KR102382433B1 - 리튬 이온 2차 배터리용 전극 재료 제조 방법 및 이러한 전극 재료를 사용하는 리튬 이온 배터리 - Google Patents

리튬 이온 2차 배터리용 전극 재료 제조 방법 및 이러한 전극 재료를 사용하는 리튬 이온 배터리 Download PDF

Info

Publication number
KR102382433B1
KR102382433B1 KR1020157013567A KR20157013567A KR102382433B1 KR 102382433 B1 KR102382433 B1 KR 102382433B1 KR 1020157013567 A KR1020157013567 A KR 1020157013567A KR 20157013567 A KR20157013567 A KR 20157013567A KR 102382433 B1 KR102382433 B1 KR 102382433B1
Authority
KR
South Korea
Prior art keywords
delete delete
conductive carbon
carbon
electrode material
electrode
Prior art date
Application number
KR1020157013567A
Other languages
English (en)
Other versions
KR20150086280A (ko
Inventor
뱅쌩 갸히에삐
압델바스 게르피
카즈마 하나이
삐에르 오빙똥
신지 사이토
타케히코 사와이
카즈노리 우라오
까림 자그힙
Original Assignee
하이드로-퀘벡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 하이드로-퀘벡 filed Critical 하이드로-퀘벡
Priority to KR1020227010526A priority Critical patent/KR20220046702A/ko
Publication of KR20150086280A publication Critical patent/KR20150086280A/ko
Application granted granted Critical
Publication of KR102382433B1 publication Critical patent/KR102382433B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

리튬 이온 2차 배터리용 전극 재료 제조 방법이 제공된다. 본 방법은 이하의 단계를 포함한다: (a) 도전성 탄소 재료 복합 재료(conductive carbon material-composited material)를 얻기 위해 전극 재료와 도전성 탄소 재료의 기본 요소 또는 활성 물질의 성분을 혼합하는 단계; (b) 상기 도전성 탄소 재료 복합 재료와 표면층 형성 재료를 혼합하는 단계; 및 (c) 상기 전극 재료를 얻기 위해 단계 (b)에서 얻어지는 혼합물을 소성하는 단계. 또한, 본 발명에 따른 재료를 포함하는 전극을 포함하는 래튬 이온 2차 배터리가 제공된다.

