KR101308605B1 - 전기적으로 반사성인 절연 스페이서를 갖는 폐쇄형-플럭스 stram - Google Patents

전기적으로 반사성인 절연 스페이서를 갖는 폐쇄형-플럭스 stram Download PDF

Info

Publication number
KR101308605B1
KR101308605B1 KR1020117009873A KR20117009873A KR101308605B1 KR 101308605 B1 KR101308605 B1 KR 101308605B1 KR 1020117009873 A KR1020117009873 A KR 1020117009873A KR 20117009873 A KR20117009873 A KR 20117009873A KR 101308605 B1 KR101308605 B1 KR 101308605B1
Authority
KR
South Korea
Prior art keywords
layer
magnetic
electrically insulating
electronically reflective
spin
Prior art date
Application number
KR1020117009873A
Other languages
English (en)
Other versions
KR20110079824A (ko
Inventor
유안카이 쳉
디미타르 디미트로브
Original Assignee
시게이트 테크놀로지 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 시게이트 테크놀로지 엘엘씨 filed Critical 시게이트 테크놀로지 엘엘씨
Publication of KR20110079824A publication Critical patent/KR20110079824A/ko
Application granted granted Critical
Publication of KR101308605B1 publication Critical patent/KR101308605B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)

Abstract

정반사형 절연 스페이서를 갖는 폐쇄형 스핀-전달 토크 메모리가 개시된다. 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트는 전기적으로 절연성이고 전자적으로 반사성인 층을 통해 자성의 제 2 프리층에 반강자성으로 연결되는 자성의 제 1 프리층을 포함하는 다층의 자성 프리 엘리먼트를 포함한다. 전기적으로 절연성이며 비자성인 터널링 배리어층은 자성의 레퍼런스층으로부터 자성의 프리 엘리먼트를 분리한다.

