KR101808595B1 - 축소된 수의 물리적 채널들을 통하여 다수의 차동 신호들 송신 - Google Patents

축소된 수의 물리적 채널들을 통하여 다수의 차동 신호들 송신 Download PDF

Info

Publication number
KR101808595B1
KR101808595B1 KR1020147026650A KR20147026650A KR101808595B1 KR 101808595 B1 KR101808595 B1 KR 101808595B1 KR 1020147026650 A KR1020147026650 A KR 1020147026650A KR 20147026650 A KR20147026650 A KR 20147026650A KR 101808595 B1 KR101808595 B1 KR 101808595B1
Authority
KR
South Korea
Prior art keywords
differential
signal
communication channel
lines
differential communication
Prior art date
Application number
KR1020147026650A
Other languages
English (en)
Other versions
KR20140130720A (ko
Inventor
그램 피. 존스
글렌 엘. 마크스
Original Assignee
래티스세미컨덕터코퍼레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 래티스세미컨덕터코퍼레이션 filed Critical 래티스세미컨덕터코퍼레이션
Publication of KR20140130720A publication Critical patent/KR20140130720A/ko
Application granted granted Critical
Publication of KR101808595B1 publication Critical patent/KR101808595B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1423Two-way operation using the same type of signal, i.e. duplex for simultaneous baseband signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Bidirectional Digital Transmission (AREA)

Abstract

물리적 통신 채널들을 통한 다른 차동 신호들에 추가하여 양방향의, 가상의 차동 신호를 송신하는 단계. 따라서, 네개의 신호 라인들은 세개의 차동 신호들을 제공할 수 있고, 가상의 차동 신호는 양방향성이다. 가상의 차동 신호는 다른 물리적 통신 채널들 중 하나 이상을 통하여 제공될 수 있다. 추가의 구성들은 양방향의 DC 전력 공급을 제공하는 것을 고려한다. 추가의 구성들은 축소된 수의 라인들을 통하여 데이터에 추가하여 DC 전력을 제공하는 것을 고려한다. 신호 라인들의 선택적 스위칭은 다른 표준 인터페이스들과의 백워드 및 포워드 상호동작성을 허용할 수 있다.