Description

리튬 이온 2차 배터리용 전극 재료 제조 방법 및 이러한 전극 재료를 사용하는 리튬 이온 배터리{METHOD OF PRODUCING ELECTRODE MATERIAL FOR LITHIUM-ION SECONDARY BATTERY AND LITHIUM-ION BATTERY USING SUCH ELECTRODE MATERIAL}
관련 출원에 대한 상호 참조
본 출원은 2012년 10월 22일자로 출원된 캐나다 출원 제2,794,290호를 우선권 주장한다. 본 출원의 발명은 그 전체가 참조로써 여기에 통합된다.
본 발명은 리튬 이온 2차 배터리용 전극 재료를 제조하는 방법에 관한 것이다. 또한, 본 발명은 본 발명의 방법에 의해 제조된 전극 재료를 포함하는 리튬 이온 2차 배터리에 관한 것이다.
높은 전류가 이를 통해 흐를 때 배터리가 충전 및 방전되는 경우 그 에너지 밀도 및 성능을 향상시키는 것이 리튬 이온 2차 배터리에 있어서 매우 바람직하다. 이러한 향상은 배터리 사이클링 특성의 최적화로 이어진다. 배터리의 사이클은 수만 만큼 증가될 수 있다. 이는 배터리가 더 긴 수명을 가질 수 있게 한다.
리튬 이온 2차 배터리의 성능을 향상시키는 것은 다양한 방식에 의해 이루어질 수 있다. 예를 들어: (a) 높은 충전 용량을 갖는 배터리가 리튬 금속 산화물로 이루어진 캐소드 재료 및 탄소로 이루어진 애노드 재료를 사용하여 얻어질 수 있다; (b) 전극 재료의 입자 크기를 감소시킴으로써, 반응 입자의 비표면적이 증가되어 배터리의 전기 저항의 감소로 이어진다; (c) 얇은 세퍼레이터를 사용하는 것이 액체 확산 저항의 감소로 이어진다.
리튬 이온 2차 배터리의 전극 재료의 입자가 작은 직경으로 설정되면, 반응 재료는 입자 간 결합을 약하게 하는 작용을 갖게 되며, 이는 리튬 이온 배터리의 전기 저항 및 수명에 영향을 갖는다. 따라서, 재료 내의 결합제의 양을 증가시키는 것이 필요해진다. 그 결과, 배터리가 높은 충전 용량을 갖게 하는 것이 곤란하다. 서로 응집된 작은 직경의 1차 입자의 응집에 의한 2차 입자 형성 및 외관상 입자 직경을 유지하면서 반응 면적을 확대시키는 것으로 이루어지는 방법이 제안되었다. 이러한 방법이 예를 들어, 일본 특허 출원 공개 제2012-79464호에 설명되어 있다.
리튬 이온 2차 배터리의 성능을 향상시키기 위한 시도에서 직면되는 다른 문제점은, 캐소드 및 애노드 재료가 이들이 증착되는 금속 호일(집전기)로부터 박리되거나 떨어질 수 있다는 것이다. 이는 배터리 내의 단락 회로로 이어진다. 이러한 환경에서, 배터리의 안전은 전압 및 열 폭주의 감소로 인해 절충된다.
열적으로 안정하고 높은 전류로 충전 및 방전될 때 리튬 이온 2차 배터리가 높은 용량을 가질 수 있게 하는 전극 재료를 개발하는 것이 매우 바람직하다. 전극의 전기 저항을 감소시키기 위한 탄소 도전 재료의 사용이 알려져 있다. 이는 예를 들어, 일본 특허 출원 공개 제2005-19399호, 일본 특허 출원 공개 제2001-126733호 및 일본 특허 출원 공개 제2003-168429호에 설명되어 있다.
최근 몇 년 동안, 캐소드의 활성 물질로서 올리빈 유형의 리튬 인산철과 같은 리튬 함유 금속 인산염 화합물의 사용이 떠오르는 주목을 끈다. 이러한 사용이 예를 들어, 일본 특허 출원 공개 제2000-509193호 및 일본 특허 출원 공개 제9-134724호에 설명되어 있다. 캐소드의 활성 물질로서의 올리빈 유형의 리튬 인산철은 배터리의 안전의 향상과 제조 비용의 감소를 허용한다. 하지만, 이 활성 물질은 높은 전기 저항을 갖는 캐소드 재료로 귀결된다고 하는 문제를 제시한다.
본 발명은 소성에 의해 탄소로 코팅된 올리빈 유형의 리튬 인산철과 도전성 탄소 재료를 합성하는 방법을 이전에 개발하였다. 본 방법은 일본 특허 출원 공개 제2011-108522호에 설명되어 있다.
하지만, 본 방법은 올리빈 유형의 리튬 인산철을 구매해야 하고 이와 함께 도전 재료를 합성해야 할 필요가 있다. 2차 소성이 올리빈 유형의 리튬 인산철과 도전 재료를 합성하기 위해 수행되어야 하므로, 이는 추가적인 처리 비용으로 이어진다. 또한, 본 방법은 도전재료가 일반적으로 올리빈 유형의 리튬 인산철과 충분하게 합성되지 않는다는 문제점을 제시한다.
안정하고 배터리가 높은 충전 용량을 가질 수 있게 하는 전극 재료의 제조에 대한 향상된 방법에 대한 필요성이 여전히 존재한다.
일본 공개특허공보 제2012-79464호 (2012.04.19) 일본 공개특허공보 제2005-19399호 (2005.01.20) 일본 공개특허공보 제2001-126733호 (2001.05.11) 일본 공개특허공보 제2003-168429호 (2003.06.13) 일본 공개특허공보 제2000-509193호 (2000.07.18) 일본 공개특허공보 제9-134724호 (1997.05.20) 일본 공개특허공보 제2011-108522호 (2011.06.02)
본 발명자들은 성분의 구성이 제어되는 전극 재료를 제조하는 방법을 설계하였다. 본 방법은 비용 효율적이고 낮은 전기 저항을 갖는 전극 재료의 제조를 가능하게 한다. 전극 재료는 캐소드재료 또는 애노드 재료로서 사용될 수 있다. 본 발명에 따른 재료를 포함하는 캐소드 또는 애노드를 사용하는 리튬 이온 2차 배터리는 높은 충전 용량 및 양호한 사이클링 특성을 제시한다.
따라서, 본 발명은 그 양태에 따라 이하를 제공한다:
1. 리튬 이온 2차 배터리용 전극 재료 제조 방법으로서,
(a) 도전성 탄소 재료 복합 재료(conductive carbon material-composited material)를 얻기 위해 전극 재료와 도전성 탄소 재료의 기본 요소 또는 활성 물질의 성분들을 혼합하는 단계;
(b) 상기 도전성 탄소 재료 복합 재료와 표면층 형성 재료를 혼합하는 단계; 및
(c) 상기 전극 재료를 얻기 위해 단계 (b)에서 얻어지는 혼합물을 소성하는 단계를 포함하는, 전극 재료 제조 방법.
2. 1에 있어서,
수열 반응(hydrothermal reaction)이 단계 (a) 중에 발생하는, 전극 재료 제조 방법.
3. 2에 있어서,
상기 수열 반응은 대략 24시간 미만의 시간, 바람직하게는 대략 3 내지 5시간 동안, 대략 100 내지 350℃, 바람직하게는 대략 180 내지 220℃의 온도에서 수행되는, 전극 재료 제조 방법.
4. 1에 있어서,
고체상 반응이 단계 (a) 중에 발생하는, 전극 재료 제조 방법.
5. 1에 있어서,
단계 (b)는 상기 도전성 탄소 재료 복합 재료를 상기 표면층 형성 재료를 함유하는 수용액에 침지시키는 단계, 및 건조에 의해 물을 제거하는 단계를 포함하는, 전극 재료 제조 방법.
6. 1에 있어서,
단계 (c)는 대략 3 내지 12시간 동안, 바람직하게는 3 내지 5시간 동안, 상기 탄소 재료 복합 재료가 분해되는 온도보다 낮고 상기 표면층 형성 재료가 상기 도전성 재료의 탄소 원자들과 활성화된 공유 결합들을 형성하는 온도보다 높은 온도에서, 비활성 대기 하에서 수행되는, 전극 재료 제조 방법.
7. 6에 있어서,
단계 (c)에서의 상기 온도는 대략 500 내지 800℃, 바람직하게는 대략 650 내지 750℃인, 전극 재료 제조 방법.
8. 6에 있어서,
상기 비활성 대기는 아르곤 또는 질소 대기인, 전극 재료 제조 방법.
9. 1에 있어서,
전극 재료의 기본 요소 또는 활성 물질의 상기 성분들은 리튬 함유 화합물, 인 함유 화합물 및 전이 금속 함유 화합물인, 전극 재료 제조 방법.
10. 9에 있어서,
전극 재료의 상기 기본 요소 또는 활성 물질은 LiFePO4, LiCoPO4 또는 LiMnPO4와 같은 올리빈 유형의 리튬 함유 전이 금속 인산염 화합물인, 전극 재료 제조 방법.
11. 9에 있어서,
전극 재료의 상기 기본 요소 또는 활성 물질은 LiFePO4인, 전극 재료 제조 방법.
12. 1에 있어서,
상기 도전성 탄소 재료는 카본 블랙, 탄소 섬유 재료의 적어도 하나의 유형 또는 그 조합인, 전극 재료 제조 방법.
13. 12에 있어서,
상기 탄소 섬유 재료의 유형들은 다른 크기들을 갖는, 전극 재료 제조 방법.
14. 12에 있어서,
섬유 재료의 두 개의 유형들이 사용되고, 제1 유형은 대략 1000 내지 3000nm, 바람직하게는 대략 3000nm의 길이와 대략 5 내지 15nm, 바람직하게는 대략 10nm의 직경을 갖고, 제2 유형은 대략 5000 내지 10000nm, 바람직하게는 대략 5000nm의 길이와 대략 70 내지 150nm, 바람직하게는 대략 100nm의 직경을 갖는, 전극 재료 제조 방법.
15. 12에 있어서,
카본 블랙/탄소 섬유 재료의 질량비는 대략 1-8/1-3인, 전극 재료 제조 방법.
16. 1에 있어서,
상기 표면층 형성 재료는 유기 물질인, 전극 재료 제조 방법.
17. 16에 있어서,
상기 유기 물질은 당(sugar), 바람직하게는 다당류 및 락토스인, 전극 재료 제조 방법.
18. 1에 있어서,
상기 전극 재료는 캐소드 재료인, 전극 재료 제조 방법.
19. 18에 있어서,
상기 캐소드 재료 내의 탄소 재료의 전체 함량은 대략 2질량% 초과이고, 바람직하게는 대략 5와 15질량% 사이인, 전극 재료 제조 방법.
20. 1에 있어서,
상기 전극 재료는 애노드 재료인, 전극 재료 제조 방법.
21. 20에 있어서,
상기 애노드 재료 내의 탄소 재료의 전체 함량은 대략 1질량% 초과이고, 바람직하게는 대략 2와 5질량% 사이인, 전극 재료 제조 방법.
22. 20에 있어서,
탄소 재료의 코팅층이 상기 기본 요소 또는 활성 물질 상에 형성되고, 상기 층의 두께는 대략 1 내지 10nm, 바람직하게는 대략 2 내지 5nm인, 전극 재료 제조 방법.
23. 20에 있어서,
상기 애노드 재료는 티타늄을 함유하는, 전극 재료 제조 방법.
24. 청구항 1 내지 청구항 23 중 어느 한 항에 따른 방법에 의해 얻어지는 리튬 이온 2차 배터리용 전극 재료.
25. 리튬 이온 2차 배터리용 전극 재료로서,
전극 재료의 기본 요소 또는 활성 물질과 탄소 재료의 적어도 두 개의 유형들을 포함하고,
탄소 재료의 제1 유형은 도전성 탄소 재료이고, 탄소 재료의 제2 유형은 상기 기본 요소의 표면 상에 코팅으로서 제공되는, 전극 재료.
26. 25에 있어서,
상기 도전성 탄소 재료는 카본 블랙, 탄소 섬유 블랙의 적어도 하나의 유형 또는 그 조합인, 전극 재료.
27. 25에 있어서,
탄소 섬유 재료의 상기 유형들은 상이한 크기들을 갖는, 2차 배터리용 전극 재료.
28. 25에 있어서,
섬유 재료가 두 개의 유형들이고, 제1 유형은 대략 1000 내지 3000nm, 바람직하게는 대략 3000nm의 길이와 대략 5 내지 15nm, 바람직하게는 대략 10nm의 직경을 갖고, 제2 유형은 대략 5000 내지 10000nm, 바람직하게는 대략 5000nm의 길이와 대략 70 내지 150nm, 바람직하게는 대략 100nm의 직경을 갖는, 2차 배터리용 전극 재료.
29. 25에 있어서,
전극 재료의 상기 기본 요소 또는 활성 물질은 LiFePO4, LiCoPO4 또는 LiMnPO4와 같은 올리빈 유형의 리튬 함유 전이 금속 인산염 화합물인, 2차 배터리용 전극 재료.
30. 25에 있어서,
전극 재료의 상기 기본 요소 또는 활성 물질은 LiFePO4인, 2차 배터리용 전극 재료.
31. 청구항 1 내지 청구항 23 중 어느 한 항에 따른 방법에 의해 얻어지는 재료를 포함하는, 전극.
32. 리튬 이온 2차 배터리로서,
캐소드 및/또는 애노드가 청구항 1 내지 청구항 23 중 어느 한 항에 따른 방법에 의해 얻어지는 전극 재료를 포함하는, 리튬 이온 2차 배터리.
33. 리튬 이온 2차 배터리로서,
청구항 1 내지 청구항 23 중 어느 한 항에 따른 재료를 포함하는 전극을 포함하는, 리튬 이온 2차 배터리.
도 1은 리튬 이온 2차 배터리에 대한 캐소드 재료의 패턴 다이어그램이다.
도 2는 주사형 및 투과형 전자 현미경에 의해 촬영된 캐소드 재료의 표면의 사진을 나타낸다.
도 3은 투과형 전자 현미경에 의해 촬영된 리튬 함유 금속 인산염의 사진을 나타낸다.
본 명세서에서 사용되는 명료하고 일관된 이해를 제공하기 위하여, 다수의 규정이 이하와 같이 제공된다. 또한, 달리 규정되지 않으면, 여기에 사용되는 모든 기술적 및 과학적 용어는 본 발명이 속하는 기술분야의 당업자에게 통상적으로 이해되는 것과 동일한 의미를 갖는다.
여기에서 사용되는, 청구항 및/또는 명세서에서 "포함하는"이라는 용어와 함께 사용될 때의 "어느(a)" 또는 "어떤(an)" 이라는 단어는 "하나"를 의미할 수 있지만, "하나 이상", "적어도 하나" 및 "하나 또는 하나보다 많은"의 의미와 또한 일치한다.