Description

전기적으로 반사성인 절연 스페이서를 갖는 폐쇄형-플럭스 STRAM {FLUX-CLOSED STRAM WITH ELECTRONICALLY REFLECTIVE INSULATIVE SPACER }
본 개시물은 정반사 절연체 스페이서(specular insulator spacer)를 포함하는 폐쇄형-플럭스(flux-closed) 스핀-전달 토크 메모리 유니트에 관한 것이다.
[01] 퍼베이시브 컴퓨팅(pervasive computing) 및 핸드헬드/커뮤니케이션 산업의 고속 성장은 고용량 비휘발성 고체-상태 데이터 저장 디바이스들에 대한 수요 증가를 산출한다. 비휘발성 메모리들, 특히 플래시 메모리(flash memory)는 메모리 시장에 대한 가장 큰 몫을 차지하는 DRAM을 대신할 것으로 여겨진다. 그러나, 플래시 메모리는 느린 액세스 속도(~ms 기록 및 ~50-100ns 판독), 제한된 내구성(~103-104 프로그래밍 사이클들), 및 시스템-온-칩(SoC)에서의 집적화 어려움과 같은 몇 가지 단점들을 갖는다. 플래시 메모리(NAND 또는 NOR) 또한 32nm 이상의 노드에서 상당한 스케일링 문제들에 직면한다.
[02] 자기-저항식 랜덤 액세스 메모리(MRAM)는 미래의 비휘발성 및 범용성(universal) 메모리에 대한 또 다른 유망한 후보이다. MRAM은 비휘발성, 고속 기록/판독 속도(<10ns), 거의 제한되지 않는 프로그래밍 내구성(
Figure 112011032085071-pct00001
사이클들) 및 제로 대기 전력을 특징으로 한다. MRAM의 기본 콤포넌트는 자기 터널링 졍션(MTJ)이다. 데이터 저장부는 하이-저항 상태와 로우-저항 상태 사이에서 MTJ의 저항을 스위칭함으로써 구현된다. MRAM은 MTJ의 자화를 스위칭하기 위해 전류 유도 자기장을 사용함으로써 MTJ 저항을 스위칭한다. MTJ 크기가 축소됨에 따라, 스위칭 자기장 진폭은 증가하며 스위칭 편차(variation)는 보다 엄격해지고 있다. 따라서, 초래되는 높은 전력 소모는 통상의 MRAM의 스케일링을 제한한다.
[03] 최근, 스핀 분극 전류 유도 자화 스위칭에 기초하는 새로운 기록 메커니즘이 MRAM 설계에 도입되었다. 스핀-전달 토크 RMA(STRAM)이라 불리는 이러한 새로운 MRAM 설계는 저항 스위칭을 구현하기 위해 MTJ를 통과하는 (양방향성) 전류를 이용한다. 따라서, STRAM의 스위칭 메커니즘은 국부적으로 한정되며 STRAM은 통상의 MRAM 보다 나은 스케일링 특성을 가지는 것으로 여겨진다.
[04] 그러나, STRAM이 생산 단계에 진입하기 이전에 수율을 제한하는 다수의 요인들이 해결되어야 한다. 통상의 STRAM 설계에서의 한가지 관심사는 STRAM 셀의 프리층(free layer) 간의 두께 트레이드오프(thickness tradeoff)에 있다. 두꺼운 프리층은 열 안정성 및 데이터 보존을 개선시키지만 스위칭 전류 요구조건을 증가시키며, 이는 프리층의 두께에 비례하기 때문이다. 따라서, 저항 데이터 상태들 간에 STRAM 셀을 스위칭하는데 요구되는 전류량은 크다.
[05] 본 개시물은 정반사 절연체 스페이서(specular insulator spacer)를 포함하는 폐쇄형-플럭스(flux-closed) 스핀-전달 토크 메모리 유니트에 관한 것이다. 정반사 절연체는 전기적으로 절연성이고 전자적으로 반사성인 층으로도 간주된다. 전기적으로 절연성이고 전자적으로 반사성 층은 프리층의 자화 배향의 스위칭을 보조하기 위해 프리층으로 스핀 전자들을 다시 반사시켜, 스핀-전달 토크 메모리 유니트에 대해 요구되는 스위칭 전류를 감소시킨다.
[06] 하나의 특정 실시예에서, 정반사 반사성 스페이서를 갖는 폐쇄형-플럭스 스핀-전달 토크 메모리가 개시된다. 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트는 전기적으로 절연성이고 전자적으로 반사성인 층을 통해 제 2 자성 프리층에 반강자성으로 결합되는 제 1 자성 프리층을 포함하는 다층의 자성 프리 엘리먼트(free magnetic element)를 포함한다. 전기적으로 절연성이고 비자성인 터널링 배리어층은 자성의 레퍼런스층으로부터 자성의 프리 엘리먼트를 분리한다.
[07] 이러한 및 다양한 다른 특성들 및 장점들은 하기의 상세한 설명부의 판독으로부터 명백해질 것이다.
[08] 본 개시물은 첨부되는 도면들과 관련되는 개시물의 다양한 실시예들에 대한 하기의 상세한 설명부를 참조로 보다 명확히 이해될 것이다.
[09] 도 1은 예시적인 로우 저항 상태의 자성 터널링 졍션(MTJ)에 대한 단면 개략도이다;
[10] 도 2는 예시적인 하이 저항 상태의 MTJ에 대한 단면 개략도이다;
[11] 도 3은 예시적인 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트의 개략도이다;
[12] 도 4a는 예시적으로 불균일하며 전기적으로 절연성이고 전자적으로 반사성인 층에 대한 개략적 단면도이다;
[13] 도 4b는 예시적으로 불균일하며 전기적으로 절연성이고 전자적으로 반사성인 층에 대한 또 다른 예시적인 개략적 단면도이다;
[14] 도 5는 다층의 레퍼런스층을 포함하는 예시적인 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트의 개략도이다;
[15] 도 6a는 스페이서층을 포함하는 예시적인 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트의 개략도이다;
[16] 도 6b는 스페이서층 및 다층의 레퍼런스층을 포함하는 예시적인 폐쇄형-플럭스 스핀-전달 토크 유니트의 개략도이다;
[17] 도 7a는 스페이서층 및 제 2 정반서 스페이서층을 포함하는 예시적인 폐쇄형-플럭스 스핀-전달 토크 유니트의 개략도이다; 그리고
[18] 도 7b는 스페이서층, 다층의 레퍼런스층 및 제 2 정반서 스페이서층을 포함하는 예시적인 폐쇄형-플럭스 스핀-전달 토크 유니트의 개략도이다;
[19] 도면들은 반드시 스케일링된 것이 아니다. 도면들에 사용되는 같은 번호들은 같은 콤포넌트들로 간주된다. 그러나, 제시된 도면에서 콤포넌트로 간주되는 번호의 사용은 동일한 번호로 라벨링된 또 다른 도면의 콤포넌트를 제한하도록 의도되는 것이 아니라는 것이 이해될 것이다.
[20] 하기의 설명에서, 몇 가지 특정 실시예들에 대한 예로써 도시되며 본 발명의 일부를 형성하는 첨부되는 도면들의 세트를 참조로 한다. 본 개시물의 범주 또는 사상을 이탈하지 않고 다른 실시예들이 고려되고 고안될 수 있다는 것이 이해될 것이다. 따라서, 하기의 상세한 설명은 제한을 의미하는 것으로 간주되지 않는다. 본 명세서에 제공되는 정의들은 본 개시물의 범주를 제한하는 것을 의미하는 것이 아니며 본 명세서에서 빈번하게 사용되는 특정 용어들의 이해를 돕기 위한 것이다.
[21] 별다르게 지시되지 않는다면, 명세서 및 청구항들에 사용되는 번호들로 표현되는 모든 피처 크기들, 양들, 및 물리적 특성들은 "약"이라는 용어에 의해 모든 경우들(instances)에서 변조되는 것으로 이해될 것이다. 따라서, 반대의 표시가 없다면, 전술한 명세서 및 첨부되는 청구항들에 개시되는 공칭의 파라미터들은 본 명세서에 개시되는 설명들을 이용하는 당업자들에 의해 얻을 수 있는 원하는 특성들에 따라 변할 수 있는 근사치들(approximations)이다.
[22] 엔드포인트들에 의한 공칭 범위들의 인용은 상기 범위 내에 그리고 상기 범이 내의 임의의 범위를 포함하는 모든 수들을 포함한다(이를 테면, 1 내지 5는 1, 1.5, 2, 2.75, 3, 3.80, 4, 및 5를 포함한다).
[23] 본 명세서 및 첨부되는 청구항들에서 사용되는 것처럼, 단수 형태의 "a", "an", 및 "the"는 문맥(content)에 달리 명백하게 지시되지 않는 한, 복수의 지시물들(referents)을 포함하는 실시예들을 포함한다. 본 명세서 및 첨부되는 청구항들에 사용되는 것처럼, "또는"이라는 용어는 문맥에 달리 명백하게 지시되지 않는 한, 일반적으로 "및/또는"을 포함하는 의미로 사용된다.
[24] 본 개시물은 정반사 절연체 스페이서를 포함하는 폐쇄형-플럭스 스핀-전달 토크 메모리에 관한 것이다. 정반사 절연체 스페이서는 전기적으로 절연성이고 전자적으로 반사성인 층으로도 간주된다. 전기적으로 절연성이고 전자적으로 반사성인 층은 프리층의 자화 배향의 스위칭을 보조하기 위해 스핀 전자들을 다시 프리층으로 반사시켜, 스핀-전달 토크 메모리 유니트에 요구되는 스위칭 전류를 감소시킨다. 프리층 엘리먼트의 폐쇄형-플럭스 구조는 메모리 유니트의 열적 안정성 및 데이터 보존을 개선한다. 또한, 메모리 셀 어레이에서 인접한 메모리 셀들과의 자성 간섭(magnetic interference)은 프리층 엘리먼트의 근사 제로 모멘트(near zero moment)로 인해 최소화된다. 본 개시물이 이렇게 제한되는 것은 아니지만, 하기 제공되는 예들에 대한 논의를 통해 본 개시물의 다양한 양상들에 대한 인식이 이루어질 것이다.
[25] 도 1은 로우 저항 상태의 예시적 자기 터널링 졍션(MTJ) 셀(10)에 대한 개략적 단면도이며 도 2는 하이 상태의 예시적 MTJ 셀(10)의 개략적 단면도이다. MTJ 셀은 하이 저항 상태와 로우 저항 상태 사이에서 스위칭될 수 있는 임의의 이용가능한 메모리 셀일 수 있다. 다수의 실시예들에서, 본 명세서에 개시되는 가변성 저항식 메모리 셀은 스핀-전달 토크 메모리 셀이다.
[26] MTJ 셀(10)은 강자성 프리층(12) 및 강자성 레퍼런스(즉, 핀드(pinned))층(14)을 포함한다. 강자성 프리층(12) 및 강자성 레퍼런스층(14)은 산화물 배리어층(13) 또는 터널링 배리어에 의해 분리된다. 제 1 전극(15)은 강자성 프리층(12)과 전기적으로 접촉하며 제 2 전극(16)은 강자성 레퍼런스층(14)과 전기적으로 접촉한다. 강자성층들(12, 14)은 임의의 이용가능한 강자성(FM) 합금들 이를 테면 예를 들어, Fe, Co, Ni로 구성될 수 있으며 절연성 터널링 배리어층(13)은 전기적으로 절연성인 물질, 이를 테면 예를 들어 산화물 물질(이를 테면, Al2O3 또는 MgO)로 구성될 수 있다. 다른 적절한 물질들 또한 사용될 수 있다.
[27] 전극들(15, 16)은 강자성층들(12, 14)을 흐르는 판독 전류 및 기록 전류를 제공하는 제어 회로에 강자성층들(12, 14)을 전기적으로 연결한다. MTJ 셀(10) 양단의 저항은 강자성층들(12, 14)의 자화 배향들 또는 자화 벡터들의 상대적 배향에 의해 결정된다. 강자성 레퍼런스층(14)의 자화 방향은 미리결정된 방향으로 핀드되는 반면 강자성 프리층(12)의 자화 방향은 스핀 토크의 영향력하에 회전이 자유롭다(free). 강자성 레퍼런스층(14)의 피닝은 PtMn, IrMn 및 다른것 들과 같이 반강자성으로 정렬된(antiferromagnetically ordered) 물질과 함께 교환 바이어스(exchange bias)의 사용을 통해 달성될 수 있다.
[28] 도 1은 로우 저항 상태의 MTJ 셀(10)을 도시하며, 여기서 강자성 프리층(12)의 자화 배향은 강자성 레퍼런스층(14)의 자화 배향과 평행하며 동일한 방향이다. 이는 로우 저항 상태 또는 "0" 데이터 상태로 불린다. 도 2는 하이 저항 상태의 MTJ 셀(10)을 도시하며, 여기서 강자성 프리층(12)의 자화 배향은 강자성 레퍼런스층(14)의 자화 배향과 역평행하며 반대 방향이다. 이는 하이 저항 상태 또는 "1" 데이터 상태로 불린다.
[29] MTJ 셀(10)의 자성층을 통과하는 전류가 스핀 분극되고 MTJ 셀(10)의 프리층(12) 상의 스핀 토크에 영향을 미칠 때, 스핀-전달을 통한 MTJ 셀의 저항 상태 및 따라서 데이터 상태의 스위칭이 이루어진다. 프리층(12)에 충분한 스핀 토크가 적용될 때, 프리층(12)의 자화 배향은 2개의 방향들 사이에서 스위칭될 수 있고 따라서, MTJ 셀(10)은 전류의 방향에 따라 평행 상태(즉, 로우 저항 상태 또는 "0" 데이터 상태)와 역-평행 상태(즉, 하이 저항 상태 또는 "1" 데이터 상태) 사이에서 스위칭될 수 있다.
[30] 예시적인 스핀-전달 토크 MTJ 셀(10)은 다수의 가변성 저항식 메모리 셀들을 포함하는 메모리 디바이스를 구성하는데 이용될 수 있고, 여기서 데이터 비트는 자성의 핀드층(14)과 관련하여 자성 프리층(12)의 상대적 자화 상태를 변경함으로써 자기 터널 졍션에 저장된다. 저장된 데이터 비트는 자성의 핀드층을 중심으로 프리층의 자화 방향에 따라 변하는 셀의 저항을 측정함으로써 판독될 수 있다. 스핀-전달 토크 MTJ 셀(10)에 대해 비휘발성 랜덤 액세스 메모리의 특성을 갖도록 하기 위해, 프리층은 랜덤한 변동들(fluctuations)에 대해 열적 안정성을 나타내어, 프리층의 배향은 프리층의 변화를 구성하도록 제어될 때만 변경된다. 이러한 열적 안정성은 상이한 방법들, 이를 테면 비트 크기, 형상 및 결정성 비등방성 변화를 이용하는 자기 비등방성을 통해 달성될 수 있다. 추가의 비등방성은 교환 필드 또는 자기 필드 중 하나를 통해 다른 자성층들에 대한 자성 결합을 통해 달성될 수 있다. 일반적으로, 비등방성은 소프트 및 하드 축이 얇은 자성층들을 생성하게 한다. 하드 및 소프트 축들은 통상적으로 자기 필드의 형태이며, 자화 방향을 상기 방향으로 완전히 회전(포화)시키는데 필요한 외부 에너지의 크기에 의해 정의되며, 하드 축은 높은 포화 자기 필드를 요구한다.
[31] 도 3은 예시적 스핀-전달 토크 메모리 유니트(20)의 개략도이다. 스핀-전달 토크 메모리 유니트(20)는 다층의 자성 프리 엘리먼트(FL), 자성의 레퍼런스층(RL), 및 자성의 레퍼런스층(RL)으로부터 다층의 자성 프리 엘리먼트(FL)를 분리하는 전기적으로 절연성이며 비자성인 터널링 배리어층(TB)을 포함한다.
[32] 다층의 자성 프리 엘리먼트(FL)는 전기적으로 절연성이고 전자적으로 반사성인 층(ER)을 통해 자성의 제 2 프리층(FL2)에 반강자성으로 연결되는 자성의 제 1 프리층(FL)을 포함한다. 자성의 제 1 프리층(FL1)은 자성의 제 2 프리층(FL2) 자화 배향에 대해 역평행한 자화 배향을 갖는다. 따라서, 이러한 듀얼 졍션 프리층 엘리먼트는 "폐쇄형-플럭스"라 불린다. 반강자성 결합은 층간 결합(interlayer coupling) 또는 정적 결합(static coupling)중 하나에서 비롯될 수 있다. 따라서, 이러한 폐쇄형-플럭스 자성 프리 엘리먼트는 스핀 분극된 전류에 의해 쉽게 스위칭될 수 있다. 이러한 폐쇄형-플럭스 자성 프리 엘리먼트는 열적 안정성 및 높은 데이터 보존을 갖는다. 폐쇄형-플럭스 자성 프리 엘리먼트의 네트 모멘트(net moment)는 제로 또는 거의 제로이며, 따라서 인접한 셀에는 정적 필드가 적용되지 않으며 셀들 간의 간섭은 최소화된다.
[33] 자성의 레퍼런스층(RL)은 앞서 개시된 것처럼, 0.5 보다 큰 허용가능한 스핀 분극 범위를 갖는 임의의 이용가능한 강자성 물질일 수 있다. 앞서 개시된 것처럼, 자성의 프리층들(FL1, FL2)은 허용가능한 비등방성을 갖는 임의의 강자성 물질일 수 있다. 제 1 전극층(E1) 및 제 2 전극층(E2)은 2개의 상반되는 방향들 사이에서 다층의 자성 프리 엘리먼트(FL)의 자화 배향을 스위칭할 수 있는 전류를 제공하며, 따라서 앞서 개시된 것처럼, 스핀-전달 토크 메모리 유니트(20)는 전류의 방향에 따라 평행 상태(즉, 로우 저항 상태 또는 "0" 데이터 상태)와 역평행 상태(즉, 하이 저항 상태 또는 "1" 데이터 상태) 사이에서 스위칭될 수 있다.
[34] 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 얇은 산화물층 또는 질화물층일 수 있으며 임의의 유용한 전기적으로 절연성이고 전자적으로 반사성인 물질 이를 테면, 예를 들어, MgO, CuO, TiO, AlO, TaO, 또는 TaN, SiN로 형성될 수 있다. 전기적으로 절연성이고 전자적으로 반사성인 층(ER)의 두께 범위는 3에서 15 옴스트롱, 또는 5에서 15 옴스트롱일 수 있다. 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 1에서 10
Figure 112011032085071-pct00002
의 면적 저항(area resistance)을 갖는다.
[35] 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 전자들의 적어도 일부를 다시 자성의 프리층(FL1 및/또는 FL2)로 반사시킬 수 있고 전자들의 적어도 일부가 전기적으로 절연성이고 전자적으로 반사성인 층(ER)을 통과하게 허용한다. 이러한 반사된 전자들은 스핀 전류 효율성을 강화시킬 수 있고 평행 상태(즉, 로우 저항 상태 또는 "0" 데이터 상태)와 역평행 상태(즉, 하이 저항 상태 또는 "1" 데이터 상태) 사이에서 메모리 유니트(20)를 스위칭하기 위해 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트(20)에 적용될 필요가 있는 전류량을 효율적으로 감소시킬 수 있다. 따라서, 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 스핀 전류 효율성을 증가시키기 위해 스핀 전자들을 반사시킬 수 있기 때문에, 스위칭 전류가 상당히 감소될 수 있다.
[36] 일부 실시예들에서, 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 불균일한 두께를 가질 수 있다. 이로 인해 형성되는 경사 전류(canted current)는 스위칭 전류를 추가로 감소시키기 위해 스핀 효율성을 추가로 증가시킬 수 있다. 또한, 불균일하며 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 출력 신호를 유지하기 위해 직렬 저항을 감소시킬 수 있다.
[37] 일부 실시예들에서, 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 불균일한 두께를 가질 수 있다. 이로 인해 형성되는 경사 전류(canted current)는 스위칭 전류를 추가로 감소시키기 위해 스핀 효율성을 추가로 증가시킬 수 있다. 또한, 불균일하며 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 출력 신호를 유지하기 위해 직렬 저항을 감소시킬 수 있다. 전기적으로 절연성이고 전자적으로 반사성인 층(ER)에 대한 2개의 실시예들이 하기에 도시되고 개시되지만, 이는 임의의 불균일하며 전기적으로 절연성이고 전자적으로 반사성인 층(ER) 구조가 본 개시물의 범주 내에 있다는 것으로 이해된다.
[38] 도 4a는 예시적으로 불균일하며 전기적으로 절연성이고 전자적으로 반사성인 층(ER)의 개략적 단면도이다. 불균일한 두께를 갖는 전기적으로 절연성이고 전자적으로 반사성인 층(ER)에 대해 이렇게 예시된 실시예에서, 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 피크들(peaks) 및 밸리들(valleys)을 한정하는 대향하는 주표면들(S1, S2)을 가지며 다수의 가변 두께들(T1, T2, T3)을 갖는 전기적으로 절연성이고 전자적으로 반사성인 층(ER)을 제공한다. 전류는 전기적으로 절연성이고 전자적으로 반사성인 층(ER)의 두께 방향을 따라 대향하는 비평면형(non-planar) 주표면들(S1, S2)을 통해 이동한다.
[39] 도 4b는 또 다른 예시적으로 불균일하며 전기적으로 절연성이고 전자적으로 반사성인 층(ER)의 개략적 단면도이다. 불균일한 두께를 갖는 전기적으로 절연성이고 전자적으로 반사성인 층(ER)에 대해 이렇게 예시된 실시예에서, 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 대향하는 평면형 주표면들(S1, S2)을 갖는다. 대향하는 평면형 주표면들(S1, S2)은 제 1 두께 T를 가지며 제 2 두께로 감소되는 연속 경사진 전기적으로 절연성이고 전자적으로 반사성인 층(ER)을 한정한다. 전류는 전기적으로 절연성이고 전자적으로 반사성인 층(ER)의 두께 방향을 따라 대향하는 비평면형 주표면들(S1, S2)을 통해 이동한다.
[40] 도 5는 또 다른 예시적인 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트(30)의 개략도이다. 이러한 실시예는 도 3과 유사하며 레퍼런스층(RL)을 형성하는 합성 반강자성 엘리먼트가 추가된다. 스핀-전달 토크 메모리 유니트(30)는 다층의 자성 프리 엘리먼트(FL), 자성의 레퍼런스층(RL), 및 자성의 레퍼런스층(RL)으로부터 다층의 자성 프리 엘리먼트(FL)를 분리하는 전기적으로 절연성이며 비자성인 터널링 배리어층(TB)을 포함한다.
[41] 다층의 자성 프리 엘리먼트(FL)는 전자적 전기적으로 절연성이고 전자적으로 반사성인 층(ER)을 통해 자성의 제 2 프리층(FL2)과 반강자성으로 연결되는 자성의 제 1 프리층(FL1)을 포함한다. 자성의 제 1 프리층(FL1)은 자성의 제 2 프리층(FL2) 자화 배향을 기준으로 역평행한 자화 배향을 갖는다. 따라서, 이러한 듀얼 졍션 프리층 엘리먼트는 앞서 개시된 것처럼, "폐쇄형-플럭스" 구조로 간주된다.
[42] 예시된 자성의 레퍼런스층(RL)은 합성 반강자성 엘리먼트로 간주된다. 합성 반강자성 엘리먼트는 전기적으로 전도성이고 비자성인 스페이서층(SP1)에 의해 분리되는 제 1 강자성층(FM1) 및 제 2 강자성층(FM2)을 포함한다. 전기적으로 전도성이고 비자성인 스페이서층(SP1)은 제 1 강자성층(FM1) 및 제 2 강자성층(FM2)이 반강자성으로 정렬되고 다수의 실시예들에서, 제 1 강자성층(FM1) 및 제 2 강자성층(FM2)이 역평행 자화 배향들을 갖도록 구성되며, 이러한 하나의 배향이 예시된다. 반강자성층(AFM)은 제 2 전극층(E2)에 인접한다. 반강자성층(AFM)은 제 1 강자성층(FM1) 및 제 2 강자성층(FM2)의 자화 배향들의 피닝을 보조한다.
[43] 개시된 스핀-전달 토크 메모리 유니트들에서 합성 반강자성 엘리먼트를 사용하는 다수의 장점들이 제공된다. 일부 장점들은 프리층의 정적 필드가 감소되는 것, 레퍼런스층의 열적 안정성이 개선되는 것, 층간 확산이 감소되는 것을 포함한다.
[44] 제 1 강자성층(FM1)은 앞서 개시된 것처럼, 0.5 보다 큰 허용가능한 스핀 분극 범위를 갖는 임의의 유용한 강자성 물질일 수 있다. 제 2 강자성층(FM2)은 앞서 개시된 것처럼 임의의 유용한 강자성 물질일 수 있다. 반강자성층(AFM)은 이를 테면, PtMn, IrMn, 및 다른 것들과 같이 반강자성으로 정렬된 물질과함께 교환 바이어스의 사용을 통해 강자성층들을 피닝한다. 전기적으로 전도성이고 비자성인 스페이서층(SP1)은 임의의 유용한 전기적으로 전도성이고 반강자성인 물질, 이를 테면, 예를 들어 Ru, Pd 및 이와 유사한 것으로 형성될 수 있다.
[45] 자성의 프리층들(FLl, FL2)은 앞서 개시된 것처럼 허용가능한 비등방성을 갖는 임의의 강자성 물질일 수 있다. 제 1 전극(El) 및 제 2 전극(E2)은 상반되는 방향들 사이에서 다층의 자성 프리 엘리먼트(FL)의 자화 배향을 스위칭할 수 있는 전자들의 전류를 제공하며 따라서 스핀-전달 토크 메모리 유니트(30)는 앞서 개시된 것처럼, 전류의 방향에 따라 평행 상태(즉, 로우 저항 상태 또는 "0" 데이터 상태)와 역평행 상태(즉, 하이 저항 상태 또는 "1" 데이터 상태) 사이에서 스위칭될 수 있다.
[46] 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 얇은 산화물층 또는 질화물층일 수 있으며 임의의 유용한 전기적으로 절연성이고 전자적으로 반사성인 물질, 이를 테면 예를 들어, MgO, CuO, TiO, AlO, TaO, 또는 TaN, SiN로 형성될 수 있다. 전기적으로 절연성이고 전자적으로 반사성인 층(ER)의 두께 범위는 3 에서 15 옴스트롱, 또는 5에서 15 옴스트롱일 수 있다. 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 1에서 10
Figure 112011032085071-pct00003
의 면적 저항(area resistance)을 갖는다.
[47] 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 전자들의 적어도 일부를 자성의 프리층(FLl 및/또는 FL2)으로 다시 반사시킬 수 있고 전자들의 적어도 일부가 전기적으로 절연성이고 전자적으로 반사성인 층(ER)을 통과하는 것을 허용한다. 반사된 전자들은 스핀 전류 효율성을 강화시킬 수 있고, 평행 상태(즉, 로우 저항 상태 또는 "0" 데이터 상태)와 역평행 상태(즉, 하이 저항 상태 또는 "1" 데이터 상태) 사이에서 메모리 유니트(30)를 스위칭하기 위해 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트(30)를 통해 인가될 필요가 있는 전류의 양을 효율적으로 감소시킬 수 있다. 따라서, 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 스핀 전류 효율성을 증가시키기 위해 스핀 전자들을 반사시킬 수 있고, 스위칭 전류는 상당히 감소될 수 있다.
[48] 일부 실시예들에서, 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 불균일한 두께를 가질 수 있다. 이로 인해 형성되는 경사 전류(canted current)는 스위칭 전류를 추가로 감소시키기 위해 스핀 효율성을 추가로 증가시킬 수 있다. 또한, 불균일하며 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 출력 신호를 유지하기 위해 직렬 저항을 감소시킬 수 있다.
[49] 도 6a는 또 다른 예시적인 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트(40)의 개략도이다. 본 실시예는 도 3과 유사하며 다층의 자성 프리 엘리먼트(FL)에 전기적으로 전도성이며 비자성인 스페이서층(SP2)이 추가된다. 스핀-전달 토크 메모리 유니트(40)는 다층의 자성 프리 엘리먼트(FL), 자성의 레퍼런스층(RL), 및 자성의 레퍼런스층(RL)으로부터 다층의 자성 프리 엘리먼트(FL)를 분리하는 전기적으로 절연성이며 비자성인 터널 배리어층(TB)을 포함한다. 제 2 전극층(E2)은 자성의 레퍼런스층(RL)에 인접한다.
[50] 다층의 자성 프리 엘리먼트(FL)는 전기적으로 절연성이고 전자적으로 반사성인 층(ER) 및 전기적으로 전도성이며 비자성인 스페이서층(SP2)을 통해 자성의 제 2 프리층(FL2)에 비강자성으로 결합되는 자성의 제 1 프리층(FL1)을 포함한다. 전기적으로 전도성이며 비자성인 스페이서층(SP2)은 전기적으로 절연성이고 전자적으로 반사성인 층(ER) 및 자성의 제 2 프리층(FL2)을 분리한다. 그러나, 다른 실시예들에서, 전기적으로 전도성이며 비자성인 스페이서층(SP2)은 전기적으로 절연성이고 전자적으로 반사성인 층(ER) 및 자성의 제 1 프리층(FL1)을 분리한다. 자성의 제 1 프리층(FLl)은 자성의 제 2 프리층(FL2) 자화 배향에 대해 역평행인 자화 배향을 갖는다. 따라서, 이러한 듀얼 졍션 프리층 엘리먼트는 앞서 개시된 것처럼 "폐쇄형-플럭스"로 간주된다.
[51] 도 6b는 또 다른 예시적인 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트(40)의 개략도이다. 본 실시예는 도 6a와 유사하며 레퍼런스층(RL)을 형성하는 합성 반강자성 엘리먼트가 추가된다. 스핀-전달 토크 메모리 유니트(40)는 다층의 자성 프리 엘리먼트(FL), 자성의 레퍼런스층(RL), 및 자성의 레퍼런스층(RL)으로부터 다층의 자성 프리 엘리먼트(FL)를 분리하는 전기적으로 절연성이며 비자성인 터널링 배리어층(TB)을 포함한다.
[52] 예시된 자성의 레퍼런스층(RL)은 합성 반강자성 엘리먼트로 불린다. 합성 반강자성 엘리먼트는 제 1 강자성층(FM1) 및 전기적으로 전도성이며 비자성인 스페이서층(SP1)에 의해 분리되는 제 2 강자성층(FM2)을 포함한다. 전기적으로 전도성이며 비자성인 스페이서층(SP1)은 제 1 강자성층(FM1) 및 제 2 강자성층(FM2)이 반강자성으로 정렬되고 다수의 실시예들에서, 제 1 강자성층(FM1) 및 제 2 강자성층(FM2)은 예시된 것처럼 역평행 자화 배향들을 갖는다. 반강자성층(AFM)은 제 2 전극층(E2)과 인접한다. 반강자성층(AFM)은 제 1 강자성층(FM1) 및 제 2 강자성층(FM2)의 자화 배향들의 피닝을 보조한다.
[53] 개시된 스핀-전달 토크 메모리 유니트들에서 합성 반강자성 엘리먼트를 사용하는 것은 다수의 장점들을 갖는다. 일부 장점들은 프리층의 정적 필드가 감소된다는 것, 레퍼런스층의 열적 안정성이 강화된다는 것 및 층간 확산이 감소된다는 것을 포함한다.
[54] 제 1 강자성층(FM1) 및 제 2 강자성층(FM2)은 앞서 개시된 것처럼 0.5 보다 큰 허용가능한 스핀 분극 범위를 갖는 임의의 유용한 강자성 물질일 수 있다. 반강자성층(AFM)은 이를 테면 PtMn, IrMn, 및 다른것들과 같이 반강자성으로 정렬된 물질과 함께 교환 바이어스(exchange bias)의 사용을 통해 강자성층들을 피닝한다. 전기적으로 전도성이고 비자성인 스페이서층들(SP1, SP2)은 임의의 유용한 전기적으로 전도성이고 비자성인 물질, 이를 테면 예를 들어 Ru, Pd, 및 이와 유사한 것으로 형성될 수 있다.
[55] 자성의 프리층들(FLl, FL2)은 앞서 개시된 것처럼 허용가능한 비등방성을 갖는 임의의 강자성 물질일 수 있다. 제 1 전극층(El) 및 제 2 전극층(E2)은 2개의 상반되는 방향들 사이에서 다층의 자성 프리 엘리먼트(FL)의 자화 배향을 스위칭할 수 있고 따라서 스핀-전달 토크 메모리 유니트(40)는 앞서 개시된 것처럼 전류의 방향에 따라 평행 상태(즉, 로우 저항 상태 또는 "0" 데이터 상태)와 역-평행 상태(즉, 하이 저항 상태 또는 "1" 데이터 상태) 사이에서 스위칭될 수 있다.
[56] 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 얇은 산화물층 또는 질화물층일 수 있으며 임의의 유용한 전기적으로 절연성이고 전자적으로 반사성인 물질, 이를 테면 예를 들어 MgO, CuO, TiO, AlO, TaO, 또는 TaN, SiN로 형성된다. 전기적으로 절연성이고 전자적으로 반사성인 층(ER)의 두께의 범위는 3에서 15 옴스트롱, 또는 5에서 15 옴스트롱일 수 있다. 다수의 실시예들에서, 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 1에서 10
Figure 112011032085071-pct00004
의 면적 저항을 갖는다.
[57] 다층의 자성 프리 엘리먼트(FL)가 전기적으로 절연성이고 전자적으로 반사성인 층(ER)(3-20 옴스트롱의 두께를 가짐) 및 전기적으로 전도성이고 비자성인 스페이서층(SP2)(5-20 옴스트롱의 두께를 가짐)을 포함하는 일부 실시예들에서, 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 이를 테면 예를 들어 5에서 50
Figure 112011032085071-pct00005
의 큰 면적 저항을 가질 수 있다. 이러한 실시예들에 적합한 전기적으로 절연성이고 전자적으로 반사성인(ER) 물질들은 예를 들어
Figure 112011032085071-pct00006
를 포함하며, 여기서 전기적으로 전도성이고 비자성인 스페이서층(SP2) 물질은 예를 들어 Cu, Au, Ag, Cr, Al, Ta, Ru, 또는 W를 포함한다.
[58] 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 전자들의 적어도 일부를 자성의 프리층(FL1 및/또는 FL2)으로 다시 반사시킬 수 있고 전자들의 적어도 일부가 전기적으로 절연성이고 전자적으로 반사성인 층(ER)을 통과하게 허용한다. 이러한 반사된 전자들은 스핀 전류 효율성을 강화시키고, 평행 상태(즉, 로우 저항 상태 또는 "0" 데이터 상태)와 역-평행 상태(즉, 하이 저항 상태 또는 "1" 데이터 상태) 사이에서 메모리 유니트(40)를 스위칭하기 위해 페쇄형-플럭스 스핀-전달 토크 메모리 유니트(40)를 통해 인가될 필요가 있는 전류의 양을 효율적으로 감소시킬 수 있다. 따라서, 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 스핀 전류 효율성을 증가시키기 위해 스핀 전자들을 반사시킬 수 있고, 스위칭 전류가 상당히 감소될 수 있다.
[59] 일부 실시예들에서, 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 앞서 개시된 것처럼 비균일 두께를 가질 수 있다. 이로 인해 형성되는 경사 전류(canted current)는 스위칭 전류를 추가로 감소시키기 위해 스핀 효율성을 추가로 증가시킬 수 있다. 또한, 불균일하며 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 출력 신호를 유지하기 위해 직렬 저항을 감소시킬 수 있다.
[60] 도 7a는 또 다른 예시적인 폐쇄형 스핀-전달 토크 메모리 유니트(50)의 개략도이다. 이러한 실시예는 도 6a와 유사하며 다층의 자성 프리 엘리먼트(FL)에 전자적 전기적으로 절연성이고 전자적으로 반사성인 층(ER)이 추가된다. 스핀-전달 토크 메모리 유니트(50)는 다층의 자성 프리 엘리먼트(FL), 자성의 레퍼런스층(RL), 및 자성의 레퍼런스층(RL)으로부터 다층의 자성 프리 엘리먼트(FL)를 분리하는 전기적으로 절연성이며 비자성인 터널링 배리어층(TB)을 포함한다.
[61] 다층의 자성 프리 엘리먼트(FL)는 전기적으로 절연성이고 전자적으로 반사성인 층(ER) 및 전기적으로 전도성이며 비자성인 스페이서층(SP2)을 통해 자성의 제 2 프리층(FL2)에 반강자성으로 연결되는 자성의 제 1 프리층(FL1) 및 제 2의 전자적 전기적으로 절연성이고 전자적으로 반사성인 층(ER2)을 포함한다. 전기적으로 전도성이며 비자성인 스페이서층(SP2)은 전자적 전기적으로 절연성이고 전자적으로 반사성인 층(ER) 및 제 2의 전자적 전기적 절연성이고 전자적으로 반사성인 층(ER2)을 분리한다. 자성의 제 1 프리층(FLl)은 자성의 제 2 프리층(FL2) 자화 배향에 대해 역평행한 자화 배향을 갖는다. 따라서, 이러한 듀얼 졍션 프리층 엘리먼트는 앞서 개시된 것처럼 "폐쇄형-플럭스" 구조로 간주된다.
[62] 도 7b는 또 다른 예시적인 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트(50)의 개략도이다. 본 실시예는 도 7a와 유사하며 레퍼런스층(RL)을 형성하는 합성 반강자성 엘리먼트가 추가된다. 스핀-전달 토크 메모리 유니트(40)는 다층의 자성 프리 엘리먼트(FL), 자성의 레퍼런스층(RL), 및 자성의 레퍼런스층(RL)으로부터 다층의 자성 프리 엘리먼트(FL)를 분리하는 전기적으로 절연성이며 비자성인 터널링 배리어층(TB)을 포함한다.
[63] 예시된 자성의 레퍼런스층(RL)은 합성 반강자성 엘리먼트로 간주된다. 합성 반강자성 엘리먼트는 전기적으로 전도성이며 비자성인 스페이서층(SP1)에 의해 분리되는 제 1 강자성층(FM1) 및 제 2 강자성층(FM2)을 포함한다. 전기적으로 전도성이고 비자성인 스페이서층(SP1)은 제 1 강자성층(FM1) 및 제 2 강자성층(FM2)이 반강자성으로 정렬되고 다수의 실시예들에서 제 1 강자성층(FM1) 및 제 2 강자성층(FM2)이 예시된 것처럼 역평행 자화 배향들을 갖도록 구성된다. 반강자성층(AFM)은 제 2 전극층(E2)에 인접한다. 반강자성층(AFM)은 제 1 강자성층(FM1) 및 제 2 강자성층(FM2)의 자화 배향들의 피닝을 보조한다.
[64] 개시된 스핀-전달 토크 메모리 유니트들에서 합성 반강자성 엘리먼트를 사용하는 다수의 장점들이 제공된다. 일부 장점들은 프리층의 정적 필드가 감소되는 것, 레퍼런스층의 열적 안정성이 개선되는 것, 층간 확산이 감소되는 것을 포함한다.
[65] 제 1 강자성층(FM1) 및 제 2 강자성층(FM2)은 앞서 개시된 것처럼 0.5 보다 큰 허용가능한 스핀 분극 범위를 갖는 임의의 유용한 강자성 물질일 수 있다. 반강자성층(AFM)은 이를 테면 PtMn, IrMn, 및 다른것들과 같이 반강자성으로 정렬된 물질과 함께 교환 바이어스(exchange bias)의 사용을 통해 강자성층들을 피닝한다. 전기적으로 전도성이고 비자성인 스페이서층들(SP1, SP2)은 임의의 유용한 전기적으로 전도성이고 비자성인 물질, 이를 테면 예를 들어 Ru, Pd, 및 이와 유사한 것으로 형성될 수 있다.
[66] 자성의 프리층들(FL1, FL2)은 앞서 개시된 것처럼, 허용가능한 비등방성을 갖는 임의의 강자성 물질일 수 있다. 제 1 전극층(E1) 및 제 2 전극층(E2)은 2개의 상반되는 방향들 사이에서 다층의 자성 프리 엘리먼트(FL)의 자화 배향을 스위칭할 수 있는 전류를 제공하며, 따라서 앞서 개시된 것처럼, 스핀-전달 토크 메모리 유니트(20)는 전류의 방향에 따라 평행 상태(즉, 로우 저항 상태 또는 "0" 데이터 상태)와 역평행 상태(즉, 하이 저항 상태 또는 "1" 데이터 상태) 사이에서 스위칭될 수 있다.
[67] 전기적으로 절연성이고 전자적으로 반사성인 층(ER 및/또는 ER2)은 얇은 산화물층 또는 질화물층일 수 있으며 임의의 유용한 전기적으로 절연성이고 전자적으로 반사성인 물질 이를 테면, 예를 들어, MgO, CuO, TiO, AlO, TaO, 또는 TaN, SiN로 형성될 수 있다. 전기적으로 절연성이고 전자적으로 반사성인 층(ER 및/또는 ER2)의 두께 범위는 3에서 15 옴스트롱, 또는 5에서 15 옴스트롱일 수 있다. 전기적으로 절연성이고 전자적으로 반사성인 층(ER 및/또는 ER2)은 1에서 10
Figure 112011032085071-pct00007
의 면적 저항(area resistance)을 갖는다.
[68] 다층의 자성 프리 엘리먼트(FL)가 전기적으로 절연성이고 전자적으로 반사성인 층들(ER, ER2)(3-20 옴스트롱의 두께를 가짐) 및 전기적으로 전도성이고 비자성인 스페이서층(SP2)(5-20 옴스트롱의 두께를 가짐)을 포함하는 일부 실시예들에서, 전기적으로 절연성이고 전자적으로 반사성인 층들(ER, ER2)은 이를 테면 예를 들어 5에서 50
Figure 112011032085071-pct00008
의 큰 면적 저항을 가질 수 있다. 이러한 실시예들에 적합한 전기적으로 절연성이고 전자적으로 반사성인 층들(ER, ER2)의 물질들은 예를 들어
Figure 112011032085071-pct00009
를 포함하며, 여기서 전기적으로 전도성이고 비자성인 스페이서층(SP2) 물질은 예를 들어 Cu, Au, Ag, Cr, Al, Ta, Ru, 또는 W를 포함한다.
[69] 전기적으로 절연성이고 전자적으로 반사성인 층(ER)은 전자들의 적어도 일부를 다시 자성의 프리층(FL1 및/또는 FL2)로 반사시킬 수 있고 전자들의 적어도 일부가 전기적으로 절연성이고 전자적으로 반사성인 층들(ER, ER2)을 통과하게 허용한다. 이러한 반사된 전자들은 스핀 전류 효율성을 강화시킬 수 있고 평행 상태(즉, 로우 저항 상태 또는 "0" 데이터 상태)와 역평행 상태(즉, 하이 저항 상태 또는 "1" 데이터 상태) 사이에서 메모리 유니트(20)를 스위칭하기 위해 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트(20)에 적용될 필요가 있는 전류량을 효율적으로 감소시킬 수 있다. 따라서, 전기적으로 절연성이고 전자적으로 반사성인 층들(ER, ER2)은 스핀 전류 효율성을 증가시키기 위해 스핀 전자들을 반사시킬 수 있고, 스위칭 전류가 상당히 감소될 수 있다.
[70] 일부 실시예들에서, 전기적으로 절연성이고 전자적으로 반사성인 층들(ER, ER2)은 앞서 개시된 것처럼, 불균일한 두께를 가질 수 있다. 이로 인해 형성되는 경사 전류(canted current)는 스위칭 전류를 추가로 감소시킬 수 있다. 또한, 불균일하며 전기적으로 절연성이고 전자적으로 반사성인 층(ER 및/또는 ER2)은 출력 신호를 유지하기 위해 직렬 저항을 감소시킬 수 있다.
[71] 일부 실시예들에서, 앞서 개시된 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트들은 반사성 스핀 전자들 대신 스핀 전자들을 산란시키는 물질층을 포함할 수 있다. 이러한 스핀 전자 산란층은 앞서 개시된 전기적으로 절연성이고 전자적으로 반사성인 층을 대신하거나 또는 추가될 수 있다. 스핀 전자 산란층은 전기적으로 전도성인 금속, 이를 테면 예를 들어, Ru, Pd, Ta, Pt, Al, 및 이와 유사한 것으로 형성될 수 있다. 이러한 층의 두께의 범위는 10 내지 50 옴스트롱일 수 있다.
[72] 따라서, 전자적으로 반사성인 절연 스페이서를 갖는 폐쇄형-플럭스 STRAM의 실시예들이 개시된다. 상기 개시된 구현예들 및 다른 구현예들은 하기의 청구항들이 범위내이다. 당업자들은 본 개시물이 개시된 것들과 다른 실시예들로 실시될 수 있다는 것을 인식할 것이다. 개시된 실시예들은 제한되지 않고 예시를 목적으로 제시된 것이며 본 발명은 하기의 청구항들에 의해서만 제한된다.

Claims (20)

  1. 스핀-전달 토크 메모리 유니트로서,
    전기적으로 절연성이고 전자적으로 반사성인 층을 통해 자성의 제 2 프리층에 반강자성으로 연결되는 자성의 제 1 프리층을 포함하는 다층의 폐쇄형-플럭스 자성 프리 엘리먼트;
    자성의 레퍼런스층; 및
    상기 자성의 레퍼런스층으로부터 상기 다층의 폐쇄형-플럭스 자성 프리 엘리먼트를 분리하는 전기적으로 절연성이고 비자성인 터널링 배리어층
    을 포함하는, 스핀-전달 토크 메모리 유니트.
  2. 제 1 항에 있어서,
    상기 전기적으로 절연성이고 전자적으로 반사성인 층은 불균일한 두께를 갖는, 스핀-전달 토크 메모리 유니트.
  3. 제 1 항에 있어서,
    상기 전기적으로 절연성이고 전자적으로 반사성인 층은 3에서 15 옴스트롱의 범위에 있는 두께 값을 갖는, 스핀-전달 토크 메모리 유니트.
  4. 제 1 항에 있어서,
    상기 전기적으로 절연성이고 전자적으로 반사성인 층은 MgO, CuO, TiO, AlO, TaO, TaN, 또는 SiN을 포함하는, 스핀-전달 토크 메모리 유니트.
  5. 제 1 항에 있어서,
    상기 전기적으로 절연성이고 전자적으로 반사성인 층은 1에서 10
    Figure 112011032085071-pct00010
    의 면적 저항(area resistance)을 갖는, 스핀-전달 토크 메모리 유니트.
  6. 제 1 항에 있어서,
    상기 자성의 레퍼런스층은 합성 반강자성 엘리먼트를 포함하는, 스핀-전달 토크 메모리 유니트.
  7. 제 1 항에 있어서,
    다층의 상기 자성 프리 엘리먼트는 상기 자성의 제 1 프리층 또는 자성의 제 2 프리층 중 하나로부터 상기 전기적으로 절연성이고 전자적으로 반사성인 층을 분리하는 전기적으로 전도성인 비강자성층을 더 포함하는, 스핀-전달 토크 메모리 유니트.
  8. 제 7 항에 있어서,
    다층의 상기 자성 프리 엘리먼트는 제 2의 전기적으로 절연성이고 전자적으로 반사성인 층을 더 포함하며, 상기 전기적으로 전도성인 비강자성층은 상기 제 2의 전기적으로 절연성이고 전자적으로 반사성인 층으로부터 상기 전기적으로 절연성이고 전자적으로 반사성인 층을 분리하는, 스핀-전달 토크 메모리 유니트.
  9. 제 7 항에 있어서,
    상기 전기적으로 전도성인 비강자성층은 5에서 20 옴스트롱 범위에 있는 두께 값을 갖는, 스핀-전달 토크 메모리 유니트.
  10. 제 7 항에 있어서,
    상기 전기적으로 전도성인 비강자성층은 Ta, Cu, Ru, 또는 Au를 포함하는, 스핀-전달 토크 메모리 유니트.
  11. 폐쇄형-플럭스(flux-closed) 스핀-전달 토크 메모리 유니트로서,
    전기적으로 전도성인 비강자성층 및 전기적으로 절연성이고 전자적으로 반사성인 층을 통해 자성의 제 2 프리층에 반강자성으로 연결되는 자성의 제 1 프리층을 포함하는 다층의 자성 프리 엘리먼트;
    자성의 레퍼런스층; 및
    상기 자성의 레퍼런스층으로부터 상기 자성의 프리 엘리먼트를 분리하는 전기적으로 절연성이고 비자성인 터널링 배리어층
    을 포함하는, 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트.
  12. 제 11 항에 있어서,
    상기 전기적으로 절연성이고 전자적으로 반사성인 층들은 불균일한 두께를 갖는, 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트.
  13. 제 11 항에 있어서,
    상기 전기적으로 절연성이고 전자적으로 반사성인 층은 3에서 15 옴스트롱 범위에 있는 두께 값을 갖는, 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트.
  14. 제 11 항에 있어서,
    상기 전기적으로 절연성이고 전자적으로 반사성인 층은 MgO, CuO, TiO, AlO, TaO, TaN, 또는 SiN를 포함하는, 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트.
  15. 제 11 항에 있어서,
    상기 전기적으로 절연성이고 전자적으로 반사성인 층은 1에서 10
    Figure 112011032085071-pct00011
    의 면적 저항을 갖는, 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트.
  16. 제 11 항에 있어서,
    상기 자성의 레퍼런스층은 합성 반강자성 엘리먼트를 포함하는, 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트.
  17. 제 11 항에 있어서,
    상기 다층의 자성 프리 엘리먼트는 제 2의 전기적으로 절연성이고 전자적으로 반사성인 층을 더 포함하며, 상기 전기적으로 전도성인 비강자성층은 상기 제 2의 전기적으로 절연성이고 전자적으로 반사성인 층으로부터 상기 전기적으로 절연성이고 전자적으로 반사성인 층을 분리하는, 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트.
  18. 제 11 항에 있어서,
    상기 전기적으로 전도성인 비강자성층은 5에서 20 옴스트롱 범위의 두께 값을 갖는, 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트.
  19. 제 11 항에 있어서,
    상기 전기적으로 전도성인 비강자성층은 Ta, Cu, Ru, 또는 Au를 포함하는, 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트.
  20. 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트로서,
    전기적으로 절연성이고 전자적으로 반사성인 층을 통해 자성의 제 2 프리층에 반강자성으로 연결되는 자성의 제 1 프리층을 포함하는 다층의 자성 프리 엘리먼트―상기 전기적으로 절연성이고 전자적으로 반사성인 층은 3에서 15 옴스트롱 범위에 있는 두께 값을 가지며 MgO, CuO, TiO, AlO, TaO, TaN, 또는 SiN를 포함함―;
    합성 반강자성 엘리먼트를 포함하는 자성의 레퍼런스층; 및
    상기 자성의 레퍼런스층으로부터 상기 자성의 프리 엘리먼트를 분리하는 전기적으로 절연성이고 비자성인 터널링 배리어층
    을 포함하는, 폐쇄형-플럭스 스핀-전달 토크 메모리 유니트.
KR1020117009873A 2008-09-29 2009-09-29 전기적으로 반사성인 절연 스페이서를 갖는 폐쇄형-플럭스 stram KR101308605B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/239,884 2008-09-29
US12/239,884 US7985994B2 (en) 2008-09-29 2008-09-29 Flux-closed STRAM with electronically reflective insulative spacer
PCT/US2009/058756 WO2010037090A2 (en) 2008-09-29 2009-09-29 Flux-closed stram with electronically reflective insulative spacer

Publications (2)

Publication Number Publication Date
KR20110079824A KR20110079824A (ko) 2011-07-08
KR101308605B1 true KR101308605B1 (ko) 2013-09-17

Family

ID=41394852

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117009873A KR101308605B1 (ko) 2008-09-29 2009-09-29 전기적으로 반사성인 절연 스페이서를 갖는 폐쇄형-플럭스 stram

Country Status (6)

Country Link
US (3) US7985994B2 (ko)
EP (1) EP2342716B1 (ko)
JP (1) JP5667982B2 (ko)
KR (1) KR101308605B1 (ko)
CN (1) CN102216995B (ko)
WO (1) WO2010037090A2 (ko)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009054062A1 (ja) * 2007-10-26 2011-03-03 キヤノンアネルバ株式会社 サンドイッチ構造の磁化自由層を有する磁気トンネル接合素子
US7999336B2 (en) 2008-04-24 2011-08-16 Seagate Technology Llc ST-RAM magnetic element configurations to reduce switching current
US9929211B2 (en) * 2008-09-24 2018-03-27 Qualcomm Incorporated Reducing spin pumping induced damping of a free layer of a memory device
US7880209B2 (en) * 2008-10-09 2011-02-01 Seagate Technology Llc MRAM cells including coupled free ferromagnetic layers for stabilization
US8558331B2 (en) * 2009-12-08 2013-10-15 Qualcomm Incorporated Magnetic tunnel junction device
JP2012014787A (ja) * 2010-06-30 2012-01-19 Sony Corp 記憶装置
US8772886B2 (en) * 2010-07-26 2014-07-08 Avalanche Technology, Inc. Spin transfer torque magnetic random access memory (STTMRAM) having graded synthetic free layer
JP2012238631A (ja) * 2011-05-10 2012-12-06 Sony Corp 記憶素子、記憶装置
KR101195041B1 (ko) * 2011-05-12 2012-10-31 고려대학교 산학협력단 자기 공명 세차 현상을 이용한 스핀전달토크 자기 메모리 소자
US8493695B1 (en) 2011-06-28 2013-07-23 Western Digital (Fremont), Llc Method and system for providing a magnetic read transducer having an improved signal to noise ratio
JP2013115319A (ja) * 2011-11-30 2013-06-10 Sony Corp 記憶素子、記憶装置
US8890267B2 (en) 2012-12-03 2014-11-18 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions having a graded magnetic free layer
US9029965B2 (en) 2012-12-03 2015-05-12 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions having a thermally stable and easy to switch magnetic free layer
US9263189B2 (en) * 2013-04-23 2016-02-16 Alexander Mikhailovich Shukh Magnetic capacitor
US10989769B2 (en) * 2013-12-27 2021-04-27 Infineon Technologies Ag Magneto-resistive structured device having spontaneously generated in-plane closed flux magnetization pattern
US9792971B2 (en) 2014-07-02 2017-10-17 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions with rare earth-transition metal layers
KR102384258B1 (ko) * 2015-06-26 2022-04-07 인텔 코포레이션 감소된 스위칭 전류를 갖는 수직 자기 메모리
CN105374935B (zh) * 2015-12-01 2018-10-09 中电海康集团有限公司 一种用于stt-mram的含有不均匀势垒层的磁性隧道结
US10439133B2 (en) * 2017-03-13 2019-10-08 Samsung Electronics Co., Ltd. Method and system for providing a magnetic junction having a low damping hybrid free layer
DE102017112546B4 (de) * 2017-06-07 2021-07-08 Infineon Technologies Ag Magnetoresistive Sensoren mit Magnetisierungsmustern mit geschlossenem Fluss
US10686123B2 (en) * 2018-08-16 2020-06-16 International Business Machines Corporation Multilayered magnetic free layer structure for spin-transfer torque (STT) MRAM
CN112490353A (zh) * 2019-09-11 2021-03-12 上海磁宇信息科技有限公司 一种磁性随机存储器存储单元及磁性随机存储器
CN112750945A (zh) * 2019-10-31 2021-05-04 上海磁宇信息科技有限公司 一种具双自由层的磁性随机存储器存储单元

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229544A (ja) * 2002-02-04 2003-08-15 Mitsubishi Electric Corp 磁気記憶装置
US6765819B1 (en) * 2002-07-25 2004-07-20 Hewlett-Packard Development Company, Lp. Magnetic memory device having improved switching characteristics
US20060060901A1 (en) 2004-09-17 2006-03-23 Shiho Nakamura Magnetic recording element and magnetic recording device using the same
US7241631B2 (en) 2004-12-29 2007-07-10 Grandis, Inc. MTJ elements with high spin polarization layers configured for spin-transfer switching and spintronics devices using the magnetic elements

Family Cites Families (209)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006A (en) * 1845-04-22 Improvement in self-adjusting platens for cotton and other presses
JPS6252797A (ja) 1985-08-30 1987-03-07 Mitsubishi Electric Corp 半導体記憶装置
US5191223A (en) 1991-07-03 1993-03-02 International Business Machines Corporation Device for selective magnetization and method
KR0158485B1 (ko) 1995-03-31 1999-02-01 김광호 본딩옵션용 워드라인전압 승압회로
US5646419A (en) 1995-04-07 1997-07-08 California Institute Of Technology n-type wide bandgap semiconductors grown on a p-type layer to form hole injection pn heterojunctions and methods of fabricating the same
US5761115A (en) 1996-05-30 1998-06-02 Axon Technologies Corporation Programmable metallization cell structure and method of making same
US6602677B1 (en) 1997-09-19 2003-08-05 Promega Corporation Thermostable luciferases and methods of production
US5920446A (en) 1998-01-06 1999-07-06 International Business Machines Corporation Ultra high density GMR sensor
US6072718A (en) 1998-02-10 2000-06-06 International Business Machines Corporation Magnetic memory devices having multiple magnetic tunnel junctions therein
JP3672435B2 (ja) 1998-04-22 2005-07-20 富士通株式会社 不揮発性メモリ装置
US6252796B1 (en) 1998-08-14 2001-06-26 U.S. Philips Corporation Device comprising a first and a second ferromagnetic layer separated by a non-magnetic spacer layer
US6178136B1 (en) 1998-09-28 2001-01-23 Texas Instruments Incorporated Semiconductor memory device having Y-select gate voltage that varies according to memory cell access operation
JP2000132961A (ja) 1998-10-23 2000-05-12 Canon Inc 磁気薄膜メモリ、磁気薄膜メモリの読出し方法、及び磁気薄膜メモリの書込み方法
JP4144824B2 (ja) 1999-03-26 2008-09-03 キヤノン株式会社 半導体集積回路装置の故障箇所特定方法
US6542000B1 (en) 1999-07-30 2003-04-01 Iowa State University Research Foundation, Inc. Nonvolatile programmable logic devices
GB9925213D0 (en) 1999-10-25 1999-12-22 Univ Cambridge Tech Magnetic logic elements
US6469926B1 (en) 2000-03-22 2002-10-22 Motorola, Inc. Magnetic element with an improved magnetoresistance ratio and fabricating method thereof
US6700753B2 (en) 2000-04-12 2004-03-02 Seagate Technology Llc Spin valve structures with specular reflection layers
US6381106B1 (en) 2000-04-12 2002-04-30 International Business Machines Corporation Top spin valve sensor that has a free layer structure with a cobalt iron boron (cofeb) layer
TW504713B (en) 2000-04-28 2002-10-01 Motorola Inc Magnetic element with insulating veils and fabricating method thereof
US6979586B2 (en) 2000-10-06 2005-12-27 Headway Technologies, Inc. Magnetic random access memory array with coupled soft adjacent magnetic layer
US6574079B2 (en) 2000-11-09 2003-06-03 Tdk Corporation Magnetic tunnel junction device and method including a tunneling barrier layer formed by oxidations of metallic alloys
FR2817999B1 (fr) 2000-12-07 2003-01-10 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin et a empilement(s) tri-couche(s) et memoire utilisant ce dispositif
FR2817998B1 (fr) 2000-12-07 2003-01-10 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin et a rotation d'aimantation, memoire et procede d'ecriture utilisant ce dispositif
US6473279B2 (en) 2001-01-04 2002-10-29 International Business Machines Corporation In-stack single-domain stabilization of free layers for CIP and CPP spin-valve or tunnel-valve read heads
US6584016B2 (en) 2001-01-08 2003-06-24 Azalea Microelectronics Corporation Non-volatile memory architecture and method of operation
JP3677455B2 (ja) 2001-02-13 2005-08-03 Necエレクトロニクス株式会社 不揮発性磁気記憶装置およびその製造方法
US7189435B2 (en) 2001-03-14 2007-03-13 University Of Massachusetts Nanofabrication
US6744086B2 (en) 2001-05-15 2004-06-01 Nve Corporation Current switched magnetoresistive memory cell
JP3565268B2 (ja) 2001-06-22 2004-09-15 株式会社東芝 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置
US6569745B2 (en) 2001-06-28 2003-05-27 Sharp Laboratories Of America, Inc. Shared bit line cross point memory array
US6809909B2 (en) 2001-07-16 2004-10-26 Seagate Technology Llc Giant magnetoresistive sensor with high-resistivity magnetic layers
US6781801B2 (en) 2001-08-10 2004-08-24 Seagate Technology Llc Tunneling magnetoresistive sensor with spin polarized current injection
US6888703B2 (en) 2001-09-17 2005-05-03 Headway Technologies, Inc. Multilayered structures comprising magnetic nano-oxide layers for current perpindicular to plane GMR heads
WO2003032392A2 (en) 2001-10-09 2003-04-17 Axon Technologies Corporation Programmable microelectronic device, structure, and system, and method of forming the same
JP3834616B2 (ja) 2001-11-13 2006-10-18 国立大学法人東北大学 スピンフィルタ
KR100450794B1 (ko) 2001-12-13 2004-10-01 삼성전자주식회사 마그네틱 랜덤 엑세스 메모리 및 그 작동 방법
US6650562B2 (en) 2002-01-23 2003-11-18 Hewlett-Packard Development Company, L.P. System and method for determining the logic state of a memory cell in a magnetic tunnel junction memory device
US6778421B2 (en) 2002-03-14 2004-08-17 Hewlett-Packard Development Company, Lp. Memory device array having a pair of magnetic bits sharing a common conductor line
JP4073691B2 (ja) 2002-03-19 2008-04-09 株式会社ルネサステクノロジ 半導体記憶装置
TWI222763B (en) 2002-03-29 2004-10-21 Toshiba Corp Magnetic logic element and magnetic logic element array
KR100476889B1 (ko) 2002-04-04 2005-03-17 삼성전자주식회사 플래쉬메모리의 워드라인디코더
US6888709B2 (en) 2002-05-03 2005-05-03 Applied Energy Llc Electromagnetic transient voltage surge suppression system
US6711067B1 (en) 2002-05-08 2004-03-23 Virage Logic Corporation System and method for bit line sharing
KR20030089078A (ko) 2002-05-16 2003-11-21 주식회사 하이닉스반도체 자기터널접합소자를 갖는 자기메모리셀
WO2003103137A1 (ja) 2002-05-31 2003-12-11 富士通株式会社 増幅装置
US6633498B1 (en) 2002-06-18 2003-10-14 Motorola, Inc. Magnetoresistive random access memory with reduced switching field
US6781867B2 (en) 2002-07-11 2004-08-24 Micron Technology, Inc. Embedded ROM device using substrate leakage
US6850433B2 (en) 2002-07-15 2005-02-01 Hewlett-Packard Development Company, Lp. Magnetic memory device and method
US7196882B2 (en) 2002-07-23 2007-03-27 Micron Technology, Inc. Magnetic tunnel junction device and its method of fabrication
US6714444B2 (en) 2002-08-06 2004-03-30 Grandis, Inc. Magnetic element utilizing spin transfer and an MRAM device using the magnetic element
US6888742B1 (en) 2002-08-28 2005-05-03 Grandis, Inc. Off-axis pinned layer magnetic element utilizing spin transfer and an MRAM device using the magnetic element
US6759263B2 (en) 2002-08-29 2004-07-06 Chentsau Ying Method of patterning a layer of magnetic material
US6801415B2 (en) 2002-08-30 2004-10-05 Freescale Semiconductor, Inc. Nanocrystalline layers for improved MRAM tunnel junctions
US6831312B2 (en) 2002-08-30 2004-12-14 Freescale Semiconductor, Inc. Amorphous alloys for magnetic devices
US6711051B1 (en) 2002-09-05 2004-03-23 National Semiconductor Corporation Static RAM architecture with bit line partitioning
US6838740B2 (en) 2002-09-27 2005-01-04 Grandis, Inc. Thermally stable magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US7042685B2 (en) * 2002-09-30 2006-05-09 Seagate Technology Llc Suppression of thermally activated magnetization fluctuations in magnetoresistive elements via spin momentum transfer
US6958927B1 (en) 2002-10-09 2005-10-25 Grandis Inc. Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element
US6639830B1 (en) 2002-10-22 2003-10-28 Btg International Ltd. Magnetic memory device
KR100536592B1 (ko) 2002-11-01 2005-12-14 삼성전자주식회사 자기 메모리 및 그 제조 방법
JP2004179483A (ja) 2002-11-28 2004-06-24 Hitachi Ltd 不揮発性磁気メモリ
US6909633B2 (en) 2002-12-09 2005-06-21 Applied Spintronics Technology, Inc. MRAM architecture with a flux closed data storage layer
US7190611B2 (en) 2003-01-07 2007-03-13 Grandis, Inc. Spin-transfer multilayer stack containing magnetic layers with resettable magnetization
US6829161B2 (en) 2003-01-10 2004-12-07 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6845038B1 (en) 2003-02-01 2005-01-18 Alla Mikhailovna Shukh Magnetic tunnel junction memory device
US6864551B2 (en) 2003-02-05 2005-03-08 Applied Spintronics Technology, Inc. High density and high programming efficiency MRAM design
US7126200B2 (en) 2003-02-18 2006-10-24 Micron Technology, Inc. Integrated circuits with contemporaneously formed array electrodes and logic interconnects
US6847547B2 (en) 2003-02-28 2005-01-25 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6998150B2 (en) 2003-03-12 2006-02-14 Headway Technologies, Inc. Method of adjusting CoFe free layer magnetostriction
US6963500B2 (en) 2003-03-14 2005-11-08 Applied Spintronics Technology, Inc. Magnetic tunneling junction cell array with shared reference layer for MRAM applications
US7092279B1 (en) 2003-03-24 2006-08-15 Sheppard Douglas P Shared bit line memory device and method
JP4008857B2 (ja) 2003-03-24 2007-11-14 株式会社東芝 半導体記憶装置及びその製造方法
US7067866B2 (en) 2003-03-31 2006-06-27 Applied Spintronics Technology, Inc. MRAM architecture and a method and system for fabricating MRAM memories utilizing the architecture
WO2004093087A1 (en) * 2003-04-16 2004-10-28 Agency For Science, Technology And Research Magnetic memory device
KR100522943B1 (ko) * 2003-04-25 2005-10-25 학교법인고려중앙학원 소자 크기 변화에 무관하게 작고 안정한 바이어스 자기장을 갖는 자기 저항 구조
US6933155B2 (en) 2003-05-21 2005-08-23 Grandis, Inc. Methods for providing a sub .15 micron magnetic memory structure
US6834005B1 (en) 2003-06-10 2004-12-21 International Business Machines Corporation Shiftable magnetic shift register and method of using the same
US6885582B2 (en) 2003-06-12 2005-04-26 Hewlett-Packard Development Company, L.P. Magnetic memory storage device
US6818961B1 (en) 2003-06-30 2004-11-16 Freescale Semiconductor, Inc. Oblique deposition to induce magnetic anisotropy for MRAM cells
US7088624B2 (en) 2003-07-18 2006-08-08 Infineon Technologies, A.G. System of multiplexed data lines in a dynamic random access memory
US7245462B2 (en) 2003-08-21 2007-07-17 Grandis, Inc. Magnetoresistive element having reduced spin transfer induced noise
US6985385B2 (en) 2003-08-26 2006-01-10 Grandis, Inc. Magnetic memory element utilizing spin transfer switching and storing multiple bits
US6943040B2 (en) 2003-08-28 2005-09-13 Headway Technologes, Inc. Magnetic random access memory designs with controlled magnetic switching mechanism by magnetostatic coupling
US7009266B2 (en) 2003-08-29 2006-03-07 Applied Spintronics Technology, Inc. Method and system for providing a magnetic element including passivation structures
US7161829B2 (en) 2003-09-19 2007-01-09 Grandis, Inc. Current confined pass layer for magnetic elements utilizing spin-transfer and an MRAM device using such magnetic elements
US7116530B2 (en) 2003-09-30 2006-10-03 Hitachi Global Storage Technologies Netherlands B.V. Thin differential spin valve sensor having both pinned and self pinned structures for reduced difficulty in AFM layer polarity setting
JP2005116923A (ja) 2003-10-10 2005-04-28 Hitachi Ltd スピントルクを用いた不揮発性磁気メモリセルおよびこれを用いた磁気ランダムアクセスメモリ
US7009877B1 (en) 2003-11-14 2006-03-07 Grandis, Inc. Three-terminal magnetostatically coupled spin transfer-based MRAM cell
US7282755B2 (en) 2003-11-14 2007-10-16 Grandis, Inc. Stress assisted current driven switching for magnetic memory applications
US7093347B2 (en) 2003-12-05 2006-08-22 Seagate Technology Llc Method of making a current-perpendicular to the plane (CPP) magnetoresistive (MR) sensor
US7138648B2 (en) 2003-12-17 2006-11-21 Palo Alto Research Center Incorporated Ultraviolet group III-nitride-based quantum well laser diodes
US20050136600A1 (en) 2003-12-22 2005-06-23 Yiming Huai Magnetic elements with ballistic magnetoresistance utilizing spin-transfer and an MRAM device using such magnetic elements
US7072209B2 (en) 2003-12-29 2006-07-04 Micron Technology, Inc. Magnetic memory having synthetic antiferromagnetic pinned layer
US20050150537A1 (en) 2004-01-13 2005-07-14 Nanocoolers Inc. Thermoelectric devices
US20050150535A1 (en) 2004-01-13 2005-07-14 Nanocoolers, Inc. Method for forming a thin-film thermoelectric device including a phonon-blocking thermal conductor
US7105372B2 (en) 2004-01-20 2006-09-12 Headway Technologies, Inc. Magnetic tunneling junction film structure with process determined in-plane magnetic anisotropy
US7110287B2 (en) 2004-02-13 2006-09-19 Grandis, Inc. Method and system for providing heat assisted switching of a magnetic element utilizing spin transfer
US7242045B2 (en) 2004-02-19 2007-07-10 Grandis, Inc. Spin transfer magnetic element having low saturation magnetization free layers
US6967863B2 (en) 2004-02-25 2005-11-22 Grandis, Inc. Perpendicular magnetization magnetic element utilizing spin transfer
US6992359B2 (en) 2004-02-26 2006-01-31 Grandis, Inc. Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
US6965522B2 (en) 2004-03-17 2005-11-15 Macronix International Co., Ltd. Tunneling diode magnetic junction memory
WO2005101373A1 (en) 2004-04-02 2005-10-27 Tdk Corporation Laminated free layer for stabilizing magnetoresistive head having low magnetostriction
JP2007531177A (ja) 2004-04-02 2007-11-01 Tdk株式会社 磁気抵抗ヘッドを安定化させる合成フリー層
US7233039B2 (en) 2004-04-21 2007-06-19 Grandis, Inc. Spin transfer magnetic elements with spin depolarization layers
US7274057B2 (en) 2004-04-26 2007-09-25 International Business Machines Corporation Techniques for spin-flop switching with offset field
US7236336B2 (en) 2004-04-30 2007-06-26 Hitachi Global Storage Technologies Inc, Netherlands B.V. Method and apparatus for providing a free layer having higher saturation field capability and optimum sensitivity
US7057921B2 (en) 2004-05-11 2006-06-06 Grandis, Inc. Spin barrier enhanced dual magnetoresistance effect element and magnetic memory using the same
US20050269612A1 (en) 2004-05-11 2005-12-08 Integrated Magnetoelectronics Solid-state component based on current-induced magnetization reversal
US7088609B2 (en) 2004-05-11 2006-08-08 Grandis, Inc. Spin barrier enhanced magnetoresistance effect element and magnetic memory using the same
JP4377751B2 (ja) 2004-06-10 2009-12-02 シャープ株式会社 クロスポイント構造の半導体記憶装置及びその製造方法
US7411235B2 (en) 2004-06-16 2008-08-12 Kabushiki Kaisha Toshiba Spin transistor, programmable logic circuit, and magnetic memory
US7098494B2 (en) 2004-06-16 2006-08-29 Grandis, Inc. Re-configurable logic elements using heat assisted magnetic tunneling elements
US7436632B2 (en) 2004-06-30 2008-10-14 Seagate Technology Llc Differential/dual CPP recording head
US7067330B2 (en) 2004-07-16 2006-06-27 Headway Technologies, Inc. Magnetic random access memory array with thin conduction electrical read and write lines
US7576956B2 (en) 2004-07-26 2009-08-18 Grandis Inc. Magnetic tunnel junction having diffusion stop layer
US7098495B2 (en) 2004-07-26 2006-08-29 Freescale Semiconducor, Inc. Magnetic tunnel junction element structures and methods for fabricating the same
DE102004041894B3 (de) 2004-08-30 2006-03-09 Infineon Technologies Ag Speicherbauelement (CBRAM) mit Speicherzellen auf der Basis eines in seinem Widerstandswert änderbaren aktiven Festkörper-Elektrolytmaterials und Herstellungsverfahren dafür
US7369427B2 (en) 2004-09-09 2008-05-06 Grandis, Inc. Magnetic elements with spin engineered insertion layers and MRAM devices using the magnetic elements
US7336525B2 (en) 2004-10-18 2008-02-26 Kabushiki Kaisha Toshiba Nonvolatile memory for logic circuits
US7126202B2 (en) 2004-11-16 2006-10-24 Grandis, Inc. Spin scattering and heat assisted switching of a magnetic element
US20060171197A1 (en) 2005-01-31 2006-08-03 Ulrich Klostermann Magnetoresistive memory element having a stacked structure
US7173848B2 (en) 2005-02-01 2007-02-06 Meglabs, Inc. Magnetic random access memory with memory cell stacks having more than two magnetic states
US7099186B1 (en) 2005-02-10 2006-08-29 Infineon Technologies Ag Double-decker MRAM cells with scissor-state angled reference layer magnetic anisotropy and method for fabricating
KR100632953B1 (ko) 2005-03-07 2006-10-12 삼성전자주식회사 메모리 소자, 상기 메모리 소자를 위한 메모리 배열 및 상기 메모리 배열의 구동 방법
US7285836B2 (en) 2005-03-09 2007-10-23 Maglabs, Inc. Magnetic random access memory with stacked memory cells having oppositely-directed hard-axis biasing
US7241632B2 (en) 2005-04-14 2007-07-10 Headway Technologies, Inc. MTJ read head with sidewall spacers
JP2006294191A (ja) 2005-04-14 2006-10-26 Toshiba Corp 磁気ランダムアクセスメモリのデータ読み出し方法
US7230265B2 (en) 2005-05-16 2007-06-12 International Business Machines Corporation Spin-polarization devices using rare earth-transition metal alloys
US7289356B2 (en) 2005-06-08 2007-10-30 Grandis, Inc. Fast magnetic memory devices utilizing spin transfer and magnetic elements used therein
US7236791B2 (en) 2005-06-30 2007-06-26 Lucent Technologies Inc. Radio channel allocation for national security and emergency preparedness calls
US7518835B2 (en) 2005-07-01 2009-04-14 Grandis, Inc. Magnetic elements having a bias field and magnetic memory devices using the magnetic elements
JP4504273B2 (ja) 2005-07-06 2010-07-14 株式会社東芝 磁気抵抗効果素子および磁気メモリ
US7411765B2 (en) 2005-07-18 2008-08-12 Hitachi Global Storage Technologies Netherlands B.V. CPP-GMR sensor with non-orthogonal free and reference layer magnetization orientation
KR100725380B1 (ko) 2005-07-28 2007-06-07 삼성전자주식회사 반도체 메모리 장치의 전압 발생 회로, 이를 포함하는반도체 메모리 장치 및 반도체 메모리 장치의 전압 발생방법
US7230845B1 (en) 2005-07-29 2007-06-12 Grandis, Inc. Magnetic devices having a hard bias field and magnetic memory devices using the magnetic devices
US7489541B2 (en) 2005-08-23 2009-02-10 Grandis, Inc. Spin-transfer switching magnetic elements using ferrimagnets and magnetic memories using the magnetic elements
US7224601B2 (en) 2005-08-25 2007-05-29 Grandis Inc. Oscillating-field assisted spin torque switching of a magnetic tunnel junction memory element
US7272035B1 (en) 2005-08-31 2007-09-18 Grandis, Inc. Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells
US7272034B1 (en) 2005-08-31 2007-09-18 Grandis, Inc. Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells
US20070054450A1 (en) 2005-09-07 2007-03-08 Magic Technologies, Inc. Structure and fabrication of an MRAM cell
US7532442B2 (en) 2005-09-19 2009-05-12 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive (MR) elements having pinning layers formed from permanent magnetic material
US7973349B2 (en) 2005-09-20 2011-07-05 Grandis Inc. Magnetic device having multilayered free ferromagnetic layer
US7807492B2 (en) 2005-09-28 2010-10-05 Northern Lights Semiconductor Corp. Magnetoresistive random access memory with improved layout design and process thereof
US7403418B2 (en) 2005-09-30 2008-07-22 Silicon Storage Technology, Inc. Word line voltage boosting circuit and a memory array incorporating same
US20070085068A1 (en) * 2005-10-14 2007-04-19 Dmytro Apalkov Spin transfer based magnetic storage cells utilizing granular free layers and magnetic memories using such cells
JP4444241B2 (ja) 2005-10-19 2010-03-31 株式会社東芝 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
US7286395B2 (en) 2005-10-27 2007-10-23 Grandis, Inc. Current driven switched magnetic storage cells having improved read and write margins and magnetic memories using such cells
US20070096229A1 (en) 2005-10-28 2007-05-03 Masatoshi Yoshikawa Magnetoresistive element and magnetic memory device
US7411815B2 (en) 2005-11-14 2008-08-12 Infineon Technologies Ag Memory write circuit
US7187577B1 (en) 2005-11-23 2007-03-06 Grandis, Inc. Method and system for providing current balanced writing for memory cells and magnetic devices
US7485503B2 (en) 2005-11-30 2009-02-03 Intel Corporation Dielectric interface for group III-V semiconductor device
US7880249B2 (en) 2005-11-30 2011-02-01 Magic Technologies, Inc. Spacer structure in MRAM cell and method of its fabrication
JP5040105B2 (ja) * 2005-12-01 2012-10-03 ソニー株式会社 記憶素子、メモリ
US20070132049A1 (en) 2005-12-12 2007-06-14 Stipe Barry C Unipolar resistance random access memory (RRAM) device and vertically stacked architecture
US7430135B2 (en) 2005-12-23 2008-09-30 Grandis Inc. Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density
US7466583B2 (en) 2006-01-13 2008-12-16 Magic Technologies, Inc. MRAM with split read-write cell structures
US20070187785A1 (en) * 2006-02-16 2007-08-16 Chien-Chung Hung Magnetic memory cell and manufacturing method thereof
US7515457B2 (en) 2006-02-24 2009-04-07 Grandis, Inc. Current driven memory cells having enhanced current and enhanced current symmetry
US8084835B2 (en) * 2006-10-20 2011-12-27 Avalanche Technology, Inc. Non-uniform switching based non-volatile magnetic based memory
US8183652B2 (en) 2007-02-12 2012-05-22 Avalanche Technology, Inc. Non-volatile magnetic memory with low switching current and high thermal stability
US20070246787A1 (en) 2006-03-29 2007-10-25 Lien-Chang Wang On-plug magnetic tunnel junction devices based on spin torque transfer switching
US7826174B2 (en) 2006-03-31 2010-11-02 Ricoh Company, Ltd. Information recording method and apparatus using plasmonic transmission along line of ferromagnetic nano-particles with reproducing method using fade-in memory
US20070241392A1 (en) 2006-04-14 2007-10-18 Hsin-Chang Lin Non-volatile flash memory structure and method for operating the same
US7345912B2 (en) 2006-06-01 2008-03-18 Grandis, Inc. Method and system for providing a magnetic memory structure utilizing spin transfer
US20070297220A1 (en) 2006-06-22 2007-12-27 Masatoshi Yoshikawa Magnetoresistive element and magnetic memory
US7379327B2 (en) 2006-06-26 2008-05-27 Grandis, Inc. Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells having enhanced read and write margins
US7433225B2 (en) * 2006-07-06 2008-10-07 International Business Machines Corporation Scalable magnetic random access memory device
US7502249B1 (en) 2006-07-17 2009-03-10 Grandis, Inc. Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
JP4385156B2 (ja) 2006-07-27 2009-12-16 独立行政法人産業技術総合研究所 Ccp−cpp型巨大磁気抵抗素子
JP5046194B2 (ja) 2006-08-07 2012-10-10 日本電気株式会社 ワード線駆動電位可変のmram
US7851840B2 (en) 2006-09-13 2010-12-14 Grandis Inc. Devices and circuits based on magnetic tunnel junctions utilizing a multilayer barrier
WO2008047536A1 (fr) 2006-10-16 2008-04-24 Nec Corporation Cellule mémoire magnétique et mémoire vive magnétique
US7572645B2 (en) 2006-11-15 2009-08-11 Everspin Technologies, Inc. Magnetic tunnel junction structure and method
JP2008130112A (ja) * 2006-11-16 2008-06-05 Fujitsu Ltd 磁気抵抗効果型再生磁気ヘッド及びその再生磁気ヘッドを用いた磁気記録装置
US7864569B2 (en) 2006-12-01 2011-01-04 Macronix International Co., Ltd. Structure of magnetic random access memory using spin-torque transfer writing
US7598579B2 (en) 2007-01-30 2009-10-06 Magic Technologies, Inc. Magnetic tunnel junction (MTJ) to reduce spin transfer magnetization switching current
US20090218645A1 (en) * 2007-02-12 2009-09-03 Yadav Technology Inc. multi-state spin-torque transfer magnetic random access memory
US7480173B2 (en) 2007-03-13 2009-01-20 Magic Technologies, Inc. Spin transfer MRAM device with novel magnetic free layer
US8058697B2 (en) 2007-03-26 2011-11-15 Magic Technologies, Inc. Spin transfer MRAM device with novel magnetic synthetic free layer
US7738287B2 (en) 2007-03-27 2010-06-15 Grandis, Inc. Method and system for providing field biased magnetic memory devices
US7728622B2 (en) 2007-03-29 2010-06-01 Qualcomm Incorporated Software programmable logic using spin transfer torque magnetoresistive random access memory
US7486551B1 (en) 2007-04-03 2009-02-03 Grandis, Inc. Method and system for providing domain wall assisted switching of magnetic elements and magnetic memories using such magnetic elements
US7605437B2 (en) 2007-04-18 2009-10-20 Everspin Technologies, Inc. Spin-transfer MRAM structure and methods
US7919826B2 (en) 2007-04-24 2011-04-05 Kabushiki Kaisha Toshiba Magnetoresistive element and manufacturing method thereof
US7782661B2 (en) 2007-04-24 2010-08-24 Magic Technologies, Inc. Boosted gate voltage programming for spin-torque MRAM array
JP2008277542A (ja) 2007-04-27 2008-11-13 Toshiba Corp 磁気ランダムアクセスメモリ及びその製造方法
US7539047B2 (en) 2007-05-08 2009-05-26 Honeywell International, Inc. MRAM cell with multiple storage elements
US7486552B2 (en) 2007-05-21 2009-02-03 Grandis, Inc. Method and system for providing a spin transfer device with improved switching characteristics
US7573736B2 (en) 2007-05-22 2009-08-11 Taiwan Semiconductor Manufacturing Company Spin torque transfer MRAM device
WO2008154519A1 (en) 2007-06-12 2008-12-18 Grandis, Inc. Method and system for providing a magnetic element and magnetic memory being unidirectional writing enabled
US7742328B2 (en) 2007-06-15 2010-06-22 Grandis, Inc. Method and system for providing spin transfer tunneling magnetic memories utilizing non-planar transistors
US7750421B2 (en) 2007-07-23 2010-07-06 Magic Technologies, Inc. High performance MTJ element for STT-RAM and method for making the same
US7764536B2 (en) 2007-08-07 2010-07-27 Grandis, Inc. Method and system for providing a sense amplifier and drive circuit for spin transfer torque magnetic random access memory
US7982275B2 (en) 2007-08-22 2011-07-19 Grandis Inc. Magnetic element having low saturation magnetization
US20090185410A1 (en) 2008-01-22 2009-07-23 Grandis, Inc. Method and system for providing spin transfer tunneling magnetic memories utilizing unidirectional polarity selection devices
KR101586271B1 (ko) * 2008-04-03 2016-01-20 삼성전자주식회사 자기 메모리 소자 및 그 정보 쓰기 및 읽기 방법
US8233247B2 (en) 2008-04-11 2012-07-31 Hitachi Global Storage Technologies Netherlands B.V. Scissoring-type current-perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) sensors with damped free layer structures
US20090302403A1 (en) 2008-06-05 2009-12-10 Nguyen Paul P Spin torque transfer magnetic memory cell
US7935435B2 (en) 2008-08-08 2011-05-03 Seagate Technology Llc Magnetic memory cell construction
US7881095B2 (en) 2008-08-08 2011-02-01 Seagate Technology Llc Asymmetric write current compensation using gate overdrive for resistive sense memory cells
US7881098B2 (en) 2008-08-26 2011-02-01 Seagate Technology Llc Memory with separate read and write paths
US7940551B2 (en) * 2008-09-29 2011-05-10 Seagate Technology, Llc STRAM with electronically reflective insulative spacer
US7826256B2 (en) * 2008-09-29 2010-11-02 Seagate Technology Llc STRAM with compensation element
US8169810B2 (en) 2008-10-08 2012-05-01 Seagate Technology Llc Magnetic memory with asymmetric energy barrier
US8039913B2 (en) * 2008-10-09 2011-10-18 Seagate Technology Llc Magnetic stack with laminated layer
US7829964B2 (en) * 2008-10-31 2010-11-09 Industrial Technology Research Institute Magnetic memory element utilizing spin transfer switching
US8536669B2 (en) 2009-01-13 2013-09-17 Qualcomm Incorporated Magnetic element with storage layer materials
US8063460B2 (en) * 2009-12-18 2011-11-22 Intel Corporation Spin torque magnetic integrated circuits and devices therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229544A (ja) * 2002-02-04 2003-08-15 Mitsubishi Electric Corp 磁気記憶装置
US6765819B1 (en) * 2002-07-25 2004-07-20 Hewlett-Packard Development Company, Lp. Magnetic memory device having improved switching characteristics
US20060060901A1 (en) 2004-09-17 2006-03-23 Shiho Nakamura Magnetic recording element and magnetic recording device using the same
US7241631B2 (en) 2004-12-29 2007-07-10 Grandis, Inc. MTJ elements with high spin polarization layers configured for spin-transfer switching and spintronics devices using the magnetic elements

Also Published As

Publication number Publication date
JP5667982B2 (ja) 2015-02-12
US7985994B2 (en) 2011-07-26
CN102216995B (zh) 2014-04-16
US9041083B2 (en) 2015-05-26
US20130140659A1 (en) 2013-06-06
WO2010037090A2 (en) 2010-04-01
EP2342716A2 (en) 2011-07-13
US8362534B2 (en) 2013-01-29
US20110221016A1 (en) 2011-09-15
CN102216995A (zh) 2011-10-12
JP2012504349A (ja) 2012-02-16
KR20110079824A (ko) 2011-07-08
WO2010037090A3 (en) 2010-05-27
US20100078742A1 (en) 2010-04-01
EP2342716B1 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
KR101308605B1 (ko) 전기적으로 반사성인 절연 스페이서를 갖는 폐쇄형-플럭스 stram
KR101310042B1 (ko) 전자적으로 반응성인 절연 스페이서를 갖는 stram
KR101308604B1 (ko) 보상 엘리먼트를 갖는 stram

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160818

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170712

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190809

Year of fee payment: 7