Description

축소된 수의 물리적 채널들을 통하여 다수의 차동 신호들 송신 {TRANSMITTING MULTIPLE DIFFERENTIAL SIGNALS OVER A REDUCED NUMBER OF PHYSICAL CHANNELS}
본 발명의 실시예들은 전반적으로 물리적 상호 접속들에 관련되고 보다 상세하게는 축소된 수의 라인들을 통하여 차동 신호들을 발송하는 것에 관련된 것이다.
저작권 고시/허용
특허 문서의 개시 부분들은 저작권 보호에 따른 내용을 포함할 수 있다. 저작권 소유자는 특허청에서 특허 파일 또는 기록들을 발행할 때의 특허 문서 또는 특허 개시 중 어느 것에 의한 재생산에 반대하지 아니하나, 그러나 그렇지 않으면 무엇이든 간에 모든 저작권 권리들을 보유한다. 저작권 표시는 이하에서 설명될 임의의 소프트웨어에 뿐만 아니라 본 출원에 첨부한 도면들에서 및 이하에서 설명될 모든 데이터에 적용되고: Copyright ⓒ (2013), 실리콘 이미지, Inc.,모든 권리를 보유한다.
많은 시스템들은 디바이스들 또는 성분들 사이의 신호들의 송신에 의존한다. 신호들의 송신은 신호가 단일 와이어 또는 라인들을 통하여 송신되는 단일 종단 모드(single-ended mode)에서 또는 신호가 제 1 와이어 또는 라인들을 통하여 송신되고 그리고 신호의 보완 부분(complement)이 쌍이 되는 와이어 또는 라인들을 통하여 송신되는 차동 모드(differential mode)에서 일어날 수 있다. 단일 종단된 시그널링에 대하여, 단일 송신 라인이 물리적 채널로 간주될 수 있지만 반면에 차동 신호에 대하여, 송신 라인 쌍이 물리적 채널로 간주될 수 있다.
이해되는 바와 같이, 단일 종단된 시그널링에 비교되었을 때 차동 시그널링은 잡음 내성(noise immunity), 동상 모드 잡음 제거, 및 축소된 전자기 방출들을 포함하는 신호 무결성에 면에서 장점들을 부여한다. 어떤 전기적으로 잡음이 많은 환경들 또는 신호 그 자체가 어디에선가 간섭을 유발할 수 있는 곳에서 개선된 송신을 위해 이들 장점들이 원해질 수 있다. 그러나, 단일 종단된 시그널링에 비교되었을 때 차동 시그널링의 하나의 단점은 두배만큼 많은 와이어들 또는 물리적 송신 매체들을 위한 필요조건이다 (접지 와이어, 평면, 또는 차폐는 요구되지 않거나 또는 단일 접지 리턴은 다수의 신호 와이어들을 위해 사용될 수 있다는 것을 가정하여).
일부 시스템들은 신호들을 송신하기 위해서 이용 가능한 와이어들 또는 물리적 채널들의 수에 제약들을 가진다. 설명에서의 단순함의 목적들을 위하여, 표현 "물리적 채널"은 임의의 전기적 도전체, 뿐만 아니라 무선 송신, 또는 광 신호 채널을 언급하기 위해 사용될 것이다. 차동 링크 또는 채널은 두개의 물리적 와이어 또는 라인들을 사용하고, 따라서 한쌍의 와이어들, 인쇄 회로 기판 트레이스들, 또는 다른 쌍의 도전체들을 언급할 수 있다. 일부 시스템들의 제약들은 송신될 신호들이 있을 때 시그널링을 위해 이용 가능한 많은 물리적 라인들이 많지 않다는 것을 의미한다. 특별히 차동 시그널링이 채용된 때, 요구된 모든 신호들을 위한 충분한 와이어들 또는 물리적 라인들 없이 이용 가능한 와이어들 또는 물리적 라인들은 특정 애플리케이션을 위해 이미 완전히 사용될 수 있다.
예를 들어, U.S. 특허 번호 6,492,984에 설명된 이전 연구는 차동 신호 및 동상-모드 신호(common-mode signal) 둘 모두의 복원을 허용하면서 "가상의(virtual)" 동상-모드 신호가 존재하는 차동의 물리적 채널을 통하여 송신될 수 있다는 것을 인식한다. 그러나, 결과적인 송신된 동상 모드"가상의" 신호들은 앞에서 설명된 신호 무결성 제한들에 따른다.
추가적으로, 차동 시그널링을 이용하여 일부 시스템들에서 차동 시그널링을 제공하기 위해서 어떤 물리적 인터페이스들을 조정하는 것을 필요로 할 수 있다. 이런 조정들은 차동 시그널링 인터페이스와 호환 가능하지 않은 레거시 디바이스들의 사용을 방지할 수 있다.
이하의 설명은 본 발명의 실시예들 중 구현예들의 예제의 방식으로 주어진 예시들을 갖는 도면들의 설명을 포함한다. 도면들은 예로서 이해되어야 하고, 제한의 방식으로 이해되지 않아야 한다. 본 출원에서 사용되는, 하나 이상의 "실시예들"에 대한 언급들은 본 발명의 적어도 하나의 구현예에 포함된 특정한 특징부, 구조, 또는 특성을 설명하는 것으로 이해될 수 있다. 따라서, 본 출원에 나타나는 "일 실시예에서" 또는 "대안 실시예에서" 와 같은 어구는 본 발명의 다양한 실시예들 및 구현예들을 설명하고, 반드시 모두 동일한 실시예를 언급하지는 않는다. 그러나, 그것들은 또한 반드시 상호간에 배타적이지 않다.
도 1 은 두개의 차동 채널들, 각각은 두개의 물리적 라인들을 통하여 및 존재하는 두개의 차동 채널들을 통하여 제 3 가상의 양방향의 차동 채널을 구현하는 시스템의 일 실시예의 블럭 다이어그램이다.
도 2 는 두개의 물리적 차동 채널들을 통하여 제 3 가상의 양방향의 차동 채널을 구현하기 위한 분배기 네트워크들을 갖는 시스템의 일 실시예의 블럭 다이어그램이다.
도 3 은 두개의 물리적 채널들, 및 양방향의 DC 전력을 통하여 두개의 차동 채널들을 구현하는 시스템의 일 실시예의 블럭 다이어그램이다.
도 4 는 두개의 물리적 채널들을 통하여 두개의 차동 채널들을 구현하고 그리고 동일한 물리적 채널들을 통하여 양방향의 DC 전력을 제공하는 시스템의 일 실시예의 블럭 다이어그램이다.
도 5 는 두개의 물리적 채널들을 통하여 두개의 차동 채널들을 구현하고 그리고 동일한 물리적 채널들을 통하여 양방향의 DC 전력을 제공하는 시스템의 다른 실시예의 블럭 다이어그램이다.
도 6 은 양방향의 DC 전력과 두개의 물리적 채널들을 통하여 제 3 가상의 양방향의 차동 채널을 구현하는 시스템의 일 실시예의 블럭 다이어그램이다.
도 7 은 양방향의 DC 전력과 두개의 물리적 채널들을 통하여 제 3 가상의 양방향의 차동 채널을 구현하고 레거시 인터페이스들에 대한 백워드 호환성을 유지하는 시스템의 일 실시예의 블럭 다이어그램이다.
도 8 은 동일한 물리적 채널들을 통하여 클럭 신호 및 양방향의 제어 신호를 구현하고 레거시 인터페이스들에 대한 백워드 호환성을 유지하는 시스템의 일 실시예의 블럭 다이어그램이다.
도 9 는 임피던스 보상과 동일한 물리적 채널들을 통하여 클럭 신호 및 양방향의 제어 신호를 구현하고 레거시 인터페이스들에 대한 백워드 호환성을 유지하는 시스템의 대안적인 실시예의 블럭 다이어그램이다.
도 10 은 임피던스 보상과 동일한 물리적 채널들을 통하여 클럭 신호 및 양방향의 제어 신호를 구현하고 데이터 채널을 통하여 접지 리턴 라인(ground return line)을 구현하고 동시에 레거시 인터페이스들에 대한 백워드 호환성을 유지하는 시스템의 일 실시예의 블럭 다이어그램이다.
도 11 은 동일한 물리적 채널들을 통하여 클럭 신호 및 양방향의 제어 신호를 구현하고 물리적 채널을 통하여 전력 및 접지를 제공하고 동시에 레거시 인터페이스들에 대한 백워드 호환성을 유지하는 시스템의 일 실시예의 블럭 다이어그램이다.
도 12a 는 두개의 물리적 채널들을 통한 가상의 양방향의 차동 신호를 포함하는 세개의 차동 신호들을 송신하는 실시예의 흐름도이다.
도 12b는 두개의 물리적 채널들을 통하여 세개의 차동 신호들을 송신하기 위해 또는 레거시 상호 접속 인터페이스에 따라 송신하기 위한 인터페이스를 구성하는 실시예의 흐름도이다.
도면들의 설명을 포함하는 어떤 세부사항들 및 구현예들의 설명들이 이어지고, 도면은 본 출원에 제공된 발명의 개념들의 다른 가능성 있는 실시예들 또는 구현예들 뿐만 아니라 이하에서 설명되는 실시예들의 전부 또는 일부를 도시할 수 있다. 본 발명의 실시예들의 개괄을 이하에서 제공되고, 뒤이어 도면들을 참고로 하여 상세한 설명이 이어진다.
본 출원에서 설명된 것처럼, "가상의(virtual)" 차동 채널은 두개의 존재하는 물리적 통신 채널들을 통하여 제공되고, 해당 신호를 송신하기 위해서 요구된 와이어들 또는 라인들의 전체 수를 줄인다. 간략하게 말하면, 제 1 차동 신호는 하나의 물리적 차동 채널을 통하여 송신되고 및 제 2 차동 신호는 제 2 물리적 차동 채널을 통하여 송신된다. 제 3 차동 신호는 물리적 신호 라인들 위로 제 3 차동 신호 오버레잉(overlaying) 및/또는 변조함으로써 시스템내 라인들을 통하여 가상으로 송신된다.
일 실시예에서, 제 3 차동 신호는 물리적 차동 채널들 중 하나 상의 모달(modal) (양의) 차동 성분을 동상 모드 변조함으로써 그리고 다른 물리적 차동 채널들상의 역-모달(anti-modal) (음의) 차동 성분을 동상 모드 변조함으로써 가상으로 발송된다. 본 출원에서 설명된 동상 모드 신호는 제 1 및 제 2 차동 채널 신호들에 대하여 제 1 및 제 2 채널 수신기들 둘모두상에서 거절될 것이다. 제 3 "가상의" 신호는 제 1 및 제 2 물리적 채널들 상의 동상 모드 신호들을 복원함으로써 트랜시버에서 복원된다. 따라서, 모든 세개의 신호들은 두개의 쌍들의 와이어들 또는 물리적 채널들을 통하여 송신될 수 있고 동시에 복원될 수 있다.
차동 시그널링은 축소된 방출(emission)들을 제공하고 외부 잡음 소스들로부터 간섭에 뛰어난 내성(immunity)을 제공한다는 것이 이해될 것이다. 차동 시그널링은 반-위상(anti-phase) 보완 신호를 갖는 링크를 가로질러 각각의 신호를 송신함으로써 달성된다. 송신은 또한 모달 성분 (또한 신호, 또는 양의 성분으로 지칭된다) 및 역-모달 성분(또한 신호 보완 부분(signal complement), 또는 음의 성분으로 지칭된다)을 발송하는 것으로 지칭된다.
본 출원에서 설명된 것처럼, 시스템은 네개의 라인들을 통하여 세개의 차동 신호들을 송신할 수 있다. 따라서, 시그널링 인터페이스를 위해 요구된 송신의 케이블들, 커넥터들, 또는 다른 수단들은 전기적으로 잡음이 많거나 또는 잡음-민감한 환경들에서 보다 적고, 간단하고, 값싸고, 그리고 보다 신뢰할 수 있을 수 있다. 본 출원에 설명된 기술들의 애플리케이션들은 축소된 수의 물리적 채널들을 가지고 복수개의 데이터가 상대적으로 잡음이 많거나 또는 잡음-민감한 환경을 통하여 전송될 수 있는 임의의 시스템을 위해 사용될 수 있다. 예제의 애플리케이션 환경들은 홈 네트워킹, 자동차 데이터 또는 인포테인먼트(infotainment) 시스템들, 홈 소비자 전자 기기들 또는 데이터 네트워킹 시스템들, 산업용 제어 시스템들, 산업용 모니터링 시스템들, 또는 전자 사이니지(signage) 시스템들을 포함할 수 있다 (하지만, 이것에 한정되지는 않는다). 예를 들어, 이런 시그널링은 비압축된 비디오 데이터의 송신을 허용할 수 있다. 일 실시예에서, 이런 시그널링은 USB (범용 직렬 버스)을 통하여 MHL (모바일 고화질 링크; mobile high-definition link)와 호환 가능한 인터페이스를 제공할 수 있다. 일 실시예에서, 인터페이스는 마이크로-USB 포트를 통하여 MHL을 송신하는 것을 가능하게 하고 예컨대 스마트 폰 또는 태블릿을 자동차 또는 비디오 장비에 도킹(docking)하는 것을 허용할 것이다.
따라서, 물리적 통신 채널들을 통한 다른 차동 신호들에 추가하여 양방향의, 가상의 차동 신호가 송신될 수 있다. 제 1 및 제 2 차동 신호들 중 어느 하나 또는 둘 모두를 발송하면서 동시에 제 3 차동 신호는 송신될 수 있다. 가상의 통신 채널은 제 1 및 제 2 차동 통신 채널들을 이용하여 제공된다. 일 실시예에서, 구성들은 다섯개-라인 인터페이스를 통하여 전력 및 신호들을 제공하는 것을 고려한다. 일 실시예에서, 다섯개-라인 인터페이스는 신호 라인들의 선택적 스위칭을 통하여 레거시 시스템들과 백워드 호환성을 가능하게 할 수 있다.
일 실시예에서, 본 출원에서 설명된 것처럼, 네개 라인 시스템은 두개의 차동 신호들 및 DC 전력의 하나의 또는 둘모두 성분들을 (즉, 전압 공급, 접지 리턴, 또는 둘모두) 제공할 수 있다. 따라서, 양방향의 DC 전력은 이산의 라인들로서의 링크로 제공하는 하나의 또는 둘모두 전력 레일들 없이 케이블 링크를 걸쳐서 또는 데이터 링크를 걸쳐서 제공될 수 있다. 따라서, 축소된 수의 라인들을 통하여 추가의 차동 신호를 제공하는 것에 추가하여, 또는 대안적으로, 전력(power)은 축소된 수의 라인들을 갖는 링크를 통하여 제공될 수 있다.
도 1 은 두개의 물리적 링크들을 통하여 두개의 차동 채널 및 두개의 물리적 링크들을 통하여 제 3 가상의 양방향의 차동 채널을 구현하는 시스템의 일 실시예의 블럭 다이어그램이다. 시스템 (100)는 케이블 링크 (130)를 통하여 수신기 (120)에 결합된 송신기 (110)를 포함한다. 케이블 링크 (130)는 인터페이스로 간주될 수 있다. 도시된 바와 같이, 케이블 링크 (130)는 송신기 및 수신기 측들상에 네개의 포트들을 포함하고: CL1-4는 시스템 (100)이 이것들을 통하여 세개의 차동 신호들을 송신하는 네개 라인들, 또는 두개의 차동 쌍들을 제공한다. 예시의 예제 방위에 무관하게, 각각의 라인의 각각의 단부는 메일(male) 또는 피메일(female)일 수 있다는 것이 이해될 것이다. 각각의 라인의 양쪽 단부들은 동일하거나 또는 상이한 성별(gender) 또는 커넥터 유형일 수 있다. 일 실시예에서, 케이블 링크 커넥터의 하나의 개별적인 측면 또는 단부는 송신기 또는 수신기내에 포함된다.
일 실시예에서, 차동 신호들 중 하나는 드라이버 엘리먼트 (112)에서 생성된 데이터 신호이다. 데이터 신호는 모달 성분 (D+) 및 물리적 차동 채널들 중 하나의 상이한 라인들 또는 성분들 상에서 그것의 보완 또는 역-모달 성분 (D-)으로서 구동된다. 일 실시예에서, 차동 신호들 중 하나는 드라이버 엘리먼트 (114)에서 생성된 클럭 신호이다. 클럭 신호는 마찬가지로 모달 성분 (CLK+) 및 물리적 차동 채널들 중 하나의 상이한 라인들 또는 성분들 상에서 그것의 보완 또는 역-모달 성분 (CLK-)으로서 구동될 수 있다.
일 실시예에서, 시스템 (100)는 트랜시버에서 (116) 생성된 제 3 차동 신호, CBUS (제어 버스)를 사용한다. 일 실시예에서, CBUS 신호 (CBUS+)의 양의 성분은 이터 신호를 전달하는 라인들 CL1 및 CL2 상으로 동상 모드(common mode) 변조된다. 일 실시예에서, CBUS 신호 (CBUS-)의 보완적인 성분 (또는 음의 성분)은 클럭 신호를 전달하는 라인들 CL3 및 CL4 상으로 동상 모드(common mode) 변조된다. 시그널링의 극성은 역으로 될 수 있다(예를 들어, 송신 데이터 신호에 대하여 CBUS- 및 클럭 신호에 대하여 CBUS+ 를 송신)는 것이 이해될 것이다. 추가적으로, 클럭 및 데이터를 위해 사용되는 라인들은 역으로 될 수 있다 (둘다 내적으로 양의 및 음의 차동 성분을 송신하는 라인을 스왑(swapping)함으로써 및/또는 클럭 및 데이터 신호들을 송신하는 라인들의 셋을 스왑함으로써). 일 실시예에서, 시스템 (100)은 송신기 (110) 및 케이블 링크 (130) 사이의 커패시터들 및 케이블 링크 (130) 및 수신기 (120) 사이의 커패시터들에 의해 예시된 바와 같이 차동 신호들의 AC 커플링을 제공한다. AC 커플링은 동일한 라인의 반대 단부들간에 존재하는 DC 오프셋들을 고려한다.
시스템 (100)은 이산의 신호 라인들을 통하여 송신되는 제 3 신호를 갖는 것을 필요로 하지 않고 세개의 개별 신호들의 송신을 허용한다는 것이 이해될 것이다. 송신기 (110)로부터 수신기 (120)로 송신되는 신호들은 (배타적으로는 아니지만) 비디오, 오디오, 제어, 및/또는 클럭을 포함하는 다양한 정보 전달할 수 있다. 예시의 목적들을 위하여, 엘리먼트 (112)로부터 송신되는 데이터 신호 및 엘리먼트 (114)로부터 송신되는 클럭 신호는 단방향 신호들로서 도시된다. 트랜시버 (116)로부터 송신되는 CBUS 신호는 양방향의 제어 신호이다. 따라서, CBUS 신호는 또한 케이블 링크 (130)를 통하여 트랜시버에서 (116) 수신될 수 있다.
따라서, 신호들중 두개의 차동 시그널링은 (예를 들어, 데이터 및 클럭) 물리적 채널들 (예를 들어, 두개의 도전체들)을 통하여 제공되고 제 3 신호는 가상의 제 3 채널을 통하여 제공된다. 임의 개수의 다른 신호들이 데이터 및/또는 클럭 대신에 사용될 수 있다는 것이 이해될 것이다. 일 실시예에서, 가상의 제 3 채널은 두개의 물리적 채널들을 통하여 동상-모드 신호 변조에 의해 생성된다. 따라서, 알려진 동상 모드 변조 기법들과는 별개인, 두개의 동상 모드 변조된 신호들은 두개의 다른 채널들 사이의 가상의 양방향 차동 신호를 위한 전송 메커니즘을 제공하기 위해서 사용된다. 모달 성분 (신호 또는 양의 성분)는 하나의 물리적 채널을 통하여 발송되고 역-모달 성분 (보완 부분 또는 음의 성분)은 다른 물리적 채널을 통하여 발송된다.
일 실시예에서, 케이블 링크 (130)의 송신기 및 수신기 단 둘모두에서 CBUS 차동 신호는 클럭 물리적 채널 및 데이터 물리적 채널로부터 동상-모드 신호들을 복원함으로써 재구성될 수 있다. 엘리먼트 (122) (데이터 신호 수신기)는 CBUS+ 신호 성분을 거부하는 경향이 있고, 엘리먼트 (124) (클럭 신호 수신기)는 CBUS- 신호 성분을 거부하는 경향이 있다. 따라서, 다른 두개의 신호들의 복원은 제 3 가상의 동상 모드 변조된 차동 신호에 의해 악영향을 받지 않을 것이다.
차동 시그널링을 갖는, 수신기는 송신된 신호 및 그것의 보완 부분 사이의 차이들에만 민감하고 수신된 동상 모드 신호들을 효율적으로 무시하거나 또는 거부한다. 잡음 내성을 추가로 개선하기 위해서, 희망하는 신호 및 그것의 보완 부분을 송신하는 게이블내 와이어들은 단일 종단된 잡음 전압들에 의해 유도된 자기장들을 상쇄하기 위해서 물리적으로 함께 트위스트될 수 있고, 추가로 원치않는 방출들을 줄이고 잡음 내성을 향상시킨다. 유사한 장점들이 병렬 트레이스들, 또는 다른 형태들으리 병렬 와이어링으로 달성될 수 있다. 만약 무선 또는 광 시그널링이 사용된다면, 신호의 양쪽 성분들은 발송되고 복원될 수 있고, 이어서 전기적 형태로 다시 변환될 때 차동 신호를 재생성할 것이고 이어서 복원될 수 있다.
차동 신호들이 전기적으로 생성되고 복원되는 동안, 그것들은 다른 물리적 매체들을 통하여 송신될 수 있다는 것이 이해될 것이다. 예를 들어, 차동 신호는 전기적 성분들로 생성될 수 있고, 두개의 개별 광 신호들로 변환되고 광학적으로 발송되고, 그런다음 두개의 개별 신호 성분들에 기반된 차이일 수 있는 전기적 신호들로 다시 변환될 수 있다. 유사한 기술들이 무선 통신 매체를 통하여 차동 신호들을 송신하기 위해서 사용될 수 있다. 대안적으로, 차동 신호는 생성될 수 있고, 단일의 광학적 또는 무선 시스템으로 변환되고, 및 그런다음 광학적 또는 무선 신호의 수신단에서 차동의 전기적 신호로 다시 변환될 수 있다. 차동 시그널링은 전통적인 단일 종단된 시그널링 기술들에 비교하여 케이블 및 디바이스 차폐를 위한 축소된 요건들 및 더 나은 시스템 성능으로 귀결될 수 있다. 이것은 케이블을 더 얇게, 루트를 설정에 더 쉽게, 더 가요성이 있고 그리고 제조를 하는데 더 값싸게 할 수 있다.
CBUS 신호가 양방향 차동 신호인 것을 고려하면, 시스템 (100)는 신호가 왼쪽에서 오른쪽으로(송신기 (110)로부터 수신기 (120)로), 또는 오른쪽에서 왼쪽으로(수신기 (120)로부터 송신기 (110)로) 송신되는지를 결정하기 위한 메커니즘을 포함한다. 일 실시예에서, 시스템 요건들에 기반하여 시스템 (100)은 차례로 제어 신호들을 양쪽 방향들로 발송되도록 허용하는 프로토콜 중재를 사용한다. 양방향의 제어 버스 신호의 사용의 예들은 원격 제어 명령어들, 시스템 상태, 컨텐츠 보호 키 선택, 및 디스플레이 탐지를 포함할 수 있다 (하지만, 이것에 한정되지는 않는다).
도 2 는 두개의 물리적 링크들을 통하여 제 3 가상의 양방향의 차동 채널을 구현하기 위한 분배기 네트워크들을 갖는 시스템의 일 실시예의 블럭 다이어그램이다. 일 실시예에서, 가능한 분배기 네트워크의 수단들에 의해 가상의 신호를 나타내기 위해서, 가상의 신호는 차동 신호 성분들을 동상-모드 신호 성분들과 결합함으로써 생성될 수 있다. 시스템 (200)은 두개의 물리적 링크들을 통하여 제 3 가상의 양방향의 차동 채널을 구현하기 위한 가능한 분배기 네트워크들 및 송신/수신 성분들의 예의 간략화된 실시예를 예시한다.
구체적으로, 시스템 (200)의 예는 MHL (모바일 고화질 링크)을 위한 구현예의 실시예를 고려한다. 따라서, 세개의 차동 신호들이 송신된다: MHL_DATA, MHL_CBUS, 및 MHL_CLK. 시스템 (200)는 물리적 차동 채널을 통하여 드라이버 (210)로부터 신호가 복원되는 수신기 (240)로 MHL_DATA를 송신한다. MHL_DATA- 는 하나의 물리적 라인 상에서 발송되고, MHL_DATA+ 는 다른 물리적 라인상에서 발송된다. 시스템 (200)은 드라이버 (220)로부터 제 2 물리적 차동 채널을 통하여 신호가 복원되는 수신기 (250)로 MHL_CLK를 송신한다. MHL_CLK-는 하나의 물리적 라인 상에서 발송되고, MHL_CLK+는 다른 물리적 라인상에서 발송된다.
일 실시예에서, 양방향의 MHL_CBUS는 트랜시버 (230) 및 트랜시버 (260) 사이에서 동상 모드 변조된다. MHL_CBUS+ 는 데이터 신호 (양쪽 물리적 라인들 상에서)을 통하여 송신됨을 도시하고, MHL_CBUS-는 클럭 신호 (양쪽 물리적 라인들 상에서)을 통하여 송신됨을 도시한다. 대안적인 실시예들은 어느 신호 성분이 어느 물리적 채널들을 통하여 발송될 지를 선택할 수 있다. 따라서, "왼쪽에서 오른쪽으로" 방향으로, 드라이버 (210)는 1 차동 채널을 통하여 신호 MHL_DATA를 구동하고 드라이버 (220) 제 2 차동 채널을 통하여 신호 MHL_CLK 를 구동한다. 트랜시버 (230)는 (엘리먼트들 (232) 및 (234)를 가지고) 부분적으로 제 1 차동 채널 상에서 및 부분적으로 제 2 차동 채널 상에서 신호 MHL_CBUS를 구동한다. "오른쪽에서 왼쪽으로" 방향으로, 트랜시버 (260)는 (엘리먼트들 (262) 및 (264)를 가지고) 동일한 채널들을 통하여 신호 MHL_CBUS를 구동할 수 있다.
수신기 (240)는 차동 신호 MHL_DATA, 및 MHL_CBUS+를 수신하고, MHL_CBUS+는 수신기 엘리먼트 (240)에 의해 거부되지만, 트랜시버 (260)에 의해 수신된다. 유사하게, 수신기 엘리먼트(250)는 차동 신호 MHL_CLK, 및 MHL_CBUS-를 수신하고, MHL_CBUS-는 수신기 엘리먼트 (250)에 의해 거부되지만, 트랜시버 (260)에 의해 수신된다.따라서, 수신기 엘리먼트들 (240) 및 (250)는 원치않는 동상 모드 신호 (CBUS)를 무시하거나 또는 거부할 것이고 단지 희망하는 차동 신호들만 디코딩한다. 송신 디바이스로부터 송신하기 위해 트랜시버 (230)에 의해 사용되는 것처럼 수신 디바이스에서 트랜시버 (260)는 유사한 분배기 네트워크를 제공하고, 트랜시버들로 하여금 차동 신호로부터 동상-모드 신호들을 추출하는 것을 허용한다. 일 실시예에서, 시스템 (200)에 도시된 두개의 또는 모든 세개의 채널들은 양방향이게 할 수 있다. 다수의 신호들이 양방향성이도록 되는 경우에, 변조 및 복원 회로들은 점점 더 복잡해질 것이 이해될 것이다.
일 실시예에서, 물리적 채널들의 수가 증가될 수 있고 본 출원에서의 동일한 기술들이 추가의 가상의 양방향의 차동 채널들을 제공하기 위해서 사용될 수 있다.
교차(cross)하거나 또는 서로 엇갈리(intersect)는 와이어들은 연결되고 서로 "점프 오버(jump over)" 와이어들은 연결되지 않는다는 것이 이해될 것이다. 저항기들의 값들은 구현예에 의존할 수 있다는 것이 이해될 것이다. 따라서, 특정 값들이 미도시 되지만, 관련 기술 분야에서의 통상의 기술자들은 값들을 결정할 수 있다. 시스템 (200)의 예시의 목적들을 위하여, 일 실시예에서 동일한 값을 갖는 저항기들은 동일한 저항기 도면 번호를 공유한다. 예를 들어, 송신기들 및 수신기들의 차동 라인들간의 가능한 분배기들의 저항기들은 그것들이 동일한 값일 수 있다는 것을 의미하는 모두 R1으로 라벨링된다.
저항기 R2 는 MHL_DATA 차동 라인들 사이에 결합된 두개의 저항기들 R1 사이 지점의 일단상에 연결된다. 타단상의, 저항기 R2 는 엘리먼트들 (232) 및 (234)의 비-반전 라인에 뿐만 아니라 저항기 R4에 결합한다. 저항기 R2 의 동일한 단부는 저항기 R3를 통과하여 VCC에 결합한다. 저항기 R4 는 엘리먼트들 (232) 및 (234)의 비-반전 및 반전 라인들 사이에 결합된다. 다른 저항기 R2 는 MHL_CLK 차동 라인들 사이에 결합된 두개의 다른 저항기들 R1 사이 지점의 일단상에 연결된다. 타단상의, 저항기 R2 는 엘리먼트들 (232) 및 (234)의 반전 라인에 뿐만 아니라 저항기 R4에 결합한다. 저항기 R2 의 동일한 단부는 다른 저항기 R3를 통과하여 GND에 결합한다.
수신기 단에서, 저항기 R5 는 MHL_DATA 차동 라인들 사이에 결합된 두개의 저항기들 R1 사이 지점의 일단상에 연결된다. 타단상의, 저항기 R5 는 엘리먼트들 (262) 및 (264)의 비-반전 라인에 뿐만 아니라 저항기 R4에 결합한다. 저항기 R5 의 동일 단부는 저항기 R2를 통과하여 VCC에 결합한다. 저항기 R4 는 엘리먼트들 (262) 및 (264)의 비-반전 및 반전 라인들 사이에 결합된다. 다른 저항기 R5 는 MHL_CLK 차동 라인들 사이에 결합된 두개의 다른 저항기들 R1 사이 지점의 일단상에 연결된다. 타단상의, 저항기 R5 는 엘리먼트들 (262) 및 (264)의 반전 라인에 뿐만 아니라 저항기 R4에 결합한다. 저항기 R5 의 동일 단부는 다른 저항기 R2를 통과하여 GND에 결합한다.
다른 가능한 분배기 네트워크 조합들이 가능하다. 데이터 신호 또는 클럭 신호가 양방향으로 이루어 지거나, 및/또는 더 많은 차동 신호들이 더 많은 라인들을 통하여 송신되는 실시예에서 가능한 분배기 네트워크의 복잡도는 증가한다는 것이 또한 이해될 것이다.
도 3 은 두개의 물리적 채널들, 및 양방향의 DC 전력을 통하여 두개의 차동 채널들을 구현하는 시스템의 일 실시예의 블럭 다이어그램이다. 일 실시예에서, 시스템 (300)은 시스템 예컨대 시스템 (100)으로 구현될 수 있다. 시스템 (300)에 보다 구체적으로, 시스템은 표준, 주지의 인터페이스 포트로 구현될 수 있다. 예를 들어, 표준 마이크로-USB 포트는 5 핀들을 가진다 (전력, 접지, 및 3 신호 라인들). 표준 핀-출력(pin-out) 또는 핀 또는 포트 구성을 이용하는 대신에, 케이블 링크 (330)는 두개의 차동 채널들 및 전력을 위한 케이블 링크를 제공할 수 있다. 단지 예로서, 전압 공급으로 도시된 전력 레일은 본 출원에서 VBUS로서 언급되고, 케이블 링크 (330)의 라인 CL1 상에 도시된다. VBUS는 대안적으로 임의 개수의 상이한 지정(designation)들에 의해 언급될 수 있다.
송신기 디바이스 (310)는 라인들 CL2 및 CL3 상에서 차동 신호를 생성하기 위해서 드라이버 (312)를 포함한다. 수신기 디바이스 (320)는 라인들 CL2 및 CL3의 타단상에서 차동 신호를 수신하기 위해서 엘리먼트 (322)를 포함한다. 일 실시예에서, 간단한 참조를 위하여, 케이블 링크 (330)의 단부들은 송신기 단 및 수신기 단, 또는 송신기 측 및 수신기 측으로 지칭될 수 있다. 송신기 (310)는 라인들 CL4 및 CL5 상에서 차동 신호를 생성하기 위해서 드라이버 (314)를 더 포함할 수 있다. 수신기 (320)는 라인들 CL4 및 CL5 상에서 차동 신호를 수신하기 위해서 엘리먼트 (324)를 포함한다.
일 실시예에서, CL4 및 CL5 각각의, 케이블 링크상의 차동 채널의 라인들은 송신기 (310)의 측 뿐만 아니라 수신기 (320)의 측에서 커패시터를 포함하여 두개의 라인들을 AC-결합한다. AC 커플링은 송신기 (310), 수신기 (320), 케이블 링크 (330)의 케이블 쌍들, 및 접지 사이에서의 DC 오프셋들을 허용한다. 상기에서 언급된 바와 같이, 싱크 및 소스 또는 소스 및 싱크 (송신기 (310) 및 수신기 (320))사이의 DC 전력은 VBUS +5V를 위한 핀 CL1를 이용함으로써 시스템 (300)의 링크에 추가될 수 있다. DC 전력을 제공하는 것은 또한 접지 리턴 경로(ground return path)를 필요로 한다는 것이 이해될 것이다.
인덕터들을 이용하여 하나의 또는 둘모두 신호 쌍들을 접지에 (GND으로 지칭된다) DC 관련시킴으로써 접지 리턴 경로를 제공한다. 예시된 바와 같이, 인덕터들 L은 CL4 및 CL5의 차동 채널을 GND에 관련시킨다. 명백하게 도시되지 않았지만, 인덕터들 L은 고유의, 특성 직렬 저항 뿐만 아니라 고유의, 특성 병렬 정전 용량을 포함한다는 것이 이해될 것이다. 인덕터내 병렬 정전 용량은 주파수 의존 필터로서 동작하기 위한 성분을 야기한다.
따라서, 와이어들 CL4 및 CL5 상의 인덕터들 L은 고 주파수 신호들을 방해 받지 않고 통과하는 것을 허용하면서 접지 리턴을 위한 DC 경로를 제공한다. 따라서, 송신기 (310)는 로컬 접지 (송신기 (310) 내부에 도시된 바와 같이)로 종료될 수 있고, 및 수신기 (320)는 로컬 접지 (수신기 (320) 내부에 도시된 바와 같이)로 종료될 수 있다. 로컬 접지는 송신기/수신기에 대한 로컬의 다른 접지 경로 관련 섀시(reference chassis)를 나타내고, 반드시 케이블 링크 (330)를 가로지르는 동일한 것은 아니다. 국부적으로 종료하지만 그러나 인덕터들 L을 통하여 DC 접지 리턴 경로를 제공함으로써, 차동 신호들을 방해받지 않고 통과하도록 허용함과 동시에 DC 접지 리턴 경로가 차동 쌍을 통하여 인덕터들을 통과하여 수립된다.
일 실시예에서, 시스템 (300)는 단순히 라인들 중 하나에 반대인 차동 채널의 양쪽 와이어들 상에 인덕터들을 포함하고, 접지 리턴 경로를 제공하기에 기술적으로 적절하다. 접지 리턴 경로 인덕터는 단일 라인상에 배치될 수 있지만, 인덕터들 L을 라인 CL4 및 라인 CL5 양쪽상에 배치함으로써, 시스템 (300)은 차동 채널을 통하여 차동 시그널링을 위한 보다 균형된 송신 라인을 제공할 수 있다. 단일 라인 접지 리턴 경로 인덕터는 (예를 들어, CL4 또는 CL5 어느 한쪽 상에 그러나 양쪽다는 아닌) 케이블 링크 (330) 또는 데이터 링크를 가로질러 전력을 제공하기에 기술적으로 충분할 수 있지만, 그러나 모드 변환 잡음(mode conversion noise)을 초래할 수 있다. 추가적으로, 이미 언급된 바와 같이, 인덕터들 L은 송신기 (310) 및 수신기 (320) 사이에서의 전력 경로의 DC 저항을 증가시키는 직렬 저항 성분을 포함한다. 인덕터들 L을 차동 채널의 양쪽 라인들 상에 배치하는 것은 접지 종료의 목적들을 위하여 저항들을 병렬로 효율적으로 배치한다. 병렬 네트워크로 저항들을 배치하는 것이 전체 저항을 줄인다는 것을 잘 이해된다. 따라서, 각각의 측(즉, 송신기 (310)의 측 및 수신기 (320) 양쪽 다에)상에 두개의 인덕터들 L을 추가하여, 시스템 (300)은 낮아진 DC 저항 손실을 갖는 DC 전력을 제공한다.
도 4 는 두개의 물리적 채널들을 통하여 두개의 차동 채널들을 구현하고 그리고 동일한 물리적 채널들을 통하여 양방향의 DC 전력을 제공하는 시스템의 일 실시예의 블럭 다이어그램이다. 시스템 (300)은 두개의 차동 채널들 및 제 5 신호 라인을 통하여 전력을 제공하는 반면, 시스템 (400)은 시스템 (300)의 동일한 기술을 이용함으로써 두개의 차동 채널들의 단지 네개의 신호 라인들을 가지고 전력을 제공한다. 바꾸어 말하면, 시스템 (400)에서, 전력 및 접지 레일들 양쪽은 고 주파수 신호들을 방해받지 않고 통과시키는 것을 허용하는 인덕터들을 통하여 연결도니다. 신호 라인들 상의 커패시터들은 케이블 링크 (430)를 가로질러 시스템(400)내의 DC 오프셋들을 허용한다.
송신기 디바이스 (410)는 제 1 및 제 2 차동 라인들을 구동시키기 위한 드라이버 엘리먼트들 (412) 및 (414)를 포함한다. 수신기 디바이스 (420)는 대응하는 차동 신호 라인들의 차동 신호들을 각각 수신하기 위한 수신기 엘리먼트들 (422) 및 (424)를 포함한다. 설명을 위한 규칙의 목적들을 위하여, 송신기 엘리먼트 (412) 및 수신기 엘리먼트 (422)사이의 차동 채널은 제 1 차동 채널로 지칭될 것이고, 송신기 엘리먼트 (414) 및 수신기 엘리먼트 (424) 사이의 차동 채널은 제 2 차동 채널로 지칭될 것이다. "제 1" 및 "제 2"의 지정들은 반대일 수 있다는 것이 이해될 것이다.
예시된 바와 같이, 인덕터들 L은 제 1 차동 채널의 신호 라인들로부터 VBUS 또는 전압 레일로 전력 경로를 제공하기 위해서 결합되고, 인덕터들 L은 제 2 차동 채널의 신호 라인들로부터 접지 경로를 제공하기 위해 결합된다. 도시된 바와 같이, VBUS 및 접지는 송신기 (410) 및 수신기 (420)내의 기준 지점들 또는 전압/전력 레일들일 수 있다. 따라서, 일 실시예에서, CL1 및 CL2의 송신기 측상의, 인덕터들은 신호 라인들로부터 송신기 (410)에 대한 로컬의 전압 레일로 전력 경로를 제공한다. CL1 및 CL2의 수신기 측상의, 인덕터들은 신호 라인들로부터 수신기 (420)에 대한 로컬의 전압 레일로 전력 경로를 제공할 수 있다. 따라서, 일 실시예에서, CL3 및 CL4의 송신기 측상의, 인덕터들은 신호 라인들로부터 송신기 (410)에 대한 로컬의 접지로 접지 경로를 제공한다. CL3 및 CL4의 수신기 측상의, 인덕터들은 신호 라인들로부터 수신기 (420)에 대한 로컬의 접지로 접지 경로를 제공할 수 있다.
시스템 (400)에서, 전력의 양쪽 성분들은 링크의 각각의 측상의 두개의 신호 라인들에 결합된다. 앞에서 언급된바와 같이, 인덕터들을 통하여 전력을 공급하기 위해(접지 리턴 경로 또는 전압 레일 어느하나로) 차동 채널의 양쪽 신호 라인들로부터 전력 경로를 제공하는 것은 인덕터들을 병렬로 효율적으로 배치하는 것이고, 이것이 인덕터 디바이스들의 DC 저항을 줄인다. 추가적으로, 병렬 구성을 이용하는 것은 불일치를 피하기 위해서 라인들을 균형있게 한다. 예시된 바와 같이, 시스템 (400)은 케이블 링크 (430)를 가로지르는 어느 한쪽 방향에서 전력을 제공할 수 있고, 예를 들어, 케이블 링크를 통하여 부착된 디바이스 (예를 들어, 스마트폰)에 전력을 공급할 수 있다. 것이 이해될 것이다 도시된 구성에 대신하여, 시스템 (400)은 제 1 차동 채널로부터 접지로, 그리고 제 2 차동 채널을 VBUS로 전력 경로를 제공하기 위해서 변형될 수 있다. 추가적으로, 시스템 (400)은 엘리먼트들 (412) 및 (422) 사이의 CL1 및 CL2 및 엘리먼트들 (414) 및 (424)사이의 CL3 및 CL4의 핀-아웃(pin-out)을 이용하여 예시되지만, 임의의 다른 핀-아웃 구성이 사용될 수 있다.
도 5 는 두개의 물리적 채널들을 통하여 두개의 차동 채널들을 구현하고 그리고 동일한 물리적 채널들을 통하여 양방향의 DC 전력을 제공하는 시스템의 다른 실시예의 블럭 다이어그램이다. 시스템 (400)에 유사한, 시스템 (500)은 시스템 (300)의 유사한 기술을 이용함으로써 두개의 차동 채널들의 단지 네개의 신호 라인들을 가지고 전력을 제공한다. 시스템 (500)에서, 양쪽의 전력 레일들은 인덕터들을 통하여 연결되지만, 단지 하나의 차동 채널상에서, 단일의 차동 채널을 가지고 DC 전력 레일 또는 전력 서플라이 및 접지 리턴 경로를 제공한다.
송신기 디바이스 (510)는 제 1 및 제 2 차동 라인들을 구동시키기 위한 드라이버 엘리먼트들 (512) 및 (514)를 포함한다. 수신기 디바이스 (520)는 대응하는 차동 신호 라인들의 차동 신호들을 각각 수신하기 위한 수신기 엘리먼트들 (522) 및 (524)를 포함한다. 설명을 위한 규칙의 목적들을 위하여, 송신기 엘리먼트 (512) 및 수신기 엘리먼트 (522)사이의 케이블 링크(530)의 CL1 및 CL2을 가로지르는 차동 채널은 제 1 차동 채널로 지칭될 것이고, 송신기 엘리먼트 (514) 및 수신기 엘리먼트 (524) 사이의 케이블 링크(530)의 CL3 및 CL4을 가로지르는 차동 채널은 제 2 차동 채널로 지칭될 것이다. "제 1" 및 "제 2"의 지정들은 반대일 수 있다는 것이 이해될 것이다.
예시된 바와 같이, 제 1 차동 채널은 커패시터들을 포함하지 않는다. 전력이 해당 채널을 걸쳐서 전송되지 않는다는 사실에 기인하여 제 1 차동 채널을 통하여 DC 오프셋이 있을 것으로 기대되지 않기 때문에 커패시터들은 제 1 차동 채널상의 시스템 (500)에서 옵션일 수 있다. 시스템 (400)과 마찬가지로, 도시된 구성 대신에, 시스템 (500)은 상이한 핀-아웃 케이블 링크 (530)를 이용하기 위해 변형될 수 있다는 것이 이해될 것이다.
제 2 차동 채널상의, 인덕터들 L은 신호 라인들 중 하나로부터 접지로 경로를 제공하기 위해 결합되고 인덕터들 L은 다른 신호 라인으로부터 VBUS 또는 전압 공급 또는 전압 레일로 경로를 제공하기 위해 결합된다. 도시된 바와 같이, VBUS는 인덕터 L를 통하여 역-모달 레그 또는 신호 라인에 결합되고, 및 접지는 인덕터 L을 통하여 모달 레그(modal leg) 또는 신호 라인에 결합된다. 신호 라인의 방위는 그것의 전력 성분이 반대일 수 있도록 결합한다. VBUS 및 접지에 대한 커플링은 로컬 전력 레일들에 대한 링크의 양쪽 끝단들에서 발생한다. 송신기 측 상의 커플링 커패시터들은 송신기 (510) 및 신호 라인들 상의 기준 인덕터들 사이에 위치된다는 것이 이해될 것이다. 유사하게, 수신기 측 상의 커플링 커패시터들은 수신기 (520) 및 신호 라인들 상의 기준 인덕터들 사이에 위치된다.
시스템 (500)에서, 양쪽 전력 레일들은 단지 제 2 차동 채널상에서만 결합된다. 일 실시예에서, 양쪽의 제 1 및 제 2 차동 채널들은 각각이 두개의 신호 라인들 중 하나는 인덕터들을 통하여 접지로 경로를 제공하고 두개의 신호 라인들 중 다른 것은 인덕터들을 통하여 VBUS로 경로를 제공하는 것을 갖도록 구성될 수 있다. 따라서, 예를 들어, 양쪽의 제 1 및 제 2 차동 채널들 중 모달 라인들은 인덕터들을 통하여 VBUS로 경로를 제공할 수 있고, 양쪽의 제 1 및 제 2 차동 채널들 중 역-모달 라인들은 인덕터들을 통하여 접지로 경로를 제공할 수 있다. 다시, 전력 레일들은 반대일 수 있다.
도 6 은 양방향의 DC 전력 레일과 두개의 물리적 링크들을 통하여 제 3 가상의 양방향의 차동 채널을 구현하는 시스템의 일 실시예의 블럭 다이어그램이다. 일 실시예에서, 시스템 (600)은 예제 시스템 (100)을 나타낸다.시스템 (600)에 보다 구체적으로, 시스템은 표준, 주지의 인터페이스 포트로 구현될 수 있다.예를 들어, 표준 마이크로-USB/MHL 커넥터는 5 핀들을 가진다 (전력, 접지, 및 3 신호 라인들). 그러나, 잡음이 많은 환경에서 MHL을 위한 이런 커넥터를 이용하는 것은 열악한 신호 무결성으로 귀결될 수 있다. 동일한 커넥터 또는 포트를 레버리지(leverage)하지만, 네개 라인들을 통하여 세개의 차동 신호들을 발송함으로써, 5-라인 인터페이스는 세개의 차동 신호들을 제공할 수 있고, 이것이 MHL 또는 다른 고속 데이터 링크의 신호 무결성을 개선할 수 있을 뿐만 아니라 케이블 링크 (630)에 의해 표시된 데이터 링크를 가로질러 양방향의 DC 전력을 제공한다.
전력 공급 또는 전력 레일은 VBUS로 지칭되고, 케이블 링크 (630)의 라인 CL1 상에 도시된다. 송신기 (610)는 라인들 CL2 및 CL3 상에서 차동 데이터 신호를 생성하기 위해서 드라이버 (612)를 포함한다. 수신기 (620)는 라인들 CL2 및 CL3 상에서 데이터 신호 라인들을 수신하기 위해서 엘리먼트 (622)를 포함한다.송신기 (610)는 라인들 CL4 및 CL5 상에서 차동 클럭 신호를 생성하기 위해서 드라이버 (614)를 포함한다.수신기 (620)는 라인들 CL4 및 CL5 상에서 클럭 신호 라인들을 수신하기 위해서 엘리먼트 (624)를 포함한다. 일 실시예에서, CBUS 트랜시버 (616)는 CBUS 트랜시버 (626)와 데이터 채널을 통하여 CBUS+ 를 교환하고 CBUS 트랜시버 (626)와 클럭 채널을 통하여 CBUS-를 교환한다.
일 실시예에서, 각각의 차동 라인은, 양쪽의 송신기 (610) 측 뿐만 아니라 수신기 (620)측에서, 두개의 차동 쌍들을 AC-결합하기 위한 커패시터를 포함하고,이것이 송신기 (610), 수신기 (620), 케이블 링크 (630)의 케이블 쌍들, 및 접지 사이의 DC 오프셋들을 허용한다. 상기에서 언급된 바와 같이, 싱크 및 소스 또는 소스 및 싱크 (송신기 (610) 및 수신기 (620))사이의 DC 전력은 VBUS +5V를 위한 핀 CL1를 이용함으로써 시스템 (600)의 링크에 추가될 수 있다. DC 전력을 제공하는 것은 또한 접지 리턴 경로(ground return path)를 필요로 한다는 것이 이해될 것이다.
인덕터들을 이용하여 하나의 또는 둘모두의 신호 쌍들을 GND에 DC 관련시킴으로써 접지 리턴 경로가 제공된다. 예시된 바와 같이, CLK 신호 채널은 인덕터들 L을 통하여 GND에 DC 관련된다. 추가적으로 또는 대안적으로, 데이터 신호 채널이 GND에 DC 관련될 수 있다. 명백하게 도시되지 않았지만, 인덕터들 L은 고유의, 특성 직렬 저항 뿐만 아니라 고유의, 특성 병렬 정전 용량을 포함한다는 것이 이해될 것이다. 인덕터내 병렬 정전 용량은 주파수 의존 필터로서 동작하기 위한 성분을 야기한다.
따라서, 와이어들 CL4 및 CL5 상의 인덕터들 L은 고 주파수 신호들을 방해 받지 않고 통과하는 것을 허용하면서 접지 리턴을 위한 DC 경로를 제공한다. 따라서, 송신기 (610)는 로컬 접지로 종료될 수 있고 수신기 (620)는 로컬 접지로 종료될 수 있다. 로컬 접지는 송신기/수신기에 대한 로컬의 다른 접지 경로 관련 섀시(reference chassis)를 나타내고, 반드시 케이블 링크 (330)를 가로지르는 동일한 것은 아니다.국부적으로 종료하지만 그러나 인덕터들 L을 통하여 DC 접지 리턴 경로를 제공함으로써, AC 신호들을 방해받지 않고 통과하도록 허용함과 동시에 DC 접지 리턴 경로가 데이터 링크를 통하여 인덕터들을 통과하여 수립된다.
일 실시예에서, 시스템 (600)는 단순히 라인들 중 하나에 반대인 차동 채널의 양쪽 와이어들 상에 인덕터들을 포함하고, 이것이 접지 리턴 경로를 제공하기에 기술적으로 적절하다. 접지 기준 인덕터는 단일 라인상에 배치될 수 있지만, 인덕터들 L을 라인 CL4 및 라인 CL5 양쪽상에 배치함으로써, 시스템 (600)은 보다 균형된 송신 라인을 제공할 수 있다. 단일 라인 접지 기준 인덕터 (예를 들어, CL4 또는 CL5 어느 하나에서 그러나 양쪽다는 아닌)는 모드 변환 잡음을 초래할 수 있다. 추가적으로, 이미 언급된 바와 같이, 인덕터들 L은 송신기 (610) 및 수신기 (620) 사이에서의 전력 경로의 DC 저항을 증가시키는 직렬 저항 성분을 포함한다. 인덕터들 L을 차동 채널의 양쪽 라인들 상에 배치하는 것은 접지 리턴 경로의 목적들을 위하여 저항들을 병렬로 효율적으로 배치한다. 따라서, 각각의 측(즉, 송신기 (610)의 측 및 수신기 (620) 양쪽 다에)상에 두개의 인덕터들 L을 추가하여, 시스템 (600)은 낮아진 DC 저항 손실을 갖는 DC 전력을 제공한다.
어떤 실시예들에서, 상호동작성을 보장하기 위해서 인터페이스의 선행 버전들과 인터페이스의 백워드 호환성을 유지하는 것이 중요하다. 레거시 시스템들에 대한 이런 백워드 호환성 또는 지원은 레거시 인터페이스 구성 및 인터페이스 커넥터의 새로운 구성 (본 출원에서 설명된 것처럼)사이의 물리적으로 스위칭함으로써 성취될 수 있다. 일 실시예에서, 스위치들 사이의 파선들에 의해 예시된 바와 같이 스위치들은 함께 그룹으로 편성된다. 스위치들이 위치는 (및 따라서 해당 구성의 제어가 선택되는) 도면들 12a 및 12b에 설명된 것들과 같은 동작들을 수행함으로써 부착된 디바이스의 탐지/감지를 수행하는 제어 로직에 의해 달성된다. 케이블 링크를 가로질러 스위치들의 그룹 편성은 (예를 들어, 양쪽의 송신기 및 수신기 측들에서 스위치들을 그룹 편성하는 것) 제어 버스 또는 제어 라인을 통하여 수립되는 탐지 프로세스를 통하여 성취될 수 있다. 로직은 전용의 제어 로직 하드웨어 및/또는 제어기, 존재하는 제어기 상의 펌웨어, 제어 루틴, 또는 다른 제어 로직의 부분/프로세스일 수 있다. 예들은 레거시 지원을 포함하는 시스템들을 따른다.
도 7 은 양방향의 DC 전력과 두개의 물리적 링크들을 통하여 제 3 가상의 양방향의 차동 채널을 구현하고 레거시 인터페이스들에 대한 백워드 호환성을 유지하는 시스템의 일 실시예의 블럭 다이어그램이다. 일 실시예에서, 시스템 (700)은 시스템 (100)의 예제를 나타낸다. 일 실시예에서, 시스템 (700은 시스템 (600)의 예제를 나타낸다.시스템 (700)에 보다 구체적으로, 시스템은 표준, 주지의 인터페이스 포트로 구현될 수 있고 표준 인터페이스 포트로 레거시 연결에 대한 지원을 제공한다. 따라서, 예를 들어, 표준 마이크로-USB 포트는 전력 및 레거시 연결에 대한 지원으로 사용될 수 있다. 동일 포트를 레버리지 하지만, 네개 라인들을 통하여 세개의 차동 신호들을 발송함으로써, 5-라인 인터페이스는 전력을 제공하는 것 뿐만 아니라 세개의 차동 신호들을 제공할 수 있고, 포트의 레거시 연결들을 지원하기 위해서 스위칭될 수 있다. 스위칭은 다수의 이산 스위치들에 의해 또는 스위치 매트릭스로 수행될 수 있다.
전력 레일은 VBUS로 지칭되고, 케이블 링크 (730)의 라인 CL1 상에 도시된다. 시스템 (700)이 네개의 신호 라인들을 통하여 세개의 차동 신호들을 송신하기 위해서 사용되는 구성에서, 시스템 (700)은 시스템 (600)에 유사하게 구성된다. 바꾸어 말하면, 송신기 (710)는 라인들 CL2 및 CL3 상에서 차동 데이터 신호를 생성하기 위해서 드라이버 (712)를 포함한다. 수신기 (720)는 라인들 CL2 및 CL3 상에서 데이터 신호 라인들을 수신하기 위해서 엘리먼트 (722)를 포함한다. 송신기 (710)는 라인들 CL4 및 CL5 상에서 차동 클럭 신호를 생성하기 위해서 드라이버 (714)를 포함한다. 수신기 (720)는 라인들 CL4 및 CL5 상에서 클럭 신호 라인들을 수신하기 위해서 엘리먼트 (724)를 포함한다. 일 실시예에서, CBUS 트랜시버 (716)는 CBUS 트랜시버 (726)와 데이터 채널을 통하여 CBUS+ 를 교환하고 CBUS 트랜시버 (726)와 클럭 채널을 통하여 CBUS-를 교환한다.
일 실시예에서, 각각의 차동 라인은, 양쪽의 송신기 (710) 측 뿐만 아니라 수신기 (720)측에서, 두개의 차동 쌍들을 AC-결합하기 위한 커패시터를 포함하고,이것이 송신기 (710), 수신기 (720), 케이블 링크 (730)의 케이블 쌍들, 및 접지 사이의 DC 오프셋들을 허용한다. 시스템(700)은 CL1상에서 VBUS를 제공하고, 인덕터들을 이용하여 하나의 또는 둘모두의 신호 쌍들을 GND에 DC 관련시킴으로써 접지 리턴 경로(또는 전력 싱크 레일)를 제공한다. 예시된 바와 같이, 와이어들 CL4 및 CL5상에서 인덕터들 L은 접지 리턴 경로를 제공하기 위해서 신호 라인을 접지에 결합한다. 따라서, 송신기 (710)는 로컬 접지로 종료될 수 있고, 수신기 (720)는 로컬 접지로 종료될 수 있다.
일 실시예에서, 시스템 (700)는 상기에서 설명된 것처럼 세개의 차동 신호들을 위해 네개 라인들을 이용하는 것과 클럭 신호로서 라인 CL5을 이용하는 것 및 레거시 (단일 종단된) 제어 버스 신호로서 라인 CL4을 이용하는 것 사이에서 선택적으로 스위칭하기 위한 스위치들을 포함한다. 데이터는 여전히 CL2 및 CL3을 통하여 차동으로 발송될 수있고, VBUS는 CL1상에 잔존한다. 전형적으로, 모든 스위치들은 함께 또는 실질적으로 동시에 동작될 것이고 따라서 스위치 매트릭스로 지칭될 수 있다. 따라서, 일 실시예에서, 변화시킬 모든 스위치들에 대한 단일 활성화가 있다. 일 실시예에서, 시스템 (700)는 연결되거나 또는 부착된 디바이스가 (즉, 송신기 (710), 예컨대 폰 또는 다른 핸드헬드 전자 디바이스) 세개의 차동 신호들을 지원하는 레거시 디바이스 또는 디바이스인지를 판단하기 위한 감지 하드웨어 (명백하게 도시되지 않았지만) 및/또는 감지 로직을 포함한다.
레거시 신호는 세개의 신호 라인들을 사용하고, 이는 단지 세개의 스위치들이 요구되는 것을 의미한다는 것을 알게될 것이다. 스위치를 차동 채널 중 하나의 라인에 배치하고 다른 것에 배치하지 않는 것은 차동 송신 라인에 임피던스 불일치로 귀결될 수 있다. 일 실시예에서, 양쪽의 라인들 CL4 및 CL5이 접지에 대해 동일한 임피던스를 갖는 것을 고려하면 미도시 커패시터의 포함은 불균형을 보상할 수 있다. 대안적으로, 커패시터 보상은 스위치에 의해 생성되는 불균형을 균형화하기 위해서 보다 구체적인 보상을 제공하기 위해 디자인될 수 있다. CL2 및 CL3 상의 스위치들은 양쪽의 라인들상의 필적할만한 임피던스를 제공하고, 이것은 데이터 채널상의 추가의 보상을 필요로 하지 않기 위해서 충분하게 일치하는 것을 가정한다.
도 8 은 동일한 물리적 링크를 통하여 클럭 신호 및 양방향의 제어 신호를 구현하고 레거시 인터페이스들에 대한 백워드 호환성을 유지하는 시스템의 일 실시예의 블럭 다이어그램이다. 일 실시예에서, 시스템 (800)은 예제 시스템 (100)을 나타내고, 시스템 (700)에 대한 대안이다.일 실시예에서, 시스템 (800)은 표준, 주지의 인터페이스 포트로 구현될 수 있고 표준 인터페이스 포트상의 레거시 연결에 대한 지원을 제공한다.따라서, 예를 들어, 표준 마이크로-USB 포트는 전력 및 레거시 연결에 대한 지원으로 사용될 수 있다. 동일 포트를 레버리지 하지만, 네개 라인들을 통하여 세개의 차동 신호들을 발송함으로써, 5-라인 인터페이스는 전력을 제공하는 것 뿐만 아니라 세개의 차동 신호들을 제공할 수 있고, 포트의 레거시 연결들을 지원하기 위해서 스위치될 수 있다. 레거시 인터페이스는 스위치 매트릭스 및/또는 스위치들의 그룹으로 제공될 수 있다.
시스템 (800)은 제 3 차동 신호를 발송하기 위한 대안적인 방법을 소개한다. 하나의 차동 채널 상의 신호 성분 및 다른 차동 채널상의 그것의 보완 부분을 변조하는 것 보다는, 시스템 (800)은 eCBUS 트랜시버 (814)를 포함하고, 이것은 다른 차동 채널들 중 하나의 상부(top)에 제 3, 양방향의 차동 신호를 배치한다. "eCBUS"는 증강된 CBUS 신호를 나타내고, 이것은 신호 라인 위의 CBUS 상에 클럭을 생성한다. 따라서, 차동 신호의 양쪽 라인들 위로 동상 변조된 성분을 가지는 것 대신에, 두개의 차동 신호들이 동일한 차동 채널 상에 동시에 송신될 수 있다. eCBUS는 단일 종단된 신호, 또는 본 출원에 제공된 차동 버전을 지칭할 수 있다는 것이 이해될 것이다. 따라서, 동일한 물리적 라인들 위로 두개의 신호들이 즉 클럭 신호 상에 양방향의 제어 신호가 중첩(superimpose)된다. eCBUS (814)는 클럭 신호의 에지들의 하나상으로 데이터 신호를 변조하는 클럭 신호의 에지 변조 또는 클럭 에지 변조 (CEM; clock edge modulation)를 통하여 동작한다. 간략히, 단지 클럭의 하나의 에지만이 (하강 또는 상승) 시스템을 동기화하는데 요구된다는 것이 이해되어야 한다. 따라서, 하나의 에지는 시스템을 동기화하기 위한 클럭 신호로서 사용되고, 다른 것은 일 또는 제로를 표시하기 위해서 변조될 수 있다. 일 실시예에서, 제로(0)는 에지의 조절 없는 것에 의해 표시되고, 일(one)은 펄스 폭 변조을 통하여 (에지 지연 및/또는 조기 에지 발송) 시간상에서 에지 조정에 의해 표시될 수 있고, 에지 조절은 DC 균형을 유지하기 위해 교번될 수 있다. 따라서, 클럭 신호는 꾸준히 복원되고 데이터 신호는 에지 상에서 변조될 수 있다. 일 실시예에서, 이런 변조는 에지를 변조하고 역 신호를 위한 진폭을 조정함으로써 신호가 양방향이도록 (예를 들어, 예컨대 제어 신호) 하기 위해 추가로 증강될 수 있다.
비록 eCBUS (814) 및 eCBUS (824)는 트랜시버 엘리먼트들로서 예시되었지만, 예시는 단지 엘리먼트의 트랜시버 성질을 암시하기 위한 것이고, 엘리먼트들의 내부의 구조는 이전 트랜시버 엘리먼트들과 다를 것이라는 것이 이해될 것이다. 일 실시예에서, 동일한 물리적 채널을 통하여 두개의 차동 신호들을 중첩하는 것은 수신 디바이스의 일부상에서 기대되는 타이밍과 함께 신호들의 타이밍에 대한 조절들을 통하여 (예를 들어, 에지들을 조정하여) 성취될 수 있다. 일 실시예에서, 클럭의 하강 에지가 사용된다. 따라서, 신호 에지들내 오프셋들이 기대된 타이밍의 바깥쪽에 있는 것으로 감지될 수 있고 따라서, 오버레이된 신호에 대하여 일 또는 제로(0)로 해석된다. 클럭 에지 변조의 보다 세부사항들은 2005년 10월 31일에 출원된 " DC-균형 제어와 클럭 에지 변조된 직렬 링크" 명칭의 U.S. 특허 출원 번호. 11/264,303에서 찾아볼 수 있다.
전력 레일은 VBUS로 지칭되고, 케이블 링크 (830)의 라인 CL1 상에 도시된다. 시스템 (800)이 네개의 신호 라인들을 통하여 세개의 차동 신호들을 송신하기 위해서 사용되는 구성에서, 시스템 (800)은 라인들 CL2 및 CL3 상에서 차동 데이터 신호를 생성하기 위해서 드라이버 (812)를 포함하는 송신기 (810)와 함께 구성된다. 수신기 (820)는 라인들 CL2 및 CL3 상에서 데이터 신호 라인들을 수신하기 위해서 엘리먼트 (822)를 포함한다. 송신기 (810)는 라인들 CL4 및 CL5 상에서 차동 클럭 신호 및 CBUS 신호를 생성하기 위해서 트랜시버 (814)를 포함한다. 수신기 (820)는 라인들 CL4 및 CL5 상에서 차동 클럭 신호 및 CBUS 신호를 수신하기 위해서 트랜시버 (824)를 포함한다.
시스템(800)은 CL1상에서 VBUS를 제공하고, 인덕터들 L을 이용하여 하나의 또는 둘모두의 신호 쌍들을 GND에 DC 관련시킴으로써 접지 리턴 경로를 제공한다. 예시된 바와 같이, 와이어들 CL4 및 CL5상에서 인덕터들 L은 접지 리턴 경로를 제공하기 위해서 신호 라인을 접지에 결합한다. 따라서, 송신기 (810)는 로컬 접지로 종료될 수 있고, 수신기 (820)는 로컬 접지로 종료될 수 있다.
일 실시예에서, 시스템 (800)는 상기에서 설명된 것처럼 세개의 차동 신호들을 위해 네개 라인들을 이용하는 것과 클럭 신호로서 라인 CL5을 이용하는 것 및 레거시 (단일 종단된) 제어 버스 신호로서 라인 CL4을 이용하는 것 사이에서 선택적으로 스위칭하기 위한 스위치들을 포함한다. 데이터는 여전히 CL2 및 CL3을 통하여 차동으로 발송될 수있고, VBUS는 CL1상에 잔존한다. 전형적으로, 모든 스위치들이 함께 동작될 것이다. 따라서, 변화시킬 모든 스위치들에 대한 단일 활성화가 있다. 일 실시예에서, 시스템 (800)는 부착된 디바이스가 (즉, 송신기 (810), 예컨대 폰 또는 다른 핸드헬드 전자 디바이스) 세개의 차동 신호들을 지원하는 레거시 디바이스 또는 디바이스인지를 판단하기 위한 감지 하드웨어 (명백하게 도시되지 않았지만) 및/또는 감지 로직를 포함한다.
레거시 신호는 세개의 신호 라인들을 사용하고, 이는 단지 세개의 스위치들이 요구되는 것을 의미한다는 것을 알게될 것이다. 스위치를 차동 채널 중 하나의 라인에 배치하고 다른 것에 배치하지 않는 것은 차동 송신 라인에 임피던스 불일치로 귀결될 수 있다. 일 실시예에서, 양쪽의 라인들 CL4 및 CL5이 접지에 대해 동일한 임피던스를 갖는 것을 고려하면 인덕터들 L의 포함은 불균형을 보상할 수 있다. 대안적으로, 인덕터 보상은 스위치에 의해 생성되는 불균형을 균형화하기 위해서 보다 구체적인 보상을 제공하기 위해 디자인될 수 있다. CL2 및 CL3 상의 스위치들은 양쪽의 라인들상의 필적할만한 임피던스를 제공하고, 이것은 데이터 채널상의 추가의 보상을 필요로 하지 않기 위해서 충분하게 일치하는 것을 가정한다.
도 9 는 임피던스 보상과 동일한 물리적 링크를 통하여 클럭 신호 및 양방향의 제어 버스를 구현하고 레거시 인터페이스들에 대한 백워드 호환성을 유지하는 시스템의 대안적인 실시예의 블럭 다이어그램이다. 일 실시예에서, 시스템 (900)은 예제 시스템 (100)을 나타내고, 시스템 (800)에 대한 대안이다. 시스템들 (900) 및 (800)은 본질적으로 동등하다. 따라서, 엘리먼트들 (812,814,822,824), 및 케이블 링크 (830)의 엘리먼트들에 대한 상기의 설명들은 각각 엘리먼트들 (912,914,922,924), 및 케이블 링크 (930)의 엘리먼트들에 적용한다.
시스템 (900)에서, 인덕터들은 페라이트 비드들 FB로서 도시된다. 레거시 CBUS 스위치는 CL4 및 CL5 을 통한 차동 채널의 송신 라인에 불균형을 초래한다는 것이 이해될 것이다. 일 실시예에서, 시스템 (900)는 역-모달 라인 CL4에서 접지로 스위치 정전 용량을 보상하기 위해서 모달 라인CL5 으로부터 접지로 보상 커패시터들 C1를 포함한다.
도시된 바와 같이, 시스템(900)은 CL1상에서 VBUS를 제공하고, 페라이트 비드들 FB를 이용하여 하나의 또는 둘모두의 신호 쌍들을 GND에 DC 관련시킴으로써 접지 리턴 경로를 제공한다. 예시된 바와 같이, 와이어들 CL4 및 CL5상의 페라이트 비드들 FB은 접지 리턴 경로를 제공하기 위해서 신호 라인을 접지에 결합한다. 따라서, 송신기 (910)는 로컬 접지로 종료될 수 있고, 수신기 (920)는 로컬 접지로 종료될 수 있다. 일 실시예에서, 시스템 (900)는 상기에서 설명된 것 처럼 세개의 차동 신호들을 위해 네개 라인들을 이용하는 것과 클럭 신호로서 라인 CL5을 이용하는 것 및 레거시 (단일 종단된) 제어 버스 신호로서 라인 CL4을 이용하는 것 사이에서 선택적으로 스위칭하기 위한 스위치들을 포함한다. 데이터는 여전히 CL2 및 CL3 을 통하여 차동으로 발송될 수있고, VBUS는 CL1상에 잔존한다.
도 10 은 임피던스 보상과 동일한 물리적 링크를 통하여 클럭 신호 및 양방향의 제어 버스를 구현하고 데이터 링크를 통하여 접지 라인을 구현하고 동시에 레거시 인터페이스들에 대한 백워드 호환성을 유지하는 시스템의 일 실시예의 블럭 다이어그램이다. 일 실시예에서, 시스템 (1000)은 예제 시스템 (100)을 나타내고, 시스템 (900)에 대한 대안이다. 시스템들 (800) 및 (900)에 대한 상기의 설명들은 이하에서 구체적으로 지적되는 것을 제외하고는 시스템 (1000)의 엘리먼트들에 적용한다.
시스템들 (700,800), 및 (900)에서, DC 접지 리턴 경로는 스위치를 포함하는 신호 라인상에 관계된다는 것이 관측될 것이다. 따라서, 이런 시스템 예들에서, 스위치는 DC 접지 리턴 경로를 수반하기 위해 요구된다. 고속 시그널링을 위한 좋은 성능을 갖는 스위치들은 스위치 전력에 대해 원하는 것보다 전반적으로 적다. 따라서, 이런 시스템들에서 또한 고속 데이터 신호를 전달하는데 요구되는 스위치를 통하여 전력을 통과시키는데 트레이드 오프들이 있다. 하나의 대안은 어디에선가 논의된 송신 라인 불균형을 창설하는 비-스위치된 케이블 링크 라인 상에서 단지 단일 DC 접지 리턴 경로만을 가지는 것이다. 시스템 (1000)은 AC 커플링 커패시터들 안쪽으로 스위치들을 가짐으로써 시스템들 (700,800), 및 (900)의 디자인들에 비하여 개선을 제공하고, 인덕터 관계는(referencing) 커플링 커패시터들의 다른 측면상에서 수행된다. 따라서, 레거시 제어 버스 신호 라인은 접지로 관계되지 않고, 전력을 전송하기 위해서 스위치들은 필요로 되지 않는다.
eCBUS 채널을 권취된 인덕터들과 연결함으로써 접지 리턴 경로를 제공하는 대신에, 시스템 (1000)은 데이터 채널을 페라이트 비드들 인덕터들 FB과 연결함으로써 접지 리턴 경로를 제공한다. 따라서, 송신기 (1010)는 로컬 접지로 종료될 수 있고, 수신기 (1020)는 로컬 접지로 종료될 수 있다. 일 실시예에서, 시스템 (1000)는 상기에서 설명된 것 처럼 세개의 차동 신호들을 위해 네개 라인들을 이용하는 것과 클럭 신호로서 라인 CL5을 이용하는 것 및 레거시 (단일 종단된) 제어 버스 신호로서 라인 CL4을 이용하는 것 사이에서 선택적으로 스위칭하기 위한 스위치들을 포함한다. 데이터는 여전히 CL2 및 CL3 을 통하여 차동으로 발송될 수있고, VBUS는 CL1상에 잔존한다.
스위치들이 차동 채널의 양쪽의 신호 라인들상에 제공될 때, 송신 라인은 불균형되지 않고, 보상이 요구되지 않는다. 그러나, 스위치가 차동 채널의 단지 하나의 신호 라인상에 제공될 때, 그것은 스위치의 정전 용량 때문에 AC 불균형된 차동 송신 라인으로 귀결된다. 불균형에 대한 보상은 다른 송신 라인 상에 정전 용량을 배치함으로써 일어날 수 있다. 따라서, 시스템 (1000)에서 CL4 및 CL5에 걸친 차동 채널은 역-모달 라인 CL4에 스위치들에 기인하여 AC 불균형을 가진다. 일 실시예에서, 스위치들을 보상하기 위해서 양쪽 송신기 및 접지에서 모달 라인 CL으로부터 접지로 커패시터들 C1이 배치된다. 커패시터들 C1의 값은 사용된 특정 스위치 성분을 보상하기 위한 특정 구현예에 따라 선택될 수 있다.
도 11 은 동일한 물리적 링크를 통하여 클럭 신호 및 양방향의 제어 신호를 구현하고 물리적 링크를 통하여 전력 및 접지를 제공하고 동시에 레거시 인터페이스들에 대한 백워드 호환성을 유지하는 시스템의 일 실시예의 블럭 다이어그램이다. 전형적으로 스위치된 라인상에 전압 공급을 배치하는 시스템을 디자인 하는 것은 바람직하지 않을 것이다. 스위치들은 둘다를 위해서는 아닌 전력을 위해서 또는 스위칭 속도를 위해서 디자인되는 경향이 있다.
그러나, 케이블 링크 (1130)의 핀-아웃 구성을 조정함으로써, 시스템 (1100)은 차동 신호 채널을 통하여 전력을 제공할 수 있고 스위치들에 대한 요구를 두개 아래로 줄인다. 레거시 CBUS 또는 레거시 제어 신호는 그것 자체의 전용 라인상에서 VBUS를 제공하는 대신에 CL4 상의 그 자체에 의해 제공된다. VBUS 및 접지는 eCBUS 차동 채널을 통하여 제공된다. 따라서, 일 실시예에서, 제 3 차동 신호는 물리적 차동 라인 상의 차동 신호를 통하여 양방향의 차동 신호 성분들을 변조함으로써 가상으로 발송된다. 따라서, 효율적으로 하나의 차동 신호 채널은 DC 전력을 제공하는 것 뿐만 아니라 동일한 라인들 상에서 두개의 차동 신호들을 가질 것이다. 이 점에서, 두개의 물리적 신호 라인들은 차동 클럭 신호 및 양방향의 데이터 신호 제공하는 것 뿐만 아니라 링크를 걸쳐서 전력 제공하기 위해 사용될 수 있다.
일 실시예에서, 시스템 (1100)은 예제 시스템 (100)을 나타낸다. 일 실시예에서, 시스템 (1100)은 표준, 주지의 인터페이스 포트로 구현될 수 있고 또한 전력을 제공하면서 표준 인터페이스 포트상의 레거시 연결에 대한 지원을 제공한다. 따라서, 예를 들어, 시스템은 전력 및 레거시 연결에 대한 지원을 갖는 표준 마이크로-USB 포트를 사용할 수 있다. 동일 포트를 레버리지 하지만, 네개 라인들을 통하여 세개의 차동 신호들을 발송함으로써, 5-라인 인터페이스는 전력을 제공하는 것 뿐만 아니라 세개의 차동 신호들을 제공할 수 있고, 포트의 레거시 연결들을 지원하기 위해서 스위치될 수 있다.
시스템 (1100)에서, 상기에서 설명된 시스템 (800)과 마찬가지로, 제 3 차동 신호는 차동 클럭 채널 상에 중첩되어 발송된다. 따라서, 시스템 (1100)은 제 3, 양방향의 차동 신호를 송신하기 위해서 eCBUS 트랜시버들 (1114) 및 (1124)을 사용한다. 시스템 (1100)이 네개의 신호 라인들을 통하여 세개의 차동 신호들을 송신하기 위해서 사용되는 스위치 구성에서, 시스템 (1100)은 라인들 CL2 및 CL3 상에서 차동 데이터 신호를 생성하기 위해서 드라이버 (1112)를 포함하는 송신기 (1110)와 함께 구성된다. 수신기 (1120)는 라인들 CL2 및 CL3 상에서 데이터 신호 라인들을 수신하기 위해서 엘리먼트 (1122)를 포함한다. 송신기 (1110)는 라인들 CL1 및 CL5 상에서 차동 클럭 신호 및 CBUS 신호를 생성하기 위해서 트랜시버 (1114)를 포함한다. 수신기 (1120)는 라인들 CL1 및 CL5 상에서 차동 클럭 신호 및 CBUS 신호를 수신하기 위해서 트랜시버 (1124)를 포함한다. 하나의 차동 채널 상의 신호 성분 및 다른 차동 채널상의 그것의 보완 부분을 변조하는 것 보다는, 시스템 (1100)은 eCBUS 트랜시버 (1114)를 포함하고, 이것은 구체적으로 예시된 바와 같이 클럭 및 CBUS 신호들, 다른 차동 채널들 중 하나의 상부(top)에 제 3, 양방향의 차동 신호를 배치한다.따라서, 두개의 차동 신호들이 동일한 차동 채널상에 동시에 송신된다.
시스템 (1100)은 케이블 링크 (1130)를 통하여 CL4 상에서 레거시 CBUS를 위한 개별 라인을 제공한다. 그것 자체의 라인상의 레거시 CBUS를 갖는, 인터페이스는 세개의 차동 라인들 및 전력을 지원하는 4-라인 인터페이스가 필연적으로 될 것이라는 것이 이해될 것이다. 시스템 (1100)은 여전히 CL1상에서 VBUS를 제공하고 CL5 상에서 접지 리턴 경로를 제공한다. 그러나, 시스템 (1100)에서, 전력 및 접지는 신호 라인들을 통하여 제공된다. 보다 상세하게는, eCBUS는 CL1 및 CL5의 차동 쌍을 통하여 발송된다. CL1은 인덕터 L을 통하여 VBUS로 관계되고, CL5은 인덕터 L을 통하여 접지로 관계된다. 차동 채널의 하나의 라인 상에 전압 레일 및 동일한 차동 채널의 다른 라인 상에 접지 경로를 제공함으로써, 단지 하나의 라인상에 신호들을 가짐으로써 생성되는 불일치가 없다는 것이 이해될 것이다. 따라서,다른 실시예들에서 양쪽의 라인들이 GND로 종료되는 반면, 양쪽의 라인들은 전력 경로에 관계한다. 따라서, 송신기 (1110)는 로컬 접지 및 기준 로컬 전력 서플라이로 종료할 수 있고, 수신기 (1120) 로컬 접지 및 기준 로컬 전력 서플라이로 종료할 수 있고, 및 시그널링 교환은 여전히 도킹되거나 또는 부착된 디바이스에 전력을 공급할 것이다. 레거시 신호가 세개의 신호 라인들을 사용하지만, 레거시 신호들 (레거시 CBUS)의 하나가 전용 라인을 가지는 것을 보여주고, 이전 예들의 송신 라인 불균형을 피할 수 있도록 단지 두개의 스위치들이 요구되는 것이 이해될 것이다.
도 12a 는 두개의 물리적 링크들을 통한 가상의 양방향의 차동 신호를 포함하는 세개의 차동 신호들을 송신하는 실시예의 흐름도이다. 인터페이스 시그널링을 위한 프로세스 (1200)는 두개의 차동 채널들을 통하여 세개의 차동 신호들을 송신것을 포함한다. 시스템은 두개의 라인들으로 제 1 차동 채널 (1202), 및 두개의 라인들으로 제 2 차동 채널 (1204)을 가지는 물리적 인터페이스를 제공한다. 일 실시예에서, 시스템은 본 출원에서 설명된 임의의 실시예에 따라 세개의 차동 신호 채널들 없이 레거시 물리적 상호 접속을 사용하는 레거시 디바이스를 상호연결 하기 위한 인터페이스를 구성하는 인터페이스를 선택적으로 스위치할 수 있거나 또는 세개의 차동 신호들을 수용하기 위한 물리적 인터페이스를 구성하고 선택적으로 스위치한다. 따라서, 시스템은 희망하는 시그널링 인터페이스를 위한 제 1 및 제 2 차동 채널들을 구성한다(1206).
만약 신호가 레거시 인터페이싱을 위해 구성된다면, 상호 접속은 레거시 상호 접속에 따라 따라서 알려진 기술들에 따라 될 것이다. 인터페이스가 세개의 차동 신호들에 대하여 구성된 때, 시스템은 이어서 제 1 차동 채널을 통하여 제 1 차동 신호를 송신한다 (1208). 시스템은 제 2 차동 채널을 통하여 제 2 차동 신호를 송신한다 (1210). 시스템은 제 1 및 제 2 차동 채널들 중 어느 하나 또는 둘모두의 동작을 수정함으로써 가상 채널을 통하여 양방향으로 제 3 차동 신호를 송신하다(1212).
본 출원에서 설명된 것처럼, 차동 채널들을 수정하는 것은 가상의 신호의 하나의 성분을 제 1 차동 채널로 보완 성분을 제 2 차동 채널로 변조하는 것을 포함할 수 있다. 대안적으로, 시스템은 동일한 물리적 채널상에서 두개의 차동 신호들의 송신을 동시에 허용하는 시그널링 메커니즘을 수용할 수 있고, 동일한 채널 상의 두개의 신호들 중 하나는 예를 들어 타이밍/전환 메커니즘들을 통하여 가상으로 송신된다. 하드웨어 인터페이스 구성이 전력을 제공한 것을 더 포함할 수 있다.
도 12b는 두개의 물리적 채널들을 통하여 세개의 차동 신호들을 송신하기 위해 또는 레거시 상호 접속 인터페이스에 따라 송신하기 위한 인터페이스를 구성하는 실시예의 흐름도이다. 인터페이스를 구성하기 위한 프로세스 (1206)는 이하를 포함할 수 있다. 일 실시예에서, 시스템은 인터페이스와 도킹되거나 인터페이스에 부착된 디바이스가 모든 신호들에 대하여 차동 시그널링을 지원하는지, 또는 디바이스가 모든 신호들에 대하여 차동 시그널링을 지원하지 않는 레거시 디바이스인지를 판단한다 (1220). 만약 디바이스가 레거시 디바이스이면 (1222) 예 분기, 시스템은 레거시 라인 구성과의 사용을 위해 인터페이스를 스위치한다 (예를 들어, 단일 종단된 제어 버스 신호,1224). 만약 디바이스가 레거시 디바이스가 아니면 (1222) 아니오 분기, 시스템은 차동 라인 구성과의 사용을 위해 인터페이스를 스위치한다 (1226). (1224) 및 (1226)가 인터페이스를 "스위칭"으로 명백하게 언급하고 있지만 만약 인터페이스가 인터페이스의 전류 구성에 사용될 수 있다면, 스위칭은 인터페이스를 구성하도록 요구되지 않는 것이 이해될 것이다. 따라서, 인터페이스를 구성하는 것은 특정 환경들에서 선택적일 수 있다. 일 실시예에서, 인터페이스를 구성하는 것은 하나 이상의 신호 라인들에 연결된 인덕터들을 통하여 전력 경로들을 제공함으로써 하나 이상의 시그널링 채널들을 통하여 전력을 제공하는 것을 포함할 수 있다 (1228).
본 출원에 예시된 흐름도는 다양한 프로세스 동작들의 시퀀스들의 예들을 제공한다. 비록 특정한 시퀀스 또는 순서로 도시되었지만, 다른 방식으로 지정되지 않는다면, 동작들의 순서는 수정될 수 있다. 따라서, 예시된 실시예들은 단지 일 예로서 이해되어어야 하고, 프로세스는 다른 순서로 수행될 수 있고, 및 일부 동작들은 병렬로 수행될 수 있다. 추가적으로, 하나 이상의 동작들은 다양한 실시예들에서 생략될 수 있고; 따라서, 모든 동작들이 모든 실시예에서 필요로 되지는 않는다. 다른 프로세스 흐름들이 가능하다.
다양한 동작들 또는 기능들의 범위가 본 출원에서 설명되고 그것들은 소프트웨어 코드, 명령들, 구성, 및/또는 데이터로서 설명되거나 또는 정의될 수 있다. 컨텐츠는 직접 실행 가능한 ("오브젝트" 또는 "실행 가능한" 형태), 소스 코드, 또는 차이 코드(difference code) ("델타" 또는 "패치" 코드)일 수 있다. 본 출원에서 설명된 실시예들의 소프트웨어 컨텐츠는 그 위에 저장된 컨텐츠를 갖는 제조 물품을 통하여 또는 통신 인터페이스를 통하여 데이터를 발송하는 통신 인터페이스를 동작하는 방법을 통하여 제공된다. 기계 판독가능한 스토리지 매체는 기계로 하여금 설명된 기능들 또는 동작들을 수행하게 할 수 있고 기계에 (예를 들어, 컴퓨팅 디바이스, 전자의 시스템, 등.) 의해 액세스 가능한 형태로 정보를 저장하는 임의의 메커니즘 예컨대 기억할 수 있는(recordable)/기억할 수 없는 매체들 (예를 들어, 판독 전용 메모리 (ROM), 랜덤 액세스 메모리 (RAM), 자기 디스크 스토리지 매체, 광학적 스토리지 매체, 플래시 메모리 디바이스들, 등.).을 포함한다.통신 인터페이스는 다른 디바이스, 예컨대 메모리 버스 인터페이스, 프로세서 버스 인터페이스, 인터넷 연결, 디스크 제어기, 등에 통신하기 위해 임의의 하드웨어에 내장된, 무선, 광학적, 등., 매체에 인터페이스 접속하는 임의의 메커니즘을 포함한다. 소프트웨어 컨텐츠를 설명하는 데이터 신호를 제공하기 위한 통신 인터페이스를 준비하는 신호들을 발송함으로써 및/또는 구성 파라미터를 제공함으로써 통신 인터페이스는 구성될 수 있다. 통신 인터페이스는 통신 인터페이스로 발송될 하나 이상의 명령어들 또는 신호들을 통하여 액세스될 수 있다.
본 출원에서 설명된 다양한 컴포넌트들은 설명된 동작들 또는 기능들을 수행하기 위한 수단들일 수 있다. 본 출원에서 설명된 컴포넌트는 소프트웨어, 하드웨어, 또는 이들의 조합을 포함한다. 컴포넌트들은 소프트웨어 모듈들, 하드웨어 모듈들, 특정 목적 하드웨어 (예를 들어, 애플리케이션 특정 하드웨어, 애플리케이션 특정 집적 회로들 (ASICs), 디지털 신호 프로세서들 (DSPs), 등.), 내장된 제어기들, 하드웨어에 내장된 회로부, 등 으로서 구현될 수 있다.
본 출원에서 설명된 것들 이외에, 다양한 수정예들이 그것들의 범위에서 벗어남이 없이 본 발명의 개시된 실시예들 및 구현예들에 제공될 수 있다. 따라서, 본 출원에 예시들 및 예제들은 제한적인 의미가 아니라 예시적인 것으로 해석되어야 한다. 본 발명의 범위는 이어지는 단지 청구항을 기준으로 하여 측정되어야 한다.

Claims (27)

  1. 데이터 링크를 통한 신호 송신을 위한 방법에 있어서,
    디바이스에서, 두개의 신호 라인들을 갖는 제 1 차동 통신 채널을 통하여 제 1 차동 신호를 송신하는 단계;
    상기 디바이스에서, 두개의 신호 라인들을 갖는 제 2 차동 통신 채널을 통하여 제 2 차동 신호를 송신하는 단계로서, 상기 제 2 차동 통신 채널은 상기 제 1 차동 통신 채널과는 상이한, 상기 제 2 차동 신호를 송신하는 단계; 및
    상기 디바이스에서, 상기 제 1 및 제 2 차동 신호들 중 하나 또는 둘모두를 송신 하면서, 상기 제 1 차동 통신 채널의 두개의 라인들 및 상기 제 2 차동 통신 채널의 두개의 라인들을 통하여 양방향에서(bidirectionally) 제 3 차동 제어 채널 신호를 송신하는 단계 및 제 4 차동 제어 채널 신호를 수신하는 단계를 포함하되,
    상기 양방향에서 송신하는 단계 및 수신하는 단계는 :
    원격 트랜시버로, (i) 상기 제 1 차동 통신 채널의 두개의 라인들 상으로 상기 제 3 차동 통신 제어 채널의 제 1 모달 성분을 동상 모드(common mode) 변조함으로써 상기 제 1 모달 성분을 그리고 (ii) 상기 제 2 차동 통신 채널의 두개의 라인들 상으로 상기 제 3 차동 통신 제어 채널의 제 1 역-모달 성분(anti-modal component)을 동상 모드 변조함으로써 상기 제 1 역-모달 성분을 송신하는 단계; 및
    상기 원격 트랜시버로부터, (i) 상기 제 1 차동 통신 채널의 두개의 라인들을 통하여 상기 제 4 차동 제어 채널 신호의 제 2 모달 성분, 상기 제 1 차동 통신 채널의 두개의 라인들상으로 동상 모드 변조된 상기 제 2 모달 성분, 그리고 (ii) 상기 제 2 차동 통신 채널의 두개의 라인들을 통하여 상기 제 4 차동 제어 채널 신호의 제 2 역-모달 성분, 상기 제 2 차동 통신 채널의 두개의 라인들 상으로 동상 모드 변조된 상기 제 2 역-모달 성분을 수신하는 단계를 포함하는, 데이터 링크를 통한 신호 송신을 위한 방법.
  2. 청구항 1에 있어서, 상기 제 1 차동 신호는 데이터 신호를 포함하는, 데이터 링크를 통한 신호 송신을 위한 방법.
  3. 청구항 1에 있어서, 상기 제 2 차동 신호는 클럭 신호를 포함하는, 데이터 링크를 통한 신호 송신을 위한 방법.
  4. 청구항 1에 있어서,
    추가의 전압 공급 라인을 제공함으로써 및 인덕터들을 통하여 로컬 접지 레일들로 상기 제 1 차동 통신 채널의 하나의 신호 라인의 양쪽 단부들을 커플링하는 것에 의해 접지 리턴 경로를 제공함으로써 어느 한쪽 방향으로 상기 데이터 링크를 가로질러 DC (direct current) 전력을 제공하는 단계를 더 포함하는, 데이터 링크를 통한 신호 송신을 위한 방법.
  5. 청구항 4에 있어서, 상기 인덕터들은 페라이트 비드(ferrite bead)들을 포함하는, 데이터 링크를 통한 신호 송신을 위한 방법.
  6. 청구항 1에 있어서,
    인덕터들을 통하여 로컬 전압 레일들로 상기 제 1 차동 통신 채널의 하나의 신호 라인의 양쪽 단부들을 커플링하는 것에 의해 전압 공급을 제공함으로써, 및 인덕터들을 통하여 로컬 접지 레일들로 상기 제 2 차동 통신 채널들의 하나의 신호 라인의 양쪽 단부들을 커플링을 하는 것에 의해 접지 리턴 경로를 제공함으로써 어느 한쪽 방향으로 상기 데이터 링크를 가로질러 DC (direct current) 전력을 제공하는 단계를 더 포함하는, 데이터 링크를 통한 신호 송신을 위한 방법.
  7. 청구항 1에 있어서,
    상기 차동 통신 채널들과 레거시 통신 채널 인터페이스를 선택적으로 스위칭하는 단계를 더 포함하되, 상기 스위칭 하는 단계는
    상기 제 1 차동 통신 채널의 두개의 신호 라인들 상에서 두개의 신호들을 제공하는 단계; 및
    상기 제 2 차동 통신 채널의 두개의 신호 라인들 중 하나의 신호 라인상에 하나의 단일 종단된 신호(single-ended signal)를 제공하는 단계;를 포함하는, 데이터 링크를 통한 신호 송신을 위한 방법.
  8. 청구항 7에 있어서,
    추가의 전압 공급 라인을 제공함으로써 및 인덕터들을 통하여 로컬 접지 레일들로 상기 차동 통신 채널들 중 하나의 신호 라인의 양쪽 단부들을 커플링 하는 것에 의해 접지 리턴 경로를 제공함으로써 어느 한쪽 방향으로 상기 데이터 링크를 가로질러 DC 전력을 제공하는 단계를 더 포함하는, 데이터 링크를 통한 신호 송신을 위한 방법.
  9. 청구항 1에 있어서,
    상기 차동 통신 채널들과 레거시 통신 채널 인터페이스를 선택적으로 스위칭하는 단계를 더 포함하되, 상기 스위칭 하는 단계는
    상기 제 1 차동 통신 채널의 두개의 신호 라인들 상에서 두개의 신호들을 제공하는 단계;
    추가 신호 라인을 통하여 단일 종단된 레거시 양방향 제어 신호를 제공하는 단계; 및
    인덕터들을 통하여 로컬 전압 레일들로 상기 제 2 차동 통신 채널들 중 하나의 신호 라인의 양쪽 단부들을 커플링 하는 것에 의해, 및 인덕터들을 통하여 로컬 접지 레일들로 상기 제 2 차동 통신 채널들 중 다른 신호 라인의 양쪽 단부들을 커플링 하는 것에 의해 상기 데이터 링크를 가로질러 DC 전력을 제공하는 단계를 더 포함하는, 데이터 링크를 통한 신호 송신을 위한 방법.
  10. 저장된 컨텐츠를 갖는 비-일시적 컴퓨터 판독가능한 스토리지 매체를 포함하는 제조 물품에 있어서, 실행될 때 기계로 하여금
    디바이스에서, 두개의 신호 라인들을 갖는 제 1 차동 통신 채널을 통하여 제 1 차동 신호를 송신하는 단계;
    상기 디바이스에서, 상기 두개의 신호 라인들을 갖는 제 2 차동 통신 채널을 통하여 제 2 차동 신호를 송신하는 단계로서, 상기 제 2 차동 통신 채널은 상기 제 1 차동 통신 채널과는 상이한, 상기 제 2 차동 신호를 송신하는 단계; 및
    상기 디바이스에서, 상기 제 1 및 제 2 차동 신호들 중 하나 또는 둘모두를 송신 하면서, 상기 제 1 차동 통신 채널의 두개의 라인들 및 상기 제 2 차동 통신 채널의 두개의 라인들을 통하여 양방향에서 (bidrectionally) 제 3 차동 제어 채널 신호를 송신하는 단계 및 제 4 차동 제어 채널 신호를 수신하는 단계를 포함하는 동작을 수행하게 하되,
    상기 양방향에서 송신하는 단계 및 수신하는 단계는 :
    원격 트랜시버로, (i) 상기 제 1 차동 통신 채널의 두개의 라인들 상으로 상기 제 3 차동 통신 제어 채널의 제 1 모달 성분을 동상 모드(common mode) 변조함으로써 상기 제 1 모달 성분을 그리고 (ii) 상기 제 2 차동 통신 채널의 두개의 라인들 상으로 상기 제 3 차동 통신 제어 채널의 제 1 역-모달 성분(anti-modal component)을 동상 모드 변조함으로써 상기 제 1 역-모달 성분을 송신하는 단계; 및
    상기 원격 트랜시버로부터, (i) 상기 제 1 차동 통신 채널의 두개의 라인들을 통하여 상기 제 4 차동 제어 채널 신호의 제 2 모달 성분, 상기 제 1 차동 통신 채널의 두개의 라인들상으로 동상 모드 변조된 상기 제 2 모달 성분, 그리고 (ii) 상기 제 2 차동 통신 채널의 두개의 라인들을 통하여 상기 제 4 차동 제어 채널 신호의 제 2 역-모달 성분, 상기 제 2 차동 통신 채널의 두개의 라인들 상으로 동상 모드 변조된 상기 제 2 역-모달 성분을 수신하는 단계를 포함하는, 제조 물품.
  11. 청구항 10에 있어서,
    접지 리턴 경로를 제공하기 위해 인덕터들을 통하여 로컬 접지 레일들로 상기 제 1 차동 통신 채널의 하나의 신호 신호 라인의 양쪽 단부들을 커플링하고, 추가 전압 공급 라인을 통하여 DC (direct current) 전력을 제공하기 위한 컨텐츠를 더 포함하는, 제조 물품.
  12. 청구항 10에 있어서,
    인덕터들을 통하여 로컬 접지 레일들로 상기 제 2 차동 통신 채널들의 하나의 신호 라인의 양쪽 단부들을 커플링 하는 것에 의해 접지 리턴 경로를 제공함으로써 그리고 인덕터들을 통하여 로컬 전압 레일들로 상기 제 1 차동 통신 채널의 하나의 신호 라인의 양쪽 단부들을 커플링하는 것에 의해 전압 공급을 제공함으로써 DC (direct current) 전력을 제공하는 단계를 위한 컨텐츠를 더 포함하는,제조 물품.
  13. 청구항 10에 있어서,
    상기 차동 통신 채널들과 레거시 통신 채널 인터페이스를 선택적으로 스위칭하는 단계를 위한 컨텐츠를 더 포함하되, 상기 스위칭 하는 단계는
    상기 제 1 차동 통신 채널의 두개의 신호 라인들 상에서 두개의 신호들을 제공하는 단계; 및
    상기 제 2 차동 통신 채널의 두개의 신호 라인들 중 하나의 신호 라인상에 하나의 단일 종단된 신호를 제공하는 단계;를 포함하는, 제조 물품.
  14. 통신 인터페이스 장치에 있어서,
    두개의 신호 라인들을 갖는 제 1 차동 통신 채널에 결합된 제 1 차동 신호 송신 회로로서, 상기 제 1 차동 신호 송신 회로는 상기 제 1 차동 통신 채널을 통하여 제 1 차동 신호를 송신하는, 상기 제 1 차동 신호 송신 회로;
    두개의 신호 라인들을 갖는 제 2 차동 통신 채널에 결합된 제 2 차동 신호 송신 회로로서, 상기 제 2 차동 신호 송신 회로는 상기 제 2 차동 통신 채널을 통하여 제 2 차동 신호를 송신하는, 상기 제 2 차동 신호 송신 회로; 및
    양방향 트랜시버로서,
    원격 트랜시버로, (i) 상기 제 1 차동 통신 채널의 두개의 라인들 상으로 제 3 차동 통신 제어 채널의 제 1 모달 성분을 동상 모드(common mode) 변조함으로써 상기 제 1 모달 성분을 그리고 (ii) 상기 제 2 차동 통신 채널의 두개의 라인들 상으로 상기 제 3 차동 통신 제어 채널의 제 1 역-모달 성분(anti-modal component)을 동상 모드 변조함으로써 상기 제 1 역-모달 성분을 송신하는 송신기; 및
    상기 원격 트랜시버로부터, (i) 상기 제 1 차동 통신 채널의 두개의 라인들을 통하여 제 4 차동 제어 채널 신호의 제 2 모달 성분, 상기 제 1 차동 통신 채널의 두개의 라인들상으로 동상 모드 변조된 상기 제 2 모달 성분 그리고 (ii) 상기 제 2 차동 통신 채널의 두개의 라인들을 통하여 상기 제 4 차동 제어 채널 신호의 제 2 역-모달 성분, 상기 제 2 차동 통신 채널의 두개의 라인들 상으로 동상 모드 변조된 상기 제 2 역-모달 성분을 수신하는 수신기를 포함하는, 상기 양방향 트랜시버를 포함하는, 통신 인터페이스 장치.
  15. 청구항 14에 있어서, 로컬 접지 레일들에 결합하기 위한 상기 제 1 차동 통신 채널 또는 상기 제 2 차동 통신 채널의 각각의 라인에 대하여 인덕터들을 더 포함하는, 통신 인터페이스 장치.
  16. 청구항 14에 있어서, 로컬 전압 레일들에 결합하기 위한 상기 제 1 차동 통신 채널 또는 제 2 차동 통신 채널의 각각의 라인에 대하여 인덕터들을 더 포함하는, 통신 인터페이스 장치.
  17. 청구항 14에 있어서, 상기 차동 통신 채널들과 레거시 통신 채널 인터페이스를 선택적으로 스위칭하는 스위치 매트릭스를 더 포함하되, 상기 레거시 통신 채널 인터페이스는 상기 스위치 매트릭스에 따라 상기 제 1 차동 통신 채널의 두개의 신호 라인들 상에서 두개의 신호들을 제공하고 상기 제 2 차동 통신 채널의 두개의 신호 라인들 중 하나의 신호 라인 상에 하나의 단일 종단된 신호를 제공하도록 구성되는, 통신 인터페이스 장치.
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
KR1020147026650A 2012-02-23 2013-02-22 축소된 수의 물리적 채널들을 통하여 다수의 차동 신호들 송신 KR101808595B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261602419P 2012-02-23 2012-02-23
US61/602,419 2012-02-23
US13/773,534 US9537644B2 (en) 2012-02-23 2013-02-21 Transmitting multiple differential signals over a reduced number of physical channels
US13/773,534 2013-02-21
PCT/US2013/027498 WO2013126830A1 (en) 2012-02-23 2013-02-22 Transmitting multiple differential signals over a reduced number of physical channels

Publications (2)

Publication Number Publication Date
KR20140130720A KR20140130720A (ko) 2014-11-11
KR101808595B1 true KR101808595B1 (ko) 2018-01-18

Family

ID=49002770

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147026650A KR101808595B1 (ko) 2012-02-23 2013-02-22 축소된 수의 물리적 채널들을 통하여 다수의 차동 신호들 송신

Country Status (7)

Country Link
US (1) US9537644B2 (ko)
EP (1) EP2817932B1 (ko)
JP (1) JP6232387B2 (ko)
KR (1) KR101808595B1 (ko)
CN (1) CN104160669B (ko)
TW (1) TWI596900B (ko)
WO (1) WO2013126830A1 (ko)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9288089B2 (en) 2010-04-30 2016-03-15 Ecole Polytechnique Federale De Lausanne (Epfl) Orthogonal differential vector signaling
US9251873B1 (en) 2010-05-20 2016-02-02 Kandou Labs, S.A. Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communications
DE112012003392A5 (de) * 2011-08-16 2014-07-10 Silicon Line Gmbh Schaltungsanordnung und Verfahren zum Übertragen von Signalen
JP6126599B2 (ja) * 2011-08-16 2017-05-10 シリコン・ライン・ゲー・エム・ベー・ハー 回路装置および信号を送信するための方法
JPWO2013027322A1 (ja) * 2011-08-23 2015-03-05 日本電気株式会社 通信装置、信号重畳回路、信号重畳方法
US9537644B2 (en) * 2012-02-23 2017-01-03 Lattice Semiconductor Corporation Transmitting multiple differential signals over a reduced number of physical channels
US20140158767A1 (en) * 2012-05-15 2014-06-12 Jonathan E. Ramaci Data reader
US9087163B2 (en) * 2012-07-11 2015-07-21 Silicon Image, Inc. Transmission of multiple protocol data elements via an interface utilizing a data tunnel
US9230505B2 (en) 2013-02-25 2016-01-05 Lattice Semiconductor Corporation Apparatus, system and method for providing clock and data signaling
EP2979388B1 (en) 2013-04-16 2020-02-12 Kandou Labs, S.A. Methods and systems for high bandwidth communications interface
US9137008B2 (en) * 2013-07-23 2015-09-15 Qualcomm Incorporated Three phase clock recovery delay calibration
DE102013019588A1 (de) * 2013-11-21 2015-05-21 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Verfahren zur Übertragung eines USB-Signals und USB-Übertragungssystem
EP4236217A3 (en) 2014-02-02 2023-09-13 Kandou Labs SA Method and apparatus for low power chip-to-chip communications with constrained isi ratio
EP3672176B1 (en) 2014-02-28 2022-05-11 Kandou Labs, S.A. Clock-embedded vector signaling codes
TWI630481B (zh) * 2014-04-04 2018-07-21 美商萊迪思半導體公司 檢測連接至一裝置之多媒體鏈接之方向
US9519604B2 (en) * 2014-04-11 2016-12-13 Qualcomm Incorporated Systems and methods for frequency control on a bus through superposition
US9852103B2 (en) 2014-04-14 2017-12-26 Lattice Semiconductor Corporation Bidirectional transmission of USB data using audio/video data channel
US10129318B2 (en) 2014-05-06 2018-11-13 Lattice Semiconductor Corporation Media stream data and control parameter synchronization
US9509437B2 (en) 2014-05-13 2016-11-29 Kandou Labs, S.A. Vector signaling code with improved noise margin
US11240076B2 (en) 2014-05-13 2022-02-01 Kandou Labs, S.A. Vector signaling code with improved noise margin
US9871516B2 (en) 2014-06-04 2018-01-16 Lattice Semiconductor Corporation Transmitting apparatus with source termination
JP6369160B2 (ja) * 2014-06-20 2018-08-08 ソニー株式会社 送信装置および通信システム
CN111343112B (zh) 2014-07-21 2022-06-24 康杜实验室公司 从多点通信信道接收数据的方法和装置
US10348418B1 (en) 2014-07-22 2019-07-09 Esker Technologies, LLC Transient and spurious signal filter
TWI523423B (zh) * 2014-07-25 2016-02-21 宏正自動科技股份有限公司 延伸裝置及差動訊號還原方法
EP3175592B1 (en) 2014-08-01 2021-12-29 Kandou Labs S.A. Orthogonal differential vector signaling codes with embedded clock
US9537646B2 (en) 2014-08-27 2017-01-03 Lattice Semiconductor Corporation Retry disparity for control channel of a multimedia communication link
US9490962B2 (en) * 2014-08-27 2016-11-08 Lattice Semiconductor Corporation Phase relationship control for control channel of a multimedia communication link
US9674014B2 (en) 2014-10-22 2017-06-06 Kandou Labs, S.A. Method and apparatus for high speed chip-to-chip communications
KR102237026B1 (ko) * 2014-11-05 2021-04-06 주식회사 실리콘웍스 디스플레이 장치
US9083488B1 (en) * 2014-11-26 2015-07-14 Aten International Co., Ltd. Extender and method of recovering differential signal
US9553634B2 (en) * 2014-12-08 2017-01-24 Lattice Semiconductor Corporation Electrical duplex to optical conversion
US10825053B2 (en) 2015-02-16 2020-11-03 Mirum Digital Limited Characterized wireless signal mobile messaging method and system
HK1201412A2 (en) * 2015-02-16 2015-08-28 李應樵 Characterized wireless signal mobile messaging method and system
KR101664337B1 (ko) 2015-06-30 2016-10-11 주식회사 고영테크놀러지 습공기 형성 장치 및 이를 포함하는 측정 시스템
KR101626475B1 (ko) 2015-06-08 2016-06-01 주식회사 고영테크놀러지 기판 검사 장치
KR102520511B1 (ko) 2015-06-08 2023-04-12 주식회사 고영테크놀러지 기판 검사 장치
KR101978470B1 (ko) 2015-06-26 2019-05-14 칸도우 랩스 에스에이 고속 통신 시스템
DE102015116800B3 (de) * 2015-10-02 2016-12-29 Beckhoff Automation Gmbh Eingabe-/Ausgabemodul für ein Bussystem
DE102015116802B3 (de) * 2015-10-02 2016-12-29 Beckhoff Automation Gmbh Bussystem
US10417143B2 (en) * 2015-10-08 2019-09-17 Esker Technologies, LLC Apparatus and method for sending power over synchronous serial communication wiring
US10055372B2 (en) 2015-11-25 2018-08-21 Kandou Labs, S.A. Orthogonal differential vector signaling codes with embedded clock
US10187229B2 (en) * 2016-03-07 2019-01-22 Texas Instruments Incorporated Bi-directional, full-duplex differential communication over a single conductor pair
US10333741B2 (en) * 2016-04-28 2019-06-25 Kandou Labs, S.A. Vector signaling codes for densely-routed wire groups
US10560154B2 (en) 2016-07-11 2020-02-11 Esker Technologies, LLC Power line signal coupler
US10128906B2 (en) 2016-07-11 2018-11-13 Esker Technologies, LLC Power line signal coupler
WO2018173111A1 (ja) 2017-03-21 2018-09-27 三菱電機株式会社 信号伝送装置
EP3610576B1 (en) 2017-04-14 2022-12-28 Kandou Labs, S.A. Pipelined forward error correction for vector signaling code channel
CN110521174B (zh) * 2017-04-28 2022-05-10 雅马哈株式会社 接收装置及信号传送系统
CN115333530A (zh) 2017-05-22 2022-11-11 康杜实验室公司 多模式数据驱动型时钟恢复方法和装置
US10116468B1 (en) 2017-06-28 2018-10-30 Kandou Labs, S.A. Low power chip-to-chip bidirectional communications
US10693587B2 (en) 2017-07-10 2020-06-23 Kandou Labs, S.A. Multi-wire permuted forward error correction
KR102423987B1 (ko) * 2017-09-21 2022-07-22 삼성전자주식회사 터미네이션 회로 및 인터페이스 장치
US10963035B2 (en) * 2017-10-11 2021-03-30 Qualcomm Incorporated Low power PCIe
US10467177B2 (en) 2017-12-08 2019-11-05 Kandou Labs, S.A. High speed memory interface
CN116614338A (zh) 2017-12-28 2023-08-18 康杜实验室公司 同步切换多输入解调比较器的方法和装置
WO2020012794A1 (ja) * 2018-07-13 2020-01-16 株式会社村田製作所 バイアスt回路および信号伝送装置
TWI685232B (zh) * 2018-08-31 2020-02-11 大陸商北京集創北方科技股份有限公司 高速信號通信電路及採用該電路的通信系統
KR102657135B1 (ko) * 2019-05-15 2024-04-15 삼성디스플레이 주식회사 송수신 시스템
KR20220017558A (ko) * 2020-08-04 2022-02-14 삼성디스플레이 주식회사 데이터 전송 회로 및 이를 포함하는 표시 장치
DE102020121644A1 (de) * 2020-08-18 2022-02-24 Weidmüller Interface GmbH & Co. KG Modulare Ein- und Ausgabestation für ein industrielles Automatisierungssystem und/oder industrielles IoT-System
CN114373415A (zh) * 2020-10-15 2022-04-19 元太科技工业股份有限公司 显示设备
WO2024049482A1 (en) 2022-08-30 2024-03-07 Kandou Labs SA Pre-scaler for orthogonal differential vector signalling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080310521A1 (en) 2007-05-25 2008-12-18 Kanji Otsuka Signal transmission circuit and signal transmission system
US20100272215A1 (en) 2007-10-30 2010-10-28 Qi Lin Signaling with Superimposed Differential-Mode and Common-Mode Signals

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666890A (en) 1970-11-27 1972-05-30 American Data Systems Inc Differential coding system and method
JP2962223B2 (ja) * 1995-03-27 1999-10-12 日本電気株式会社 統合伝送装置
US6137827A (en) * 1997-04-22 2000-10-24 Silicon Laboratories, Inc. Isolation system with digital communication across a capacitive barrier
US6205182B1 (en) 1998-02-25 2001-03-20 Cisco Technology, Inc. Encoding a clock signal and a data signal into a single signal for distribution in a signal forwarding device
TW475140B (en) * 1998-04-29 2002-02-01 Samsung Electronics Co Ltd Analog/digital display adapter and a computer system having the same
US6496540B1 (en) 1998-07-22 2002-12-17 International Business Machines Corporation Transformation of parallel interface into coded format with preservation of baud-rate
US6307543B1 (en) * 1998-09-10 2001-10-23 Silicon Image, Inc. Bi-directional data transfer using two pair of differential lines as a single additional differential pair
US6463092B1 (en) 1998-09-10 2002-10-08 Silicon Image, Inc. System and method for sending and receiving data signals over a clock signal line
JP2002009867A (ja) * 2000-06-27 2002-01-11 Taiko Electric Works Ltd 信号伝送方法および通信用装置
US6731751B1 (en) * 2000-06-27 2004-05-04 Vxi Corporation Apparatus for cordless computer telephony
US6832080B1 (en) * 2000-09-12 2004-12-14 Ericsson, Inc. Apparatus for and method of adapting a radio receiver using control functions
JP2002204272A (ja) * 2000-12-28 2002-07-19 Matsushita Electric Ind Co Ltd 信号伝送装置および信号伝送システム
CA2376971A1 (en) 2001-03-16 2002-09-16 Silicon Image, Inc. Combining a clock signal and a data signal
US6839862B2 (en) 2001-05-31 2005-01-04 Koninklijke Philips Electronics N.V. Parallel data communication having skew intolerant data groups
JP3881196B2 (ja) * 2001-06-27 2007-02-14 富士通株式会社 無線基地局装置
US7085950B2 (en) 2001-09-28 2006-08-01 Koninklijke Philips Electronics N.V. Parallel data communication realignment of data sent in multiple groups
US6914597B2 (en) 2001-10-17 2005-07-05 Hewlett-Packard Development Company, L.P. System for bi-directional video signal transmission
GB2383137B (en) 2001-12-17 2005-06-29 Micron Technology Inc DVI link with circuit and method for test
GB2383240B (en) 2001-12-17 2005-02-16 Micron Technology Inc DVi link with parallel test data
US6671833B2 (en) 2002-01-08 2003-12-30 Parama Networks, Inc. Forward error correction and framing protocol
US6838943B2 (en) * 2002-03-15 2005-01-04 Gennum Corporation Input follower system and method
US20030208779A1 (en) 2002-04-15 2003-11-06 Green Samuel I. System and method for transmitting digital video over an optical fiber
US20030201802A1 (en) 2002-04-26 2003-10-30 Young Brian D. Driver and amplifier circuitry
US7020208B1 (en) 2002-05-03 2006-03-28 Pericom Semiconductor Corp. Differential clock signals encoded with data
US6885209B2 (en) 2002-08-21 2005-04-26 Intel Corporation Device testing
US7113550B2 (en) 2002-12-10 2006-09-26 Rambus Inc. Technique for improving the quality of digital signals in a multi-level signaling system
US7565576B2 (en) 2003-04-17 2009-07-21 Seagate Technology Llc Method and apparatus for obtaining trace data of a high speed embedded processor
JP4492920B2 (ja) * 2003-05-27 2010-06-30 ルネサスエレクトロニクス株式会社 差動信号伝送システム
US7388904B2 (en) 2003-06-03 2008-06-17 Vativ Technologies, Inc. Near-end, far-end and echo cancellers in a multi-channel transceiver system
JP2005018312A (ja) * 2003-06-25 2005-01-20 Sony Corp 信号伝送装置および方法、ならびに情報機器
US7358869B1 (en) * 2003-08-20 2008-04-15 University Of Pittsburgh Power efficient, high bandwidth communication using multi-signal-differential channels
US7516237B2 (en) 2003-08-20 2009-04-07 Intel Corporation Scalable device-to-device interconnection
DE602004028144D1 (de) 2003-10-22 2010-08-26 Nxp Bv Verfahren und einrichtung zum senden von daten über mehrere übertragungsleitungen
US7920601B2 (en) * 2003-12-19 2011-04-05 Gentex Corporation Vehicular communications system having improved serial communication
US7269673B2 (en) 2004-02-18 2007-09-11 Silicon Image, Inc. Cable with circuitry for asserting stored cable data or other information to an external device or user
US7154254B2 (en) * 2004-06-18 2006-12-26 Agilent Technologies, Inc. Apparatus and method for improving electromagnetic compatibility
US7190226B2 (en) * 2004-08-27 2007-03-13 Scintera Networks Analog delay chain having more uniformly distributed capacitive loads and analog delay cell for use in chain
JP2006157321A (ja) 2004-11-29 2006-06-15 Fujitsu Ltd 差動クロック伝送装置、差動クロック送信装置、差動クロック受信装置、差動クロック伝送方法
US20060126751A1 (en) 2004-12-10 2006-06-15 Anthony Bessios Technique for disparity bounding coding in a multi-level signaling system
US7656956B2 (en) * 2005-01-14 2010-02-02 Motorola, Inc. Data, power and supervisory signaling over twisted pairs
DE102005042710B4 (de) * 2005-09-09 2007-04-26 Infineon Technologies Ag Vorrichtung und Verfahren zur spektralen Formung eines Referenztaktsignals
US7627044B2 (en) * 2005-10-31 2009-12-01 Silicon Image, Inc. Clock-edge modulated serial link with DC-balance control
JP4815559B2 (ja) 2005-11-22 2011-11-16 エスティー‐エリクソン、ソシエテ、アノニム 同期受信機
US7490209B1 (en) 2005-12-14 2009-02-10 Altera Corporation Fully buffered DIMM system and method with hard-IP memory controller and soft-IP frequency controller
US20070146011A1 (en) * 2005-12-28 2007-06-28 O'mahony Frank P Duty cycle adjustment
US7844762B2 (en) * 2006-02-24 2010-11-30 Silicon Image, Inc. Parallel interface bus to communicate video data encoded for serial data links
JP4925697B2 (ja) * 2006-03-23 2012-05-09 ソニー株式会社 ネットワーク伝送用の映像信号符号化システム及び映像信号符号化方法,信号変換装置
KR100862578B1 (ko) 2006-05-16 2008-10-09 엘지전자 주식회사 플라즈마 디스플레이 장치
GB2440187A (en) 2006-07-17 2008-01-23 Ubidyne Inc DUC and DDC forming digital transceiver
US20080063129A1 (en) * 2006-09-11 2008-03-13 Nokia Corporation System and method for pre-defined wake-up of high speed serial link
CN101542992A (zh) 2006-11-02 2009-09-23 雷德米尔技术有限公司 具有嵌入式功率控制的一种可编程高速缆线
US8331405B2 (en) 2007-02-02 2012-12-11 Cisco Technology, Inc. Mechanism for channel synchronization
EP2156555A4 (en) 2007-06-05 2013-07-24 Rambus Inc TECHNIQUES FOR MULTIPLE CODING WITH AN EMBEDDED CLOCK
TW200901636A (en) 2007-06-22 2009-01-01 Macroblock Inc Signal encoder and signal decoder
US8437973B2 (en) * 2007-07-25 2013-05-07 John Martin Horan Boosted cable for carrying high speed channels and methods for calibrating the same
WO2009028168A1 (ja) * 2007-08-31 2009-03-05 Panasonic Corporation 映像連動型照明制御システムおよび映像連動型照明制御方法
JP5050807B2 (ja) * 2007-11-22 2012-10-17 ソニー株式会社 再生装置、表示装置、再生方法および表示方法
TWI343707B (en) 2007-12-26 2011-06-11 Altek Corp Differential signal modulating apparatus and method thereof
US8090030B2 (en) 2008-01-04 2012-01-03 Silicon Image, Inc. Method, apparatus and system for generating and facilitating mobile high-definition multimedia interface
JP2009272791A (ja) 2008-05-02 2009-11-19 Sony Corp 送信装置、情報送信方法、受信装置および情報処理方法
JP5338206B2 (ja) * 2008-08-29 2013-11-13 富士通株式会社 制御装置,偏波多重光変調器,光送信装置および偏波多重光変調器の制御方法
TWI428749B (zh) 2008-10-15 2014-03-01 Aten Int Co Ltd 主機端連接模組、操作端控制模組、矩陣式多電腦切換器系統、本地端模組、遙控端模組及訊號延伸器系統
US20100104029A1 (en) 2008-10-27 2010-04-29 Inyeol Lee Independent link(s) over differential pairs using common-mode signaling
US8176214B2 (en) 2008-10-31 2012-05-08 Silicon Image, Inc. Transmission of alternative content over standard device connectors
US8111737B2 (en) * 2009-03-13 2012-02-07 Wavesplitter Technologies, Inc. Bidirectional digital communication circuit and a bidirectional digital communication method
US8242803B2 (en) 2009-06-26 2012-08-14 Broadcom Corporation HDMI and displayport dual mode transmitter
JP2011015071A (ja) 2009-06-30 2011-01-20 Sony Corp 信号処理装置、情報処理装置、多値符号化方法、及びデータ伝送方法
JP2011041142A (ja) * 2009-08-17 2011-02-24 Sony Corp 情報処理装置、及び信号伝送方法
US8644334B2 (en) * 2009-09-30 2014-02-04 Silicon Image, Inc. Messaging to provide data link integrity
US8510487B2 (en) 2010-02-11 2013-08-13 Silicon Image, Inc. Hybrid interface for serial and parallel communication
US8692937B2 (en) * 2010-02-25 2014-04-08 Silicon Image, Inc. Video frame synchronization
JP2012019382A (ja) * 2010-07-08 2012-01-26 Sony Corp 電子機器
TWI457000B (zh) * 2010-10-05 2014-10-11 Aten Int Co Ltd 訊號延伸器系統及其訊號延伸器以及其傳送與接收模組
CN101977082B (zh) * 2010-10-28 2015-04-29 长芯盛(武汉)科技有限公司 光收发模块、光传输装置及光传输方法
US8675577B2 (en) * 2010-12-20 2014-03-18 Intel Corporation Signaling techniques for a multimedia-aware radio and network adaptation
US8405529B2 (en) 2011-03-11 2013-03-26 Taiwan Semiconductor Manufacturing Company, Ltd. Using bus inversion to reduce simultaneous signal switching
US8970162B2 (en) * 2011-07-12 2015-03-03 Texas Instruments Incorporated System and method for balancing electrical energy storage devices via differential power bus and capacitive load switched-mode power supply
US8886970B2 (en) * 2011-12-08 2014-11-11 Active-Semi, Inc. Power manager tile for multi-tile power management integrated circuit
US9537644B2 (en) * 2012-02-23 2017-01-03 Lattice Semiconductor Corporation Transmitting multiple differential signals over a reduced number of physical channels
US9230505B2 (en) 2013-02-25 2016-01-05 Lattice Semiconductor Corporation Apparatus, system and method for providing clock and data signaling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080310521A1 (en) 2007-05-25 2008-12-18 Kanji Otsuka Signal transmission circuit and signal transmission system
US20100272215A1 (en) 2007-10-30 2010-10-28 Qi Lin Signaling with Superimposed Differential-Mode and Common-Mode Signals

Also Published As

Publication number Publication date
EP2817932B1 (en) 2020-02-05
KR20140130720A (ko) 2014-11-11
CN104160669A (zh) 2014-11-19
EP2817932A4 (en) 2016-01-06
CN104160669B (zh) 2018-09-14
WO2013126830A1 (en) 2013-08-29
TW201336233A (zh) 2013-09-01
JP2015508969A (ja) 2015-03-23
US9537644B2 (en) 2017-01-03
EP2817932A1 (en) 2014-12-31
US20130223293A1 (en) 2013-08-29
TWI596900B (zh) 2017-08-21
JP6232387B2 (ja) 2017-11-15

Similar Documents

Publication Publication Date Title
KR101808595B1 (ko) 축소된 수의 물리적 채널들을 통하여 다수의 차동 신호들 송신
CN104365075B (zh) 用于在通信信道上同时传输时钟和双向数据的方法和设备
JP5436985B2 (ja) 内蔵型低電圧差動信号インターフェース付の高速ディジタル・ガルヴァニック・アイソレータ
CN103378845B (zh) 用于流电隔离的通信接口
US7840194B2 (en) Transmitting circuit, receiving circuit, interface switching module and interface switching method for SATA and SAS interfaces
US8098602B2 (en) System and method for transferring data over full-duplex differential serial link
KR101688349B1 (ko) 저 스윙 전압 모드 구동기
US7482837B2 (en) System and method for combining signals on a differential I/O link
WO2011134678A1 (en) Orthogonal differential vector signaling
US9672182B2 (en) High-speed serial ring
JP2012507204A (ja) 同相信号伝達を用いた差動ペアを利用した独立リンク
CN105577391B (zh) 一种基于差分型通信接口的供电装置、方法和系统
US20050185665A1 (en) Management method for a bidirectional and simultaneous exchange of digital signals and a corresponding interface for a bidirectional and simultaneous communication
US10243721B2 (en) System, apparatus and method for separately transmitting half-duplex signals in RX and TX directions
US9685136B2 (en) Display system and conversion apparatus
CN105812216B (zh) PBUS无变压器EtherCAT通信电路及应用方法
CN203138522U (zh) 一种通过电源线进行通信的医疗设备
CN207474878U (zh) 一种新型rj45接口和usb接口转接板
CN201821374U (zh) 光隔离半双工串行通信总线
US6445220B1 (en) Method and apparatus for fully-differential half-circulator for bi-directional small-signal signaling
JP2004128629A (ja) 信号伝送回路
CN115687216A (zh) 一种基于lvds的spi信号板间传输电路
CN112115086A (zh) 转接板
CN102223159A (zh) 一种用于现代中小学教学实验中的电力通讯系统
TWM334436U (en) Improvement of transmission line structure

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant