiching an anode foil.
  • FIG. 3 is a diagram illustrating how protrusions come into contact with each other with an anode foil in between.
  • FIG. 1 is a diagram illustrating an image of the top surface of a capacitor element before formation of a conductive polymer
  • (b) is a diagram illustrating an image of the top surface of a capacitor element after formation of a conductive polymer. It is a figure which illustrates the flow of the manufacturing method of an electrolytic capacitor.
  • FIG. 1 is a schematic diagram of a solid electrolytic capacitor 1 according to a first embodiment.
  • the solid electrolytic capacitor 1 includes a metal case 10 that functions as an exterior body, a capacitor element 20 inserted into the metal case 10, and a sealing body 30.
  • the metal case 10 is a bottomed cylindrical aluminum case having an opening 11 at one end.
  • the metal case 10 has a cylindrical shape as an example, but it may have a rectangular tube shape.
  • the capacitor element 20 includes a pair of electrode foils.
  • the pair of electrode foils is an anode foil 21a and a cathode foil 21b.
  • the capacitor element 20 is constructed by laminating the first separator 22a, the anode foil 21a, the second separator 22b, and the cathode foil 21b in this order and winding them in the length direction.
  • the shape of the capacitor element 20 is made to substantially match the inner shape of the metal case 10. Therefore, capacitor element 20 has a columnar shape.
  • the capacitor element 20 in this embodiment is preferably used in a wound type (approximately cylindrical shape) that can effectively exhibit the short-circuit path effect in the movement of ions; It may be used for a type capacitor element (approximately prismatic).
  • valve metals such as aluminum, tantalum, titanium, niobium, alloy foils thereof, vapor-deposited foils, etc. can be used.
  • the deposited film is, for example, a titanium deposited film.
  • the cathode foil 21b may be a valve metal foil, a valve metal alloy foil, or a foil in which a conductive layer is formed on the surface of the valve metal.
  • the entire surface of the anode foil 21a is covered with an oxide film. Therefore, the anode foil 21a is insulated from other members.
  • This oxide film functions as a dielectric, so that the capacitor element 20 functions as a capacitor.
  • No oxide film is formed on the surface of the cathode foil 21b.
  • the cathode foil 21b may have an inorganic layer or a carbon layer formed on its surface. In that case, a conductive polymer 25, which will be described later, is also formed on the surface on which the inorganic layer or carbon layer is formed.
  • An anode lead terminal 23a serving as a lead terminal is connected to the anode foil 21a.
  • a cathode lead terminal 23b serving as a lead terminal is connected to the cathode foil 21b.
  • the sealing body 30 is made of a rubber sealing body having a pair of lead insertion holes 31a and 31b into which the anode lead terminal 23a and the cathode lead terminal 23b are inserted.
  • the sealing body 30 is fitted into the opening 11 of the metal case 10, and is firmly and airtightly attached by means of a lateral throttle groove 12 formed along the outer periphery of the opening 11 using a caulking piece or the like.
  • a lateral throttle groove 12 formed along the outer periphery of the opening 11 using a caulking piece or the like.
  • butyl rubber or the like is used for the sealing body 30.
  • the bottom surface on the side where the lead terminals are provided is referred to as the top surface (first bottom surface), and the bottom surface on the side where the lead terminals are not provided is referred to as the top surface (first bottom surface).
  • the bottom surface is called a lower surface (second bottom surface).
  • FIG. 2(a) is a diagram of the anode foil 21a developed into a sheet shape.
  • FIG. 2(b) is a diagram of the cathode foil 21b developed into a sheet shape.
  • the anode lead terminal 23a and the cathode lead terminal 23b are formed into a battledore-shaped tab terminal portion by pressing one end side of a metal round bar such as aluminum into a flat plate. , has a structure in which lead wires are connected.
  • the anode foil 21a and the cathode foil 21b are fixed to the flat plate portion of this tab terminal portion. Note that adhesion is different from adhesion because it means drying and hardening.
  • FIG. 2(c) is a diagram of the first separator 22a developed into a sheet shape. A conductive polymer is formed on the first separator 22a. In the solid electrolytic capacitor 1, no electrolyte is used.
  • the second separator 22b also has the same structure as the first separator 22a.
  • the first separator 22a and the second separator 22b are made of at least one material selected from cellulose, rayon, glass fiber, etc.
  • the conductive polymer 25 is not particularly limited as long as it is a conductive polymer.
  • the conductive polymer 25 at least one polymer selected from the group consisting of polythiophene, polypyrrole, polyaniline, and derivatives thereof is used.
  • PEDOT polyethylenedioxythiophene
  • PES polystyrenesulfonic acid
  • the volume resistivity ( ⁇ m) of the cathode foil 21b and the conductive polymer 25 will be explained.
  • the volume resistivity of the cathode foil 21b is approximately 2.65 ⁇ 10 ⁇ 6 ⁇ m.
  • PEDOT containing PSS as a dopant is used as the conductive polymer 25
  • the volume resistivity of the conductive polymer 25 is about 1.0 ⁇ 10 ⁇ 3 to 1.0 ⁇ 10 ⁇ 2 .
  • the capacitor element 20 according to this embodiment can achieve high capacitance and low ESR by using the conductive polymer 25 in addition to the cathode foil 21b.
  • the ESR may not become sufficiently low. This point will be explained in detail.
  • FIG. 3 is a diagram of the cathode foil 21b developed into a sheet, similar to FIG. 2(b).
  • the electron conduction distance to the cathode lead terminal 23b may become long. For example, the distance tends to become longer from the point P farthest from the cathode lead terminal 23b to the cathode lead terminal 23b. Therefore, combined with the fact that the cathode foil is thin, the electrical resistance from the point P to the cathode lead terminal 23b increases, and the ESR may not be sufficiently low.
  • the distance from the end of the foil to the lead terminal is long, and due to the winding process, the foil must be on one side of the length, so the foil on the side far from the lead terminal is There is a problem in that electrical resistance increases when charges move from the ends.
  • the resistance will increase when conducting through the metal foil.
  • FIG. 4A is a schematic cross-sectional view for explaining the laminated structure within the capacitor element 20. As illustrated in FIG. 4A, in the cross section, the laminated units of the first separator 22a, the anode foil 21a, the second separator 22b, and the cathode foil 21b are laminated in this order. The cathode foil 21b appears to be located on the opposite side of the first separator 22a from the anode foil 21a.
  • the anode foil 21a has a structure in which an anodic oxide film 212 is formed on the surface of a metal foil 211.
  • This anodic oxide film 212 functions as a dielectric.
  • the surface of the anode foil 21a is enlarged by, for example, etching treatment, and an anodic oxide film 212 is formed on the surface by chemical conversion treatment.
  • the etched anode foil has numerous pores on its surface and has a very large surface area.
  • the anodic oxide film 212 is formed with a thickness of 10 to 100 nm over the entire surface of the anode foil 21a.
  • the charge from the cathode lead terminal 23b passes through the cathode foil 21b and charges the anodic oxide film 212 via the conductive polymer of the first separator 22a. However, the charge from the cathode lead terminal 23b passes through the cathode foil 21b that is closer to the cathode lead terminal 23b in FIG. In order to reach the cathode foil 21b on the left side from the cathode foil 21b on the right side in FIG. need to pass. If the adhesive part 40 made of conductive polymer is formed on the separator between these two layers of cathode foil 21b, a path from the point P farthest from the cathode lead terminal 23b explained in FIG. 3 to the cathode lead terminal 23b can be formed.
  • a shortcut can be formed to lower the ESR. That is, the charge from the cathode lead terminal 23b passes through the cathode foil 21b and charges the anodic oxide film 212 via the conductive polymer.
  • the cathode foil 21b When an electric charge passes through the cathode foil 21b, if an adhesive part is formed between the first separator 22a and the second separator 22b as an electrical short-circuit path by a conductive polymer, the electric charge from the cathode lead terminal 23b will be removed.
  • the cathode foil 21b on the outer periphery which is further away from the cathode lead terminal 23b via the adhesive part, it reaches the outer periphery from the cathode foil 21b on the outer periphery via the conductive polymer on the outer periphery.
  • the anodic oxide film 212 of the portion is efficiently charged. As a result, the conductivity of the anode foil 21a at the outer periphery up to the anodic oxide film 212 is higher, that is, the characteristics of the entire element are lowered in ESR.
  • FIG. 5 is a diagram for explaining a configuration for forming an adhesive part in two layers of cathode foil 21b sandwiching anode foil 21a.
  • the first separator 22a and the second separator 22b protrude from the anode foil 21a in the plane direction and face each other.
  • the first separator 22a and the second separator 22b protrude above the anode foil 21a on the upper surface of the capacitor element 20.
  • the length of the protrusion 22a1 of the first separator 22a that protrudes beyond the anode foil 21a is defined as length a.
  • the length of the protrusion 22b1 of the second separator 22b that protrudes beyond the anode foil 21a is defined as a length a'.
  • the thickness of the anode foil 21a at the location where the protrusion 22a1 of the first separator 22a and the protrusion 22b1 of the second separator 22b face each other is defined as a thickness b. In this case, the relationship of length a+length a' ⁇ thickness b holds true.
  • the protrusion 22a1 and the protrusion 22b1 easily come into contact with each other with the anode foil 21a in between.
  • the conductive polymer 25 of the first separator 22a and the conductive polymer 25 of the second separator 22b come into contact and are electrically connected.
  • an adhesive portion 40 is formed between the two layers of cathode foil 21b sandwiching anode foil 21a.
  • the ESR of the capacitor element 20 can be lowered.
  • stress can be applied to the protruding parts 22a1 and 22b1 to further fix them.
  • the adhesive part 40 is formed by fixing the protruding part 22a1 and the protruding part 22b1 with the conductive polymer 25 interposed therebetween.
  • at least one of the protrusion 22a1 and the protrusion 22b1 be inclined with respect to the cylindrical axis of the capacitor element 20.
  • at least one of the protrusion 22a1 and the protrusion 22b1 is inclined toward the center of the capacitor element 20. This inclination makes it possible to suppress the effects of impact even if the fixed location is vulnerable to impact.
  • FIGS. 7(a) and 7(b) are diagrams for explaining the effect when an adhesive portion is formed in the radial direction on the upper surface of the capacitor element 20. As illustrated in FIGS. 7A and 7B, an anode lead terminal 23a and a cathode lead terminal 23b can be seen on the upper surface of the capacitor element 20. On the lower surface of the capacitor element 20, the anode lead terminal 23a and the cathode lead terminal 23b are not seen.
  • the ion conduction path is a path that goes around multiple times and then reaches the cathode lead terminal 23b.
  • the adhesive part 40 is formed in the radial direction on the upper surface of the capacitor element 20, as illustrated in FIG. 7(b)
  • the shortcut can be repeated until the cathode lead terminal 23b is reached.
  • the route can be shortened.
  • the anode foil 21a since the anode foil 21a has an insulating anodic oxide film 212 formed thereon, even if the anode foil 21a comes into contact with the adhesive portion 40, no short circuit occurs.
  • (length a+length a') is preferably greater than one time the thickness b. Preferably, it is more preferably twice or more.
  • each of the length a and the length a' should be 0.2 mm or more. is preferable, more preferably 0.25 mm or more, and still more preferably 0.3 mm or more.
  • the anode foil 21a and the cathode foil 21b have a width of 2.7 mm or more and 7.5 mm in the direction connecting the upper surface and the lower surface of the capacitor element 20.
  • the first separator 22a and the second separator 22b have a width of 3.2 mm or more and 8.0 mm in the direction connecting the upper surface and the lower surface of the capacitor element 20.
  • the adhesive portion 40 be formed at a position close to the cathode lead terminal 23b. Therefore, in a plan view of the capacitor element 20, the adhesive portion 40 is formed at least in the half area on the side where the cathode lead terminal 23b is located (the area on the right side of the dotted line in FIG. 7(a)). , is preferable from the viewpoint of electrical efficiency in forming an electrical short circuit path on the cathode side.
  • the exposed portion (end surface) on the upper surface side of the anode foil 21a is covered with the conductive polymer 25 when the capacitor element 20 is viewed from the upper surface side. It looks like there is.
  • the anode end surface coverage of the anode foil 21a is determined by the conductive polymer 25 relative to the exposed area of the anode foil 21a on the upper surface of the capacitor element 20 when the capacitor element 20 is viewed from the upper surface side. It can be defined as the area covered by From the viewpoint of obtaining a sufficient amount of adhesive portion 40, the anode end surface coverage is preferably 45% or more, more preferably 69% or more, and even more preferably 73% or more.
  • the anode end surface coverage of the anode foil 21a is determined by image processing based on an image of the top surface of the capacitor element 20 before the formation of the conductive polymer 25 and an image of the top surface of the capacitor element 20 after the formation of the conductive polymer 25. It can be calculated by doing First, in an image of the top surface of the capacitor element 20 before the formation of the conductive polymer 25 illustrated in FIG. By subtracting the area, the area of the anode lead terminal 23a, the cathode lead terminal 23b, and the cathode foil 21b, the area of the exposed portion (end surface) of the anode foil 21a before coating can be calculated.
  • the area of the center is determined by assuming that the center has a circle whose diameter is the longest diameter of the holes in the center in a plan view of the top surface of the element, and is the value of 1/2 of the longest diameter of the circle.
  • the area of the center is defined as the area calculated using the calculation formula of ⁇ r 2 , where is the radius.
  • the first separator 22a, the second separator 22b, the center part By subtracting the area of the anode lead terminal 23a, the cathode lead terminal 23b, the area of the cathode foil 21b, and the area covered in black by the conductive polymer 25, the area of the exposed part (end surface) of the anode foil 21a after coating is calculated. can be calculated.
  • the distance required for the cathode foil 21b to go around once is longer at the outer circumference than at the center. Therefore, on the upper surface of the capacitor element 20, it is preferable that the area where the exposed portion of the anode foil 21a is covered with the conductive polymer 25 increases from the center toward the outer periphery.
  • the increase in the area covered by the conductive polymer 25 on the exposed portion of the anode foil 21a means that the absolute value of the area increases and the area ratio of the conductive polymer 25 in one circumference increases. This means that at least one of the following is true:
  • the structure on the upper surface of the capacitor element 20 has been described, but also on the lower surface, the first separator 22a has a protrusion 22a1 that protrudes toward the lower surface, and the second separator 22b has a protrusion 22a1 that protrudes toward the lower surface.
  • a protruding portion 22b1 may be provided.
  • only one of the upper surface and the lower surface of the capacitor element 20 may be provided with the protrusion 22a1 and the protrusion 22b1.
  • the cathode lead terminal 23b is connected to the upper surface side of the capacitor element 20 in the cathode foil 21b, it is preferable that an adhesive portion be formed on the upper surface side of the capacitor element 20. Therefore, it is preferable that the upper surface of the capacitor element 20 be provided with a protrusion 22a1 and a protrusion 22b1.
  • the conductivity is increased with respect to the sum of the area of the exposed portion of the anode foil 21a when the capacitor element 20 is viewed from the top side and the area of the exposed portion of the anode foil 21a when the capacitor element 20 is viewed from the bottom side.
  • the ratio of the area covered by the molecules 25 is preferably 48% or more, more preferably 70% or more, and even more preferably 73% or more. Note that the ratio can also be defined as the average value of the anode end surface coverage on the upper surface side and the anode end surface coverage on the lower surface side of the capacitor element 20.
  • FIG. 9 is a diagram illustrating a flow of a method for manufacturing the electrolytic capacitor 1.
  • the first separator 22a, the anode foil 21a to which the anode lead terminal 23a is connected, the second separator 22b, and the cathode foil 21b to which the cathode lead terminal 23b is connected are laminated and wound in this order, and the outer surface is covered with a winding tape.
  • a rolled body is produced by fixing.
  • the first separator 22a and the second separator 22b are made to protrude above and below the anode foil 21a.
  • the wound body is immersed in a precursor monomer containing water and an organic solvent for 20 minutes in a reduced pressure atmosphere, and then the wound body is pulled up from the precursor monomer. By doing so, the wound body can be impregnated with the precursor monomer.
  • the adhesive portion 40 is formed by applying an oxidizing agent to the wound body with the excess precursor monomer remaining in the wound body.
  • the adhesive portion 40 is polymerized with the surplus precursor monomer remaining. can be formed.
  • a conductive polymer is formed in the capacitor element 20 by impregnating the first separator 22a and the second separator with a precursor monomer
  • a polymerization reaction may be caused by impregnating the first separator 22a and the second separator 22b with a precursor monomer, removing excess precursor monomer, and allowing an oxidizing agent to act on the first separator 22a and the second separator 22b.
  • the adhesive portion 40 may be formed by impregnating the separator 22b with the precursor monomer again, removing excess precursor monomer, and applying an oxidizing agent to the separator 22b. By repeating this series of steps, a sufficient amount of adhesive portions 40 can be formed. Note that moisture may remain inside the capacitor element 20.
  • the protruding portions of the first separator 22a and the second separator 22b are also fixed and bonded at the same time.
  • a section 40 may also be formed.
  • the first separator 22a and the second separator 22b are again impregnated with or adhered to a conductive polymer to form a solid electrolyte.
  • the number of bonds may be increased by forming layers.
  • the electrolytic capacitor 1 is completed by sealing the wound body with the metal case 10 and the sealing body 30. Thereafter, aging treatment may be performed while applying the rated voltage.
  • the protruding portion 22a1 and the protruding portion 22b1 easily come into contact with each other with the anode foil 21a sandwiched therebetween, and the adhesive portion 40 is formed between the two layers of cathode foils 21b sandwiching the anode foil 21a. begins to form.
  • the ESR of the capacitor element 20 can be lowered.
  • the separator impregnated with the precursor monomer has adhesiveness, and by applying an oxidizing agent while the adhesive separators are stuck together, the precursor monomer polymerizes. A strong conductive polymer layer is formed that is integrated with the separator.
  • a laminated unit in which the first separator 22a, anode foil 21a, second separator 22b, and cathode foil 21b are laminated in this order is wound, but the present invention is not limited thereto.
  • a laminated unit in which the first separator 22a, the cathode foil 21b, the second separator 22b, and the anode foil 21a are laminated in this order may be wound.
  • the capacitor element 20 has a substantially cylindrical shape, but the shape is not limited thereto.
  • the capacitor element 20 may have another columnar shape such as a square column.
  • the capacitor element 20 is wound, but the invention is not limited thereto.
  • a plurality of laminated units including the first separator 22a, anode foil 21a, second separator 22b, and cathode foil 21b may be laminated without being wound.
  • FIG. 10 is a schematic diagram of an electrolytic capacitor 101 according to the second embodiment.
  • the electrolytic capacitor 101 includes a metal case 110 that functions as an exterior body, a capacitor element 120 inserted into the metal case 110, and a sealing body 130.
  • the metal case 110 is a bottomed cylindrical aluminum case having an opening 111 at one end.
  • the metal case 110 has a cylindrical shape as an example, but it may have a rectangular tube shape.
  • the capacitor element 120 includes a pair of electrode foils.
  • the pair of electrode foils is an anode foil 121a and a cathode foil 121b.
  • the capacitor element 120 is constructed by laminating the first separator 122a, the anode foil 121a, the second separator 122b, and the cathode foil 121b in this order and winding them in the length direction.
  • the shape of capacitor element 120 is made to substantially match the inner shape of metal case 110. Therefore, capacitor element 120 has a columnar shape. It is preferable to use the capacitor element 120 in this embodiment as a wound type (approximately cylindrical shape) which can effectively exhibit the short-circuit path effect in the movement of ions.
  • One pair or a plurality of pairs may be prepared and used for a laminated capacitor element (approximately prismatic) in which they are sequentially laminated.
  • valve metals such as aluminum, tantalum, titanium, niobium, alloy foils thereof, vapor-deposited foils, etc. can be used.
  • the entire surface of the anode foil 121a is covered with an anodic oxide film. Therefore, the anode foil 121a is insulated from other members.
  • This anodic oxide film functions as a dielectric, so that the capacitor element 120 functions as a capacitor.
  • the cathode foil 121b may have an inorganic layer or a carbon layer formed on its surface by vapor deposition, coating, or the like. In that case, a conductive polymer 125, which will be described later, is also formed on the surface on which the inorganic layer or carbon layer is formed.
  • An anode lead terminal 123a as a lead terminal is connected to the anode foil 121a.
  • a cathode lead terminal 123b as a lead terminal is connected to the cathode foil 121b.
  • the sealing body 130 is made of a rubber sealing body having a pair of lead insertion holes 131a and 131b into which the anode lead terminal 123a and the cathode lead terminal 123b are inserted.
  • the sealing body 130 is fitted into the opening 111 of the metal case 110, and is firmly and airtightly attached by the horizontal throttle groove 112 formed along the outer periphery of the opening 111 using a caulking piece or the like.
  • the sealing body 130 may be made of butyl rubber, which has a small swelling rate with respect to the solvent of the electrolytic solution, which will be described later. Thereby, when the electrolytic solution contains ethylene glycol, the influence of impurities extracted by ethylene glycol on the capacitor characteristics can be reduced.
  • the swelling rate is less than 0.4 wt% even when immersed in an ethylene glycol solvent at 125°C for 2000 hours or more, and the swelling rate remains even when immersed in a ⁇ -butyrolactone solvent for 2000 hours or more. It is advantageous to use butyl rubber having the property that the ratio is less than 2 wt%.
  • the bottom surface on the side where the lead terminals are provided is referred to as the top surface (first bottom surface), and the bottom surface on the side where the lead terminals are not provided is referred to as the top surface (first bottom surface).
  • the bottom surface is called a lower surface (second bottom surface).
  • FIG. 11(a) is a diagram of the anode foil 121a developed into a sheet shape.
  • FIG. 11(b) is a diagram of the cathode foil 121b developed into a sheet shape.
  • the anode lead terminal 123a and the cathode lead terminal 123b are formed into a battledore-shaped tab terminal portion by pressing one end side of a metal round bar such as aluminum into a flat plate. , has a structure in which lead wires are connected.
  • the anode foil 121a and the cathode foil 121b are connected to the flat plate portion of this tab terminal portion.
  • FIG. 11(c) is a diagram of the first separator 122a developed into a sheet shape.
  • the first separator 122a is impregnated with an electrolyte and further formed with a conductive polymer.
  • the positions of the electrolytic solution impregnated region and the conductive polymer impregnated region in the first separator 122a are not particularly limited, but as an example, the electrolytic solution and the conductive polymer are impregnated throughout the first separator 122a. are doing. However, in the axial direction connecting the upper and lower surfaces of the capacitor element 120, the amount of electrolytic solution impregnated on the upper surface side and the lower surface side may be larger than the amount of electrolytic solution impregnated on the center side of the first separator 122a.
  • the conductive polymer 125 tends to be mainly impregnated into the upper end and the lower end of the capacitor element 120. Therefore, on the axis connecting the top and bottom surfaces of the capacitor element 120, the amount of conductive polymer 125 impregnated on the top and bottom sides of the first separator 122a is greater than the amount of conductive polymer 125 impregnated on the center side of the first separator 122a. It may happen. Alternatively, the center side of the first separator 122a may not be impregnated with the conductive polymer 125, but only the upper surface side and the lower surface side may be impregnated with the conductive polymer 125.
  • the second separator 122b also has the same structure as the first separator 122a.
  • the electrolytic solution 124 can contain a polyhydric alcohol, a sulfone compound, a lactone compound, a carbonate compound, a diether compound of a polyhydric alcohol, a monohydric alcohol, and the like. These may be used alone or in combination.
  • the polyhydric alcohol contains, for example, at least one of ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butanediol, polyalkylene glycol, and glycerin.
  • polyalkylene glycol polyethylene glycol having an average molecular weight of 200 to 1,000 and polypropylene glycol having an average molecular weight of 200 to 5,000 are preferably used.
  • the lactone compound ⁇ -butyrolactone, ⁇ -valerolactone, etc.
  • the carbonate compound may include dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, ethylene carbonate, propylene carbonate, fluoroethylene carbonate, etc. as a solvent.
  • the electrolytic solution 124 may contain a solute.
  • a solute an acid component, a base component, a salt consisting of an acid component and a base component, a nitro compound, a phenol compound, etc. can be used.
  • an organic acid, an inorganic acid, or a composite compound of an organic acid and an inorganic acid can be used.
  • organic acids include carboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, 4-hydroxybenzoic acid, 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid, and azelaic acid.
  • An acid etc. can be used.
  • boric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, phosphoric acid ester, phosphoric diester, etc. can be used.
  • borodisalicylic acid As the composite compound of an organic acid and an inorganic acid, borodisalicylic acid, borodisoxalic acid, borodisglycolic acid, etc. can be used.
  • primary to tertiary amines quaternary ammonium, quaternized amidinium, etc.
  • the primary to tertiary amine for example, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, N,N-diisopropylethylamine, tetramethylethylenediamine, hexamethylenediamine, etc.
  • quaternary ammonium for example, tetramethylammonium, triethylmethylammonium, tetraethylammonium, etc.
  • the quaternized amidinium for example, ethyldimethylimidazolinium, tetramethylimidazolinium, etc. can be used.
  • p-nitrobenzyl alcohol is suitable as an absorbent for hydrogen gas generated inside the capacitor, and the amount added thereof is preferably 0.5 to 1.5 wt% in the electrolytic solution. This is because if it is less than 0.5 wt%, the hydrogen gas absorption effect is small, and on the other hand, if it exceeds 1.5 wt%, the pressure resistance characteristics may deteriorate.
  • the first separator 122a and the second separator 122b are made of at least one material selected from cellulose, rayon, glass fiber, or a mixed paper thereof.
  • the conductive polymer 125 is not particularly limited as long as it is a conductive polymer.
  • the conductive polymer 125 at least one polymer selected from the group consisting of polythiophene, polypyrrole, polyaniline, and derivatives thereof is used.
  • the conductive polymer 25 polyethylenedioxythiophene (PEDOT) is generally used, which is doped with at least one acid selected from the group consisting of p-toluenesulfonic acid, polystyrenesulfonic acid (PSS), etc. .
  • the volume resistivity ( ⁇ m) of the cathode foil 121b, the electrolytic solution 124, and the conductive polymer 125 will be explained. Since the cathode foil 121b is made of metal, it has a lower volume resistivity than the electrolytic solution 124 and the conductive polymer 125. Conductive polymer 125 also tends to have a lower volume resistivity than electrolyte 124. For example, when aluminum is used as the cathode foil 121b, the volume resistivity of the cathode foil 121b is approximately 2.65 ⁇ 10 ⁇ 6 ⁇ m.
  • the volume resistivity of the conductive polymer 125 is about 1.0 ⁇ 10 ⁇ 3 to 1.0 ⁇ 10 ⁇ 2 .
  • ESE2 trade name, manufactured by Teika Corporation
  • the volume resistivity of the electrolytic solution 124 was approximately 5 ⁇ 10 3 ⁇ m (200 ⁇ S/cm).
  • the capacitor element 120 can achieve high capacitance and low ESR by using the electrolytic solution 124 and the conductive polymer 125 together. However, the ESR may not become sufficiently low. This point will be explained in detail.
  • FIG. 12 is a diagram of the cathode foil 121b developed into a sheet, similar to FIG. 11(b).
  • the ion conduction distance to cathode lead terminal 123b may become long. For example, the distance tends to become longer from the point P farthest from the cathode lead terminal 123b to the cathode lead terminal 123b. Therefore, the electrical resistance from the point P to the cathode lead terminal 123b increases, and the ESR may not become sufficiently low.
  • FIG. 13(a) is a schematic cross-sectional view for explaining the laminated structure within the capacitor element 120.
  • the laminated units of the first separator 122a, the anode foil 121a, the second separator 122b, and the cathode foil 121b are laminated in this order.
  • the cathode foil 121b appears to be located on the opposite side of the first separator 122a from the anode foil 121a.
  • the anode foil 121a has a structure in which an anodic oxide film 1212 is formed on the surface of a metal foil 1211.
  • This anodic oxide film 1212 functions as a dielectric.
  • the surface of the anode foil 121a is enlarged by, for example, etching treatment, and an anodic oxide film 1212 is formed on the surface by chemical conversion treatment.
  • the etched anode foil has numerous pores on its surface and has a very large surface area.
  • the anodic oxide film 1212 is formed to a thickness of 10 to 100 nm over the entire surface of the anode foil 121a.
  • the charge from the cathode lead terminal 123b passes through the cathode foil 121b and charges the anodic oxide film 1212 via the conductive polymer and electrolyte of the first separator 122a.
  • the anodic oxide film 1212 has insulating properties, in order for the charges to reach the adjacent second separator 122b across the anode foil 121a, it is necessary to pass through the electrolytic solution present on the end surface of the anode foil 121a. It becomes necessary.
  • the conductivity of the electrolytic solution present on the end surface of the anode foil 121a is about 200 ⁇ S/cm, so the ESR increases.
  • the adhesive part 140 made of conductive polymer is formed on the separator between these two layers of cathode foil 121b, a path from the point P farthest from the cathode lead terminal 123b explained in FIG. 12 to the cathode lead terminal 123b can be formed.
  • a shortcut can be formed to lower the ESR. That is, the charge from the cathode lead terminal 123b passes through the cathode foil 121b and charges the anodic oxide film 1212 via the conductive polymer and electrolyte.
  • FIG. 14 is a diagram for explaining a configuration for forming an adhesive part in two layers of cathode foil 121b sandwiching anode foil 121a.
  • the first separator 122a and the second separator 122b protrude from the anode foil 121a in the plane direction and face each other.
  • the first separator 122a and the second separator 122b protrude above the anode foil 121a on the upper surface of the capacitor element 120.
  • the protruding length of the protruding portion 122a1 of the first separator 122a that protrudes beyond the anode foil 121a is defined as length a.
  • the protruding length of the protruding portion 122b1 of the second separator 122b that protrudes beyond the anode foil 121a is defined as length a'.
  • the thickness of the anode foil 121a at the location where the protrusion 122a1 of the first separator 122a and the protrusion 122b1 of the second separator 122b face each other is defined as thickness b. In this case, the relationship of length a+length a' ⁇ thickness b holds true.
  • the protrusion 122a1 and the protrusion 122b1 easily come into contact with each other with the anode foil 121a in between.
  • the conductive polymer 125 of the first separator 122a and the conductive polymer 125 of the second separator 122b come into contact and are electrically connected.
  • an adhesive portion 140 is formed between the two layers of cathode foil 121b sandwiching anode foil 121a.
  • the adhesive part 140 has a structure that conducts through a short-circuit path of the cathode foil 121b, and connects the first separator 122a and the second separator 122b between the separators, between the conductive polymers, or between the separators and the conductive polymer. Connect with. Thereby, the ESR of the capacitor element 120 can be lowered.
  • the conductive polymer in the process of forming the conductive polymer 125 and impregnating it with the electrolytic solution, the conductive polymer can be made to have more adhesive properties, and at this stage, the protrusion 122a1 and the protrusion 122b1 spontaneously bond together. can do.
  • the adhesive portion 140 is formed by bonding the protruding portion 122a1 and the protruding portion 122b1 via the conductive polymer 125.
  • FIGS. 16(a) and 16(b) are diagrams for explaining the effect when an adhesive portion is formed in the radial direction on the upper surface of the capacitor element 120. As illustrated in FIGS. 16(a) and 16(b), an anode lead terminal 123a and a cathode lead terminal 123b can be seen on the upper surface of the capacitor element 120. On the lower surface of capacitor element 120, anode lead terminal 123a and cathode lead terminal 123b are not seen.
  • the ion conduction path is a path that goes around multiple times and then reaches the cathode lead terminal 123b.
  • the shortcut can be repeated until it reaches the cathode lead terminal 123b The route can be shortened.
  • (length a+length a') may be greater than one time the thickness b. Preferably, it is more preferably twice or more.
  • each of the length a and the length a' should be 0.2 mm or more. is preferable, more preferably 0.25 mm or more, and even more preferably 0.3 mm or more.
  • the anode foil 121a and the cathode foil 121b have a width of 2.7 mm or more and 7.5 mm in the direction connecting the upper surface and the lower surface of the capacitor element 120.
  • the first separator 122a and the second separator 122b have a width of 3.2 mm or more and 8.0 mm in the direction connecting the upper surface and the lower surface of the capacitor element 120.
  • the adhesive portion 140 be formed at a position close to the cathode lead terminal 123b. Therefore, in a plan view of the capacitor element 120, the adhesive portion 140 covers at least the half area on the side where the cathode lead terminal 123b is located (the area on the right side of the dotted line in FIGS. 16(a) and 16(b)). Preferably, it is formed in any part.
  • the end surface portion (end surface) on the top surface side of the anode foil 121a is covered with the conductive polymer 125. It looks like there is. The higher the ratio of the upper end surface of the anode foil 121a covered with the conductive polymer 125 (anode end surface coverage), the more adhesive parts 140 are formed. Therefore, it is preferable to set a lower limit on the anode end surface coverage.
  • the anode end surface coverage of the anode foil 121a is determined by the conductive polymer 125 relative to the exposed area of the anode foil 121a on the upper surface of the capacitor element 120 when the capacitor element 120 is viewed from the upper surface side. It can be defined as the area covered by From the viewpoint of obtaining a sufficient amount of adhesive portion 140, the anode end surface coverage is preferably 15% or more, more preferably 20% or more, and even more preferably 30% or more.
  • the anode end surface coverage of the anode foil 121a is determined by image processing based on an image of the top surface of the capacitor element 120 before the formation of the conductive polymer 125 and an image of the top surface of the capacitor element 120 after the formation of the conductive polymer 125. It can be calculated by doing First, in the image of the top surface of the capacitor element 120 before the formation of the conductive polymer 125 illustrated in FIG. By subtracting the area, the area of the anode lead terminal 123a, the cathode lead terminal 123b, and the cathode foil 121b, the area of the end surface portion (end surface) of the anode foil 121a before coating can be calculated.
  • the area of the center is determined by assuming that the center has a circle whose diameter is the longest diameter of the holes in the center in a plan view of the top surface of the element, and is the value of 1/2 of the longest diameter of the circle.
  • the area of the center is defined as the area calculated using the calculation formula of ⁇ r 2 , where is the radius.
  • the anode end surface coverage can be calculated.
  • the anode end surface coverage may be the ratio of black to the total area of the end surface of the coated anode foil 121a (white) and the area covered by the conductive polymer 125 (black).
  • the distance required for the cathode foil 121b to go around once is longer at the outer circumference than at the center. Therefore, on the upper surface of the capacitor element 120, it is preferable that the area where the end surface of the anode foil 121a is covered with the conductive polymer 125 increases from the center toward the outer periphery.
  • the increase in the area covered by the conductive polymer 125 on the end face of the anode foil 121a means that the absolute value of the area increases and the area ratio of the conductive polymer 125 in one circumference increases. This means at least one of the following:
  • the structure on the top surface of the capacitor element 120 has been described, but also on the bottom surface, the first separator 122a has a protrusion 122a1 that protrudes toward the bottom surface, and the second separator 122b has a protrusion portion 122a1 that protrudes toward the bottom surface.
  • a protrusion 122b1 may be provided.
  • the protrusion 122a1 and the protrusion 122b1 may be provided only on either the upper surface or the lower surface of the capacitor element 120.
  • the cathode lead terminal 123b is connected to the upper surface side of the capacitor element 120 in the cathode foil 121b, it is preferable that the adhesive part 140 is formed on the upper surface side of the capacitor element 120. Therefore, it is preferable that the upper surface of the capacitor element 120 be provided with a protrusion 122a1 and a protrusion 122b1.
  • the length a on the upper surface side It is preferable that the length a' is longer than the length a and the length a' on the lower surface side.
  • the ratio of the area covered by is preferably 20% or more, more preferably 40% or more, and even more preferably 60% or more. Note that the ratio can also be defined as the average value of the anode end surface coverage on the upper surface side and the anode end surface coverage on the lower surface side of the capacitor element 120.
  • FIG. 18 is a diagram illustrating a flow of a method for manufacturing electrolytic capacitor 101.
  • the first separator 122a, the anode foil 121a to which the anode lead terminal 123a is connected, the second separator 122b, and the cathode foil 121b to which the cathode lead terminal 123b is connected are laminated and wound in this order, and the outer surface is covered with a winding tape.
  • a rolled body is produced by fixing.
  • the first separator 122a and the second separator 122b are made to protrude above and below the anode foil 121a.
  • the wound body is immersed in a conductive polymer dispersion containing water and an organic solvent for 20 minutes in a reduced pressure atmosphere, and then the wound body is pulled up from the conductive polymer dispersion. By doing so, the wound body can be impregnated with the conductive polymer 125.
  • the bonded portion 140 is formed by drying the excess conductive polymer 125 remaining in the wound body.
  • a conductive polymer dispersion having a polymer concentration of 0.5 wt% or more or a viscosity of 10 mPa ⁇ s or more at 20°C. If the polymer concentration of the conductive polymer dispersion liquid is low, when the conductive polymer is impregnated into the element, a sufficient amount of the conductive polymer will not remain on the top surface of the element to form an adhesive part, and the conductive polymer will not remain on the upper surface of the element.
  • the viscosity of the polymer dispersion liquid is low, when the conductive polymer is impregnated into the element, the amount of conductive polymer necessary for bonding the first separator 122a and the second separator 122b will not remain on the upper surface of the element. be.
  • the wound body is impregnated with a predetermined amount of electrolytic solution in a reduced pressure atmosphere.
  • the electrolytic solution may be a mixture of a solute and a conductive polymer dispersion. That is, a conductive polymer dispersion can be used as an electrolyte. In that case, the impregnation with the electrolytic solution will be performed simultaneously with the impregnation with the conductive polymer.
  • the solvent for the conductive polymer dispersion one or more solutions selected from water and organic solvents may be used.
  • the organic solvent is selected from at least one of glycol compounds, lactone compounds, and sulfolane having a boiling point of 150°C or higher, and the weight ratio of the organic solvent and water is 1:99 to 50:50. It's okay.
  • the organic solvent is selected from at least one of glycol compounds, lactone compounds, and sulfolane having a boiling point of 150°C or higher, and the weight ratio of the organic solvent and water is 1:99 to 50:50.
  • the solute acts as an electrolyte.
  • the manufacturing process can be shortened by performing the formation of the adhesive portion and the impregnation with the electrolytic solution at the same time.
  • the wound body may be further impregnated with an additional electrolytic solution.
  • the amount of additional electrolytic solution impregnated is preferably 2 times or more and 100 times or less, more preferably 5 times or more and 20 times or less, relative to the weight of the electrolytic solution in the dispersion.
  • the composition of the additional electrolyte may be the same as or different from the electrolyte in the dispersion.
  • an element that has been impregnated with a dispersion liquid as an electrolyte and the water removed by drying etc. is immersed in a bath of additional electrolyte with the lead terminals facing up so that the wound part is completely submerged, and then impregnated under reduced pressure. By doing so, additional electrolyte can be introduced into the element.
  • the reason for impregnating with additional electrolyte is as follows.
  • a composite layer of the conductive polymer and electrolyte is formed during drying, which improves the conductivity of the conductive polymer and repairs the oxide film near the conductive polymer. Can be compatible.
  • the amount of electrolyte in the dispersion is sufficient for initial repair, but when considering long-term repair, the amount of electrolyte becomes insufficient. Additional electrolyte impregnation is necessary to form a long-term stable device. That is, when a conductive polymer dispersion is used as the electrolyte, it is particularly effective to inject additional electrolyte in order to extend the life of the capacitor.
  • the electrolytic capacitor 101 is completed by sealing the wound body with the metal case 110 and the sealing body 130. Thereafter, aging treatment may be performed while applying the rated voltage.
  • the protruding portion 122a1 and the protruding portion 122b1 easily come into contact with each other with the anode foil 121a sandwiched therebetween, and the adhesive portion 140 is formed between the two layers of cathode foils 121b sandwiching the anode foil 121a. begins to form. As a result, the ESR of capacitor element 120 can be lowered.
  • the conductive polymer 125 forming the adhesive portion 140 can be swollen to a wet state and have adhesive properties. In this case, the bonding strength between the protrusion 122a1 and the protrusion 122b1 can be improved.
  • the adhesiveness in which the conductive polymers 125 are bound together can be improved. The parts swell and become sticky for a long time.
  • a laminated unit in which the first separator 122a, anode foil 121a, second separator 122b, and cathode foil 121b are laminated in this order is wound, but the present invention is not limited thereto.
  • a laminated unit in which the first separator 122a, the cathode foil 121b, the second separator 122b, and the anode foil 121a are laminated in this order may be wound.
  • the capacitor element 120 has a substantially cylindrical shape, but the shape is not limited thereto.
  • capacitor element 120 may have other column shapes such as a square column.
  • the capacitor element 120 is wound, but the present invention is not limited thereto.
  • a plurality of laminated units including the first separator 122a, anode foil 121a, second separator 122b, and cathode foil 121b may be laminated without being wound.
  • an electrolytic capacitor according to the first embodiment was manufactured and its characteristics were investigated.
  • Example 1 In Example 1, a wound solid electrolytic capacitor (diameter 6.3 mm x length 5.7 mm) with a rated voltage of 63 V and a rated capacitance of 56 ⁇ F was manufactured. A specific method of manufacturing a solid electrolytic capacitor will be described below.
  • An anode lead terminal was connected to the prepared anode foil.
  • a cathode lead terminal was connected to a cathode foil that had a conductor layer on its end face and had been pretreated to improve wettability.
  • a first separator, a cathode foil, a second separator, and an anode foil were laminated in this order, and the resultant layer was wound while enveloping the lead terminal, and the outer surface was fixed with a winding tape to produce a wound body.
  • the first separator and the second separator are arranged so that the protruding length a of the first separator and the protruding length a' of the second separator on the upper surface (lead terminal side) of the wound body are 0.35 mm.
  • the prepared wound body was immersed in an aqueous ammonium phosphate solution, and a predetermined voltage was applied to the anode foil while chemical conversion treatment was performed again to form a dielectric layer mainly on the end face of the anode foil. . Thereafter, the element was subjected to a carbonization process, a chemical conversion process and a carbonization process again, and then washed and dried.
  • the thickness b of the anode foil was 0.125 mm.
  • the wound body was immersed in the conductive polymer precursor monomer contained in a predetermined container for 3 minutes, and then the wound body was pulled up from the conductive polymer precursor monomer. At this time, the coverage of the anode end surface with the conductive polymer precursor monomer was adjusted to about 96% to 99%.
  • the rolled body impregnated with the conductive polymer precursor monomer is dried in a drying oven for 45 minutes, the dried element is impregnated with an oxidizing agent at room temperature, excess oxidizing agent is removed, and then heated. Polymerization was allowed to proceed. Thereafter, further heat treatment was performed as necessary, and after slow cooling, an aluminum solid electrolytic capacitor element having a conductive polymer layer and an adhesive portion was obtained.
  • Image processing was performed on the top and bottom surfaces of the obtained capacitor element, and the anode end surface coverage of each was calculated.
  • the anode end surface coverage on the upper surface side was 98.8%.
  • the anode end surface coverage on the lower surface side was 96.1%.
  • the average value of the anode end surface coverage on the upper and lower surfaces was 97.6%.
  • a solid electrolytic capacitor was completed by sealing the solid electrolytic capacitor element. Thereafter, aging treatment was performed for 1 hour while applying the rated voltage.
  • Example 2 A solid electrolytic capacitor was produced and evaluated in the same manner as in Example 1, except that when forming the conductive polymer, the coverage of the anode end surface by the conductive polymer was adjusted to be approximately 84% to 86%. Ta.
  • the anode end surface coverage on the upper surface side was 85.7%.
  • the anode end surface coverage on the lower surface side was 83.9%.
  • the average value of the anode end surface coverage on the upper and lower surfaces was 84.8%.
  • Example 3 A solid electrolytic capacitor was produced and evaluated in the same manner as in Example 1, except that during the formation of the conductive polymer, the coverage of the anode end surface by the conductive polymer was adjusted to approximately 73 to 75%. .
  • the anode end surface coverage on the upper surface side was 73.4%.
  • the anode end surface coverage on the lower surface side was 74.2%.
  • the average value of the anode end surface coverage on the upper and lower surfaces was 73.8%.
  • Example 4 The positions of the first separator and the second separator were adjusted so that the protrusion length a of the first separator and the protrusion length a' of the second separator on the upper surface of the winding body (lead terminal side) were 0.2 mm. .
  • the coverage of the anode end surface with the conductive polymer was adjusted to about 89 to 91%.
  • a solid electrolytic capacitor was produced and evaluated in the same manner as in Example 1.
  • the anode end surface coverage on the upper surface side was 69.3%.
  • the anode end surface coverage on the lower surface side was 70.6%.
  • the average value of the anode end surface coverage on the upper and lower surfaces was 70.1%.
  • Example 5 An electrolytic capacitor was produced and evaluated in the same manner as in Example 4, except that during the formation of the conductive polymer, the coverage of the anode end surface by the conductive polymer was adjusted to about 74 to 77%.
  • the anode end surface coverage on the upper surface side was 54.2%.
  • the anode end surface coverage on the lower surface side was 56.8%.
  • the average value of the anode end surface coverage on the upper and lower surfaces was 55.5%.
  • Example 6 An electrolytic capacitor was produced and evaluated in the same manner as in Example 4, except that during the formation of the conductive polymer, the coverage of the anode end surface by the conductive polymer was adjusted to about 68 to 71%.
  • the anode end surface coverage on the upper surface side was 45.7%.
  • the anode end surface coverage on the lower surface side was 50.4%.
  • the average value of the anode end surface coverage on the upper and lower surfaces was 48.1%.
  • the anode end surface coverage on the upper surface side was 34.9%.
  • the anode end surface coverage on the lower surface side was 32.5%.
  • the average value of the anode end surface coverage on the upper and lower surfaces was 33.7%.
  • Image processing was performed on the upper and lower surfaces of the obtained capacitor element, and the anode end surface coverage of each was calculated, and the anode end surface coverage on the upper surface side was 18.2%.
  • the anode end surface coverage on the lower surface side was 20.4%.
  • the average value of the anode end surface coverage on the upper and lower surfaces was 19.3%.
  • Example 1 the ESR was 12.7 m ⁇ . In Example 2, the ESR was 13.3 m ⁇ . In Example 3, the ESR was 15.8 m ⁇ . In Example 4, the ESR was 17.2 m ⁇ . In Example 5, the ESR was 19.4 m ⁇ . In Example 6, the ESR was 20.8 m ⁇ . In Comparative Example 1, the ESR was 26.5 m ⁇ . In Comparative Example 2, the ESR was 31.6 m ⁇ . The results are shown in Table 1.
  • an electrolytic capacitor according to the second embodiment was manufactured and its characteristics were investigated.
  • Example 7 In Example 7, a wound type electrolytic capacitor (diameter 10 mm x length 10 mm) with a rated voltage of 63 V and a rated capacitance of 56 ⁇ F was manufactured. A specific method for manufacturing an electrolytic capacitor will be described below.
  • An anode lead terminal was connected to the prepared anode foil.
  • a cathode lead terminal was connected to a cathode foil that had a conductor layer on its end face and had been pretreated to improve wettability.
  • a first separator, a cathode foil, a second separator, and an anode foil were laminated in this order, the lead terminals were wound around the stack, and the outer surface was fixed with a tape to produce a wound body.
  • the first separator and the second separator are arranged so that the protrusion length a of the first separator and the protrusion length a' of the second separator on the upper surface (lead terminal side) of the winding body are 0.35 mm.
  • the prepared wound body is immersed in an aqueous ammonium phosphate solution, and a dielectric layer is formed mainly on the end face of the anode foil by performing chemical conversion treatment again at 85°C while applying a voltage of 143V to the anode foil. was formed.
  • the thickness b of the anode foil was 0.125 mm.
  • Image processing was performed on the top and bottom surfaces of the obtained capacitor element, and the anode end surface coverage of each was calculated.
  • the anode end surface coverage on the upper surface side was 97.3%.
  • the anode end surface coverage on the lower surface side was 95.4%.
  • the average value of the anode end surface coverage on the upper and lower surfaces was 96.3%.
  • the capacitor element is impregnated with a predetermined amount of electrolytic solution in a reduced pressure atmosphere (92 kPa), and the electrolytic solution is present in the bonded part to form an adhesive bonded part.
  • the amount was adjusted so that the amount per unit area was greater than that of the separator in the capacitor element.
  • ESE2 manufactured by Teika was used as the electrolyte. By doing so, the adhesive portion where the conductive polymers are bonded to each other swells and becomes sticky for a long period of time.
  • Example 8 An electrolytic capacitor was produced and evaluated in the same manner as in Example 7, except that during the formation of the conductive polymer, the coverage of the anode end surface by the conductive polymer was adjusted to be about 53%.
  • Image processing was performed on the upper and lower surfaces of the obtained capacitor element, and the anode end surface coverage of each was calculated, and the anode end surface coverage on the upper surface side was 61.2%.
  • the anode end surface coverage on the lower surface side was 43.9%.
  • the average value of the anode end surface coverage on the upper and lower surfaces was 52.5%.
  • Example 9 An electrolytic capacitor was produced and evaluated in the same manner as in Example 7, except that during the formation of the conductive polymer, the coverage of the anode end surface by the conductive polymer was adjusted to be about 24%.
  • the anode end surface coverage on the upper surface side was 28.4%.
  • the anode end surface coverage on the lower surface side was 18.8%.
  • the average value of the anode end surface coverage on the upper and lower surfaces was 23.6%.
  • Example 10 The positions of the first separator and the second separator were adjusted so that the protrusion length a of the first separator and the protrusion length a' of the second separator on the upper surface of the winding body (lead terminal side) were 0.2 mm. .
  • the coverage of the anode end surface with the conductive polymer was adjusted to about 76%.
  • an electrolytic capacitor was produced and evaluated in the same manner as in Example 7.
  • the anode end surface coverage on the upper surface side was 78.6%.
  • the anode end surface coverage on the lower surface side was 72.5%.
  • the average value of the anode end surface coverage on the upper and lower surfaces was 75.6%.
  • Example 11 An electrolytic capacitor was produced and evaluated in the same manner as in Example 10, except that during the formation of the conductive polymer, the coverage of the anode end surface by the conductive polymer was adjusted to be approximately 39%.
  • the anode end surface coverage on the upper surface side was 45.6%.
  • the anode end surface coverage on the lower surface side was 32.9%.
  • the average value of the anode end surface coverage on the upper and lower surfaces was 39.3%.
  • Example 12 An electrolytic capacitor was produced and evaluated in the same manner as in Example 10, except that during the formation of the conductive polymer, the coverage of the anode end surface by the conductive polymer was adjusted to be approximately 20%.
  • the anode end surface coverage on the upper surface side was 24.7%.
  • the anode end surface coverage on the lower surface side was 16.2%.
  • the average value of the anode end surface coverage on the upper and lower surfaces was 20.4%.
  • the anode end surface coverage on the upper surface side was 13.9%.
  • the anode end surface coverage on the lower surface side was 9.0%.
  • the average value of the anode end surface coverage on the upper and lower surfaces was 11.4%.
  • Comparative example 4 An electrolytic capacitor was produced and evaluated in the same manner as in Comparative Example 3, except that during the formation of the conductive polymer, the coverage of the anode end surface by the conductive polymer was adjusted to about 8%.
  • the anode end surface coverage on the upper surface side was 9.5%.
  • the anode end surface coverage on the lower surface side was 6.4%.
  • the average value of the anode end surface coverage on the upper and lower surfaces was 8.0%.
  • the capacitance and ESR value were determined according to the following procedure.
  • the capacitance (initial capacitance) ( ⁇ F) of the electrolytic capacitor at a frequency of 120 Hz was measured using a four-terminal LCR meter.
  • the ESR value (initial ESR value) (m ⁇ ) of the electrolytic capacitor at a frequency of 100 kHz was measured.
  • Example 7 the ESR was 9.5 m ⁇ . In Example 8, the ESR was 10.4 m ⁇ . In Example 9, the ESR was 12.6 m ⁇ . In Example 10, the ESR was 13.5 m ⁇ . In Example 11, the ESR was 14.2 m ⁇ . In Example 12, the ESR was 18.3 m ⁇ . In Comparative Example 3, the ESR was 30.7 m ⁇ . In Comparative Example 4, the ESR was 34.2 m ⁇ . The results are shown in Table 2.
  • electrolytic capacitor 10 metal case 11 opening 12 lateral aperture groove 20 capacitor element 21a anode foil 21b cathode foil 22a first separator 22b second separator 23a anode lead terminal 23b cathode lead terminal 30 sealing body 31a, 31b lead insertion hole

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

固体電解コンデンサは、第1セパレータと、引き出しリード端子を接続し表面に陽極酸化被膜を有する陽極箔と、第2セパレータと、引き出しリード端子を接続した陰極箔とが順次配置され、導電性高分子が形成されたコンデンサ素子を備え、前記第1セパレータおよび前記第2セパレータのそれぞれは、前記導電性高分子を備えた状態で面方向において前記陽極箔よりも突出しかつ対向し、前記第1セパレータおよび前記第2セパレータは、前記導電性高分子により電気的に接続した状態で少なくとも一部が固着され、接着部が形成されていることを特徴とする。 

Description

電解コンデンサおよびその製造方法
 本発明は、電解コンデンサおよびその製造方法に関する。
 アルミニウム等の弁金属箔を用いた固体電解コンデンサは、通常の電解コンデンサに存在する駆動用電解液に代えて、駆動用電解液よりも大幅に電気伝導度の高い導電性高分子ポリマーを用いて固体電解質層を両極間に形成し導通させることによってESR(等価直列抵抗)の低減がなされている。
 通常、固体電解質層は、陽極酸化被膜が表面に形成された陽極箔と、陰極箔とを、セパレータを介して対向させて巻回されており、両弁金属箔には引き出しリード端子等の引き出し部が設けられたコンデンサ素子に、モノマーを含浸させ、その後重合等によって固化させることによって両箔間に存在させている。
 例えば、3,4-ジアルコキシチオフェンをモノマーとして用いて、アセチレングリコール系界面活性剤を添加の上、トルエンスルホン酸鉄などの重合開始剤を適量添加して加温することで、3,4-ジアルコキシチオフェンを重合している。さらに、別途重合させたポリアニオンを重合した3,4-ジアルコキシチオフェンにドープすることで表面抵抗率を低減した導電性高分子層を形成し、固体電解質層としている(例えば、特許文献1参照)。
 セパレータの材料に工夫を加えて、セパレータの空隙率を増大させ、セパレータの空隙内に導電性高分子の前駆体である液状組成物を含浸させ、導電性高分子の液状組成物を保持した状態で乾燥・あるいは重合させることによって、導電性高分子からなる高密度な固体電解質層を含むセパレータ層を形成することが可能である(例えば、特許文献2参照)。
 一方で、製品の低ESR化を目的としたアルミ電解コンデンサの技術として、アルミ電解コンデンサ素子の端面に金属プレートを導電性接着剤にて陰極箔端面に接続(バンドル)して、突出した陰極箔同士を陽極箔の端面を超えて直接バンドルを介して電気的に接続する技術も開発されている(例えば、特許文献3参照)。
 また、小型かつ大容量でESR(等価直列抵抗)の低い電解コンデンサとして、誘電体層を形成した陽極箔と、誘電体層の少なくとも一部を覆うように形成された電気伝導度の高い導電性高分子層と、陽極酸化被膜の修復能力を持つ電解液(少なくとも溶質と溶媒からなり陽極酸化被膜の修復能力を持つ電気伝導度を有する液)とを含む電解コンデンサがハイブリット電解コンデンサと呼称されて車載品用電子部品として有望視されている。例えば、特許文献4では、導電性高分子と、高分子ドーパントと、塩基成分と、溶媒とを含む分散体を、コンデンサ素子に含浸した後、溶媒の一部を除去して導電性高分子層を形成する、アルミニウム電解コンデンサの製造方法が記載されている。
特開2014-40550号公報 特開2011-91457号公報 特表2021-519513号公報 国際公開第2017/090241号
 低ESRの電解コンデンサにおいては、電極箔に電流が流れる際の電気的抵抗分が問題となる。それにより、コンデンサ素子において、電極箔の箔長末端からリード端子等の引き出し部への距離による、電極箔を引き出し部まで流れる電荷に掛かる抵抗が問題になっていた。
 そのため、特許文献3に示すような素子端面に金属のバンドルを形成することが考案されている。しかしながら、バンドル自体が金属製であることから、形成時に陽極箔の誘電体表面を傷つけるおそれがあり、素子表面の加工を行う必要がある。また、陽陰両箔間の絶縁をどのように保持するのか等、バンドルの接続が複雑になり、コストも上がってしまうという問題があった。
 本発明は、上記課題に鑑みなされたものであり、十分に低いESRを実現できる電解コンデンサおよびその製造方法を提供することを目的とする。
 本発明に係る電解コンデンサは、第1セパレータと、引き出しリード端子を接続し表面に陽極酸化被膜を有する陽極箔と、第2セパレータと、引き出しリード端子を接続した陰極箔とが順次配置され、導電性高分子が形成されたコンデンサ素子を備え、前記第1セパレータおよび前記第2セパレータのそれぞれは、前記導電性高分子を備えた状態で面方向において前記陽極箔よりも突出しかつ対向し、前記第1セパレータおよび前記第2セパレータは、前記導電性高分子により電気的に接続した状態で少なくとも一部が固着され、接着部が形成されていることを特徴とする。
 上記電解コンデンサにおいて、前記接着部は、前記陰極箔の電気的短絡経路であってもよい。
 上記電解コンデンサにおいて、前記第1セパレータおよび前記第2セパレータのそれぞれは、面方向で前記陽極箔よりも突出して対向し、前記導電性高分子を含む突出部を備え、前記第1セパレータの前記突出部の突出長さを長さaとし、前記第2セパレータの前記突出部の突出長さを長さa´とし、前記第1セパレータおよび前記第2セパレータの前記突出部が対向する箇所における前記陽極箔の厚みを厚みbとした場合に、長さa+長さa´≧厚みbの関係が成立し、前記導電性高分子は、前記第1セパレータの前記突出部の少なくとも一部と、前記第2セパレータの前記突出部の少なくとも一部とを固着していてもよい。
 上記電解コンデンサにおいて、前記長さaおよび長さa´は、それぞれ0.2mm以上であってもよい。
 上記電解コンデンサにおいて、前記第1セパレータ、前記陽極箔、前記第2セパレータ、および前記陰極箔は、共に巻回されて略柱形状を有し、前記略柱形状の第1底面および第2底面のうち、前記第1底面に、前記陽極箔に接続された前記引き出しリード端子と、前記陰極箔に接続された前記引き出しリード端子とを備えていてもよい。
 上記電解コンデンサにおいて、前記陽極箔は、アルミニウム箔またはアルミニウム合金箔であり、前記陰極箔は、弁金属箔、弁金属の合金箔、または弁金属の表面に導電層を形成した箔であってもよい。
 上記電解コンデンサにおいて、前記第2底面における前記第1セパレータおよび前記第2セパレータの前記突出部の突出長さよりも、前記第1底面における前記第1セパレータおよび前記第2セパレータの前記突出部の突出長さよりも大きくてもよい。
 上記電解コンデンサの前記接着部において、前記第1セパレータおよび前記第2セパレータの少なくともいずれか一方は、コンデンサ素子の円筒軸に対して傾斜していてもよい。
 上記電解コンデンサにおいて、前記コンデンサ素子は、内部に水分を含んでいてもよい。
 上記電解コンデンサにおいて、前記第1底面における前記陽極箔の露出部において前記導電性高分子で被覆されている面積と、前記第2底面における前記陽極箔の露出部において前記導電性高分子で被覆されている面積との合計は、前記第1底面および前記第2底面における前記陽極箔の露出部の合計面積に対して、48%以上であってもよい。
 上記電解コンデンサにおいて、前記第1底面における前記陽極箔の露出部において前記導電性高分子で被覆されている面積は、前記第1底面における前記陽極箔の露出部の面積に対して、45%以上であってもよい。
 上記電解コンデンサにおいて、前記第1底面および前記第2底面の少なくともいずれかにおいて、中心部から外周部に向かって、前記陽極箔の露出部が前記導電性高分子で被覆される面積が増加してもよい。
 上記電解コンデンサの前記略柱形状の軸方向において、前記第1セパレータおよび前記第2セパレータの単位面積あたりの電解液量が、中心側よりも前記第1底面側および前記第2底面側において多くてもよい。
 上記電解コンデンサにおいて、前記導電性高分子層は、前駆体モノマーを重合させたものであってもよい。
 上記電解コンデンサにおいて、前記第1セパレータおよび前記第2セパレータは、セルロース、レーヨン、およびガラス繊維から選択される少なくとも1種類以上であってもよい。
 上記電解コンデンサの前記コンデンサ素子に対する平面視において、前記接着部は、少なくとも、前記陰極箔に接続された前記リード端子が位置する側の半分の領域に形成されていてもよい。
 上記電解コンデンサにおいて、前記コンデンサ素子に電解液が含侵され、前記第1セパレータおよび前記第2セパレータのそれぞれは、面方向で前記陽極箔および前記陰極箔よりも突出して対向し、前記導電性高分子を含む突出部を備え、前記第1セパレータの前記突出部の突出長さを長さaとし、前記第2セパレータの前記突出部の突出長さを長さa´とし、前記第1セパレータおよび前記第2セパレータの前記突出部が対向する箇所における前記陽極箔の厚みを厚みbとした場合に、長さa+長さa´≧厚みbの関係が成立し、前記導電性高分子は、前記第1セパレータの前記突出部の少なくとも一部と、前記第2セパレータの前記突出部の少なくとも一部とを結着して接着部を形成していてもよい。
 上記電解コンデンサにおいて、前記接着部は、電解液が含まれ膨潤して湿潤状態であり、粘着性を有していてもよい。
 上記電解コンデンサにおいて、前記接着部は、前記陰極箔の短絡経路にて導通するような構造で、前記第1セパレータと前記第2セパレータとの間で、セパレータ同士、前記導電性高分子同士、またはセパレータと前記導電性高分子とが接続するように、電解液が含まれ膨潤して湿潤状態であり、粘着性を有していてもよい。
 上記電解コンデンサにおいて、前記長さaおよび長さa´は、それぞれ0.2mm以上であってもよい。
 上記電解コンデンサにおいて、前記第1セパレータ、前記陽極箔、前記第2セパレータ、および前記陰極箔は、順次積層され、共に巻回されて略柱形状を有し、前記略柱形状の第1底面および第2底面のうち、前記第1底面に、前記陽極箔に接続された前記引き出しリード端子と、前記陰極箔に接続された前記引き出しリード端子とを備えていてもよい。
 上記電解コンデンサにおいて、前記第1底面における前記陽極箔の端面において、前記導電性高分子で被覆されている面積と、前記第2底面における前記陽極箔の端面において、前記導電性高分子で被覆されている面積との合計は、前記第1底面および前記第2底面における前記陽極箔の端面の合計面積に対して、20%以上であってもよい。
 上記電解コンデンサにおいて、前記第1底面における前記陽極箔の端面において、前記導電性高分子で被覆されている面積は、前記第1底面における前記陽極箔の端面の面積に対して、15%以上であってもよい。
 上記電解コンデンサにおいて、前記第1底面および前記第2底面の少なくともいずれかにおける前記陽極箔の端面において、中心部から外周部に向かって、前記導電性高分子で被覆されている面積が増加してもよい。
 上記電解コンデンサにおいて、前記略柱形状の前記コンデンサ素子の軸方向において、前記第1セパレータおよび前記第2セパレータの単位面積あたりの電解液量が、中心側よりも前記第1底面側および前記第2底面側において多くてもよい。
 上記電解コンデンサにおいて、前記導電性高分子層は、高分子濃度が0.5wt%以上、または粘度が10mPa・s以上の導電性高分子分散液から形成されていてもよい。
 上記電解コンデンサにおいて、前記第1セパレータおよび前記第2セパレータは、セルロース、レーヨン、ガラス繊維のうちの1つまたはそれらの混抄紙であってもよい。
 上記電解コンデンサにおいて、前記コンデンサ素子に対する平面視において、前記接着部は、少なくとも、前記陰極箔に接続された前記リード端子が位置する側の半分の領域のいずれかに形成されていてもよい。
 上記電解コンデンサにおいて、前記接着部は、前記コンデンサ素子に前記電解液を含浸させた際に膨潤させ湿潤状態で粘着性を有するものであってもよい。
 本発明に係る電解コンデンサの製造方法は、第1セパレータと、引き出しリード端子を接続し表面に陽極酸化被膜を有する陽極箔と、第2セパレータと、引き出しリード端子を接続した陰極箔とが順次配置され、前記第1セパレータおよび前記第2セパレータのそれぞれが面方向において前記陽極箔よりも突出しかつ対向するコンデンサ素子において、前記第1セパレータおよび前記第2セパレータに前駆体モノマーを含浸させて前記コンデンサ素子内に導電性高分子を形成し、前記第1セパレータおよび前記第2セパレータが前記導電性高分子により電気的に接続した状態で少なくとも一部を固着させて接着部を形成することを特徴とする。
 上記電解コンデンサの製造方法において、前記第1セパレータおよび前記第2セパレータのそれぞれは、面方向で前記陽極箔よりも突出して対向し、前記導電性高分子を含む突出部を備え、前記第1セパレータの前記突出部の突出長さを長さaとし、前記第2セパレータの前記突出部の突出長さを長さa´とし、前記第1セパレータおよび前記第2セパレータの前記突出部が対向する箇所における前記陽極箔の厚みを厚みbとした場合に、長さa+長さa´≧厚みbの関係が成立し、前記第1セパレータおよび前記第2セパレータの前記突出部間に前記接着部を形成してもよい。
 上記電解コンデンサの製造方法において、コンデンサ素子に前記前駆体モノマーを含浸させて重合する工程を1回また複数回繰り返して固体電解質層を形成する際に、前記第1セパレータおよび前記第2セパレータが突出する部分も同時に固着させて接着部を形成してもよい。
 上記電解コンデンサの製造方法において、前記第1セパレータおよび前記第2セパレータが突出する部分の前記接着部の表面被覆率を調整するために、前記第1セパレータおよび前記第2セパレータに再度導電性ポリマーを含侵または付着させて固体電解質層を形成させることによって接着部を増加させてもよい。
 上記電解コンデンサの製造方法において、前記コンデンサ素子において、前記第1セパレータの前記突出部の突出長さを長さaとし、前記第2セパレータの前記突出部の突出長さを長さa´とし、前記第1セパレータおよび前記第2セパレータの前記突出部が対向する箇所における前記陽極箔の厚みを厚みbとした場合に、長さa+長さa´≧厚みbの関係が成立し、前記第1セパレータおよび前記第2セパレータの前記突出部に導電性高分子を含浸させ、水分を除去することにより、前記第1セパレータおよび前記第2セパレータの前記突出部間に、前記陰極箔同士またはセパレータと前記陰極箔とを短絡経路で接続する接着部を形成する工程と、前記コンデンサ素子に電解液を含浸させることで、前記接着部をなす前記導電性高分子を膨潤させ粘着性を有する湿潤状態とする工程と、を含んでいてもよい。
 上記電解コンデンサの製造方法において、前記水分を除去する際に乾燥にて行なってもよい。
 上記電解コンデンサの製造方法において、前記コンデンサ素子に電解液を含浸させる際に、前記導電性高分子に前記電解液を注液して、前記接着部をなす前記導電性高分子を膨潤させ粘着性を有する湿潤状態としてもよい。
 上記電解コンデンサの製造方法において、前記導電性高分子の含浸の際に、前記導電性高分子の分散液内に、溶質を混合させて、水分を除去することにより、前記導電性高分子の分散液を前記電解液として用いて、前記コンデンサ素子に前記電解液を含浸させ、前記接着部をなす前記導電性高分子を膨潤させ粘着性を有する湿潤状態としてもよい。
 上記電解コンデンサの製造方法において、前記導電性高分子の分散液を前記電解液として用いる場合、前記コンデンサ素子にさらに電解液を注液させてもよい。
 上記電解コンデンサの製造方法において、前記導電性高分子の分散液を前記電解液として用いる場合、前記導電性高分子の分散液の溶媒は、水および有機溶媒から選択される一種類以上の溶液を用いてもよい。
 上記電解コンデンサの製造方法において、前記有機溶媒は、沸点が150℃以上のグリコール系化合物、ラクトン系化合物、及びスルホランの少なくとも1つ以上から選択され、前記有機溶媒と水の重量比が1:99~50:50であってもよい。
 本発明によれば、十分に低いESRを実現できる電解コンデンサおよびその製造方法を提供することができる。
第1実施形態に係る電解コンデンサの概略図である。 (a)は陽極箔をシート状に展開した図であり、(b)は陰極箔をシート状に展開した図であり、(c)は第1セパレータをシート状に展開した図である。 陰極箔をシート状に展開した図である。 (a)はコンデンサ素子内の積層構造を説明するための模式的な断面図であり、(b)は陽極箔の拡大断面図である。 陽極箔を挟む2層の陰極箔に接着部を形成するための構成について説明するための図である。 陽極箔を挟んで突出部同士が接触する様子を例示する図である。 (a)および(b)はコンデンサ素子の上面において半径方向に接着部が形成された場合の効果を説明するための図である。 (a)は導電性高分子の形成前のコンデンサ素子の上面の画像を例示する図であり、(b)は導電性高分子の形成後のコンデンサ素子の上面の画像を例示する図である。 電解コンデンサ1の製造方法のフローを例示する図である。 第2実施形態に係る電解コンデンサの概略図である。 (a)は陽極箔をシート状に展開した図であり、(b)は陰極箔をシート状に展開した図であり、(c)は第1セパレータをシート状に展開した図である。 陰極箔をシート状に展開した図である。 (a)はコンデンサ素子内の積層構造を説明するための模式的な断面図であり、(b)は陽極箔の拡大断面図である。 陽極箔を挟む2層の陰極箔に接着部を形成するための構成について説明するための図である。 陽極箔を挟んで突出部同士が接触する様子を例示する図である。 (a)および(b)はコンデンサ素子の上面において半径方向に接着部が形成された場合の効果を説明するための図である。 (a)は導電性高分子の形成前のコンデンサ素子の上面の画像を例示する図であり、(b)は導電性高分子の形成後のコンデンサ素子の上面の画像を例示する図である。 電解コンデンサの製造方法のフローを例示する図である。
 以下、図面を参照しつつ、実施形態について説明する。
(第1実施形態)
 図1は、第1実施形態に係る固体電解コンデンサ1の概略図である。固体電解コンデンサ1は、外装体として機能する金属ケース10と、金属ケース10に装入されたコンデンサ素子20と、封口体30とを備えている。
 金属ケース10には、一端に開口部11を有する有底筒状のアルミニウムケースが用いられる。本実施形態においては、金属ケース10は一例として円筒状を有しているが、角筒状であってもよい。
 コンデンサ素子20は、一対の電極箔を備えている。一対の電極箔は、陽極箔21aおよび陰極箔21bである。第1セパレータ22a、陽極箔21a、第2セパレータ22b、および陰極箔21bがこの順に積層され長さ方向に巻回されて、コンデンサ素子20が構成されている。コンデンサ素子20の形状は、金属ケース10の内形状に略一致させてある。したがって、コンデンサ素子20は、柱形状を有している。本実施形態におけるコンデンサ素子20は、イオンの移動における短絡経路の効果が良く発揮できる巻回型(略円柱)に用いることが好ましいが、セパレータを介して陽極箔と陰極箔とを順次積層した積層型のコンデンサ素子(略角柱)に用いてもよい。
 陽極箔21aおよび陰極箔21bとして、アルミニウム、タンタル、チタン、ニオブ等の弁金属およびその合金箔並びに蒸着箔等を用いることができる。蒸着膜は、例えば、チタンの蒸着膜である。陰極箔21bは、弁金属箔、弁金属の合金箔、または弁金属の表面に導電層を形成した箔であってもよい。陽極箔21aは、表面の全体を酸化被膜が覆っている。したがって、陽極箔21aは、他の部材から絶縁されている。この酸化被膜が誘電体として機能することで、コンデンサ素子20がコンデンサとして機能する。陰極箔21bの表面には酸化被膜が形成されていない。なお、陰極箔21bは、表面に無機層またはカーボン層が形成されていてもよい。その場合には、後述する導電性高分子25は、無機層またはカーボン層を形成した面にも形成される。
 陽極箔21aには、引き出しリード端子としての陽極リード端子23aが接続されている。陰極箔21bには、引き出しリード端子としての陰極リード端子23bが接続されている。
 封口体30は、陽極リード端子23aおよび陰極リード端子23bが挿通される一対のリード挿通孔31a,31bを有するゴム封口体からなる。封口体30は、金属ケース10の開口部11内に嵌合され、かしめ駒などにより開口部11の外周に沿って形成される横絞り溝12により気密的に強固に取り付けられる。例えば、封口体30には、ブチルゴムなどが採用される。
 なお、本実施形態においては、コンデンサ素子20がなす柱形状の各底面のうち、リード端子が設けられている側の底面を上面(第1底面)と称し、リード端子が設けられていない側の底面を下面(第2底面)と称する。
 図2(a)は、陽極箔21aをシート状に展開した図である。図2(b)は、陰極箔21bをシート状に展開した図である。図2(a)および図2(b)で例示するように、陽極リード端子23aおよび陰極リード端子23bは、アルミニウムなどの金属丸棒の一端側をプレスして平板として羽子板状のタブ端子部に、リード線が接続された構造を有している。陽極箔21aおよび陰極箔21bは、このタブ端子部の平板部に固着している。なお、固着とは、乾燥して固まっていることを意味しているため、粘着とは異なる。
 図2(c)は、第1セパレータ22aをシート状に展開した図である。第1セパレータ22aには、導電性高分子が形成されている。固体電解コンデンサ1では、電解液は用いられない。
 図2(c)では、第1セパレータ22aについて説明したが、第2セパレータ22bも第1セパレータ22aと同様の構造を有する。
 第1セパレータ22aおよび第2セパレータ22bは、セルロース、レーヨン、ガラス繊維などから選択される少なくとも1種類以上を材料とする。
 導電性高分子25は、導電性を有する高分子であれば特に限定されるものではない。例えば、導電性高分子25として、例えば、ポリチオフェン、ポリピロール、ポリアニリンおよびこれらの誘導体からなる群より選択される少なくとも1種の高分子を用いる。導電性高分子25として、一般的に、p-トルエンスルホン酸およびポリスチレンスルホン酸(PSS)等からなる群より選択される少なくとも1種の酸をドーパントとするポリエチレンジオキシチオフェン(PEDOT)が用いられる。
 ここで、陰極箔21b、導電性高分子25の体積抵抗率(Ωm)について説明する。例えば、陰極箔21bとしてアルミニウムを用いる場合には、陰極箔21bの体積抵抗率は約2.65×10-6Ωmである。導電性高分子25としてPSSをドーパントとするPEDOTを用いる場合には、導電性高分子25の体積抵抗率は1.0×10-3~1.0×10-2程度である。
 本実施形態に係るコンデンサ素子20は、陰極箔21bに加えて導電性高分子25を用いることで、高い静電容量および低いESRを実現することができる。しかしながら、ESRが十分に低くならない場合がある。この点について詳細を説明する。
 図3は、図2(b)と同様に、陰極箔21bをシート状に展開した図である。図3で例示するように、陰極箔21bの長さ方向に電子伝導が生じるため、陰極リード端子23bまでの電子伝導距離が長くなる場合がある。例えば、陰極リード端子23bから最も遠い点Pから陰極リード端子23bに至るまで、距離が長くなる傾向にある。したがって、陰極箔の厚みが薄いことも相まって、点Pから陰極リード端子23bに至るまでの電気抵抗が大きくなり、ESRが十分に低くならない場合がある。
 特に、巻回型のコンデンサ素子においては、箔末端からリード端子への距離が長く、かつ巻回する都合上、箔長の何れか一方に寄らざるを得ないことからリード端子に遠い側の箔末端からは電荷が移動する際に電気的抵抗がより増加するという問題がある。
 また、陰極として、陽極箔と比較して箔厚が薄く金属の純度も低いものを用いると、金属箔を導通する際に抵抗が大きくなる。
 そこで、本実施形態に係るコンデンサ素子20は、ESRを十分に低くすることができる構成を有している。まず、陰極箔間の接着部について説明する。図4(a)は、コンデンサ素子20内の積層構造を説明するための模式的な断面図である。図4(a)で例示するように、断面において、第1セパレータ22a、陽極箔21a、第2セパレータ22b、陰極箔21bの積層単位が順に積層されている。第1セパレータ22aの陽極箔21aと反対側に、陰極箔21bが位置するように見える。
 陽極箔21aは、金属箔211の表面に陽極酸化被膜212が形成された構造を有している。この陽極酸化被膜212が誘電体として機能している。図4(b)で例示するように、陽極箔21aは、例えば、エッチング処理により拡面化し、化成処理により表面に陽極酸化被膜212を形成している。エッチング処理の拡面化された陽極箔は、表面に無数の細孔を有し、非常に大きい表面積を有している。陽極酸化被膜212は、陽極箔21aの表面全体に厚み10~100nmで形成されている。陰極リード端子23bからの電荷は、陰極箔21bを通り第1セパレータ22aの導電性高分子を介して陽極酸化被膜212を帯電させる。しかしながら、陰極リード端子23bからの電荷は、図4(a)における陰極リード端子23bから近い方の陰極箔21bを通過した後、巻回している陰極箔21bを通過して、図4(a)における陰極リード端子23bから遠い方の陰極箔21bを通過することになり、図4(a)における左側の陰極箔21bから右側の陰極箔21bまで到達するためには、相応の長さの経路を通過する必要がある。この2層の陰極箔21bの間のセパレータに導電性高分子による接着部40が形成されれば、図3で説明した陰極リード端子23bから最も遠い点Pから陰極リード端子23bに至るまでの経路にショートカットを形成することができ、ESRを低下させることができる。すなわち、陰極リード端子23bからの電荷は、陰極箔21bを通り導電性高分子を介して陽極酸化被膜212を帯電させる。電荷が陰極箔21bを通る際に、第1セパレータ22aと第2セパレータ22bとの間に導電性高分子による電気的短絡経路である接着部が形成されていると、陰極リード端子23bからの電荷は接着部を介して、陰極リード端子23bからより離れた外周部の陰極箔21bにより短い距離で到達することとなるため、外周部の陰極箔21bから外周部の導電性高分子を介して外周部の陽極酸化被膜212を効率的に帯電させる。結果として、より外周部の陽極箔21aの陽極酸化被膜212までの導電率が高い、すなわち素子全体の特性が低ESRとなる。
 図5は、陽極箔21aを挟む2層の陰極箔21bに接着部を形成するための構成について説明するための図である。図5で例示するように、本実施形態に係るコンデンサ素子20は、第1セパレータ22aおよび第2セパレータ22bが、陽極箔21aよりも面方向で突出して対向している。図5の例では、第1セパレータ22aおよび第2セパレータ22bは、コンデンサ素子20の上面において陽極箔21aよりも上側に突出している。
 第1セパレータ22aが陽極箔21aよりも突出する突出部22a1の突出長さを長さaとする。第2セパレータ22bが陽極箔21aよりも突出する突出部22b1の突出長さを長さa´とする。第1セパレータ22aの突出部22a1と第2セパレータ22bの突出部22b1とが対向する箇所における陽極箔21aの厚みを厚みbとする。この場合において、長さa+長さa´≧厚みbの関係が成立している。
 第1セパレータ22aおよび第2セパレータ22bは、柔軟性を有しているため、容易に曲がり、容易に折れ曲がる傾向にある。したがって、図6で例示するように、陽極箔21aを挟んで、突出部22a1と突出部22b1とが接触しやすくなる。この場合、第1セパレータ22aの導電性高分子25と第2セパレータ22bの導電性高分子25とが接触することによって電気的に接続される。それにより、陽極箔21aを挟む2層の陰極箔21bの間に接着部40が形成される。それにより、コンデンサ素子20のESRを低くすることができる。なお、ケース内に収納することで突出部22a1と突出部22b1とに応力をかけさらに固着することができる。すなわち、本実施形態において、接着部40は、突出部22a1および突出部22b1が導電性高分子25を介して固着して形成される。なお、突出部22a1および突出部22b1の少なくともいずれか一方を、コンデンサ素子20の円筒軸に対して傾斜させてあることが好ましい。例えば、突出部22a1および突出部22b1の少なくともいずれか一方を、コンデンサ素子20の中心に向けて傾斜させてあることが好ましい。当該傾斜によって、固着している箇所が衝撃に弱くても、衝撃の影響を抑制することができる。
 図7(a)および図7(b)は、コンデンサ素子20の上面において半径方向に接着部が形成された場合の効果を説明するための図である。図7(a)および図7(b)で例示するように、コンデンサ素子20の上面では、陽極リード端子23aおよび陰極リード端子23bが見られる。コンデンサ素子20の下面では、陽極リード端子23aおよび陰極リード端子23bは見られない。
 図7(a)で例示するように、接着部が形成されていなければ、イオン伝導の経路は、複数回にわたって周回したうえで陰極リード端子23bに到達する経路となる。これに対して、図7(b)で例示するように、コンデンサ素子20の上面において半径方向に接着部40が形成された場合には、ショートカットを繰り返すことができ、陰極リード端子23bに至るまでの経路を短縮化することができる。なお、本実施形態においては、陽極箔21aに絶縁性を有する陽極酸化被膜212が形成されていることから、陽極箔21aが接着部40と接触してもショートは生じない。
 なお、第1セパレータ22aの突出部22a1と第2セパレータ22bの突出部22b1との間を接触させやすくする観点から、(長さa+長さa´)は、厚みbの1倍より大きいことが好ましく、2倍以上であることがより好ましい。
 同様に、第1セパレータ22aの突出部22a1と第2セパレータ22bの突出部22b1との間を接触させやすくする観点から、長さaおよび長さa´のそれぞれは、0.2mm以上であることが好ましく、0.25mm以上であることがより好ましく、0.3mm以上であることがさらに好ましい。例えば、陽極箔21aおよび陰極箔21bは、コンデンサ素子20の上面と下面とを結ぶ方向において、2.7mm以上7.5mmの幅を有する。第1セパレータ22aおよび第2セパレータ22bは、コンデンサ素子20の上面と下面とを結ぶ方向において、3.2mm以上8.0mmの幅を有する。
 また、接着部40は、陰極リード端子23bに近い位置で形成されていることが好ましい。したがって、コンデンサ素子20に対する平面視において、接着部40は、少なくとも、陰極リード端子23bが位置する側の半分の領域(図7(a)では点線よりも右側の領域)に形成されていることが、陰極側の電気的短絡経路を形成する上で電気的効率の観点から好ましい。
 なお、第1セパレータ22aと第2セパレータ22bとが接触すると、コンデンサ素子20を上面側から見たときに、陽極箔21aの上面側の露出部(端面)が導電性高分子25によって被覆されているように見える。陽極箔21aの上面側端面が導電性高分子25によって被覆されている割合(陽極端面被覆率)が高いほど、多くの接着部40が形成されていることになる。そこで、陽極端面被覆率に下限を設けることが好ましい。
 本実施形態においては、陽極箔21aの陽極端面被覆率を、コンデンサ素子20を上面側から見た場合の、コンデンサ素子20の上面における陽極箔21aの露出の面積に対して、導電性高分子25によって被覆されている面積と定義することができる。十分な量の接着部40を得る観点から、この陽極端面被覆率は、45%以上であることが好ましく、69%以上であることがより好ましく、73%以上であることがさらに好ましい。
 陽極箔21aの陽極端面被覆率は、導電性高分子25の形成前のコンデンサ素子20の上面の画像と、導電性高分子25の形成後のコンデンサ素子20の上面の画像とから、画像処理を行なうことによって算出することができる。まず、図8(a)で例示する導電性高分子25の形成前のコンデンサ素子20の上面の画像において、コンデンサ素子20の全体の面積から、第1セパレータ22a、第2セパレータ22b、中心部の面積、陽極リード端子23a、陰極リード端子23b、陰極箔21bの面積を差し引くことで、被覆前の陽極箔21aの露出部(端面)の面積を算出することができる。中心部の面積は、素子上面の平面視において、中心部の孔の径のうち最も長い径を直径とする円が中心部にあるものとみなし、該円の最も長い径の1/2の値を半径として、πrの計算式にて求めた面積を中心部の面積を定義する。
 次に、図8(b)で例示する導電性高分子25の形成後のコンデンサ素子20の上面の画像において、コンデンサ素子20の全体の面積から、第1セパレータ22a、第2セパレータ22b、中心部の面積、陽極リード端子23a、陰極リード端子23b、陰極箔21bの面積、および導電性高分子25によって黒く被覆された面積を差し引くことで、被覆後の陽極箔21aの露出部(端面)の面積を算出することができる。
 {(被覆前の陽極箔21aの露出部の面積)-(被覆後の陽極箔21aの露出部の面積の割合)}/(被覆前の陽極箔21aの露出部の面積)×100(%)を算出することで、陽極端面被覆率を算出することができる。
 なお、図7(b)で例示したように、コンデンサ素子20の上面において、中心部よりも外周部の方が、陰極箔21bが1周するのに必要な距離が長くなる。そこで、コンデンサ素子20の上面において、中心部から外周部に向かって、導電性高分子25によって陽極箔21aの露出部が被覆される面積が増加していくことが好ましい。ここで、導電性高分子25によって陽極箔21aの露出部が被覆される面積が増加することは、面積の絶対値が大きくなっていくことと、1周に占める導電性高分子25の面積割合が大きくなっていることとの少なくともいずれか一方のことを意味する。
 図5~図7(b)では、コンデンサ素子20の上面における構造について説明したが、下面においても第1セパレータ22aが下面側に突出する突出部22a1を備え、第2セパレータ22bが下面側に突出する突出部22b1を備えていてもよい。または、コンデンサ素子20の上面および下面のいずれか一方だけに、突出部22a1および突出部22b1が備わっていてもよい。
 ただし、陰極箔21bにおいてコンデンサ素子20の上面側に陰極リード端子23bが接続されているため、コンデンサ素子20の上面側に接着部が形成されていることが好ましい。そこで、コンデンサ素子20の上面において、突出部22a1および突出部22b1が備わっていることが好ましい。
 また、コンデンサ素子20の上面側で多くの接着部が形成されていることが好ましいため、上面および下面の両方に突出部22a1および突出部22b1が備わっている場合に、上面側の長さaおよび長さa´が、下面側の長さaおよび長さa´よりも長いことが好ましい。
 また、コンデンサ素子20を上面側から見た場合の陽極箔21aの露出部の面積と、コンデンサ素子20を下面側から見た場合の陽極箔21aの露出部の面積との合計に対する、導電性高分子25によって被覆されている面積の比率は、48%以上であることが好ましく、70%以上であることがより好ましく、73%以上であることがさらに好ましい。なお、当該比率は、コンデンサ素子20の上面側の陽極端面被覆率と下面側の陽極端面被覆率との平均値と定義することもできる。
 続いて、電解コンデンサ1の製造方法について説明する。図9は、電解コンデンサ1の製造方法のフローを例示する図である。
(巻回体の作製)
 第1セパレータ22a、陽極リード端子23aが接続された陽極箔21a、第2セパレータ22b、および陰極リード端子23bが接続された陰極箔21bをこの順に積層して巻回し、外側表面を巻止めテープで固定することで巻回体を作製する。このときに、第1セパレータ22aおよび第2セパレータ22bを陽極箔21aよりも上面側および下面側に突出させる。
(導電性高分子の含浸・重合)
 次に、減圧雰囲気中で、水と有機溶媒を含む前駆体モノマーに巻回体を20分間浸漬し、その後、前駆体モノマーから巻回体を引き上げる。このようにすることで、巻回体に前駆体モノマーを含浸させることができる。余剰の前駆体モノマーを巻回体に残存させた状態で酸化剤を作用させることで、接着部40を形成する。
 例えば、第1セパレータ22aおよび第2セパレータに前駆体モノマーを含浸させてコンデンサ素子20内に導電性高分子を形成した後に、余剰の前駆体モノマーを残存させた状態で重合することで接着部40を形成することができる。この場合において、
 または、第1セパレータ22aおよび第2セパレータ22bに前駆体モノマーを含浸させて余剰の前駆体モノマーを除去して酸化剤を作用させることで重合反応を生じさせ、その後、第1セパレータ22aおよび第2セパレータ22bに前駆体モノマーを再度含浸させて余剰の前駆体モノマーを除去して酸化剤を作用させることで、接着部40を形成してもよい。この一連の手順を繰り返すことで、十分な量の接着部40を形成することができる。なお、コンデンサ素子20の内部に、水分が残留していていもよい。
 コンデンサ素子20に前駆体モノマーを含浸させて重合する工程を1回また複数回繰り返して固体電解質層を形成する際に、第1セパレータ22aおよび第2セパレータ22bが突出する部分も同時に固着させて接着部40を形成してもよい。第1セパレータ22aおよび第2セパレータ22bが突出する部分の接着部40の表面被覆率を調整するために、第1セパレータ22aおよび第2セパレータ22bに再度導電性ポリマーを含侵または付着させて固体電解質層を形成させることによって接着部を増加させてもよい。
(コンデンサ素子の封止)
 次に、巻回体を金属ケース10および封口体30によって封止することによって、電解コンデンサ1が完成する。その後、定格電圧を印加しながらエージング処理を行なってもよい。
 本実施形態に係る製造方法によれば、陽極箔21aを挟んで、突出部22a1と突出部22b1とが接触しやすくなり、陽極箔21aを挟む2層の陰極箔21bの間に接着部40が形成されるようになる。その結果、コンデンサ素子20のESRを低くすることができる。また、前駆体モノマーの含浸時に、前駆体モノマーが含浸したセパレータが粘着性を有し、粘着性を持ったセパレータ同士が決着した状態で酸化剤を作用させることで、前駆体モノマーが重合し、セパレータと一体化した強固な導電性高分子層が形成される。
 なお、上記実施形態では、第1セパレータ22a、陽極箔21a、第2セパレータ22b、および陰極箔21bがこの順に積層された積層単位を巻回させてあるが、それに限られない。例えば、第1セパレータ22a、陰極箔21b、第2セパレータ22b、陽極箔21aがこの順に積層された積層単位を巻回させてもよい。
 また、上記実施形態では、コンデンサ素子20が略円柱形状を有していたが、それに限られない。例えば、コンデンサ素子20は、角柱などの他の柱形状を有していてもよい。
 また、上記実施形態では、コンデンサ素子20が巻回されていたが、それに限られない。例えば、第1セパレータ22a、陽極箔21a、第2セパレータ22b、および陰極箔21bを含む複数の積層単位が、巻回されずに積層されていてもよい。
(第2実施形態)
 図10は、第2実施形態に係る電解コンデンサ101の概略図である。電解コンデンサ101は、外装体として機能する金属ケース110と、金属ケース110に装入されたコンデンサ素子120と、封口体130とを備えている。
 金属ケース110には、一端に開口部111を有する有底筒状のアルミニウムケースが用いられる。本実施形態においては、金属ケース110は一例として円筒状を有しているが、角筒状であってもよい。
 コンデンサ素子120は、一対の電極箔を備えている。一対の電極箔は、陽極箔121aおよび陰極箔121bである。第1セパレータ122a、陽極箔121a、第2セパレータ122b、および陰極箔121bがこの順に積層され長さ方向に巻回されて、コンデンサ素子120が構成されている。コンデンサ素子120の形状は、金属ケース110の内形状に略一致させてある。したがって、コンデンサ素子120は、柱形状を有している。本実施形態におけるコンデンサ素子120は、イオンの移動における短絡経路の効果が良く発揮できる巻回型(略円柱)に用いることが好ましいが、セパレータを介して陽極箔と陰極箔とを積層したものを1対または複数対用意し、順次積層した積層型のコンデンサ素子(略角柱)に用いてもよい。
 陽極箔121aおよび陰極箔121bとして、アルミニウム、タンタル、チタン、ニオブ等の弁金属およびその合金箔並びに蒸着箔等を用いることができる。陽極箔121aは、表面の全体を陽極酸化被膜が覆っている。したがって、陽極箔121aは、他の部材から絶縁されている。この陽極酸化被膜が誘電体として機能することで、コンデンサ素子120がコンデンサとして機能する。なお、陰極箔121bは、表面に無機層またはカーボン層が蒸着や塗布などによって形成されていてもよい。その場合には、後述する導電性高分子125は、無機層またはカーボン層を形成した面にも形成される。
 陽極箔121aには、引き出しリード端子としての陽極リード端子123aが接続されている。陰極箔121bには、引き出しリード端子としての陰極リード端子123bが接続されている。
 封口体130は、陽極リード端子123aおよび陰極リード端子123bが挿通される一対のリード挿通孔131a,131bを有するゴム封口体からなる。封口体130は、金属ケース110の開口部111内に嵌合され、かしめ駒などにより開口部111の外周に沿って形成される横絞り溝112により気密的に強固に取り付けられる。例えば、封口体130には、後述する電解液の溶媒に対して膨潤率が小さいブチルゴムなどが採用される。これにより、電解液にエチレングリコールが含まれる場合に、エチレングリコールにより抽出される不純物のコンデンサ特性への影響を小さくすることができる。具体的には、125℃のエチレングリコール溶媒中に2000時間以上浸漬しても、膨潤率が0.4wt%未満であり、かつ、γ-ブチロラクトン溶媒中に同様に2000時間以上浸漬しても膨潤率が2wt%未満である特性を有するブチルゴムを用いるとよい。
 なお、本実施形態においては、コンデンサ素子120がなす柱形状の各底面のうち、リード端子が設けられている側の底面を上面(第1底面)と称し、リード端子が設けられていない側の底面を下面(第2底面)と称する。
 図11(a)は、陽極箔121aをシート状に展開した図である。図11(b)は、陰極箔121bをシート状に展開した図である。図11(a)および図11(b)で例示するように、陽極リード端子123aおよび陰極リード端子123bは、アルミニウムなどの金属丸棒の一端側をプレスして平板として羽子板状のタブ端子部に、リード線が接続された構造を有している。陽極箔121aおよび陰極箔121bは、このタブ端子部の平板部に接続している。
 図11(c)は、第1セパレータ122aをシート状に展開した図である。第1セパレータ122aには、電解液が含浸されており、さらに導電性高分子が形成されている。
 第1セパレータ122aにおける電解液の含浸領域および導電性高分子の含浸領域の位置は特に限定されるものではないが、一例として、電解液および導電性高分子は、第1セパレータ122aの全体に含浸している。ただし、コンデンサ素子120の上面と下面とを結ぶ軸方向において、第1セパレータ122aの中心側における電解液の含浸量よりも、上面側および下面側における電解液の含浸量が多くなる場合がある。
 導電性高分子125は、主として、コンデンサ素子120の上面側の端部と、下面側の端部とに含浸する傾向にある。したがって、コンデンサ素子120の上面と下面とを結ぶ軸において、第1セパレータ122aの中心側における導電性高分子125の含浸量よりも、上面側および下面側における導電性高分子125の含浸量が多くなる場合がある。または、第1セパレータ122aの中心側では導電性高分子125が含浸せず、上面側および下面側にのみ導電性高分子125が含浸していることもある。
 図11(c)では、第1セパレータ122aについて説明したが、第2セパレータ122bも第1セパレータ122aと同様の構造を有する。
 本実施形態においては、電解液124は、多価アルコール、スルホン化合物、ラクトン化合物、カーボネート化合物、多価アルコールのジエーテル化合物、1価のアルコールなどを含むことができる。これらは単独で用いてもよく、複数種を組み合わせて用いてもよい。
 多価アルコールは、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブタンジオール、ポリアルキレングリコール、グリセリン、の少なくとも一つを含むことが望ましい。ポリアルキレングリコールとしては、平均分子量が200~1000のポリエチレングリコール、平均分子量が200~5000のポリプロピレングリコールを用いることが好ましい。
 ラクトン化合物としては、γ-ブチロラクトン、γ-バレロラクトンなどを用いることができる。カーボネート化合物としては、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネートなどを溶媒として含むことができる。特に、エチレングリコール、ポリアルキレングリコール、γ-ブチロラクトン、スルホランを用いることが望ましい。
 電解液124は、溶質を含んでいてもよい。溶質として、酸成分、塩基成分、酸成分および塩基成分からなる塩、ニトロ化合物、フェノール化合物等を用いることができる。
 酸成分は、有機酸、無機酸、有機酸と無機酸との複合化合物を用いることができる。有機酸としては、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、アジピン酸、安息香酸、4-ヒドロキシ安息香酸、1,6-デカンジカルボン酸、1,7-オクタンジカルボン酸、アゼライン酸などのカルボン酸などを用いることができる。無機酸としては、硼酸、リン酸、亜リン酸、次亜リン酸、リン酸エステル、リン酸ジエステルなどを用いることができる。
 有機酸と無機酸との複合化合物としては、ボロジサリチル酸、ボロジシュウ酸、ボロジグリコール酸等を用いることができる。
 塩基成分は、1級~3級アミン、4級アンモニウム、4級化アミジニウム等を用いることができる。1級~3級アミンとしては、例えば、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、N,N-ジイソプロピルエチルアミン、テトラメチルエチレンジアミン、ヘキサメチレンジアミンなどを用いることができる。4級アンモニウムとしては、例えば、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウムなどを用いることができる。4級化アミジニウムとしては、例えば、エチルジメチルイミダゾリニウム、テトラメチルイミダゾリニウムなどを用いることができる。
 また、コンデンサ内部で発生する水素ガスの吸収剤としては、p-ニトロベンジルアルコールが好適であり、その添加量は電解液中に0.5~1.5wt%が好ましい。0.5wt%未満では水素ガス吸収効果が小さく、他方において1.5wt%を超えると耐圧特性が低下するおそれがあるからである
 第1セパレータ122aおよび第2セパレータ122bは、セルロース、レーヨン、ガラス繊維のうちの1つ、またはそれらの混抄紙などから選択される少なくとも1種類以上を材料とする。
 導電性高分子125は、導電性を有する高分子であれば特に限定されるものではない。例えば、導電性高分子125として、例えば、ポリチオフェン、ポリピロール、ポリアニリンおよびこれらの誘導体からなる群より選択される少なくとも1種の高分子を用いる。導電性高分子25として、一般的に、p-トルエンスルホン酸およびポリスチレンスルホン酸(PSS)等からなる群より選択される少なくとも1種の酸をドーパントとするポリエチレンジオキシチオフェン(PEDOT)が用いられる。
 ここで、陰極箔121b、電解液124、および導電性高分子125の体積抵抗率(Ωm)について説明する。陰極箔121bは、金属を材料とするため、電解液124および導電性高分子125よりも低い体積抵抗率を有している。導電性高分子125も、電解液124よりも低い体積抵抗率を有する傾向にある。例えば、陰極箔121bとしてアルミニウムを用いる場合には、陰極箔121bの体積抵抗率は約2.65×10-6Ωmである。導電性高分子125としてPSSをドーパントとするPEDOTを用いる場合には、導電性高分子125の体積抵抗率は1.0×10-3~1.0×10-2程度である。電解液124としてテイカ株式会社商品名ESE2を用いる場合には、電解液124の体積抵抗率は約5×10Ωm(200μS/cm)であった。
 本実施形態に係るコンデンサ素子120は、電解液124と導電性高分子125とを併用することで、高い静電容量および低いESRを実現することができる。しかしながら、ESRが十分に低くならない場合がある。この点について詳細を説明する。
 図12は、図11(b)と同様に、陰極箔121bをシート状に展開した図である。図12で例示するように、陰極箔121bの長さ方向にイオン伝導が生じるため、陰極リード端子123bまでのイオン伝導距離が長くなる場合がある。例えば、陰極リード端子123bから最も遠い点Pから陰極リード端子123bに至るまで、距離が長くなる傾向にある。したがって、点Pから陰極リード端子123bに至るまでの電気抵抗が大きくなり、ESRが十分に低くならない場合がある。
 そこで、本実施形態に係るコンデンサ素子120は、ESRを十分に低くすることができる構成を有している。まず、陰極箔間の接着部について説明する。図13(a)は、コンデンサ素子120内の積層構造を説明するための模式的な断面図である。図13(a)で例示するように、断面において、第1セパレータ122a、陽極箔121a、第2セパレータ122b、陰極箔121bの積層単位が順に積層されている。第1セパレータ122aの陽極箔121aと反対側に、陰極箔121bが位置するように見える。
 陽極箔121aは、金属箔1211の表面に陽極酸化被膜1212が形成された構造を有している。この陽極酸化被膜1212が誘電体として機能している。図13(b)で例示するように、陽極箔121aは、例えば、エッチング処理により拡面化し、化成処理により表面に陽極酸化被膜1212を形成している。エッチング処理の拡面化された陽極箔は、表面に無数の細孔を有し、非常に大きい表面積を有している。陽極酸化被膜1212は、陽極箔121aの表面全体に厚み10~100nmで形成されている。陰極リード端子123bからの電荷は、陰極箔121bを通り第1セパレータ122aの導電性高分子や電解液を介して陽極酸化被膜1212を帯電させる。しかしながら陽極酸化被膜1212は絶縁性を有しているため、電荷が陽極箔121aを隔てて隣接する第2セパレータ122bに到達するためには、陽極箔121aの端面に存在する電解液を通ることが必要になる。この時、陽極箔121aの端面に存在する電解液の電導度は、200μS/cm程度であるためESRが増大してしまう。この2層の陰極箔121bの間のセパレータに導電性高分子による接着部140が形成されれば、図12で説明した陰極リード端子123bから最も遠い点Pから陰極リード端子123bに至るまでの経路にショートカットを形成することができ、ESRを低下させることができる。すなわち、陰極リード端子123bからの電荷は、陰極箔121bを通り導電性高分子や電解液を介して陽極酸化被膜1212を帯電させる。電荷が陰極箔121bを通る際に、第1セパレータ122aと第2セパレータ122bとの間に導電性高分子による電気的短絡経路である接着部が形成されていると、陰極リード端子123bからの電荷は接着部を介して、陰極リード端子123bからより離れた外周部の陰極箔121bにより短い距離で到達することとなるため、外周部の陰極箔121bから外周部の導電性高分子や電解液を介して外周部の陽極酸化被膜1212を効率的に帯電させる。結果として、より外周部の陽極箔121aの陽極酸化被膜1212までの導電率が高い、すなわち素子全体の特性が低ESRとなる。
 図14は、陽極箔121aを挟む2層の陰極箔121bに接着部を形成するための構成について説明するための図である。図14で例示するように、本実施形態に係るコンデンサ素子120は、第1セパレータ122aおよび第2セパレータ122bが、陽極箔121aよりも面方向で突出して対向している。図14の例では、第1セパレータ122aおよび第2セパレータ122bは、コンデンサ素子120の上面において陽極箔121aよりも上側に突出している。
 第1セパレータ122aが陽極箔121aよりも突出する突出部122a1の突出長さを長さaとする。第2セパレータ122bが陽極箔121aよりも突出する突出部122b1の突出長さを長さa´とする。第1セパレータ122aの突出部122a1と第2セパレータ122bの突出部122b1とが対向する箇所における陽極箔121aの厚みを厚みbとする。この場合において、長さa+長さa´≧厚みbの関係が成立している。
 第1セパレータ122aおよび第2セパレータ122bは、柔軟性を有しているため、容易に曲がり、容易に折れ曲がる傾向にある。したがって、図15で例示するように、陽極箔121aを挟んで、突出部122a1と突出部122b1とが接触しやすくなる。この場合、第1セパレータ122aの導電性高分子125と第2セパレータ122bの導電性高分子125とが接触することによって電気的に接続される。それにより、陽極箔121aを挟む2層の陰極箔121bの間に接着部140が形成される。接着部140は、陰極箔121bの短絡経路にて導通するような構造で、第1セパレータ122aと第2セパレータ122bとの間で、セパレータ同士、導電性高分子同士、またはセパレータと導電性高分子とを接続する。それにより、コンデンサ素子120のESRを低くすることができる。なお、導電性高分子125を形成し電解液を含浸する過程で、導電性高分子の粘着性を更に持たせることができ、この段階で突出部122a1と突出部122b1とが自発的に結着することができる。さらに、ケース内に収納することで突出部122a1と突出部122b1とに応力をかけさらに結着することができる。すなわち、本実施形態において、接着部140は、突出部122a1および突出部122b1が導電性高分子125を介して結着して形成される。
 図16(a)および図16(b)は、コンデンサ素子120の上面において半径方向に接着部が形成された場合の効果を説明するための図である。図16(a)および図16(b)で例示するように、コンデンサ素子120の上面では、陽極リード端子123aおよび陰極リード端子123bが見られる。コンデンサ素子120の下面では、陽極リード端子123aおよび陰極リード端子123bは見られない。
 図16(a)で例示するように、接着部が形成されていなければ、イオン伝導の経路は、複数回にわたって周回したうえで陰極リード端子123bに到達する経路となる。これに対して、図16(b)で例示するように、コンデンサ素子120の上面において半径方向に接着部140が形成された場合には、ショートカットを繰り返すことができ、陰極リード端子123bに至るまでの経路を短縮化することができる。
 なお、第1セパレータ122aの突出部122a1と第2セパレータ122bの突出部122b1との間を接触させやすくする観点から、(長さa+長さa´)は、厚みbの1倍より大きいことが好ましく、2倍以上であることがより好ましい。
 同様に、第1セパレータ122aの突出部122a1と第2セパレータ122bの突出部122b1との間を接触させやすくする観点から、長さaおよび長さa´のそれぞれは、0.2mm以上であることが好ましく、0.25mm以上であることがより好ましく、0.3mm以上であることがさらに好ましい。例えば、陽極箔121aおよび陰極箔121bは、コンデンサ素子120の上面と下面とを結ぶ方向において、2.7mm以上7.5mmの幅を有する。第1セパレータ122aおよび第2セパレータ122bは、コンデンサ素子120の上面と下面とを結ぶ方向において、3.2mm以上8.0mmの幅を有する。
 また、接着部140は、陰極リード端子123bに近い位置で形成されていることが好ましい。したがって、コンデンサ素子120に対する平面視において、接着部140は、少なくとも、陰極リード端子123bが位置する側の半分の領域(図16(a)および図16(b)では点線よりも右側の領域)のいずれかの部分に形成されていることが好ましい。
 なお、第1セパレータ122aと第2セパレータ122bとが接触すると、コンデンサ素子120を上面側から見たときに、陽極箔121aの上面側の端面部(端面)が導電性高分子125によって被覆されているように見える。陽極箔121aの上面側端面が導電性高分子125によって被覆されている割合(陽極端面被覆率)が高いほど、多くの接着部140が形成されていることになる。そこで、陽極端面被覆率に下限を設けることが好ましい。
 本実施形態においては、陽極箔121aの陽極端面被覆率を、コンデンサ素子120を上面側から見た場合の、コンデンサ素子120の上面における陽極箔121aの露出の面積に対して、導電性高分子125によって被覆されている面積と定義することができる。十分な量の接着部140を得る観点から、この陽極端面被覆率は、15%以上であることが好ましく、20%以上であることがより好ましく、30%以上であることがさらに好ましい。
 陽極箔121aの陽極端面被覆率は、導電性高分子125の形成前のコンデンサ素子120の上面の画像と、導電性高分子125の形成後のコンデンサ素子120の上面の画像とから、画像処理を行なうことによって算出することができる。まず、図17(a)で例示する導電性高分子125の形成前のコンデンサ素子120の上面の画像において、コンデンサ素子120の全体の面積から、第1セパレータ122a、第2セパレータ122b、中心部の面積、陽極リード端子123a、陰極リード端子123b、陰極箔121bの面積を差し引くことで、被覆前の陽極箔121aの端面部(端面)の面積を算出することができる。中心部の面積は、素子上面の平面視において、中心部の孔の径のうち最も長い径を直径とする円が中心部にあるものとみなし、該円の最も長い径の1/2の値を半径として、πrの計算式にて求めた面積を中心部の面積を定義する。
 次に、図17(b)で例示する導電性高分子125の形成後のコンデンサ素子120の上面の画像において、コンデンサ素子120の全体の面積から、第1セパレータ122a、第2セパレータ122b、中心部の面積、陽極リード端子123a、陰極リード端子123b、陰極箔121bの面積、および導電性高分子125によって黒く被覆された面積を差し引くことで、被覆後の陽極箔121aの端面部(端面)の面積を算出することができる。
 {(被覆前の陽極箔121aの端面の面積)-(被覆後の陽極箔121aの端面の面積の割合)}/(被覆前の陽極箔121aの端面の面積)×100(%)を算出することで、陽極端面被覆率を算出することができる。または、陽極端面被覆率は、被覆後の陽極箔121aの端面の面積(白色)と導電性高分子125に被覆された面積(黒色)との合計に対する、黒色の割合としてもよい。
 なお、図16(b)で例示したように、コンデンサ素子120の上面において、中心部よりも外周部の方が、陰極箔121bが1周するのに必要な距離が長くなる。そこで、コンデンサ素子120の上面において、中心部から外周部に向かって、導電性高分子125によって陽極箔121aの端面が被覆される面積が増加していくことが好ましい。ここで、導電性高分子125によって陽極箔121aの端面が被覆される面積が増加することは、面積の絶対値が大きくなっていくことと、1周に占める導電性高分子125の面積割合が大きくなっていることとの少なくともいずれか一方のことを意味する。
 図14~図16(b)では、コンデンサ素子120の上面における構造について説明したが、下面においても第1セパレータ122aが下面側に突出する突出部122a1を備え、第2セパレータ122bが下面側に突出する突出部122b1を備えていてもよい。または、コンデンサ素子120の上面および下面のいずれか一方だけに、突出部122a1および突出部122b1が備わっていてもよい。
 ただし、陰極箔121bにおいてコンデンサ素子120の上面側に陰極リード端子123bが接続されているため、コンデンサ素子120の上面側に接着部140が形成されていることが好ましい。そこで、コンデンサ素子120の上面において、突出部122a1および突出部122b1が備わっていることが好ましい。
 また、コンデンサ素子120の上面側で多くの接着部140が形成されていることが好ましいため、上面および下面の両方に突出部122a1および突出部122b1が備わっている場合に、上面側の長さaおよび長さa´が、下面側の長さaおよび長さa´よりも長いことが好ましい。
 また、コンデンサ素子120を上面側から見た場合の陽極箔121aの端面の面積と、コンデンサ素子120を下面側から見た場合の陽極箔121aの端面の面積との合計に対する、導電性高分子125によって被覆されている面積の比率は、20%以上であることが好ましく、40%以上であることがより好ましく、60%以上であることがさらに好ましい。なお、当該比率は、コンデンサ素子120の上面側の陽極端面被覆率と下面側の陽極端面被覆率との平均値と定義することもできる。
 続いて、電解コンデンサ101の製造方法について説明する。図18は、電解コンデンサ101の製造方法のフローを例示する図である。
(巻回体の作製)
 第1セパレータ122a、陽極リード端子123aが接続された陽極箔121a、第2セパレータ122b、および陰極リード端子123bが接続された陰極箔121bをこの順に積層して巻回し、外側表面を巻止めテープで固定することで巻回体を作製する。このときに、第1セパレータ122aおよび第2セパレータ122bを陽極箔121aよりも上面側および下面側に突出させる。
(導電性高分子層の形成)
 次に、減圧雰囲気中で、水と有機溶媒を含む導電性高分子分散液に巻回体を20分間浸漬し、その後、導電性高分子分散液から巻回体を引き上げる。このようにすることで、巻回体に導電性高分子125を含浸させることができる。余剰の導電性高分子125を巻回体に残存させた状態で乾燥することにより、接着部140を形成する。
 例えば、導電性高分子分散液として、高分子濃度が0.5wt%以上であるか、または粘度が20℃において10mPa・s以上のものを用いることが好ましい。導電性高分子分散液の高分子濃度が小さいと、導電性高分子を素子に含浸させた際に接着部の形成に十分な量の導電性高分子が素子上面に残存せず、また導電性高分子分散液の粘度が小さいと、導電性高分子を素子に含浸させた際に第1セパレータ122aと第2セパレータ122bの接着に必要な量の導電性高分子が素子上面に残存しないからである。
(電解液の含浸)
 次に、巻回体に、減圧雰囲気中で、所定量の電解液を含浸させる。なお、電解液は、導電性高分子分散液内に、溶質を混合させたものであってもよい。すなわち、導電性高分子分散液を電解液として使用することができる。その場合、電解液の含浸は、導電性高分子の含浸と同時に行うこととなる。また、導電性高分子の分散液の溶媒は、水および有機溶媒から選択される一種類以上の溶液を用いてもよい。この場合、有機溶媒は、沸点が150℃以上のグリコール系化合物、ラクトン系化合物、およびスルホランの少なくとも1つ以上から選択され、当該有機溶媒と水の重量比が1:99~50:50であってもよい。例えば、導電性高分子の含浸の際に、溶質を混合した導電性高分子分散液を巻回体に含浸させることによって、導電性高分子の形成の際に、電解液を含浸させた状態となる。すなわち、導電性高分子を乾燥し、巻回体中の水分を除去した際に、導電性高分子分散液の有機溶媒は残存するため、導電性高分子分散液内の、有機溶媒に溶解した溶質が電解液として機能する。これにより、接着部の形成と電解液の含侵を同時に行うことで、製造工程の短縮を図ることができる。また、導電性高分子分散液を電解液として使用した場合は、さらに、巻回体を追加の電解液に含浸してもよい。追加の電解液量の含浸量は、分散液中の電解液の重量に対して、2倍以上100倍以下であることが好ましく、5倍以上20倍以下であることがより好ましい。追加の電解液の組成は、分散液中の電解液と同じ組成であってもよく、異なっていてもよい。例えば、分散液を電解液として含浸させて乾燥などによって水分を除去した素子を、追加の電解液の浴槽にリード端子を上側にして巻回体の部分が完全に浸かるように浸し、減圧含浸を行うことで追加の電解液を素子内部に導入することができる。
 追加の電解液を含浸する理由は以下のとおりである。分散液を電解液として使用した場合は、乾燥の際に導電性高分子と電解液の複合層が形成されるため、導電性高分子の導電性と導電性高分子近傍の酸化被膜の修復を両立することができる。一方で、導電性高分子近傍の酸化被膜の修復に関しては、初期の修復分としては分散液中の電解液の量で十分であるが、長期的な修復を鑑みると電解液が不足するため、長期的に安定な素子を形成するためには追加の電解液の含浸を行う必要があるのである。すなわち、導電性高分子分散液を電解液として用いた場合には、コンデンサの寿命延長のため、追加の電解液を注液することが特に有効である。
(コンデンサの組立)
 次に、巻回体を金属ケース110および封口体130によって封止することによって、電解コンデンサ101が完成する。その後、定格電圧を印加しながらエージング処理を行なってもよい。
 本実施形態に係る製造方法によれば、陽極箔121aを挟んで、突出部122a1と突出部122b1とが接触しやすくなり、陽極箔121aを挟む2層の陰極箔121bの間に接着部140が形成されるようになる。その結果、コンデンサ素子120のESRを低くすることができる。
 なお、導電性高分子の含浸の後に電解液の含浸を行なうことによって、接着部140を形成している導電性高分子125を膨潤させて湿潤状態とし、粘着性を持たせることができる。この場合、突出部122a1と突出部122b1との結着強度を向上させることができる。なお、接着部を有する少なくとも一方の端面のセパレータにおいて電解液量がコンデンサ素子内のセパレータよりも単位面積当たりの量が多くなるように調整することで、導電性高分子125同士が結着した接着部が膨潤して長期間粘着性を有するようになる。この膨潤状態であれば電解液が存在するため接着部の結着が柔軟性を有し粘着性を有するので、例えば製品使用時の衝撃によって前記結着が破損しにくく、さらにはセパレータ間の結着が解けても粘着して接続を維持し続けることができる。
 なお、上記実施形態では、第1セパレータ122a、陽極箔121a、第2セパレータ122b、および陰極箔121bがこの順に積層された積層単位を巻回させてあるが、それに限られない。例えば、第1セパレータ122a、陰極箔121b、第2セパレータ122b、陽極箔121aがこの順に積層された積層単位を巻回させてもよい。
 また、上記実施形態では、コンデンサ素子120が略円柱形状を有していたが、それに限られない。例えば、コンデンサ素子120は、角柱などの他の柱形状を有していてもよい。
 また、上記実施形態では、コンデンサ素子120が巻回されていたが、それに限られない。例えば、第1セパレータ122a、陽極箔121a、第2セパレータ122b、および陰極箔121bを含む複数の積層単位が、巻回されずに積層されていてもよい。
 以下、第1実施形態に係る電解コンデンサを作製し、特性について調べた。
(実施例1)
 実施例1では、定格電圧63V、定格静電容量56μFの巻回型の固体電解コンデンサ(直径6.3mm×長さ5.7mm)を作製した。以下に、固体電解コンデンサの具体的な製造方法について説明する。
(巻回体の作製)
 準備した陽極箔に、陽極リード端子を接続した。端面に導体層を有し塗れ性改善の下処理を行った陰極箔に、陰極リード端子を接続した。その後、第1セパレータ、陰極箔、第2セパレータ、および陽極箔をこの順に積層し、リード端子を巻き込みながら巻回し、外側表面を巻止めテープで固定することで巻回体を作製した。このときに、巻回体の上面(リード端子側)における第1セパレータの突出長さaおよび第2セパレータの突出長さa´が0.35mmとなるように、第1セパレータおよび第2セパレータの位置を調整した。作製した巻回体を、リン酸アンモニウム水溶液に浸漬させ、陽極箔に対して、所定の電圧を印加しながら、再度化成処理を行うことにより、主に陽極箔の端面に誘電体層を形成した。その後、炭化工程を経て再度化成工程および炭化工程を経たうえで、素子を洗浄し乾燥した。陽極箔の厚みbは、0.125mmであった。
(コンデンサ素子の作製)
 所定容器に収容された導電性高分子前駆体モノマーに巻回体を3分間浸漬し、その後、導電性高分子前駆体モノマーから巻回体を引き上げた。このとき、導電性高分子前駆体モノマーによる陽極端面被覆率が約96%~99%となるように調整した。次に、導電性高分子前駆体モノマーを含浸した巻回体を、乾燥炉内で45分間乾燥させ、乾燥した素子に常温で酸化剤を含浸し、余剰の酸化剤を除去した後に、加温による重合を進行させた。その後、必要に応じてさらに熱処理を行い、徐冷の後、導電性高分子層と接着部を有するアルミニウム固体電解コンデンサ素子を得た。
 得られたコンデンサ素子の上面および下面の画像処理を行い、それぞれの陽極端面被覆率を算出した。上面側の陽極端面被覆率は、98.8%であった。下面側の陽極端面被覆率は、96.1%であった。上面および下面の陽極端面被覆率の平均値は、97.6%であった。
(コンデンサ素子の封止)
 固体電解コンデンサ素子を封止して、固体電解コンデンサを完成させた。その後、定格電圧を印加しながら、1時間エージング処理を行った。
(実施例2)
 導電性高分子の形成時に、導電性高分子による陽極端面被覆率が約84%~86%となるように調整したこと以外は、実施例1と同様に固体電解コンデンサを作製し、評価を行った。
 得られたコンデンサ素子の上面および下面の画像処理を行い、それぞれの陽極端面被覆率を算出したところ、上面側の陽極端面被覆率は、85.7%であった。下面側の陽極端面被覆率は、83.9%であった。上面および下面の陽極端面被覆率の平均値は、84.8%であった。
(実施例3)
 導電性高分子の形成時に、導電性高分子による陽極端面被覆率が約73~75%となるように調整したこと以外は、実施例1と同様に固体電解コンデンサを作製し、評価を行った。
 得られたコンデンサ素子の上面および下面の画像処理を行い、それぞれの陽極端面被覆率を算出したところ、上面側の陽極端面被覆率は、73.4%であった。下面側の陽極端面被覆率は、74.2%であった。上面および下面の陽極端面被覆率の平均値は、73.8%であった。
(実施例4)
 巻回体の上面(リード端子側)における第1セパレータの突出長さaおよび第2セパレータの突出長さa´が0.2mmとなるように、第1セパレータおよび第2セパレータの位置を調整した。導電性高分子の形成時に、導電性高分子による陽極端面被覆率が約89~91%となるように調整した。それ以外は、実施例1と同様に固体電解コンデンサを作製し、評価を行った。
 得られたコンデンサ素子の上面および下面の画像処理を行い、それぞれの陽極端面被覆率を算出したところ、上面側の陽極端面被覆率は、69.3%であった。下面側の陽極端面被覆率は、70.6%であった。上面および下面の陽極端面被覆率の平均値は、70.1%であった。
(実施例5)
 導電性高分子の形成時に、導電性高分子による陽極端面被覆率が約74~77%となるように調整したこと以外は、実施例4と同様に電解コンデンサを作製し、評価を行った。
 得られたコンデンサ素子の上面および下面の画像処理を行い、それぞれの陽極端面被覆率を算出したところ、上面側の陽極端面被覆率は、54.2%であった。下面側の陽極端面被覆率は、56.8%であった。上面および下面の陽極端面被覆率の平均値は、55.5%であった。
(実施例6)
 導電性高分子の形成時に、導電性高分子による陽極端面被覆率が約68~71%となるように調整したこと以外は、実施例4と同様に電解コンデンサを作製し、評価を行った。
 得られたコンデンサ素子の上面および下面の画像処理を行い、それぞれの陽極端面被覆率を算出したところ、上面側の陽極端面被覆率は、45.7%であった。下面側の陽極端面被覆率は、50.4%であった。上面および下面の陽極端面被覆率の平均値は、48.1%であった。
(比較例1)
 巻回体の上面(リード端子側)における第1セパレータの突出長さaおよび第2セパレータの突出長さa´が0.06mmとなるように、第1セパレータおよび第2セパレータの位置を調整した。導電性高分子の形成時に、導電性高分子による陽極端面被覆率が約22~25%となるように調整した。それ以外は、実施例1と同様に電解コンデンサを作製し、評価を行った。
 得られたコンデンサ素子の上面および下面の画像処理を行い、それぞれの陽極端面被覆率を算出したところ、上面側の陽極端面被覆率は、34.9%であった。下面側の陽極端面被覆率は、32.5%であった。上面および下面の陽極端面被覆率の平均値は、33.7%であった。
(比較例2)
 巻回体の上面(リード端子側)における第1セパレータの突出長さaおよび第2セパレータの突出長さa´が0.04mmとなるように、第1セパレータおよび第2セパレータの位置を調整した。導電性高分子の形成時に、導電性高分子による陽極端面被覆率が約18~21%となるように調整した。それ以外は、比較例1と同様に電解コンデンサを作製し、評価を行った。
 得られたコンデンサ素子の上面および下面の画像処理を行い、それぞれの陽極端面被覆率を算出したところ、上面側の陽極端面被覆率は、18.2%であった。下面側の陽極端面被覆率は、20.4%であった。上面および下面の陽極端面被覆率の平均値は、19.3%であった。
(分析)
 実施例1~6および比較例1,2のそれぞれで得られた電解コンデンサについて、下記の手順で、静電容量およびESR値を求めた。4端子測定用のLCRメータを用いて、電解コンデンサの周波数100kHzにおけるESR値(初期ESR値)(mΩ)を測定した。
 実施例1では、ESRは12.7mΩであった。実施例2では、ESRは13.3mΩであった。実施例3では、ESRは15.8mΩであった。実施例4では、ESRは17.2mΩであった。実施例5では、ESRは19.4mΩであった。実施例6では、ESRは20.8mΩであった。比較例1では、ESRは26.5mΩであった。比較例2では、ESRは31.6mΩであった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1,2では、ESRが高くなった。これは、長さa+長さa´≧厚みbの関係が成立していないことで、セパレータ同士の接触が得られず、陽極箔を挟む2層の陰極箔間に導電性高分子による接着部が形成されなかったからであると考えられる。これに対して、実施例1~6では、比較例1,2と比較してESRが低くなった。これは、長さa+長さa´≧厚みbの関係が成立したことで、セパレータ同士の接触が得られ、陽極箔を挟む2層の陰極箔間に導電性高分子による接着部が形成されたからであると考えられる。なお、実施例1~6のESRについて検討すると、陽極端面被覆率が高くなるほどESRが低下していることがわかる。この結果から、陽極端面被覆率が高くなるほど多くの接着部が形成されたからであると考えられる。
 以下、第2実施形態に係る電解コンデンサを作製し、特性について調べた。
(実施例7)
 実施例7では、定格電圧63V、定格静電容量56μFの巻回型の電解コンデンサ(直径10mm×長さ10mm)を作製した。以下に、電解コンデンサの具体的な製造方法について説明する。
(巻回体の作製)
 準備した陽極箔に、陽極リード端子を接続した。端面に導体層を有し塗れ性改善の下処理を行った陰極箔に、陰極リード端子を接続した。その後、第1セパレータ、陰極箔、第2セパレータ、および陽極箔をこの順に積層し、リード端子を巻き込みながら巻回し、外側表面を巻止めテープで固定することで巻回体を作製した。このときに、巻回体の上面(リード端子側)における第1セパレータの突出長さaおよび第2セパレータの突出長さa´が0.35mmとなるように、第1セパレータおよび第2セパレータの位置を調整した。作製した巻回体を、リン酸アンモニウム水溶液に浸漬させ、陽極箔に対して、143Vの電圧を印加しながら、85℃で再度化成処理を行うことにより、主に陽極箔の端面に誘電体層を形成した。陽極箔の厚みbは、0.125mmであった。
(コンデンサ素子の作製)
 減圧雰囲気(80kPa)中で、所定容器に収容された導電性高分子の水分散体に巻回体を20分間浸漬し、その後、当該分散体から巻回体を引き上げた。このとき、導電性高分子による陽極端面被覆率が約96%となるように調整した。次に、導電性高分子を含浸した巻回体を、150℃の乾燥炉内で60分間乾燥させ各層の導電性高分子同士を結着して接着部を形成した。このようにして、接着部を有するコンデンサ素子を得た。
 得られたコンデンサ素子の上面および下面の画像処理を行い、それぞれの陽極端面被覆率を算出した。上面側の陽極端面被覆率は、97.3%であった。下面側の陽極端面被覆率は、95.4%であった。上面および下面の陽極端面被覆率の平均値は、96.3%であった。
(電解液の含浸)
 コンデンサ素子に、減圧雰囲気(92kPa)中で所定量の電解液を含浸させ、接着部に電解液を存在させることによって粘着接着部とするとともに、接着部を有する少なくとも一方の端面のセパレータにおいて電解液量がコンデンサ素子内のセパレータよりも単位面積当たりの量が多くなるように調整した。電解液としては、テイカ製のESE2を用いた。このようにすることで、導電性高分子同士が結着した接着部が膨潤して長期間粘着性を有するようになる。
(コンデンサ素子の封止)
 電解液を含浸させたコンデンサ素子を封止して、電解コンデンサを完成させた。その後、定格電圧を印加しながら、85℃で1時間エージング処理を行った。
(実施例8)
 導電性高分子の形成時に、導電性高分子による陽極端面被覆率が約53%となるように調整したこと以外は、実施例7と同様に電解コンデンサを作製し、評価を行った。
 得られたコンデンサ素子の上面および下面の画像処理を行い、それぞれの陽極端面被覆率を算出したところ、上面側の陽極端面被覆率は、61.2%であった。下面側の陽極端面被覆率は、43.9%であった。上面および下面の陽極端面被覆率の平均値は、52.5%であった。
(実施例9)
 導電性高分子の形成時に、導電性高分子による陽極端面被覆率が約24%となるように調整したこと以外は、実施例7と同様に電解コンデンサを作製し、評価を行った。
 得られたコンデンサ素子の上面および下面の画像処理を行い、それぞれの陽極端面被覆率を算出したところ、上面側の陽極端面被覆率は、28.4%であった。下面側の陽極端面被覆率は、18.8%であった。上面および下面の陽極端面被覆率の平均値は、23.6%であった。
(実施例10)
 巻回体の上面(リード端子側)における第1セパレータの突出長さaおよび第2セパレータの突出長さa´が0.2mmとなるように、第1セパレータおよび第2セパレータの位置を調整した。導電性高分子の形成時に、導電性高分子による陽極端面被覆率が約76%となるように調整した。それ以外は、実施例7と同様に電解コンデンサを作製し、評価を行った。
 得られたコンデンサ素子の上面および下面の画像処理を行い、それぞれの陽極端面被覆率を算出したところ、上面側の陽極端面被覆率は、78.6%であった。下面側の陽極端面被覆率は、72.5%であった。上面および下面の陽極端面被覆率の平均値は、75.6%であった。
(実施例11)
 導電性高分子の形成時に、導電性高分子による陽極端面被覆率が約39%となるように調整したこと以外は、実施例10と同様に電解コンデンサを作製し、評価を行った。
 得られたコンデンサ素子の上面および下面の画像処理を行い、それぞれの陽極端面被覆率を算出したところ、上面側の陽極端面被覆率は、45.6%であった。下面側の陽極端面被覆率は、32.9%であった。上面および下面の陽極端面被覆率の平均値は、39.3%であった。
(実施例12)
 導電性高分子の形成時に、導電性高分子による陽極端面被覆率が約20%となるように調整したこと以外は、実施例10と同様に電解コンデンサを作製し、評価を行った。
 得られたコンデンサ素子の上面および下面の画像処理を行い、それぞれの陽極端面被覆率を算出したところ、上面側の陽極端面被覆率は、24.7%であった。下面側の陽極端面被覆率は、16.2%であった。上面および下面の陽極端面被覆率の平均値は、20.4%であった。
(比較例3)
 巻回体の上面(リード端子側)における第1セパレータの突出長さaおよび第2セパレータの突出長さa´が0.06mmとなるように、第1セパレータおよび第2セパレータの位置を調整した。導電性高分子の形成時に、導電性高分子による陽極端面被覆率が約11%となるように調整した。それ以外は、実施例7と同様に電解コンデンサを作製し、評価を行った。
 得られたコンデンサ素子の上面および下面の画像処理を行い、それぞれの陽極端面被覆率を算出したところ、上面側の陽極端面被覆率は、13.9%であった。下面側の陽極端面被覆率は、9.0%であった。上面および下面の陽極端面被覆率の平均値は、11.4%であった。
(比較例4)
 導電性高分子の形成時に、導電性高分子による陽極端面被覆率が約8%となるように調整したこと以外は、比較例3と同様に電解コンデンサを作製し、評価を行った。
 得られたコンデンサ素子の上面および下面の画像処理を行い、それぞれの陽極端面被覆率を算出したところ、上面側の陽極端面被覆率は、9.5%であった。下面側の陽極端面被覆率は、6.4%であった。上面および下面の陽極端面被覆率の平均値は、8.0%であった。
(分析)
 実施例7~12および比較例3,4のそれぞれで得られた電解コンデンサについて、下記の手順で、静電容量およびESR値を求めた。4端子測定用のLCRメータを用いて、電解コンデンサの周波数120Hzにおける静電容量(初期静電容量)(μF)を測定した。4端子測定用のLCRメータを用いて、電解コンデンサの周波数100kHzにおけるESR値(初期ESR値)(mΩ)を測定した。
 実施例7では、ESRは9.5mΩであった。実施例8では、ESRは10.4mΩであった。実施例9では、ESRは12.6mΩであった。実施例10では、ESRは13.5mΩであった。実施例11では、ESRは14.2mΩであった。実施例12では、ESRは18.3mΩであった。比較例3では、ESRは30.7mΩであった。比較例4では、ESRは34.2mΩであった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 比較例3,4では、ESRが高くなった。これは、長さa+長さa´≧厚みbの関係が成立していないことで、セパレータ同士の接触が得られず、陽極箔を挟む2層の陰極箔間に導電性高分子による接着部が形成されなかったからであると考えられる。これに対して、実施例7~12では、比較例3,4と比較してESRが低くなった。これは、長さa+長さa´≧厚みbの関係が成立したことで、セパレータ同士の接触が得られ、陽極箔を挟む2層の陰極箔間に導電性高分子による接着部が形成されたからであると考えられる。なお、実施例7~12のESRについて検討すると、陽極端面被覆率が高くなるほどESRが低下していることがわかる。この結果から、陽極端面被覆率が高くなるほど多くの接着部が形成されたからであると考えられる。
 以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 1 電解コンデンサ
 10 金属ケース
 11 開口部
 12 横絞り溝
 20 コンデンサ素子
 21a 陽極箔
 21b 陰極箔
 22a 第1セパレータ
 22b 第2セパレータ
 23a 陽極リード端子
 23b 陰極リード端子
 30 封口体
 31a,31b リード挿通孔
 

Claims (40)

  1.  第1セパレータと、引き出しリード端子を接続し表面に陽極酸化被膜を有する陽極箔と、第2セパレータと、引き出しリード端子を接続した陰極箔とが順次配置され、導電性高分子が形成されたコンデンサ素子を備え、
     前記第1セパレータおよび前記第2セパレータのそれぞれは、前記導電性高分子を備えた状態で面方向において前記陽極箔よりも突出しかつ対向し、
     前記第1セパレータおよび前記第2セパレータは、前記導電性高分子により電気的に接続した状態で少なくとも一部が固着され、接着部が形成されていることを特徴とする電解コンデンサ。
  2.  前記接着部は、前記陰極箔の電気的短絡経路であることを特徴とする請求項1に記載の電解コンデンサ。
  3.  前記第1セパレータおよび前記第2セパレータのそれぞれは、面方向で前記陽極箔よりも突出して対向し、前記導電性高分子を含む突出部を備え、
     前記第1セパレータの前記突出部の突出長さを長さaとし、前記第2セパレータの前記突出部の突出長さを長さa´とし、前記第1セパレータおよび前記第2セパレータの前記突出部が対向する箇所における前記陽極箔の厚みを厚みbとした場合に、長さa+長さa´≧厚みbの関係が成立し、
     前記導電性高分子は、前記第1セパレータの前記突出部の少なくとも一部と、前記第2セパレータの前記突出部の少なくとも一部とを固着していることを特徴とする請求項1または請求項2に記載の電解コンデンサ。
  4.  前記長さaおよび長さa´は、それぞれ0.2mm以上であることを特徴とする請求項3に記載の電解コンデンサ。
  5.  前記第1セパレータ、前記陽極箔、前記第2セパレータ、および前記陰極箔は、共に巻回されて略柱形状を有し、
     前記略柱形状の第1底面および第2底面のうち、前記第1底面に、前記陽極箔に接続された前記引き出しリード端子と、前記陰極箔に接続された前記引き出しリード端子とを備えることを特徴とする請求項1または請求項2に記載の電解コンデンサ。
  6.  前記陽極箔は、アルミニウム箔またはアルミニウム合金箔であり、
     前記陰極箔は、弁金属箔、弁金属の合金箔、または弁金属の表面に導電層を形成した箔であることを特徴とする請求項1または請求項2に記載の電解コンデンサ。
  7.  前記第2底面における前記第1セパレータおよび前記第2セパレータの前記突出部の突出長さよりも、前記第1底面における前記第1セパレータおよび前記第2セパレータの前記突出部の突出長さよりも大きいことを特徴とする請求項3に記載の電解コンデンサ。
  8.  前記接着部において、前記第1セパレータおよび前記第2セパレータの少なくともいずれか一方は、コンデンサ素子の円筒軸に対して傾斜していることを特徴とする請求項1または請求項2に記載の電解コンデンサ。
  9.  前記コンデンサ素子は、内部に水分を含んでいることを特徴とする請求項1または請求項2に記載の電解コンデンサ。
  10.  前記第1底面における前記陽極箔の露出部において前記導電性高分子で被覆されている面積と、前記第2底面における前記陽極箔の露出部において前記導電性高分子で被覆されている面積との合計は、前記第1底面および前記第2底面における前記陽極箔の露出部の合計面積に対して、48%以上であることを特徴とする請求項5に記載の電解コンデンサ。
  11.  前記第1底面における前記陽極箔の露出部において前記導電性高分子で被覆されている面積は、前記第1底面における前記陽極箔の露出部の面積に対して、45%以上であることを特徴とする請求項5に記載の電解コンデンサ。
  12.  前記第1底面および前記第2底面の少なくともいずれかにおいて、中心部から外周部に向かって、前記陽極箔の露出部が前記導電性高分子で被覆される面積が増加することを特徴とする請求項5に記載の電解コンデンサ。
  13.  前記略柱形状の軸方向において、前記第1セパレータおよび前記第2セパレータの単位面積あたりの電解液量が、中心側よりも前記第1底面側および前記第2底面側において多いことを特徴とする請求項5に記載の電解コンデンサ。
  14.  前記導電性高分子層は、前駆体モノマーを重合させたものであることを特徴とする請求項1または請求項2に記載の電解コンデンサ。
  15.  前記第1セパレータおよび前記第2セパレータは、セルロース、レーヨン、およびガラス繊維から選択される少なくとも1種類以上であることを特徴とする請求項1または請求項2に記載の電解コンデンサ。
  16.  前記コンデンサ素子に対する平面視において、前記接着部は、少なくとも、前記陰極箔に接続された前記リード端子が位置する側の半分の領域に形成されていることを特徴とする請求項1または請求項2に記載の電解コンデンサ。
  17.  前記コンデンサ素子に電解液が含侵され、
     前記第1セパレータおよび前記第2セパレータのそれぞれは、面方向で前記陽極箔および前記陰極箔よりも突出して対向し、前記導電性高分子を含む突出部を備え、
     前記第1セパレータの前記突出部の突出長さを長さaとし、前記第2セパレータの前記突出部の突出長さを長さa´とし、前記第1セパレータおよび前記第2セパレータの前記突出部が対向する箇所における前記陽極箔の厚みを厚みbとした場合に、長さa+長さa´≧厚みbの関係が成立し、
     前記導電性高分子は、前記第1セパレータの前記突出部の少なくとも一部と、前記第2セパレータの前記突出部の少なくとも一部とを結着して接着部を形成していることを特徴とする請求項1に記載の電解コンデンサ。
  18.  前記接着部は、電解液が含まれ膨潤して湿潤状態であり、粘着性を有することを特徴とする請求項17記載の電解コンデンサ。
  19.  前記接着部は、前記陰極箔の短絡経路にて導通するような構造で、前記第1セパレータと前記第2セパレータとの間で、セパレータ同士、前記導電性高分子同士、またはセパレータと前記導電性高分子とが接続するように、電解液が含まれ膨潤して湿潤状態であり、粘着性を有することを特徴とする請求項17記載の電解コンデンサ。
  20.  前記長さaおよび長さa´は、それぞれ0.2mm以上であることを特徴とする請求項17から請求項19のいずれか一項に記載の電解コンデンサ。
  21.  前記第1セパレータ、前記陽極箔、前記第2セパレータ、および前記陰極箔は、順次積層され、共に巻回されて略柱形状を有し、
     前記略柱形状の第1底面および第2底面のうち、前記第1底面に、前記陽極箔に接続された前記引き出しリード端子と、前記陰極箔に接続された前記引き出しリード端子とを備えることを特徴とする請求項17または請求項18に記載の電解コンデンサ。
  22.  前記第1底面における前記陽極箔の端面において、前記導電性高分子で被覆されている面積と、前記第2底面における前記陽極箔の端面において、前記導電性高分子で被覆されている面積との合計は、前記第1底面および前記第2底面における前記陽極箔の端面の合計面積に対して、20%以上であることを特徴とする請求項21に記載の電解コンデンサ。
  23.  前記第1底面における前記陽極箔の端面において、前記導電性高分子で被覆されている面積は、前記第1底面における前記陽極箔の端面の面積に対して、15%以上であることを特徴とする請求項19に記載の電解コンデンサ。
  24.  前記第1底面および前記第2底面の少なくともいずれかにおける前記陽極箔の端面において、中心部から外周部に向かって、前記導電性高分子で被覆されている面積が増加することを特徴とする請求項21に記載の電解コンデンサ。
  25.  前記略柱形状の前記コンデンサ素子の軸方向において、前記第1セパレータおよび前記第2セパレータの単位面積あたりの電解液量が、中心側よりも前記第1底面側および前記第2底面側において多いことを特徴とする請求項19に記載の電解コンデンサ。
  26.  前記導電性高分子層は、高分子濃度が0.5wt%以上、または粘度が10mPa・s以上の導電性高分子分散液から形成されていることを特徴とする請求項17から請求項19のいずれか一項に記載の電解コンデンサ。
  27.  前記第1セパレータおよび前記第2セパレータは、セルロース、レーヨン、ガラス繊維のうちの1つ、またはそれらの混抄紙であることを特徴とする請求項17から請求項19のいずれか一項に記載の電解コンデンサ。
  28.  前記コンデンサ素子に対する平面視において、前記接着部は、少なくとも、前記陰極箔に接続された前記リード端子が位置する側の半分の領域のいずれかに形成されていることを特徴とする請求項17から請求項19のいずれか一項に記載の電解コンデンサ。
  29.  前記接着部は、前記コンデンサ素子に前記電解液を含浸させた際に膨潤させ湿潤状態で粘着性を有するものであることを特徴とする請求項17から請求項19のいずれか一項に記載の電解コンデンサ。
  30.  第1セパレータと、引き出しリード端子を接続し表面に陽極酸化被膜を有する陽極箔と、第2セパレータと、引き出しリード端子を接続した陰極箔とが順次配置され、前記第1セパレータおよび前記第2セパレータのそれぞれが面方向において前記陽極箔よりも突出しかつ対向するコンデンサ素子において、
     前記第1セパレータおよび前記第2セパレータに前駆体モノマーを含浸させて前記コンデンサ素子内に導電性高分子を形成し、前記第1セパレータおよび前記第2セパレータが前記導電性高分子により電気的に接続した状態で少なくとも一部を固着させて接着部を形成することを特徴とする電解コンデンサの製造方法。
  31.  前記第1セパレータおよび前記第2セパレータのそれぞれは、面方向で前記陽極箔よりも突出して対向し、前記導電性高分子を含む突出部を備え、
     前記第1セパレータの前記突出部の突出長さを長さaとし、前記第2セパレータの前記突出部の突出長さを長さa´とし、前記第1セパレータおよび前記第2セパレータの前記突出部が対向する箇所における前記陽極箔の厚みを厚みbとした場合に、長さa+長さa´≧厚みbの関係が成立し、
     前記第1セパレータおよび前記第2セパレータの前記突出部間に前記接着部を形成することを特徴とする請求項30に記載の電解コンデンサの製造方法。
  32.  コンデンサ素子に前記前駆体モノマーを含浸させて重合する工程を1回また複数回繰り返して固体電解質層を形成する際に、前記第1セパレータおよび前記第2セパレータが突出する部分も同時に固着させて接着部を形成することを特徴とする請求項30または請求項31に記載の電解コンデンサの製造方法。
  33.  前記第1セパレータおよび前記第2セパレータが突出する部分の前記接着部の表面被覆率を調整するために、前記第1セパレータおよび前記第2セパレータに再度導電性ポリマーを含侵または付着させて固体電解質層を形成させることによって接着部を増加させることを特徴とする請求項30または請求項31に記載の電解コンデンサの製造方法。
  34.  前記コンデンサ素子において、前記第1セパレータの前記突出部の突出長さを長さaとし、前記第2セパレータの前記突出部の突出長さを長さa´とし、前記第1セパレータおよび前記第2セパレータの前記突出部が対向する箇所における前記陽極箔の厚みを厚みbとした場合に、長さa+長さa´≧厚みbの関係が成立し、
     前記第1セパレータおよび前記第2セパレータの前記突出部に導電性高分子を含浸させ、水分を除去することにより、前記第1セパレータおよび前記第2セパレータの前記突出部間に、前記陰極箔同士またはセパレータと前記陰極箔とを短絡経路で接続する接着部を形成する工程と、
     前記コンデンサ素子に電解液を含浸させることで、前記接着部をなす前記導電性高分子を膨潤させ粘着性を有する湿潤状態とする工程と、を含むことを特徴とする請求項30に記載の電解コンデンサの製造方法。
  35.  前記水分を除去する際に乾燥にて行なうことを特徴とする請求項34に記載の電解コンデンサの製造方法。
  36.  前記コンデンサ素子に電解液を含浸させる際に、前記導電性高分子に前記電解液を注液して、前記接着部をなす前記導電性高分子を膨潤させ粘着性を有する湿潤状態とすることを特徴とする請求項34または請求項35に記載の電解コンデンサの製造方法。
  37.  前記導電性高分子の含浸の際に、前記導電性高分子の分散液内に、溶質を混合させて、水分を除去することにより、前記導電性高分子の分散液を前記電解液として用いて、前記コンデンサ素子に前記電解液を含浸させ、前記接着部をなす前記導電性高分子を膨潤させ粘着性を有する湿潤状態とすることを特徴とする請求項34または請求項35に記載の電解コンデンサの製造方法。
  38.  前記導電性高分子の分散液を前記電解液として用いる場合、前記コンデンサ素子にさらに電解液を注液させることを特徴とする請求項34または請求項35に記載の電解コンデンサの製造方法。
  39.  前記導電性高分子の分散液を電解液として用いる場合、前記導電性高分子の分散液の溶媒は、水および有機溶媒から選択される一種類以上の溶液を用いることを特徴とする請求項34または請求項35に記載の電解コンデンサの製造方法。
  40.  前記有機溶媒は、沸点が150℃以上のグリコール系化合物、ラクトン系化合物、及びスルホランの少なくとも1つ以上から選択され、前記有機溶媒と水の重量比が1:99~50:50であることを特徴とする請求項39に記載の電解コンデンサの製造方法。
     
PCT/JP2023/021737 2022-06-28 2023-06-12 電解コンデンサおよびその製造方法 WO2024004616A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-103605 2022-06-28
JP2022103605A JP2024004120A (ja) 2022-06-28 2022-06-28 電解コンデンサおよびその製造方法
JP2022-103606 2022-06-28
JP2022103606A JP2024004121A (ja) 2022-06-28 2022-06-28 固体電解コンデンサおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2024004616A1 true WO2024004616A1 (ja) 2024-01-04

Family

ID=89382874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021737 WO2024004616A1 (ja) 2022-06-28 2023-06-12 電解コンデンサおよびその製造方法

Country Status (1)

Country Link
WO (1) WO2024004616A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005724A (ja) * 2013-05-20 2015-01-08 日本ケミコン株式会社 固体電解コンデンサ及びその製造方法
JP2021121037A (ja) * 2015-04-28 2021-08-19 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
WO2021171611A1 (ja) * 2020-02-28 2021-09-02 サン電子工業株式会社 コンデンサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005724A (ja) * 2013-05-20 2015-01-08 日本ケミコン株式会社 固体電解コンデンサ及びその製造方法
JP2021121037A (ja) * 2015-04-28 2021-08-19 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
WO2021171611A1 (ja) * 2020-02-28 2021-09-02 サン電子工業株式会社 コンデンサ

Similar Documents

Publication Publication Date Title
US10115529B2 (en) Electrolytic capacitor having a solid electrolyte layer and manufacturing method thereof
CN108292565B (zh) 电解电容器
EP0938108B1 (en) Electrolytic capacitor and its manufacturing method
JP6060381B2 (ja) 電解コンデンサ及びその製造方法
JP5388811B2 (ja) 固体電解コンデンサおよびその製造方法
US10566142B2 (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
US10692657B2 (en) Electrolytic capacitor and method for manufacturing same
KR20100062928A (ko) 고체 전해 콘덴서의 제조 방법
US11545305B2 (en) Electrolytic capacitor and method for manufacturing same
WO2024004616A1 (ja) 電解コンデンサおよびその製造方法
US20210343482A1 (en) Electrolytic capacitor
JP7486210B2 (ja) 電解コンデンサおよびその製造方法、ならびに電解コンデンサモジュール
JP6735510B2 (ja) 電解コンデンサ
WO2021200882A1 (ja) 固体電解コンデンサ及びその製造方法
US11081287B2 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
JP2019029498A (ja) 電解コンデンサおよび電解コンデンサ用電解液
JP2024004120A (ja) 電解コンデンサおよびその製造方法
JP2017175082A (ja) 電解コンデンサおよびその製造方法
JP2024004121A (ja) 固体電解コンデンサおよびその製造方法
JP7456242B2 (ja) 固体電解コンデンサ
EP4333004A1 (en) Electrolytic capacitor, negative electrode body and method for producing electrolytic capacitor
JP3551118B2 (ja) コンデンサ及びその製造方法
JP7115618B2 (ja) 固体電解コンデンサおよび固体電解コンデンサの製造方法
EP4336527A1 (en) Electrolytic capacitor, negative electrode body, and method for manufacturing electrolytic capacitor
JP2024052275A (ja) 固体電解コンデンサ及び製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831064

Country of ref document: EP

Kind code of ref document: A1