여기에서 사용되는 "포함하는"("포함한다(comprise)" 및 "포함한다(comprises)"와 같은 임의의 형태의 포함의 포함하는), "갖는"("갖는다(have)" 및 "갖는다(has)"와 같은 임의의 형태의 갖는), "포괄하는"("포괄한다(include)" 및 "포괄한다(includes)"와 같은 임의의 형태의 포괄하는) 또는 "내포하는"("내포하다(contain)" 및 "내포하다(contains)"와 같은 임의의 형태의 내포하는)은 포괄적이거나 개방형이고 추가적인 열거되지 않은 요소 또는 프로세스 스텝을 배제하지 않는다.
여기에 사용되는 "대략"이라는 용어는 값을 결정하기 위해 채용되고 있는 디바이스 또는 방법에 대한 에러의 본질적인 편차를 포함하는 값을 나타내는 데 사용된다.
여기에 사용되는 "그래핀 상"이라는 용어는 sp2 연결 탄소 원자의 보통의 6원자 고리의 하나의 층을 의미한다.
여기에 사용되는 "비정질 층"이라는 용어는 3차원 6원자 고리 구조를 의미한다.
여기에 사용되는 "탄소 원자가 활성화된 공유 결합을 형성한다"라는 문구는 그래핀 상 및/또는 비정질 상의 교란에 의해 야기되는 탄소 원자 사이의 결합으로 인해 전자 도전이 이루어진다는 것을 의미한다.
발명자들은 리튬 이온 배터리에 대한 전극 재료를 제조하기 위한 방법을 설계하였으며, 전극 재료의 기본 요소의 성분은 도전성 탄소 재료 증착 재료를 얻기 위해 도전성 탄소와 혼합되며, 그 후 표면층 형성 또는 코팅 재료와 혼합된다. 혼합물은 캐소드 재료 또는 애노드 재료 중 어느 하나로서 사용될 수 있는 전극 재료를 얻기 위하여 추가적으로 소성된다.
도면으로 가서, 리튬 이온 2차 배터리에 대한 전극 재료(1)가 도 1에 나타내어진다. 재료(1)는 올리빈 유형의 리튬 함유 전이 금속 인산염 화합물(2)일 수 있는 활성 물질(전극 재료의 기본 요소)을 포함한다. 또한, 물질은 그래핀 상일 수 있는 탄소 재료(3) 및 도전성 카본 블랙(4)을 포함한다. 재료는 도전성 탄소 섬유 재료 함유 재료(5)를 더 포함한다. 탄소 재료(3)는 도전성 탄소 섬유 재료 함유 재료(5)의 구조에 대한 코팅을 형성한다. 리튬 함유 전이 금속 인산염 화합물(2)은 도전성 카본 블랙(4) 및 도전성 탄소 섬유 재료 함유 재료(5)와 합성된다.
본 발명의 실시예에서, 탄소 섬유 재료 함유 재료(5)는 상이한 크기의 탄소 섬유 재료(5a 및 5b)의 혼합물이다. 도 1에 나타낸 바와 같이, 각각의 탄소 섬유 재료(5a)는 작은 직경과 짧은 길이를 가지며, 각각의 탄소 섬유 재료(5b)는 큰 직경과 긴 길이를 갖는다. 탄소 섬유 재료(5a)는 리튬 함유 금속 인산염 화합물(2)의 표면 부근에 배치되며, 화합물(2)의 부분들 사이의 결합에 기여하고 탄소 섬유 재료(5b)는 화합물(2) 사이의 결합에 기여한다.
본 발명의 실시예에서, 캐소드 재료는 리튬 함유 금속 화합물이다.
리튬 함유 금속으로서, LiMO2(M: Co, Mn, Ni 및 Al 중 적어도 하나의 원소)로 나타내어진 리튬 함유 금속 산화물, Li2MnO3·LiMO2(M: Co, Ni, Mn 중 적어도 하나의 원소)로 나타내어진 고용체 리튬 함유 금속 산화물, LiMPO4(M: Fe, Co 및 Mn 중 적어도 하나의 원소)로 나타내어진 리튬 함유 금속 인산염 화합물 및 LiMSiO4(M: Fe, Co 및 Mn 중 적어도 하나의 원소)로 나타내어진 리튬 함유 금속 규산염 화합물이 있다. 황 화합물도 캐소드 재료로서 사용될 수 있다.
리튬 함유 금속 화합물의 예는, LiFePO4, LiCoPO4, 및 LiMnPO4를 포함한다.
본 발명의 실시예에서, 캐소드 재료의 활성 물질은 올리빈 유형의 리튬 함유 전이 금속 인산염 화합물이다. 예를 들어, LiFePO4로 나타내어진 올리빈 유형의 리튬 철 인산염은 그 전기 화학적 특성, 안전 및 비용에서 효과적이다.
본 발명의 실시예에서, 애노드 재료는 인공 또는 자연 그래파이트, 금속 실리콘 또는 실리콘 산화물을 함유하는 재료 및 티타늄을 함유하는 리튬 티탄산염과 같은 재료를 포함할 수 있다. 표면층에 탄소 도전성 재료를 첨가하는 방법으로서 애노드 재료의 표면층 상에 탄소 재료의 층을 형성하는 것이 효과적이다. 탄소 도전성 재료는 배터리의 충전 및 방전 특성과 그 내구성을 향상시킨다.
본 발명의 실시예에서, 캐소드 재료 및 애노드 재료의 입자의 평균 직경은 대략 50과 30000nm 사이이다. 캐소드 재료의 입자 직경의 평균이 대략 50nm 미만이면, 비정질 상이 생성되어 도전성 재료로 캐소드 재료를 합성하는 것을 곤란하게 한다. 애노드 재료의 입자의 평균 직경이 대략 30000nm의 값을 초과하면, 입자 사이의 접점의 수가 적게 되어, 전극 재료에 대한 도전성 재료의 첨가를 비효과적으로 만든다. 바람직한 실시예에서, 캐소드 재료의 입자의 평균 직경은 대략 50과 20000nm 사이이며, 애노드 재료의 입자 직경의 평균은 대략 4000과 30000nm 사이이다.
상술한 전극 재료의 각각의 표면은 탄소 재료의 층으로 코팅된다. 그래핀 상 및 비정질 상에서 선택된 적어도 하나의 상이 탄소 재료의 층의 표면 상에 형성된다.
표면층을 형성하거나 탄소 재료를 코팅하는 다양한 방법이 있다. 박막을 형성하는 (a) 내지 (d)의 이하의 방법이 알려져 있다: (a) 표면층 형성 재료로서 유기 물질 함유 용액을 사용하여 전극의 입자의 표면을 개질한 후 환원성 대기에서 표면층 형성 재료를 열적으로 분해, (b) 슬러리 용액을 형성하기 위해 용매에 아세틸렌 블랙, Ketchen Black 또는 그래파이트 결정과 같은 도전성 카본 블랙을 분산하고, 슬러리 용액에 전극 재료의 입자를 분산한 후 용매를 건조 및 제거; (c) 이온 증착법; 및 (d) 화학 증착법(CVD) 및/또는 물리 증착법(PVD).
본 발명의 실시예에서, 제조 방법은 상술한 방법 (a)에 관한 것이다. 후술하는 바와 같이, 표면층은, 전극 재료의 성분이 전극 재료로 합성될 때와 동시에 형성된다.
본 발명에서, "그래핀 상"이라는 용어는 sp2 연결 탄소 원자의 보통의 6원자 고리의 한 층을 의미한다. "비정질 층"이라는 용어는 3차원 6원자 고리 구조를 의미한다. "탄소 원자가 활성화된 공유 결합을 형성한다"라는 구문은 그래핀 상 및/또는 비정질 상의 교란에 의해 야기되는 탄소 원자 사이의 결합에 의해 전기적 도전이 이루어진다는 것을 의미한다.
전극 재료의 기본 요소의 표면을 코팅하는 탄소 재료는 전극 재료의 각각의 기본 요소의 표면에 밀접하게 접촉한다. 그래핀 상 및 비정질 상에서 선택된 적어도 하나의 상이 탄소 재료의 표면 상에 형성된다.
본 발명의 실시예에서, 탄소 재료의 코팅층의 두께는 대략 1과 10nm 사이이다. 코팅층의 두께가 대략 1nm 미만이면, 탄소 원자의 결합에 의해 수행되는 전기적 도전을 달성하기 곤란하다. 코팅층의 두께가 대략 10nm 초과이면, 배터리의 반응을 담당하는 활성 물질의 표면에 대한 리튬 이온의 확산 성능이 낮게 된다. 따라서, 배터리의 출력 성능이 악화된다. 바람직한 실시예에서, 코팅층의 두께는 대략 2와 5nm 사이이다.
본 발명의 실시예에서, 도전성 재료는 카본 블랙 및/또는 탄소 섬유 재료이다. 아세틸렌 블랙, Ketchen 블랙 및 퍼니스 블랙과 같은 도전성 카본 블랙이 사용될 수 있다. 도전성 카본 블랙의 비표면적은 대략 20과 400m2/g 사이이다.
본 발명에서 사용될 수 있는 탄소 섬유 재료는 탄소 나노튜브 및 탄소 나노섬유 중 선택된 적어도 하나이다. "탄소 나노튜브"라는 용어는 단일벽 고리로 이루어지는 튜브를 의미한다. "탄소 나노섬유"라는 용어는 다중벽 고리로 이루어지는 튜브를 의미한다.
본 발명의 실시예에서, 탄소 나노튜브 및 탄소 나노섬유로 이루어지는 탄소 섬유 재료가 사용될 수 있다. 바람직한 실시예에서, 섬유 직경 및 섬유 길이가 상이한 적어도 2개 종류의 탄소 섬유 재료가 사용된다. 즉, (a) 섬유 직경 및 섬유 길이 양쪽이 상이한 탄소 섬유 재료, (b) 그 섬유 직경이 동등하고 섬유 길이가 상이한 탄소 섬유 재료, 및 (c) 섬유 직경이 상이하고 섬유 길이가 동등한 탄소 섬유 재료를 사용하는 것이 가능하다. 또한, 더욱 바람직한 실시예에서, 작은 섬유 직경과 짧은 섬유 길이를 갖는 탄소 섬유 재료와 큰 섬유 직경과 긴 섬유 길이를 갖는 탄소 섬유 재료가 조합하여 사용된다.
본 발명의 실시예에서, 탄소 섬유 재료의 직경은 대략 10과 100nm 사이이다. 바람직한 실시예에서, 섬유 길이는 대략 100과 10000nm 사이이다. 그 직경이 대략 10nm 미만인 탄소 섬유 재료의 분산 제조를 수행하는 것이 곤란하다. 그 직경이 대략 100nm를 초과하는 탄소 섬유 재료는 적은 개수의 점에서 전극 재료와 접촉하므로 낮은 효과를 갖는다. 대략 100nm 미만의 섬유 길이를 갖는 탄소 섬유 재료가 사용되는 경우, 탄소 섬유 재료를 분산 제조하는 것이 곤란하고, 또한 탄소 섬유 재료는 더 적은 수의 점에서 전극 재료와 접촉한다. 대략 10000nm를 초과하는 섬유 길이를 갖는 탄소 섬유 재료는 많은 분산 시간에서 끊어지며, 이들 중 원래 섬유 길이를 유지하는 것은 거의 없다. 바람직한 실시예에서, 대략 10000nm 미만의 섬유 길이를 갖는 탄소 섬유 재료가 본 발명에서 사용된다.
복수의 탄소 섬유 재료가 사용되는 경우, 한 유형의 탄소 섬유 재료의 직경은 대략 5와 15nm 사이이고, 다른 유형의 직경은 대략 70과 150nm 사이이다. 바람직한 실시예에서, 한 유형의 섬유 재료의 직경은 대략 10nm이고, 다른 유형의 직경은 대략 100nm이다.
대략 5와 15nm 사이의 직경을 갖는 탄소 섬유 재료의 섬유 길이는 대략 1000과 3000nm 사이이며, 바람직하게는 대략 3000nm이다. 대략 70과 150nm 사이의 직경을 갖는 탄소 섬유 재료의 섬유 길이는 대략 5000 내지 10000nm의 범위에 있으며, 바람직하게는 대략 5000nm이다.
캐소드 재료의 경우에, 캐소드 재료, 카본 블랙, 탄소 섬유 재료 및 탄소 섬유 재료의 표면을 코팅하는 탄소 재료의 층의 전체 함량은 대략 2질량% 이상인 것이 바람직하고, 바람직하게는 대략 5 내지 15질량%의 범위에 있다.
바람직한 실시예에서, 카본 블랙과 탄소 섬유 재료 사이의 혼합비는 이하와 같다: 질량비로 카본 블랙/탄소 섬유 재료 = (대략 2 내지 8)/(대략 1 내지 3). 애노드 재료의 경우에, 탄소 재료의 전체 함량은 대략 1질량% 이상이고, 바람직하게는 대략 2와 5질량% 사이에 있다.
상술한 재료를 사용하여 본 발명의 리튬 이온 2차 배터리를 위한 전극 재료의 기본 요소를 제조하는 방법을 후술한다. 올리빈 유형의 리튬 철 인산염으로 이루어지는 캐소드 재료를 제조하는 방법을 이하 상세히 설명한다. 올리빈 유형의 리튬 철 인산염으로 이루어지는 본 발명의 캐소드 재료는 이하의 스텝을 통해 합성된다.
리튬 함유 화합물, 인 함유 화합물 및 전이 금속 함유 화합물을 함유하는 수용액에 상술한 도전성 재료를 첨가하고 이들을 서로 수열 반응할 수 있게 하여 도전성 재료 복합 재료를 합성하는 제1 스텝:
양쪽 모두 올리빈 유형의 리튬 철 인산염의 재료인 리튬 수산화물 및 시트르산이 첨가되는 철 황산염의 수용액 및 인산 수용액이 제조된다. 물 또는 에탄올 내에 분산된 탄소 섬유 재료 및 카본 블랙이 상술한 성분의 혼합 용액에 첨가되어, 올리빈 유형의 리튬 철 인산염, 도전성 카본 블랙 및 도전성 탄소 섬유 재료를 함유하는 도전성 재료 복합 재료로 이들을 수열 합성한다.
바람직한 실시예에서, 수열 반응은 대략 24시간 이하의 시간, 바람직하게는 3 내지 5시간 동안, 대략 100 내지 350℃, 바람직하게는 180 내지 220℃의 온도에서의 폐쇄 대기에서 수행된다.
도전성 복합 재료를 제조하는 스텝은 고체상 반응 또는 임의의 적절한 반응에 의해 수행될 수 있다. 고체상 반응에서, 도전성 재료, 리튬 함유 화합물, 인 함유 화합물 및 전이 금속 함유 화합물이 서로 반응할 수 있게 된다. 당업자에게 이해될 바와 같이, 이러한 고체상 반응의 반응 조건은 어플리케이션에 따라 변할 수 있다.
혼합물을 형성하기 위해 도전성 재료 복합 재료 및 표면층 형성 재료를 혼합하는 것으로 이루어지는 제2 스텝이 수행된다.
본 발명에서 사용될 수 있는 표면층 형성 재료로서, 도전성 재료의 탄소 원자와 결합하여 활성화된 공유 결합을 형성할 수 있는 임의의 탄소원 재료를 사용하는 것이 가능하다. 본 발명의 실시예에서, 당이 표면층 형성 재료로서 사용된다. 이러한 당은 다당류 및 락토스를 포함한다.
도전성 재료 복합 재료를 락토스의 수용액에 침지한 후 물을 건조 및 제거함으로써, 그 표면이 탄소원 재료로 코팅된 도전성 재료 복합 재료가 얻어진다.
그 표면이 탄소원 재료로 코팅된 도전성 재료 복합 재료를 소성하는 제3 스텝이 수행된다.
도전성 재료 복합 재료는 도전성 재료 복합 재료가 열적으로 분해되는 온도 이하와 표면층 형성 재료가 도전성 재료의 탄소 원자와 결합하여 활성화된 공유 결합을 형성하는 온도 이상의 온도에서 비활성 대기에서 소성된다. 도전성 재료 복합 재료를 상술한 조건에서 소성함으로써, 표면층 형성 재료가 열적으로 분해된다. 이에 의해 그 표면이 그래핀 상 및 비정질 상 중에서 선택된 적어도 하나의 상을 갖는 표면층으로 코팅된 복합 캐소드 재료가 얻어진다. 바람직한 실시예에서, 올리빈 유형의 리튬 철 인산염으로 이루어진 도전성 재료 복합 재료는 대략 2 내지 12시간, 바람직하게는 3 내지 5시간의 기간 동안, 대략 500 내지 800℃, 바람직하게는 대략 650 내지 750℃의 소성 온도에서 질소 대기에서 소성된다.
올리빈 유형의 리튬 철 인산염으로 이루어지는 캐소드 재료를 제조하는 방법을 상술하였다. 하지만, 캐소드 재료 합성 스텝에서 캐소드 재료에 용액 상태를 갖는 도전성 탄소 섬유 재료와 카본 블랙을 첨가한 후 표면층 형성 재료와 상술한 성분을 혼합한 후 상술한 성분들을 서로 합성하기 위해 1회 소성을 수행함으로써 다른 리튬 함유 금속 화합물로 이루어지는 캐소드 재료를 제조하는 것이 가능하다.
애노드 재료의 경우, 그래파이트 등으로 이루어지는 애노드 재료에 용액 상태를 갖는 도전성 탄소 섬유 재료와 카본 블랙을 첨가한 후, 표면층 형성 재료의 수용액에 상술한 성분의 혼합물을 침지시킨 후 혼합물을 건조 및 소성함으로써 그래파이트의 표면상의 도전성 탄소 재료와 합성된 탄소 재료의 층을 생성하는 것이 가능하다.
통상적으로, 리튬 이온 배터리는, 전해질이 캐소드 판과 애노드 판 사이에 개재된 세퍼레이트로 서로의 위에 감기거나 층화된 전극의 그룹으로 침투되거나, 전극의 그룹이 리튬 이온을 반복적으로 흡수 및 방출하기 위해 전해질에 침지되는 구조를 갖는다.
캐소드 및 애노드 판은 캐소드 재료 및 결합제를 함유하는 페이스트와 애노드 재료 및 결합제를 함유하는 페이스트를 각각의 집전 호일에 바름으로써 형성된다.
본 발명의 실시예에서, 폴리비닐리덴 플루오리드(PVDF), 카르복시메틸셀룰로오스(CMC), 스티렌 부타디엔 공중합체(SBR), 폴리비닐 알콜(PVA), 폴리아크릴릭 에멀젼 및 실리콘 에멀젼과 같은 결합제가 사용된다.
결합제의 결합 특성 및 활성 물질의 도전 특성을 고려하면, 결합제의 양은 활성 물질 또는 기본 요소의 대략 100질량부에 대해 대략 0.5 내지 10질량부이다.
본 발명의 실시예에서, 결합제로서 수용 또는 수화 수지의 수분산 또는 수용액을 사용하여 전극 페이스트를 형성함에 있어서, 혼합 시간에 결합제에 분산제 및/또는 표면 활성제가 첨가된다. 셀룰로오스 유도체와 같은 분산제가 사용될 수 있다. 셀룰로오스 유도체는 카르복시메틸셀룰로오스(CMC)일 수 있다. 피롤리돈 유도체도 사용될 수 있다.
리튬 이온 배터리에 사용될 수 있는 세퍼레이터는 캐소드 및 애노드를 서로 전기적으로 절연함으로써 전해질을 보유한다.
세퍼레이터는 합성 수지막 또는 섬유 직포 및 부직포로 이루어진다. 폴리에틸렌, 폴리프로필렌 등과 같은 올레핀 수지의 막, 상술한 막을 코팅하는 세라믹 입자를 갖는 막, 셀룰로오스 섬유의 직포 및 부직포, 폴리이미드 섬유, 폴리아미드 섬유 및 유리 섬유의 단일층 또는 이중층을 사용하는 것이 가능하다.
전극의 그룹이 침지되는 리튬 이온 배터리의 전해질로서, 리튬염, 이온 도전성 중합체 및 이온성 액체를 함유하는 비수성 전해질이 사용된다.
리튬염을 함유하는 비수성 전해질 내의 비수성 용매로서, 에틸렌 탄산염(EC), 프로필렌 탄산염(PC), 디에틸 탄산염(DEC), 디메틸 탄산염(DMC), 메틸 에틸 탄산염(MEC), 유기 다이니트릴, 유기 설폰, 플루오르화 탄산염 에스테르, 붕산염 에스테르, 및 이러한 물질의 에스테르 유도체가 열거된다. 비수성 용매에 용해될 수 있는 리튬염으로서, 리튬 헥사플루오르포스페이트(LiPF6), 리튬 붕소 테트라플루오라이드(LiBF4), 리튬 트리플루오로메탄설포네이트(LiSO3CF4)가 열거된다.
리튬 이온 2차 배터리용 캐소드 및 애노드 재료는 집전기로서 각각 역할을 하는 캐소드 판의 표면 및 애노드 판의 표면 상에 캐소드 및 애노드 재료를 층화함으로써 형성된다. 금속 박막이 캐소드 판으로서 예시될 수 있다. 알루미늄 호일이 캐소드의 집전기로서 예시될 수 있다. 구리 호일 및 알루미늄 호일이 애노드의 집전기로서 예시될 수 있다.
예들
본 발명의 캐소드 재료의 합성을 실시예 및 비교예의 방식으로 상세하게 후술한다. 예를 들어, 올리빈 유형의 리튬 철 인산염으로 이루어진 캐소드 재료의 합성을 상세하게 후술한다. 올리빈 유형의 리튬 철 인산염으로 이루어진 캐소드 재료를 사용하는 리튬 이온 2차 배터리에 대해 상세하게 후술한다. 하지만 본 발명은 후술하는 실시예에 한정되지 않는다.
도전성 탄소 재료와 합성되는 올리빈 유형의 리튬 철 인산염으로 이루어지는 캐소드 재료의 합성
아르곤 또는 질소와 같은 비활성 가스의 대기에서, 용해된 산소 및 잔류 이온이 미리 제거된 증류수를 사용하여, 올리빈 유형의 리튬 철 인산염의 재료인 리튬 수산화물 및 시트르산이 첨가되는 철 황산염의 0.4M 수용액 및 인산의 0.4M 수용액이 제조되었다. 혼합 용액의 전체량에 함유된 리튬, 철 및 인 사이의 몰비가 3, 1, 1이도록 상술한 성분이 서로 혼합된 후에, 혼합 용액의 pH가 적절한 암모니아수를 사용하여 8.5 내지 8.8로 조정되어 현탁액을 제조한다.
물 내의 5질량%로 분산된 탄소 섬유 재료(직경: 15nm, 섬유 길이: 10000nm) 및 카본 블랙(구체적인 표면적: 40m2/g)이 현탁액에 첨가되어 슬러리 혼합 용액을 제조한다. 혼합 용액은 수열 합성 반응을 수행하도록 전용화된 챔버로 공급되어, 2시간 동안 200℃로 가열되어 수열 반응을 수행하였다. 이와 같이 도전성 탄소 재료와 도전성 탄소 섬유 재료로 합성된 올리빈 유형의 리튬 철 인산염으로 이루어진 도전성 탄소 재료 복합 재료가 합성되었다.
얻어진 복합 재료가 여과되고, 세정되고 건조된 후에, 미리 10wt%로 조정된 락토스 수용액이, 락토스가 복합 재료의 올리빈 유형의 리튬 철 인산염에 대해 10wt%이도록 도전성 탄소 재료 복합 재료에 첨가되었다. 건조된 도전성 탄소 재료 복합 재료가 700℃에서 질소 대기에서 열 분해되어, 도전성 탄소 재료 복합 재료의 표면이 그래핀 상 및 비정질 상 중에서 선택된 적어도 하나의 상으로 코팅된 캐소드 재료를 얻었다.
X선 회절 패턴에 의해 수행된 식별에 따르면, 얻어진 캐소드 재료에서 부산물이 발견되지 않았지만, 얻어진 캐소드 재료는 보통의 수열 합성법에 의해 얻어지는 올리빈 유형의 리튬 철 인산염의 상태와 유사한 결정 상태인 것이 확인되었다.
광 산란법에 의해 측정된 캐소드 재료의 입자 직경의 평균은 6000nm였다. 전자 현미경 사진에 의해 측정된 표면 코팅층의 두께는 3nm였다. 카본 블랙, 탄소 섬유 재료, 탄소 섬유 재료의 표면을 코팅하는 탄소 재료의 층의 탄소 재료의 전체 함량은 10중량%였다.
도 2는 본 발명의 제조 방법을 사용하여 합성된 캐소드 재료의 전자 현미경 사진을 나타낸다.
2차 전자 이미지(SE)는, 올리빈 유형의 리튬 철 인산염(2)이 도전성 카본 블랙(4)과 도전성 탄소 섬유 재료(5)와 합성되는 것을 나타낸다. 명시야 이미지(TE: 투과 전자)는, 올리빈 유형의 리튬 철 인산염(2)이 그래핀 상과 같은 탄소 재료(3)로 코팅되는 것을 나타낸다.
이에 의해 전자가 올리빈 유형의 리튬 철 인산염, 도전성 카본 블랙 및 도전성 탄소 섬유 재료 중에서 이들 사이의 물리적 접촉뿐만 아니라 탄소 원자 사이의 결합에 의해서도 도전된다. 따라서, 리튬 이온 배터리가 낮은 전기 저항을 얻는 것이 가능하다. 따라서, 리튬 이온 2차 배터리는 높은 전류로 충전 및 방전될 때 높은 용량을 가질 수 있고 이러한 성능을 오랫동안 유지할 수 있다. 즉, 배터리는 긴 수명을 얻는다.
도 3은 본 발명의 제조 방법에 의해 합성된 올리빈 유형의 리튬 철 인산염으로 이루어지는 캐소드 재료의 구성의 전자 현미경 사진을 나타낸다.
2차 전자 이미지(SE)는, 입자의 표면이 눌러지는 것을 나타낸다. 암시야 이미지(DF)는 미세공이 올리빈 유형의 리튬 철 인산염 내에 존재한다는 것을 나타낸다.
수열 합성 방법에 의해 제조된 올리빈 유형의 리튬 철 인산염의 입자는 합성 조건에 따라 구형, 막대형, 타원형 등을 취한다. 임의의 형태에서, 상술한 구성 중 임의의 것의 올리빈 유형의 리튬 철 인산염의 표면은 비교적 평평한 구성을 갖고, 서로 접촉하지 않으며, 즉 서로 독립적이었다. 2차 입자가 물의 존재에 의해 야기된 입자의 응집으로 인해 형성되었다. 반응 면적을 증가시키기 위해, 지금까지 활성 물질의 입자의 크기가 감소되고 그 표면이 평면화되고 평활화되었다. 그 결과, 통상적인 입자는 높은 정도의 독립성을 갖고 낮은 정도의 결합 성능을 갖는다는 문제점을 갖는다.
한편, 본 발명의 제조 방법에 의해 합성된 올리빈 유형의 리튬 철 인산염은 미세공 및 들어간 표면을 갖는 입자 표면을 가졌다.
이 경우에, 입자들 간 접점이 증가한다. 따라서, 전극 재료와 도전성 재료를 합성하는 기술은 입자의 비표면적을 증가시키고 그 독립성의 정도를 유지하여 수열 합성법을 사용하여 수행되는 합성으로 접점의 수를 감소시키는 종래의 문제점을 극복할 수 있다.
캐소드의 제조
다양한 종류의 올리빈-유형의 리튬 철 인산염이 사용되었고 결합제로서 N-메틸-2-피롤리돈(NMP)에 용해된 폴리피닐리덴 플루오리드(PVDF)가 사용된 캐소드 재료가 혼련되어 캐소드 혼합제(슬러리)를 얻었다.
각각 캐소드를 구성하는 재료 사이의 고형분 비율로서, PVDF에 대한 전극 재료의 기본 요소의 비율은 94:6질량%로 설정되었다. 캐소드 혼합제(슬러리)가 20㎛의 두께를 갖는 알루미늄 호일에 140g/m2의 양으로 도포되어 건조되었다. 그 후 슬러리 도포된 알루미늄 호일이 가압되고 알루미늄 이온 2차 배터리용 캐소드를 얻기 위해 절단되었다.
예 1에서, 합성 및 소성 스텝에서, 올리빈 유형의 철 인산염 및 도전성 재료가 서로 합성되었다. 비교예에서, 합성 시간에 합성 처리를 거치지 않은 올리빈 유형의 리튬 철 인산염, 즉 그 표면이 그래핀 상과 비정질 상 중에서 선택된 적어도 하나의 상으로 코팅된, 수열법을 사용하여 합성된 올리빈 유형의 리튬 철 인산염이 초기에 제조되었다. 그 후 도전성 재료, 즉 도전성 카본 블랙 및 도전성 탄소 섬유 재료가 혼련기를 사용하여 서로 혼합되었다. 이러한 방식으로, 캐소드가 제조되었다(비교예 1).
도전성 재료가 서로 혼합되기 전에 비교예 1의 올리빈 유형의 리튬 철 인산염을 사용하여, 도전성 재료와 합성된 올리빈 유형의 리튬 철 인산염으로 이루어진 캐소드가 2번째 소성에 의해 제조되었다(비교예 2).
임의의 전극에서, 도전성 카본 블랙, 도전성 탄소 섬유 재료 및 표면 코팅 탄소 상의 함량은 서로 동등하였다.
애노드의 제조
그래파이트 탄소 재료 및 탄소 나노튜브의 혼합물이 스티렌 부타디엔 고무 및 CMC의 수용액의 수분산으로 이루어지는 수계 결합제를 사용하여 혼련되어 애노드 슬러리를 제조하였다.
그래파이트, 탄소 나노튜브, SBR 및 CMC 사이의 조성비는 질량%로 96/1/2/1로 설정되었다. 제조된 슬러리는 10㎛의 두께를 갖는 구리 호일에 80g/m2의 양으로 도포되어 건조되었다. 그 후 슬러리 도포된 구리 호일은 애노드 판을 제조하기 위해 미리 정해진 두께를 가질 때까지 가압되었다.
각각 500mAh를 갖는 적층형 배터리가 제조되었다.
캐소드 판과 애노드 판을 서로 전기적으로 구획하는 세퍼레이터로서, 셀룰로오스 섬유로 이루어진 부직포가 사용되었다.
용적비로 30:70으로 서로 혼합된 EC 및 DEC를 함유하는 용액에 리튬 헥사플루오르포스페이트(LiPF6)의 1mol/l를 용해함으로써 전해질이 제조되었다.
각각의 배터리가 초기에 충전된 후에 배터리의 방전 성능 테스트에서, 충전 및 방전 효율이 거의 100%에 도달했다는 것이 확인되었다. 그 후에, 100mA의 정전류에서 2.0V까지 배터리가 방전되었을 때 측정된 각각의 배터리의 방전 용량이 그 용량으로서 설정되었다.
그 방전 깊이가 용량에 대하여 50%(DOD:50%)로 조정된 배터리를 사용하여, 100 내지 1500mA의 전류 범위에서 3초 동안 이를 통해 흐른 경우의 전압 변화가 측정되어 각 배터리의 DC 저항을 계산하였다.
방전 성능 테스트에서, 이를 통해 흐른 5000mA의 전류에서 방전된 각 배터리의 방전 용량이 100mA의 전류로 방전되었을 때의 그 방전 용량과 비교되고 그 방전 용량 유지율(%)로서 설정되었다.
사이클 성능 테스트에서, 배터리는 정전류 및 4.0V(1500mA의 제한 전류)의 정전압(25mA에서 종료)으로 충전되었고 1500mA의 정전류에서 2.0V까지 방전되었다. 테스트는 충전 및 방전의 각각 동안 10분 동안 계속되었다. 이 동작은 1000회 반복되었다. 1회 사이클에서의 방전 용량에 대한 1000회 사이클에서의 배터리의 용량의 비율이 1000회 사이클에서의 용량 유지율(%)로서 설정된다. 용량 유지율(%)이 표 1에 나타내어진다.
다양한 충전 및 방전의 테스트 결과


DC 저항 방전 용량
유지율
1000회 사이클에서의 용량 유지율
% %
실시예 1 본 발명의 재료 56 95 90
비교예 1 혼합 재료 83 79 75
비교예 2 종래의 복합 재료 58 92 92
표 1에 나타낸 테스트 결과로부터, 본 발명의 제조 방법에 의해 합성된 캐소드 재료(예 1)는 도전성 재료가 2차적으로 합성된 비교예 2의 캐소드 재료의 성능과 동등한 성능을 갖는 것으로 확인되었다.
이는, 본 발명의 합성 방법이 의도된 구조를 갖는 올리빈 유형의 리튬 철 인산염으로 이루어진 복합 재료, 즉 그래핀 상과 비정질 상에서 선택된 적어도 하나의 상을 통해 도전성 카본 블랙의 표면과 탄소 섬유 재료의 표면이 탄소 원자 사이의 결합에 의해 야기된 전자의 도전으로 인해 서로 합성되는 올리빈 유형의 리튬 철 인산염으로 이루어진 복합 재료를 제조할 수 있다는 것을 나타낸다. 올리빈 유형의 리튬 철 인산염을 합성하는 것에 있어서 소성함으로써 도전성 물질들을 올리핀 유형의 리튬 철 인산염과 합성하는 것은 비용 면에서 유리하다.
도전성 재료가 전극 재료와 합성되지 않았지만 서로 혼합된 비교예 1의 전극 재료는 도전성 재료가 소성에 의해 전극 재료와 합성된 비교예 2 및 예 1의 전극 재료보다 낮은 성능을 갖는다는 것이 확인되었다. 소성은 예 1의 캐소드 합성법과 비교예 2의 합성법에서 효과적이다.
예 1, 비교예 1 및 비교예 2의 캐소드 재료 간 비교는, 본 발명에 의해 1회 소성으로 합성된 전극 재료의 기본 요소가 비교예들의 전극 재료와 동등한 특성을 갖는다는 것을 나타낸다.
즉, 본 발명의 합성법에서 수행되는 열처리 스텝의 수는 종래 기술의 합성법에서 수행되어야 하는 열처리 스텝의 수보다 적으며, 또한 본 발명의 전극 재료는 종래의 전극 재료의 특성과 동등한 성능을 가질 수 있다. 따라서, 본 발명의 제조 방법은 제조 비용에서 종래의 제조 방법에 대해 현저한 우수성을 갖는다.
얻어지는 상술한 효과는 합성 재료에서 소성에 의해 LiMO2(M: Co, Mn, Ni 중 적어도 하나)와 같은 다른 재료로 이루어진 캐소드 재료 및 그래파이트, 리튬 티탄산염 등으로 이루어진 애노드 재료와 도전성 재료를 합성하여 얻어지는 효과와 유사하였다.
전극 재료 및 도전성 재료가 2회 소성을 수행함으로써 서로 합성되는 비교예 2에서 조사한 바와 같이, 도전성 재료의 첨가량에 대해, 도전성 재료의 첨가량이 2질량% 미만이었을 때 첨가로 야기된 효과는 더 작게 되었다.
합성 기술로 인해, 리튬 이온 2차 배터리에 대한 본 발명의 전극 재료의 기본 요소는, 리튬 이온 2차 배터리가 높은 전류가 이를 통해 흐르면서 충전 및 방전될 때 높은 용량을 가질 수 있게 하고 높은 전류가 이를 통해 흐르면서 매우 긴 시간 동안 안정하게 반복적으로 충전 및 방전할 수 있게 한다. 또한, 수열법을 수행함으로써 올리빈 유형의 리튬 철 인산염을 합성하고 도전성 탄소 재료와 전극 재료를 동시에 합성하는 것이 가능하다. 따라서, 본 발명의 리튬 이온 2차 배터리는, 배터리가 높은 전류에서 충전 및 방전되고, 긴 거리를 이동하고 많은 양의 연료를 소비하도록 요구되는 사용에 있어서 바람직하게 이용될 수 있다. 따라서, 본 발명의 리튬 이온 2차 배터리는 낮은 비용과 내구적일 것이 요구되는 전기 차량 하이브리드카 및 대형 전력 저장 고정형 전원에 대해 이용될 수 있다.
여기에 설명된 예 및 실시예는 단지 예시적인 목적을 위한 것이며, 그 관점에서 다양한 수정 또는 변형이 첨부된 청구항의 현재의 개시 및 범주 내에 포함되는 것으로 본 기술분야의 당업자에게 제시될 것이다.
본 설명은 그 내용이 전체로 참조로써 여기에 통합되는 다수의 문헌을 참조한다.

Claims (46)

  1. 리튬 이온 2차 배터리용 전극 재료 제조 방법으로서,
    (a) 도전성 탄소 재료 복합 재료(conductive carbon material-composited material)를 얻기 위해 전극 재료의 기본 요소 또는 활성 물질의 성분들과 도전성 탄소 재료를 혼합하는 단계로, 상기 도전성 탄소 재료가 카본 블랙과 적어도 두 유형의 탄소 섬유 재료를 포함하는, 단계;
    (b) 상기 도전성 탄소 재료 복합 재료와 표면층 형성 재료를 혼합하는 단계; 및
    (c) 상기 전극 재료를 얻기 위해 단계 (b)에서 얻어지는 혼합물을 소성하는 단계를 포함하며,
    수열 반응(hydrothermal reaction)이 3 내지 5시간 동안 180 내지 220℃의 온도에서 단계 (a) 중에 발생하는, 전극 재료 제조 방법.
  2. 청구항 1에 있어서,
    고체상 반응이 단계 (a) 중에 발생하는, 전극 재료 제조 방법.
  3. 청구항 1에 있어서,
    단계 (b)는 상기 도전성 탄소 재료 복합 재료를 상기 표면층 형성 재료를 함유하는 수용액에 침지시키는 단계, 및 건조에 의해 상기 수용액을 제거하는 단계를 포함하는, 전극 재료 제조 방법.
  4. 청구항 1에 있어서,
    단계 (c)는 3 내지 12시간 동안, 상기 도전성 탄소 재료 복합 재료가 분해되는 온도보다 낮고 상기 표면층 형성 재료가 상기 도전성 탄소 재료의 탄소 원자들과 활성화된 공유 결합들을 형성하는 온도보다 높은 온도에서, 비활성 대기 하에서 수행되는, 전극 재료 제조 방법.
  5. 청구항 4에 있어서,
    단계 (c)에서의 상기 시간은 3 내지 5시간 동안인, 전극 재료 제조 방법.
  6. 청구항 4에 있어서,
    단계 (c)에서의 상기 온도는 500 내지 800℃인, 전극 재료 제조 방법.
  7. 청구항 6에 있어서,
    단계 (c)에서의 상기 온도는 650 내지 750℃인, 전극 재료 제조 방법.
  8. 청구항 4에 있어서,
    상기 비활성 대기는 아르곤 또는 질소 대기인, 전극 재료 제조 방법.
  9. 청구항 1에 있어서,
    전극 재료의 기본 요소 또는 활성 물질의 상기 성분들은 리튬 함유 화합물, 인 함유 화합물 및 전이 금속 함유 화합물인, 전극 재료 제조 방법.
  10. 청구항 9에 있어서,
    전극 재료의 상기 기본 요소 또는 활성 물질은 올리빈 유형의 리튬 함유 전이 금속 인산염 화합물인, 전극 재료 제조 방법.
  11. 청구항 10에 있어서,
    상기 올리빈 유형의 리튬 함유 전이 금속 인산염 화합물은 LiFePO4, LiCoPO4 및 LiMnPO4로 구성된 군에서 선택되는 것인, 전극 재료 제조 방법.
  12. 청구항 9에 있어서,
    전극 재료의 상기 기본 요소 또는 활성 물질은 LiFePO4인, 전극 재료 제조 방법.
  13. 리튬 이온 2차 배터리용 전극 재료 제조 방법으로서,
    (a) 도전성 탄소 재료 복합 재료를 얻기 위해 전극 재료의 기본 요소 또는 활성 물질의 성분들과 도전성 탄소 재료를 혼합하는 단계;
    (b) 상기 도전성 탄소 재료 복합 재료와 표면층 형성 재료를 혼합하는 단계; 및
    (c) 상기 전극 재료를 얻기 위해 단계 (b)에서 얻어지는 혼합물을 소성하는 단계를 포함하며,
    수열 반응(hydrothermal reaction)이 단계 (a) 중에 3 내지 5시간 동안 발생하며,
    상기 도전성 탄소 재료는 카본 블랙과 적어도 두 유형의 탄소 섬유 재료의 조합이고,
    제1 유형의 탄소 섬유 재료는 3000nm의 길이와 10nm의 직경을 갖고, 제2 유형의 탄소 섬유 재료는 5000nm의 길이와 100nm의 직경을 갖는, 전극 재료 제조 방법.
  14. 청구항 13에 있어서,
    카본 블랙/탄소 섬유 재료의 질량비는 1-8/1-3인, 전극 재료 제조 방법.
  15. 청구항 1에 있어서,
    상기 표면층 형성 재료는 유기 물질인, 전극 재료 제조 방법.
  16. 청구항 15에 있어서,
    상기 유기 물질은 당(sugar)인, 전극 재료 제조 방법.
  17. 청구항 16에 있어서,
    상기 유기 물질은 다당류 또는 락토스인, 전극 재료 제조 방법.
  18. 리튬 이온 2차 배터리용 캐소드 재료 제조 방법으로서,
    (a) 도전성 탄소 재료 복합 재료를 얻기 위해 캐소드 재료의 기본 요소 또는 활성 물질의 성분들과 도전성 탄소 재료를 혼합하는 단계로, 상기 도전성 탄소 재료가 카본 블랙과 적어도 두 유형의 탄소 섬유 재료를 포함하는 단계;
    (b) 상기 도전성 탄소 재료 복합 재료와 표면층 형성 재료를 혼합하는 단계; 및
    (c) 상기 캐소드 재료를 얻기 위해 단계 (b)에서 얻어지는 혼합물을 소성하는 단계를 포함하며,
    수열 반응(hydrothermal reaction)이 단계 (a) 중에 3 내지 5 시간 동안 발생하며,
    상기 캐소드 재료 내의 탄소 재료의 전체 함량은 5 내지 15 질량%인, 캐소드 재료 제조 방법.
  19. 리튬 이온 2차 배터리용 애노드 재료 제조 방법으로서,
    (a) 도전성 탄소 재료 복합 재료를 얻기 위해 애노드 재료의 기본 요소 또는 활성 물질의 성분들과 도전성 탄소 재료를 혼합하는 단계로, 상기 도전성 탄소 재료가 카본 블랙과 적어도 두 유형의 탄소 섬유 재료를 포함하는 단계;
    (b) 상기 도전성 탄소 재료 복합 재료와 표면층 형성 재료를 혼합하는 단계; 및
    (c) 상기 애노드 재료를 얻기 위해 단계 (b)에서 얻어지는 혼합물을 소성하는 단계를 포함하며,
    수열 반응(hydrothermal reaction)이 단계 (a) 중에 3 내지 5 시간 동안 발생하며,
    상기 애노드 재료 내의 탄소 재료의 전체 함량은 2 내지 5 질량%인, 애노드 재료 제조 방법.
  20. 청구항 19에 있어서,
    탄소 재료의 코팅층이 상기 기본 요소 또는 활성 물질 상에 형성되고, 상기 코팅층의 두께는 1 내지 10nm인, 애노드 재료 제조 방법.
  21. 청구항 20에 있어서,
    상기 코팅층의 두께는 2 내지 5nm인, 애노드 재료 제조 방법.
  22. 청구항 19에 있어서,
    상기 애노드 재료는 티타늄을 함유하는, 애노드 재료 제조 방법.
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
  42. 삭제
  43. 삭제
  44. 삭제
  45. 삭제
  46. 삭제
KR1020157013567A 2012-10-22 2013-10-21 리튬 이온 2차 배터리용 전극 재료 제조 방법 및 이러한 전극 재료를 사용하는 리튬 이온 배터리 KR102382433B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227010526A KR20220046702A (ko) 2012-10-22 2013-10-21 리튬 이온 2차 배터리용 전극 재료 제조 방법 및 이러한 전극 재료를 사용하는 리튬 이온 배터리

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CA2794290A CA2794290A1 (en) 2012-10-22 2012-10-22 Method of producing electrode material for lithium-ion secondary battery and lithium-ion secondary battery using such electrode material
CA2,794,290 2012-10-22
PCT/CA2013/050793 WO2014063244A1 (en) 2012-10-22 2013-10-21 Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227010526A Division KR20220046702A (ko) 2012-10-22 2013-10-21 리튬 이온 2차 배터리용 전극 재료 제조 방법 및 이러한 전극 재료를 사용하는 리튬 이온 배터리

Publications (2)

Publication Number Publication Date
KR20150086280A KR20150086280A (ko) 2015-07-27
KR102382433B1 true KR102382433B1 (ko) 2022-04-05

Family

ID=50543719

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020237032912A KR20230145493A (ko) 2012-10-22 2013-10-21 리튬 이온 2차 배터리용 전극 재료 제조 방법 및 이러한 전극 재료를 사용하는 리튬 이온 배터리
KR1020227010526A KR20220046702A (ko) 2012-10-22 2013-10-21 리튬 이온 2차 배터리용 전극 재료 제조 방법 및 이러한 전극 재료를 사용하는 리튬 이온 배터리
KR1020157013567A KR102382433B1 (ko) 2012-10-22 2013-10-21 리튬 이온 2차 배터리용 전극 재료 제조 방법 및 이러한 전극 재료를 사용하는 리튬 이온 배터리

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020237032912A KR20230145493A (ko) 2012-10-22 2013-10-21 리튬 이온 2차 배터리용 전극 재료 제조 방법 및 이러한 전극 재료를 사용하는 리튬 이온 배터리
KR1020227010526A KR20220046702A (ko) 2012-10-22 2013-10-21 리튬 이온 2차 배터리용 전극 재료 제조 방법 및 이러한 전극 재료를 사용하는 리튬 이온 배터리

Country Status (9)

Country Link
US (2) US11545668B2 (ko)
EP (2) EP3826087A1 (ko)
JP (1) JP6469576B2 (ko)
KR (3) KR20230145493A (ko)
CN (2) CN112201789A (ko)
CA (2) CA2794290A1 (ko)
ES (1) ES2855168T3 (ko)
IN (1) IN2015DN02978A (ko)
WO (1) WO2014063244A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030401A1 (ko) * 2013-08-28 2015-03-05 주식회사 엘지화학 리튬 전이금속 인산화물 입자를 포함하는 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
JP5945753B2 (ja) * 2014-05-08 2016-07-05 エス・イー・アイ株式会社 リチウム二次電池
WO2016143171A1 (ja) * 2015-03-09 2016-09-15 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
EP3270447B1 (en) 2015-03-09 2021-08-18 Taiheiyo Cement Corporation Positive electrode active substance for secondary cell and method for producing same
WO2016151890A1 (ja) * 2015-03-24 2016-09-29 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP6042513B2 (ja) * 2015-03-24 2016-12-14 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
US10964950B2 (en) 2015-03-26 2021-03-30 Taiheiyo Cement Corporation Secondary battery positive-electrode active material and method for producing same
KR102385969B1 (ko) * 2015-03-26 2022-04-14 다이헤이요 세멘토 가부시키가이샤 이차전지용 양극 활물질 및 그 제조방법
JP6042514B2 (ja) * 2015-03-27 2016-12-14 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP6042515B2 (ja) * 2015-03-26 2016-12-14 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP6126192B1 (ja) * 2015-12-10 2017-05-10 太平洋セメント株式会社 二次電池用酸化物系負極活物資及びその製造方法
JP6126191B1 (ja) * 2015-12-10 2017-05-10 太平洋セメント株式会社 二次電池用酸化物系負極活物資及びその製造方法
JP6819220B2 (ja) * 2016-10-28 2021-01-27 日産自動車株式会社 電気デバイス用負極及びそれを用いた電気デバイス
TWI665160B (zh) * 2017-03-28 2019-07-11 識驊科技股份有限公司 包含複合式奈米碳管之電池正極漿料
CN110718678A (zh) * 2019-10-21 2020-01-21 郑州航空工业管理学院 一种含有物理剥离石墨烯的电极极片及制备方法及应用
CN112652768B (zh) * 2020-10-23 2022-05-20 有研工程技术研究院有限公司 磷酸锰锂-石墨烯复合材料的制备方法、磷酸锰锂-石墨烯复合材料及应用
CN115275155B (zh) * 2022-08-19 2024-01-09 广东邦普循环科技有限公司 一种易加工的磷酸铁锂复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158721A (ja) * 2003-10-31 2005-06-16 Hitachi Maxell Ltd 非水二次電池の電極材料およびその製造方法、並びにそれを用いた非水二次電池
JP2009043514A (ja) * 2007-08-08 2009-02-26 Toyota Motor Corp 電極材料、電極板、二次電池、及び電極材料の製造方法
JP2010238575A (ja) * 2009-03-31 2010-10-21 Ube Ind Ltd リチウムイオン電池用電極およびその製造方法
JP2011146284A (ja) * 2010-01-15 2011-07-28 Toyota Motor Corp 複合正極活物質の製造方法
JP2011529257A (ja) * 2008-07-28 2011-12-01 ハイドロ−ケベック 複合電極材

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3523397B2 (ja) 1995-11-07 2004-04-26 日本電信電話株式会社 非水電解質二次電池
US5910382A (en) 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
CA2270771A1 (fr) 1999-04-30 2000-10-30 Hydro-Quebec Nouveaux materiaux d'electrode presentant une conductivite de surface elevee
JP4595145B2 (ja) 1999-10-27 2010-12-08 ソニー株式会社 非水電解質電池
JP4151210B2 (ja) * 2000-08-30 2008-09-17 ソニー株式会社 正極活物質及びその製造方法、並びに非水電解質電池及びその製造方法
JP2003168429A (ja) 2001-11-29 2003-06-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP3987853B2 (ja) 2002-02-07 2007-10-10 日立マクセル株式会社 電極材料およびその製造方法、並びに非水二次電池およびその製造方法
JP4040606B2 (ja) 2003-06-06 2008-01-30 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料およびその製造方法、ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP4641375B2 (ja) * 2003-10-20 2011-03-02 日立マクセル株式会社 オリビン型リン酸リチウムと炭素材料との複合体の製造方法
JP4474184B2 (ja) 2004-03-26 2010-06-02 トヨタ自動車株式会社 リチウム二次電池用活物質の製造方法及びリチウム二次電池の製造方法
JP4519592B2 (ja) * 2004-09-24 2010-08-04 株式会社東芝 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP5345300B2 (ja) * 2006-06-27 2013-11-20 花王株式会社 リチウムイオン電池用複合正極材料およびこれを用いた電池
JP2008277232A (ja) 2007-04-05 2008-11-13 Hitachi Chem Co Ltd リチウム二次電池用負極材料、その製造方法及びそれを用いたリチウム二次電池用負極、リチウム二次電池
JP5118877B2 (ja) * 2007-04-27 2013-01-16 トヨタ自動車株式会社 二次電池
US20090155689A1 (en) * 2007-12-14 2009-06-18 Karim Zaghib Lithium iron phosphate cathode materials with enhanced energy density and power performance
CA2623407A1 (en) 2008-02-28 2009-08-28 Hydro-Quebec Composite electrode material
KR20100139085A (ko) * 2008-03-28 2010-12-31 비와이디 컴퍼니 리미티드 리튬 2차 전지용 리튬 인산철 캐소드 물질을 제조하는 방법
JP5164260B2 (ja) * 2008-06-12 2013-03-21 テイカ株式会社 炭素−オリビン型リン酸鉄リチウム複合体の製造方法、およびリチウムイオン電池用正極材料
US8821763B2 (en) * 2008-09-30 2014-09-02 Tdk Corporation Active material and method of manufacturing active material
CN101714627A (zh) * 2008-10-08 2010-05-26 中国科学院金属研究所 一种碳纳米管/磷酸铁锂复合正极材料及其原位制备方法
CN101841017B (zh) * 2009-03-16 2013-07-31 成都兴能新材料有限公司 一种钛酸锂/碳/碳纳米管复合电极材料及其制备方法
US8057710B2 (en) * 2009-03-30 2011-11-15 Lg Chem, Ltd. Composite for electrode active material and secondary battery comprising the same
DE102009020832A1 (de) * 2009-05-11 2010-11-25 Süd-Chemie AG Verbundmaterial enthaltend ein gemischtes Lithium-Metalloxid
JP5486907B2 (ja) 2009-11-18 2014-05-07 電気化学工業株式会社 リチウムイオン二次電池用正極材及びその製造方法
CN102668194B (zh) * 2009-12-04 2015-05-20 路透Jj股份有限公司 阴极活性材料前体和活性材料,及其制造方法
KR101250587B1 (ko) * 2010-04-20 2013-04-03 연세대학교 산학협력단 전이금속 산화물/탄소나노튜브 복합체 제조 방법 및 그 복합체
JP5035712B2 (ja) 2010-09-30 2012-09-26 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
CN102456881B (zh) 2010-10-18 2014-03-12 中国科学院物理研究所 橄榄石型磷酸盐正极材料、其制备方法及含该正极材料的正极和电池
CN102104144B (zh) 2010-12-30 2013-08-28 常州华科新能源科技有限公司 一种制备磷酸铁锂复合正极材料的方法
TWI565128B (zh) * 2011-02-16 2017-01-01 Showa Denko Kk Lithium battery electrode and lithium battery
CN102299326B (zh) * 2011-08-04 2014-01-29 浙江工业大学 一种石墨烯改性的磷酸铁锂/碳复合材料及其应用
CN102569796A (zh) 2012-01-17 2012-07-11 东南大学 一种磷酸铁锂与碳纳米管复合材料的制备方法
CN102569769B (zh) 2012-02-24 2014-07-09 清华大学深圳研究生院 一种钛酸锂与石墨烯复合电极材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158721A (ja) * 2003-10-31 2005-06-16 Hitachi Maxell Ltd 非水二次電池の電極材料およびその製造方法、並びにそれを用いた非水二次電池
JP2009043514A (ja) * 2007-08-08 2009-02-26 Toyota Motor Corp 電極材料、電極板、二次電池、及び電極材料の製造方法
JP2011529257A (ja) * 2008-07-28 2011-12-01 ハイドロ−ケベック 複合電極材
JP2010238575A (ja) * 2009-03-31 2010-10-21 Ube Ind Ltd リチウムイオン電池用電極およびその製造方法
JP2011146284A (ja) * 2010-01-15 2011-07-28 Toyota Motor Corp 複合正極活物質の製造方法

Also Published As

Publication number Publication date
ES2855168T3 (es) 2021-09-23
KR20220046702A (ko) 2022-04-14
EP2909879B1 (en) 2020-12-02
US20150270554A1 (en) 2015-09-24
CN112201789A (zh) 2021-01-08
EP2909879A1 (en) 2015-08-26
CA2888561C (en) 2023-06-13
EP3826087A1 (en) 2021-05-26
JP6469576B2 (ja) 2019-02-13
EP2909879A4 (en) 2016-06-15
US11545668B2 (en) 2023-01-03
CN104854736A (zh) 2015-08-19
CA2794290A1 (en) 2014-04-22
US20230094444A1 (en) 2023-03-30
JP2015532514A (ja) 2015-11-09
IN2015DN02978A (ko) 2015-09-18
CA2888561A1 (en) 2014-05-01
KR20230145493A (ko) 2023-10-17
WO2014063244A1 (en) 2014-05-01
KR20150086280A (ko) 2015-07-27

Similar Documents

Publication Publication Date Title
KR102382433B1 (ko) 리튬 이온 2차 배터리용 전극 재료 제조 방법 및 이러한 전극 재료를 사용하는 리튬 이온 배터리
JP6405407B2 (ja) リチウムイオン二次電池およびその生産方法
KR102336719B1 (ko) 음극 및 이를 포함하는 이차전지
US9843045B2 (en) Negative electrode active material and method for producing the same
JP6136788B2 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6583404B2 (ja) リチウムイオン電池用アノード材料、該アノード材料を含む負極及びリチウムイオン電池
KR102295238B1 (ko) 리튬 2차 전지용 양극 물질
KR102266117B1 (ko) 전극 재료 및 그의 제조 방법, 및 리튬 전지
US20200274147A1 (en) Negative electrode active material for lithium secondary battery and method for preparing the same
JPWO2017213083A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
KR102553635B1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차 전지
US20230207793A1 (en) Negative electrode for secondary battery and secondary battery including the same
KR20220161933A (ko) 3차원 네트워크 구조를 갖는 탄소 구조체를 포함하는 음극 전극 및 그 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant