CN102216995A - 具有电子反射绝缘间隔层的通量闭合stram - Google Patents
具有电子反射绝缘间隔层的通量闭合stram Download PDFInfo
- Publication number
- CN102216995A CN102216995A CN2009801437408A CN200980143740A CN102216995A CN 102216995 A CN102216995 A CN 102216995A CN 2009801437408 A CN2009801437408 A CN 2009801437408A CN 200980143740 A CN200980143740 A CN 200980143740A CN 102216995 A CN102216995 A CN 102216995A
- Authority
- CN
- China
- Prior art keywords
- layer
- electrical isolation
- storage unit
- electron reflection
- spin transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 125000006850 spacer group Chemical group 0.000 title abstract description 24
- 230000005291 magnetic effect Effects 0.000 claims abstract description 97
- 238000012546 transfer Methods 0.000 claims abstract description 63
- 230000004888 barrier function Effects 0.000 claims abstract description 14
- 238000002955 isolation Methods 0.000 claims description 104
- 238000003860 storage Methods 0.000 claims description 66
- 230000005294 ferromagnetic effect Effects 0.000 claims description 47
- 230000005389 magnetism Effects 0.000 claims description 41
- 230000004907 flux Effects 0.000 claims description 40
- 230000005290 antiferromagnetic effect Effects 0.000 claims description 19
- 239000000428 dust Substances 0.000 claims description 9
- 229910052707 ruthenium Inorganic materials 0.000 claims description 8
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 230000005641 tunneling Effects 0.000 abstract description 2
- 230000005415 magnetization Effects 0.000 description 33
- 238000009987 spinning Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 12
- 239000003302 ferromagnetic material Substances 0.000 description 9
- 230000008901 benefit Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 229910019041 PtMn Inorganic materials 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000001803 electron scattering Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/82—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Hall/Mr Elements (AREA)
- Magnetic Heads (AREA)
Abstract
公开了具有镜绝缘间隔层的通量闭合自旋转移矩存储器。通量闭合的自旋转移矩存储单元包括多层自由磁性元件,其包括通过电绝缘且电子反射层反铁磁地耦合到第二自由磁性层的第一自由磁性层。电绝缘且非磁性隧穿阻挡层将自由磁性元件与参考磁性层分离。
Description
背景技术
普及性计算和手持/通信产业的快速发展引起对大容量非易失性固态数据存储设备的爆炸式需求。相信非易失性存储器尤其是闪存将代替DRAM占据存储器市场的最大份额。然而,闪存具有若干缺陷,例如慢存取速度(~ms写和~50-100ns读)、有限的使用寿命(~103-104编程循环)以及片上系统(SoC)的集成难度。闪存(NAND或NOR)在32nm节点及以上也面对重大的等比缩放(scaling)问题。
磁阻随机存取存储器(MRAM)是未来非易失性和通用存储器的另一个有前景的候选。MRAM具有非易失、快写/读速度(<10ns)、几乎无限的编程寿命(>1015次循环)和零待机功率的特征。MRAM的基本组件是磁性隧穿结(MTJ)。数据存储是通过在高阻态和低阻态之间切换MTJ的电阻来实现的。MRAM通过使用电流感应的磁场来切换MTJ的磁化强度从而切换MTJ电阻。随着MTJ尺寸缩小,切换磁场振幅增加且切换变化变得严重。因此,所引发的高功耗限制了传统MRAM的等比缩小。
最近,基于自旋极化电流感应的磁化切换的新型写入机制被引入到MRAM设计中。被称为自旋转移矩RAM(STRAM)的这种新型MRAM设计使用流过MTJ的(双向)电流以实现电阻切换。因此,STRAM的切换机制是局部约束的并且相信STRAM具有比传统MRAM更好的缩放特性。
然而,在STRAM进入生产阶段前必须克服许多产量限制因素。传统STRAM设计的一个考虑因素是STRAM单元的自由层厚度折衷。较厚的自由层提高热稳定性和数据保持,但也增加切换电流要求,因为切换电流与自由层的厚度成比例。因此,使STRAM单元在电阻数据状态之间切换所需的电流量很大。
发明内容
本公开涉及包括镜绝缘体间隔层的通量闭合(flux-closed)自旋转移矩存储单元。镜绝缘体间隔层也被称为电绝缘且电子反射层。电绝缘且电子反射层将自旋电子反射回自由层以帮助切换自由层的磁化方向,因此减小自旋转移矩存储单元所需的切换电流。
在一个具体实施例中,公开了一种具有镜绝缘间隔层的通量闭合自旋转移矩存储器。通量闭合的自旋转移矩存储单元包括多层自由磁性元件,其包括通过电绝缘且电子反射层反铁磁地耦合到第二自由磁性层的第一自由磁性层。电绝缘且非磁性隧穿阻挡层将自由磁性元件与参考磁性层分离。
通过阅读下面的详细描述,这些以及各种其它的特征和优点将会显而易见。
附图简述
考虑下面与附图相结合的本公开的各种实施例的详细描述,可以更加全面地理解本发明:
图1是处于低阻态的示例性磁性隧穿结(MTJ)的横截面示意图;
图2是处于高阻态的示例性MTJ的横截面示意图;
图3是示例性通量闭合自旋转移矩存储单元的示意图;
图4A是示例性不均匀电绝缘且电子反射层的横截面示意图;
图4B是另一个示例性不均匀电绝缘且电子反射层的横截面示意图;
图5是包括多层参考层的示例性通量闭合自旋转移矩存储单元的示意图;
图6A是包括间隔层的示例性通量闭合自旋转移矩存储单元的示意图;
图6B是包括间隔层和多层参考层的示例性通量闭合自旋转移矩存储单元的示意图;
图7A是包括间隔层和第二镜间隔层的示例性通量闭合自旋转移矩存储单元的示意图;以及
图7B是包括间隔层、多层参考层和第二镜间隔层的示例性通量闭合自旋转移矩存储单元的示意图。
各附图不一定按比例绘制。附图中使用的类似附图标记表示类似组件。然而,应该理解,使用附图标记指代给定附图中的某个组件并不对其它附图中用相同附图标记标示的组件构成限制。
具体实施方式
在以下说明书中,参照构成说明书一部分并以示例方式示出若干特定实施方式的一组附图。应该理解,可以构想出其它实施方式,但不脱离本公开的范围或精神。因此,下面的详细说明不应理解为限定。本文提供的定义是为了便于本文频繁使用的某些术语的理解并且不旨在限定本公开的范围。
除非另行指定,在说明书和权利要求书中使用的表示特征尺寸、量和物理特征的全部数字应当理解为在任何情形下可由术语“大约”就行修饰。因此,除非明示相反情形,否则说明书之前和所附权利要求书中阐述的数字参数是近似值,这些近似值能根据由本领域内技术人员尝试利用本文披露的教导获得的所需特性而改变。
通过端点对数值范围的列举包括包容在该范围内的全部数值(例如1-5包括1、1.5、2、2.75、3、3.80、4和5)以及该范围内的任一范围。
如说明书以及所附权利要求书中所使用地,单数形式的“一”、“该”以及“所述”涵盖具有复数对象的实施方式,除非上下文明确地指出其它情形。如说明书和所附权利要求书中使用地,术语“或”通常用于包括“和/或”的语境中,除非内容明确地指出相反情形。
本公开涉及包括镜绝缘体间隔层的通量闭合自旋转移矩存储器。镜绝缘体间隔层也被称为电绝缘且电子反射层。电绝缘且电子反射层将自旋电子反射回自由层以帮助切换自由层的磁化方向,因此减小自旋转移矩存储单元所需的切换电流。自由层元件的通量闭合结构提高存储单元的热稳定性和数据保持。而且,由于自由层元件的矩接近零,使得存储单元阵列中与相邻存储单元的磁干扰最小化。尽管本公开并非局限于此,然而本公开各个方面的理解可通过下面提供的示例阐述而获得。
图1是处于低阻态的示例性磁隧穿结(MTJ)单元10的横截面示意图,而图2是处于高阻态的示例性MTJ单元10的横截面示意图。MTJ单元可以是能够在高阻态和低阻态之间切换的任何有用存储单元。在很多实施例中,本文所述的可变电阻存储单元是自旋转移矩存储单元。
MTJ单元10包括铁磁体自由层12和铁磁体参考(即,钉扎)层14。铁磁体自由层12和铁磁体参考层14由氧化物阻挡层13或隧穿阻挡层分离。第一电极15与铁磁体自由层12电接触,而第二电极16与铁磁体参考层14电接触。铁磁体层12、14可由例如铁、钴、镍的任何有用铁磁(FM)合金制成,并且绝缘隧穿阻挡层13可由例如氧化物材料(例如Al2O3或MgO)的电绝缘材料制成。也可使用其它技术。
电极15、16将铁磁体层12、14电连接至提供通过铁磁体层12、14的读和写电流的控制电路。MTJ单元10两端的电阻由铁磁体层12、14的磁化矢量的相对方向或磁化方向确定。铁磁体参考层14的磁化方向被钉扎在预定方向而铁磁体自由层12的磁化方向在自旋矩影响下自由旋转。铁磁体参考层14的钉扎可通过例如使用与诸如PtMn、IrMn等反铁磁规则材料交换偏磁来实现。
图1示出处于低阻态的MTJ单元10,其中铁磁体自由层12的磁化方向是平行的并处于与铁磁体参考层14磁化方向相同的方向。这被称为低阻态或“0”数据状态。图2示出处于高阻态的MTJ单元10,其中铁磁体自由层12的磁化方向是反平行的并与铁磁体参考层14的磁化方向相反的方向。这被称为高阻态或“1”数据状态。
当流过MTJ单元10的磁性层的电流变为自旋极化并将自旋矩施加在MTJ 10的自由层12上时,通过自旋转移切换电阻状态并因此切换MTJ单元10的数据状态。当将足够的自旋矩施加于自由层12时,自由层12的磁化方向可在两相反方向上切换并因此MTJ单元10可在平行状态(即低阻态或“0”数据状态)和反平行状态(即高阻态或“1”数据状态)之间切换,这取决于电流的方向。
示例性自旋转移矩MTJ单元10可用来构造包含多个可变电阻存储单元的存储设备,其中通过改变自由磁性层12相对于钉扎磁性层14的相对磁化状态来将数据位存储在磁性隧道结单元中。可通过测量随自由层相对于钉扎的磁性层的磁化方向改变的单元电阻而读出存储的数据位。为使自旋转移矩MTJ单元10具有非易失随机存取存储器的特征,自由层对于随机波动表现出热稳定性,从而自由层的方向仅当受到控制而作出这种改变时才会改变。该热稳定性可使用不同方法经由磁各向异性而获得,例如改变位尺寸、形状和晶态各向异性。可通过要么借助交换要么借助磁场对其它磁性层的磁耦合来获得额外的各向异性。通常来说,各向异性使得软轴和硬轴形成在薄磁性层中。硬轴和软轴是通过沿该方向完全旋转(饱和)磁化方向所需的通常以磁场形式的外部能量的量级定义的,其中硬轴要求较高的饱和磁场。
图3是示例性自旋转移矩存储单元20的示意图。自旋转移矩存储单元20包括多层自由磁性元件FL、参考磁性层RL以及将多层自由磁性元件FL和参考磁性层RL分离的电绝缘且非磁性隧穿阻挡层TB。
多层自由磁性元件FL包括第一自由磁性层FL1,该第一自由磁性层FL1通过电绝缘且电子反射层ER反铁磁地耦合到第二自由磁性层FL2。第一自由磁性层FL1具有与第二自由磁性层FL2磁化方向成反平行关系的磁化方向。因此,这种双结自由层元件被称为“通量闭合(flux-closed)”结构。反铁磁地耦合可来自层间耦合或静态耦合。因此可通过自旋极化电流容易地切换这种通量闭合自由磁性元件。这种通量闭合自由磁性元件具有高热稳定性和高数据保持。此外,通量闭合自由磁性元件的净矩为零或接近零,因此无静态场施加在相邻单元上且单元之间的干扰最小化。
如上所述,参考磁性层RL可以是具有大于0.5的可接受自旋极化范围的任何有用铁磁材料。如上所述,自由磁性层FL1和FL2可以是具有可接受各向异性的任何铁磁材料。如上所述,第一电极层E1和第二电极层E2提供能使多层自由磁性元件FL的磁化方向在两个相反方向之间切换的电子电流,因此自旋转移矩存储单元20能够在平行状态(即低阻态或“0”数据状态)和反平行状态(即高阻态或“1”数据状态)之间切换,这取决于电流的方向。
电绝缘且电子反射层ER可以是薄氧化物层或氮化物层且由诸如MgO、CuO、TiO、AlO、TaO、TaN或SiN之类的任何有用的电绝缘且电子反射材料形成。电绝缘且电子反射层ER的厚度可以在3至15埃的范围中或5至15埃的范围中。电绝缘且电子反射层ER具有1至10欧姆μm2的面电阻。
电绝缘且电子反射层ER能够将至少一部分电子反射回自由磁性层FL1和/或FL2并且允许至少一部分电子穿过电绝缘且电子反射层ER。这些反射的电子能够增强自旋电流效率,有效地减小使存储单元20在平行状态(即低阻态或“0”数据状态)和反平行状态(即高阻态或“1”数据状态)之间切换所需施加的通过通量闭合自旋转移矩存储单元20的电流量。因此,因为电绝缘且电子反射层ER能够反射自旋电子以增加自旋电流效率,所以能够显著减小切换电流。
在一些实施例中,电绝缘且电子反射层ER可具有不均匀的厚度。由此导致的扭曲电流(canted current)能进一步增加自旋效率以进一步减小切换电流。不均匀的电绝缘且电子反射层ER还能减小串联电阻以维持输出信号。
在一些实施例中,电绝缘且电子反射层ER可具有不均匀的厚度。由此导致的扭曲电流(canted current)能进一步增加自旋效率以进一步减小切换电流。不均匀的电绝缘且电子反射层ER还能减小串联电阻以维持输出信号。尽管以下示出并描述不均匀电绝缘且电子反射层ER的两个实施例,但应理解任何不均匀电绝缘且电子反射层ER结构在本公开的范围内。
图4A是示例性不均匀电绝缘且电子反射层ER的横截面示意图.在该所示的具有不均匀厚度的电绝缘且电子反射层ER的实施例中,电绝缘且电子反射层ER具有限定峰和谷的相对主表面S1和S2,并为电绝缘且电子反射层ER提供多个变化厚度T1、T2和T3。电流沿电绝缘且电子反射层ER的厚度方向传播通过相对的非平面主表面S1和S2。
图4B是另一个示例性不均匀电绝缘且电子反射层ER的横截面示意图。在该所示的具有不均匀厚度的电绝缘且电子反射层ER的实施例中,电绝缘且电子反射层ER具有相对的平面主表面S1和S2。相对的平面主表面S1和S2限定具有第一厚度T1并减小到第二厚度T2的连续的倾斜电绝缘且电子反射层ER。电流沿电绝缘且电子反射层ER的厚度方向传播通过相对的非平面主表面S1和S2。
图5是另一个示例性通量闭合自旋转移矩存储单元30的示意图。该实施例类似于图3,且增加形成参考层RL的合成反铁磁体元件。自旋转移矩存储单元30包括多层自由磁性元件FL、参考磁性层RL以及将多层自由磁性元件FL和参考磁性层RL分离的电绝缘且非磁性隧穿阻挡层TB。
多层自由磁性元件FL包括第一自由磁性层FL1,该第一自由磁性层FL1通过电子电绝缘且电子反射层ER反铁磁地耦合到第二自由磁性层FL2。第一自由磁性层FL1具有与第二自由磁性层FL2是磁化方向成反平行关系的磁化方向。因此,如上所述,这种双结自由层元件被称为“通量闭合”结构。
所示的参考磁性层RL被称为合成反铁磁体元件。合成反铁磁体元件包括通过导电且非磁性间隔层SP1分离的第一铁磁体层FM1和第二铁磁体层FM2。导电且非磁性间隔层SP1被配置成使得第一铁磁体层FM1和第二铁磁体层FM2反铁磁地对齐,且在很多实施例中,第一铁磁体层FM1和第二铁磁体层FM2具有反平行磁化方向,示出一种这样的方向。反铁磁体层AFM与第二电极层E2相邻。反铁磁体层AFM有助于钉扎第一铁磁体层FM1和第二铁磁体层FM2的磁化方向。
在所公开的自旋转移矩存储单元中使用合成反铁磁体元件具有若干优点。一些优点包括自由层的静态场减小、参考层的热稳定性改善以及层间扩散减少。
如上所述,第一铁磁体层FM1可以是具有大于0.5的可接受自旋极化范围的任何有用铁磁材料。第二铁磁体层FM2可以是如上所述的任何有用铁磁材料。反铁磁体层AFM通过例如使用与诸如PtMn、IrMn等反铁磁规则材料交换偏磁来钉扎铁磁体层。导电且非磁性间隔层SP1可由诸如Ru、Pd等任何有用的导电且非铁磁材料形成。
如上所述,自由磁性层FL1和FL2可以是具有可接受各向异性的任何铁磁材料。如上所述,第一电极层E1和第二电极层E2提供能使多层自由磁性元件FL的磁化方向在两个相反方向之间切换的电子电流,因此自旋转移矩存储单元30能够在平行状态(即低阻态或“0”数据状态)和反平行状态(即高阻态或“1”数据状态)之间切换,这取决于电流的方向。
电绝缘且电子反射层ER可以是薄氧化物层或氮化物层且由诸如MgO、CuO、TiO、AlO、TaO、TaN或SiN之类的任何有用的电绝缘且电子反射材料形成。电绝缘且电子反射层ER的厚度可以在3至15埃的范围中或5至15埃的范围中。电绝缘且电子反射层ER具有1至10欧姆μm2的面电阻。
电绝缘且电子反射层ER能够将至少一部分电子反射回自由磁性层FL1和/或FL2并且允许至少一部分电子穿过电绝缘且电子反射层ER。这些反射的电子能够增强自旋电流效率,有效地减小使存储单元30在平行状态(即低阻态或“0”数据状态)和反平行状态(即高阻态或“1”数据状态)之间切换所需施加的通过通量闭合自旋转移矩存储单元30的电流量。因此,因为电绝缘且电子反射层ER能够反射自旋电子以增加自旋电流效率,所以能够显著减小切换电流。
在一些实施例中,电绝缘且电子反射层ER可具有不均匀的厚度。由此导致的扭曲电流(canted current)能进一步增加自旋效率以进一步减小切换电流。不均匀的电绝缘且电子反射层ER还能减小串联电阻以维持输出信号。
图6A是另一个示例性通量闭合自旋转移矩存储单元40的示意图。该实施例类似于图3,且在多层自由磁性元件FL中增加导电且非磁性间隔层SP2。自旋转移矩存储单元40包括多层自由磁性元件FL、参考磁性层RL以及将多层自由磁性元件FL和参考磁性层RL分离的电绝缘且非磁性隧穿阻挡层TB。第二电极层E2与参考磁性层RL相邻。
多层自由磁性元件FL包括第一自由磁性层FL1,该第一自由磁性层FL1通过电绝缘且电子反射层ER和导电且非磁性间隔层SP2反铁磁地耦合到第二自由磁性层FL2。导电且非磁性间隔层SP2将电绝缘且电子反射层ER与第二自由磁性层FL2分离。然而,在其它实施例中,导电且非磁性间隔层SP2将电绝缘且电子反射层ER与第一自由磁性层FL1分离。第一自由磁性层FL1具有与第二自由磁性层FL2是磁化方向成反平行关系的磁化方向。因此,如上所述,这种双结自由层元件被称为“通量闭合”结构。
图6B是另一个示例性通量闭合自旋转移矩存储单元40的示意图。该实施例类似于图6A,且增加形成参考层RL的合成反铁磁体元件。自旋转移矩存储单元40包括多层自由磁性元件FL、参考磁性层RL以及将多层自由磁性元件FL和参考磁性层RL分离的电绝缘且非磁性隧穿阻挡层TB。
所示的参考磁性层RL被称为合成反铁磁体元件。合成反铁磁体元件包括通过导电且非磁性间隔层SP1分离的第一铁磁体层FM1和第二铁磁体层FM2。导电且非磁性间隔层SP1被配置成使得第一铁磁体层FM1和第二铁磁体层FM2反铁磁地对齐,且很多实施例中,第一铁磁体层FM1和第二铁磁体层FM2具有反平行磁化方向,如图所示。反铁磁体层AFM与第二电极层E2相邻。反铁磁体层AFM有助于钉扎第一铁磁体层FM1和第二铁磁体层FM2的磁化方向。
在所公开的自旋转移矩存储单元中使用合成反铁磁体元件具有若干优点。一些优点包括自由层的静态场减小、参考层的热稳定性改善以及层间扩散减少。
如上所述,第一铁磁体层FM1和第二铁磁体层FM2可以是具有大于0.5的可接受自旋极化范围的任何有用铁磁材料。反铁磁体层AFM通过例如使用与诸如PtMn、IrMn等反铁磁规则材料交换偏磁来钉扎铁磁体层。导电且非磁性间隔层SP1和SP2可由诸如Ru、Pd等任何有用的导电且非铁磁材料形成。
如上所述,自由磁性层FL1和FL2可以是具有可接受各向异性的任何铁磁材料。如上所述,第一电极层E1和第二电极层E2提供能使多层自由磁性元件FL的磁化方向在两个相反方向之间切换的电子电流,因此自旋转移矩存储单元40能够在平行状态(即低阻态或“0”数据状态)和反平行状态(即高阻态或“1”数据状态)之间切换,这取决于电流的方向。
电绝缘且电子反射层ER可以是薄氧化物层或氮化物层且由诸如MgO、CuO、TiO、AlO、TaO、TaN或SiN之类的任何有用的电绝缘且电子反射材料形成。电绝缘且电子反射层ER的厚度可以在3至15埃的范围中或5至15埃的范围中。在很多实施例中,电绝缘且电子反射层ER具有1至10欧姆μm2的面电阻。
在一些实施例中,其中多层自由磁性元件FL包括电绝缘且电子反射层ER(具有3-20埃的厚度)和导电且非磁性间隔层SP2(具有5-20埃的厚度),电绝缘且电子反射层ER可具有诸如5至50欧姆μm2之类的较大面电阻。用于这些实施例的适当电绝缘且电子反射ER材料包括例如CoFe-O、AlO、NiFeO、MgO、CoFeB-O、NiFe-O,其中导电且非磁性间隔层SP2材料包括例如Cu、Au、Ag、Cr、Al、Ta、Ru或W。
电绝缘且电子反射层ER能够将至少一部分电子反射回自由磁性层FL1和/或FL2并且允许至少一部分电子穿过电绝缘且电子反射层ER。这些反射的电子能够增强自旋电流效率,有效地减小使存储单元40在平行状态(即低阻态或“0”数据状态)和反平行状态(即高阻态或“1”数据状态)之间切换所需施加的通过通量闭合自旋转移矩存储单元40的电流量。因此,因为电绝缘且电子反射层ER能够反射自旋电子以增加自旋电流效率,所以能够显著减小切换电流。
在一些实施例中,如上所述,电绝缘且电子反射层ER可具有不均匀的厚度。由此导致的扭曲电流(canted current)能进一步增加自旋效率以进一步减小切换电流。不均匀的电绝缘且电子反射层ER还能减小串联电阻以维持输出信号。
图7A是另一个示例性通量闭合自旋转移矩存储单元50的示意图。该实施例类似于图6A,且在多层自由磁性元件FL中增加电子电绝缘且电子反射层ER。自旋转移矩存储单元50包括多层自由磁性元件FL、参考磁性层RL以及将多层自由磁性元件FL和参考磁性层RL分离的电绝缘且非磁性隧穿阻挡层TB。
多层自由磁性元件FL包括第一自由磁性层FL1,该第一自由磁性层FL1通过电子电绝缘且电子反射层ER和导电、非磁性间隔层SP2和第二电子电绝缘和电子反射层ER2反铁磁地耦合到第二自由磁性层FL2。导电且非磁性间隔层SP2将电子电绝缘且电子反射层ER与第二电子电绝缘且电子反射层ER2分离。第一自由磁性层FL1具有与第二自由磁性层FL2是磁化方向成反平行关系的磁化方向。因此,如上所述,这种双结自由层元件被称为“通量闭合”结构。
图7B是另一个示例性通量闭合自旋转移矩存储单元50的示意图。该实施例类似于图7A,且增加形成参考层RL的合成反铁磁体元件。自旋转移矩存储单元40包括多层自由磁性元件FL、参考磁性层RL以及将多层自由磁性元件FL和参考磁性层RL分离的电绝缘且非磁性隧穿阻挡层TB。
所示的参考磁性层RL被称为合成反铁磁体元件。合成反铁磁体元件包括通过导电且非磁性间隔层SP1分离的第一铁磁体层FM1和第二铁磁体层FM2。导电且非磁性间隔层SP1被配置成使得第一铁磁体层FM1和第二铁磁体层FM2反铁磁地对齐,且很多实施例中,第一铁磁体层FM1和第二铁磁体层FM2具有反平行磁化方向,如图所示。反铁磁体层AFM与第二电极层E2相邻。反铁磁体层AFM有助于钉扎第一铁磁体层FM1和第二铁磁体层FM2的磁化方向。
在所公开的自旋转移矩存储单元中使用合成反铁磁体元件具有若干优点。一些优点包括自由层的静态场减小、参考层的热稳定性改善以及层间扩散减少。
如上所述,第一铁磁体层FM1和第二铁磁体层FM2可以是具有大于0.5的可接受自旋极化范围的任何有用铁磁材料。反铁磁体层AFM通过例如使用与诸如PtMn、IrMn等反铁磁规则材料交换偏磁来钉扎铁磁体层。导电且非磁性间隔层SP1和SP2可由诸如Ru、Pd等任何有用的导电且非铁磁材料形成。
如上所述,自由磁性层FL1和FL2可以是具有可接受各向异性的任何铁磁材料。如上所述,第一电极层E1和第二电极层E2提供能使多层自由磁性元件FL的磁化方向在两个相反方向之间切换的电子电流,因此自旋转移矩存储单元50能够在平行状态(即低阻态或“0”数据状态)和反平行状态(即高阻态或“1”数据状态)之间切换,这取决于电流的方向。
电绝缘且电子反射层ER和/或ER2可以是独立的薄氧化物层或氮化物层且由诸如MgO、CuO、TiO、AlO、TaO、TaN或SiN之类的任何有用的电绝缘且电子反射材料形成。电绝缘且电子反射层ER和/或ER2的厚度可以在3至15埃的范围中或5至15埃的范围中。在很多实施例中,电绝缘且电子反射层ER和/或ER2具有1至10欧姆μm2的面电阻。
在一些实施例中,其中多层自由磁性元件FL包括由导电且非磁性间隔层SP2(具有5-20埃的厚度)分离的两个电绝缘且电子反射层ER和ER2(各自具有3-20埃的厚度),该电绝缘且电子反射层ER和ER2可具有诸如5至50欧姆μm2之类的较大面电阻。用于这些实施例的适当电绝缘且电子反射ER和ER2材料包括例如CoFe-O、AlO、NiFeO、MgO、CoFeB-O、NiFe-O,其中导电且非磁性间隔层SP2材料包括例如Cu、Au、Ag、Cr、Al、Ta、Ru或W。
电绝缘且电子反射层ER和ER2能够将至少一部分电子反射回自由磁性层FL1和/或FL2并且允许至少一部分电子穿过电绝缘且电子反射层ER和ER2。这些反射的电子能够增强自旋电流效率,有效地减小使存储单元50在平行状态(即低阻态或“0”数据状态)和反平行状态(即高阻态或“1”数据状态)之间切换所需施加的通过通量闭合自旋转移矩存储单元50的电流量。因此,因为电绝缘且电子反射层ER和ER2能够反射自旋电子以增加自旋电流效率,所以能够显著减小切换电流。
在一些实施例中,如上所述,电绝缘且电子反射层ER和ER2之一或两者可具有不均匀的厚度。由此导致的扭曲电流(canted current)能进一步增加自旋效率以进一步减小切换电流。不均匀的电绝缘且电子反射层ER和/或ER2还能减小串联电阻以维持输出信号。
在一些实施例中,上述通量闭合自旋转移矩存储单元可包括散射自旋电子而不是反射自旋电子的材料层。如上所述,这种自旋电子散射层可附加至电绝缘且电子反射层或代替电绝缘且电子反射层。自旋电子散射层可由诸如Ru、Pd、Ta、Pt、Al等导电金属形成。该层的厚度可在10至50埃的范围中。
因此,公开了具有电子反射绝缘间隔层的通量闭合STRAM的实施例。上述的实现和其他实现落入所附权利要求的范围内。本领域内技术人员将理解,本公开可通过这里公开以外的其它实施方式来实现。所披露的实施例以阐述而非限定为目的给出,并且本发明仅限于下面的权利要求书。
Claims (20)
1.一种自旋转移矩存储单元,包括:
多层自由磁性元件,所述多层自由磁性元件包括第一自由磁性层,所述第一自由磁性层通过电绝缘且电子反射层反铁磁地耦合到第二自由磁性层;
参考磁性层;以及
将所述自由磁性元件与所述参考磁性层分离的电绝缘且非磁性隧穿阻挡层。
2.如权利要求1所述的自旋转移矩存储单元,其特征在于,所述电绝缘且电子反射层具有不均匀的厚度。
3.如权利要求1所述的自旋转移矩存储单元,其特征在于,所述电绝缘且电子反射层具有从3至15埃范围中的厚度值。
4.如权利要求1所述的自旋转移矩存储单元,其特征在于,所述电绝缘且电子反射层包括MgO、CuO、TiO、AlO、TaO、TaN或SiN。
5.如权利要求1所述的自旋转移矩存储单元,其特征在于,所述电绝缘且电子反射层具有从1至10欧姆μm2的面电阻。
6.如权利要求1所述的自旋转移矩存储单元,其特征在于,所述参考磁性层包括合成反铁磁体元件。
7.如权利要求1所述的自旋转移矩存储单元,其特征在于,所述多层自由磁性元件还包括将所述电绝缘且电子反射层与所述第一自由磁性层或所述第二自由磁性层之一分离的导电非铁磁体层。
8.如权利要求7所述的自旋转移矩存储单元,其特征在于,所述多层自由磁性元件还包括第二电绝缘且电子反射层,并且所述导电非铁磁体层将所述电绝缘且电子反射层与所述第二电绝缘且电子反射层分离。
9.如权利要求7所述的自旋转移矩存储单元,其特征在于,所述导电非铁磁体层具有从5至20埃范围中的厚度值。
10.如权利要求7所述的自旋转移矩存储单元,其特征在于,所述导电非铁磁体层包括Ta、Cu、Ru或Au。
11.一种通量闭合自旋转移矩存储单元,包括:
多层自由磁性元件,所述多层自由磁性元件包括第一自由磁性层,所述第一自由磁性层通过电绝缘且电子反射层和导电非铁磁体层反铁磁地耦合到第二自由磁性层;
参考磁性层;以及
将所述自由磁性元件与所述参考磁性层分离的电绝缘且非磁性隧穿阻挡层。
12.如权利要求11所述的通量闭合自旋转移矩存储单元,其特征在于,所述电绝缘且电子反射层具有不均匀的厚度。
13.如权利要求11所述通量闭合自旋转移矩存储单元,其特征在于,所述电绝缘且电子反射层具有从3至15埃范围中的厚度值。
14.如权利要求11所述通量闭合自旋转移矩存储单元,其特征在于,所述电绝缘且电子反射层包括MgO、CuO、TiO、AlO、TaO、TaN或SiN。
15.如权利要求11所述的通量闭合自旋转移矩存储单元,其特征在于,所述电绝缘且电子反射层具有从1至10欧姆μm2的面电阻。
16.如权利要求11所述的通量闭合自旋转移矩存储单元,其特征在于,所述参考磁性层包括合成反铁磁体元件。
17.如权利要求11所述的通量闭合自旋转移矩存储单元,其特征在于,所述多层自由磁性元件还包括第二电绝缘且电子反射层,并且所述导电非铁磁体层将所述电绝缘且电子反射层与所述第二电绝缘且电子反射层分离。
18.如权利要求11所述的通量闭合自旋转移矩存储单元,其特征在于,所述导电非铁磁体层具有从5至20埃范围中的厚度值。
19.如权利要求11所述的通量闭合自旋转移矩存储单元,其特征在于,所述导电非铁磁体层包括Ta、Cu、Ru或Au。
20.一种通量闭合自旋转移矩存储单元,包括:
多层自由磁性元件,所述多层自由磁性元件包括第一自由磁性层,所述第一自由磁性层通过电绝缘且电子反射层反铁磁地耦合到第二自由磁性层,所述电绝缘且电子反射层具有从3至15埃范围中的厚度值且包括MgO、CuO、TiO、AlO、TaO、TaN或SiN;
包括合成反铁磁体元件的参考磁性层;以及
将所述自由磁性元件与所述参考磁性层分离的电绝缘且非磁性隧穿阻挡层。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/239,884 US7985994B2 (en) | 2008-09-29 | 2008-09-29 | Flux-closed STRAM with electronically reflective insulative spacer |
US12/239,884 | 2008-09-29 | ||
PCT/US2009/058756 WO2010037090A2 (en) | 2008-09-29 | 2009-09-29 | Flux-closed stram with electronically reflective insulative spacer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102216995A true CN102216995A (zh) | 2011-10-12 |
CN102216995B CN102216995B (zh) | 2014-04-16 |
Family
ID=41394852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980143740.8A Expired - Fee Related CN102216995B (zh) | 2008-09-29 | 2009-09-29 | 具有电子反射绝缘间隔层的通量闭合stram |
Country Status (6)
Country | Link |
---|---|
US (3) | US7985994B2 (zh) |
EP (1) | EP2342716B1 (zh) |
JP (1) | JP5667982B2 (zh) |
KR (1) | KR101308605B1 (zh) |
CN (1) | CN102216995B (zh) |
WO (1) | WO2010037090A2 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105374935A (zh) * | 2015-12-01 | 2016-03-02 | 中电海康集团有限公司 | 一种用于stt-mram的含有不均匀势垒层的磁性隧道结 |
CN108574041A (zh) * | 2017-03-13 | 2018-09-25 | 三星电子株式会社 | 磁性结、设置磁性结的方法和磁性存储器 |
CN109004087A (zh) * | 2017-06-07 | 2018-12-14 | 英飞凌科技股份有限公司 | 用于生成闭合通量磁化图案的磁阻传感器和方法 |
CN112490353A (zh) * | 2019-09-11 | 2021-03-12 | 上海磁宇信息科技有限公司 | 一种磁性随机存储器存储单元及磁性随机存储器 |
CN112750945A (zh) * | 2019-10-31 | 2021-05-04 | 上海磁宇信息科技有限公司 | 一种具双自由层的磁性随机存储器存储单元 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009054062A1 (ja) * | 2007-10-26 | 2009-04-30 | Canon Anelva Corporation | サンドイッチ構造の磁化自由層を有する磁気トンネル接合素子 |
US7999336B2 (en) | 2008-04-24 | 2011-08-16 | Seagate Technology Llc | ST-RAM magnetic element configurations to reduce switching current |
US9929211B2 (en) * | 2008-09-24 | 2018-03-27 | Qualcomm Incorporated | Reducing spin pumping induced damping of a free layer of a memory device |
US7880209B2 (en) * | 2008-10-09 | 2011-02-01 | Seagate Technology Llc | MRAM cells including coupled free ferromagnetic layers for stabilization |
US8558331B2 (en) * | 2009-12-08 | 2013-10-15 | Qualcomm Incorporated | Magnetic tunnel junction device |
JP2012014787A (ja) * | 2010-06-30 | 2012-01-19 | Sony Corp | 記憶装置 |
US8772886B2 (en) * | 2010-07-26 | 2014-07-08 | Avalanche Technology, Inc. | Spin transfer torque magnetic random access memory (STTMRAM) having graded synthetic free layer |
JP2012238631A (ja) * | 2011-05-10 | 2012-12-06 | Sony Corp | 記憶素子、記憶装置 |
KR101195041B1 (ko) * | 2011-05-12 | 2012-10-31 | 고려대학교 산학협력단 | 자기 공명 세차 현상을 이용한 스핀전달토크 자기 메모리 소자 |
US8493695B1 (en) | 2011-06-28 | 2013-07-23 | Western Digital (Fremont), Llc | Method and system for providing a magnetic read transducer having an improved signal to noise ratio |
JP2013115319A (ja) * | 2011-11-30 | 2013-06-10 | Sony Corp | 記憶素子、記憶装置 |
US9029965B2 (en) | 2012-12-03 | 2015-05-12 | Samsung Electronics Co., Ltd. | Method and system for providing magnetic junctions having a thermally stable and easy to switch magnetic free layer |
US8890267B2 (en) | 2012-12-03 | 2014-11-18 | Samsung Electronics Co., Ltd. | Method and system for providing magnetic junctions having a graded magnetic free layer |
US9263189B2 (en) * | 2013-04-23 | 2016-02-16 | Alexander Mikhailovich Shukh | Magnetic capacitor |
US10989769B2 (en) * | 2013-12-27 | 2021-04-27 | Infineon Technologies Ag | Magneto-resistive structured device having spontaneously generated in-plane closed flux magnetization pattern |
US9792971B2 (en) | 2014-07-02 | 2017-10-17 | Samsung Electronics Co., Ltd. | Method and system for providing magnetic junctions with rare earth-transition metal layers |
EP3314674A4 (en) * | 2015-06-26 | 2019-02-27 | Intel Corporation | VERTICAL MAGNETIC MEMORY WITH REDUCED SWITCHGEAR |
US10686123B2 (en) * | 2018-08-16 | 2020-06-16 | International Business Machines Corporation | Multilayered magnetic free layer structure for spin-transfer torque (STT) MRAM |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040061981A1 (en) * | 2002-09-30 | 2004-04-01 | Seagate Technology Llc | Suppression of thermally activated magnetization fluctuations in magnetoresistive elements via spin momentum transfer |
US6765819B1 (en) * | 2002-07-25 | 2004-07-20 | Hewlett-Packard Development Company, Lp. | Magnetic memory device having improved switching characteristics |
WO2004093087A1 (en) * | 2003-04-16 | 2004-10-28 | Agency For Science, Technology And Research | Magnetic memory device |
US20050237787A1 (en) * | 2004-04-21 | 2005-10-27 | Yiming Huai | Spin transfer magnetic elements with spin depolarization layers |
US20070085068A1 (en) * | 2005-10-14 | 2007-04-19 | Dmytro Apalkov | Spin transfer based magnetic storage cells utilizing granular free layers and magnetic memories using such cells |
CN101133476A (zh) * | 2004-12-29 | 2008-02-27 | 弘世科技公司 | 具有用于自旋转移翻转的高自旋极化层的mtj元件以及使用该磁性元件的自旋电子器件 |
WO2008100868A2 (en) * | 2007-02-12 | 2008-08-21 | Yadav Technology, Inc. | Non-uniform switching based non-volatile magnetic based memory |
Family Cites Families (206)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4006A (en) * | 1845-04-22 | Improvement in self-adjusting platens for cotton and other presses | ||
JPS6252797A (ja) * | 1985-08-30 | 1987-03-07 | Mitsubishi Electric Corp | 半導体記憶装置 |
US5191223A (en) * | 1991-07-03 | 1993-03-02 | International Business Machines Corporation | Device for selective magnetization and method |
KR0158485B1 (ko) | 1995-03-31 | 1999-02-01 | 김광호 | 본딩옵션용 워드라인전압 승압회로 |
US5646419A (en) * | 1995-04-07 | 1997-07-08 | California Institute Of Technology | n-type wide bandgap semiconductors grown on a p-type layer to form hole injection pn heterojunctions and methods of fabricating the same |
US5761115A (en) * | 1996-05-30 | 1998-06-02 | Axon Technologies Corporation | Programmable metallization cell structure and method of making same |
US6602677B1 (en) | 1997-09-19 | 2003-08-05 | Promega Corporation | Thermostable luciferases and methods of production |
US5920446A (en) * | 1998-01-06 | 1999-07-06 | International Business Machines Corporation | Ultra high density GMR sensor |
US6072718A (en) * | 1998-02-10 | 2000-06-06 | International Business Machines Corporation | Magnetic memory devices having multiple magnetic tunnel junctions therein |
JP3672435B2 (ja) | 1998-04-22 | 2005-07-20 | 富士通株式会社 | 不揮発性メモリ装置 |
US6252796B1 (en) * | 1998-08-14 | 2001-06-26 | U.S. Philips Corporation | Device comprising a first and a second ferromagnetic layer separated by a non-magnetic spacer layer |
US6178136B1 (en) * | 1998-09-28 | 2001-01-23 | Texas Instruments Incorporated | Semiconductor memory device having Y-select gate voltage that varies according to memory cell access operation |
JP2000132961A (ja) * | 1998-10-23 | 2000-05-12 | Canon Inc | 磁気薄膜メモリ、磁気薄膜メモリの読出し方法、及び磁気薄膜メモリの書込み方法 |
JP4144824B2 (ja) | 1999-03-26 | 2008-09-03 | キヤノン株式会社 | 半導体集積回路装置の故障箇所特定方法 |
US6542000B1 (en) * | 1999-07-30 | 2003-04-01 | Iowa State University Research Foundation, Inc. | Nonvolatile programmable logic devices |
GB9925213D0 (en) | 1999-10-25 | 1999-12-22 | Univ Cambridge Tech | Magnetic logic elements |
US6469926B1 (en) | 2000-03-22 | 2002-10-22 | Motorola, Inc. | Magnetic element with an improved magnetoresistance ratio and fabricating method thereof |
US6381106B1 (en) * | 2000-04-12 | 2002-04-30 | International Business Machines Corporation | Top spin valve sensor that has a free layer structure with a cobalt iron boron (cofeb) layer |
US6700753B2 (en) * | 2000-04-12 | 2004-03-02 | Seagate Technology Llc | Spin valve structures with specular reflection layers |
TW504713B (en) | 2000-04-28 | 2002-10-01 | Motorola Inc | Magnetic element with insulating veils and fabricating method thereof |
US6979586B2 (en) | 2000-10-06 | 2005-12-27 | Headway Technologies, Inc. | Magnetic random access memory array with coupled soft adjacent magnetic layer |
US6574079B2 (en) | 2000-11-09 | 2003-06-03 | Tdk Corporation | Magnetic tunnel junction device and method including a tunneling barrier layer formed by oxidations of metallic alloys |
FR2817999B1 (fr) | 2000-12-07 | 2003-01-10 | Commissariat Energie Atomique | Dispositif magnetique a polarisation de spin et a empilement(s) tri-couche(s) et memoire utilisant ce dispositif |
FR2817998B1 (fr) * | 2000-12-07 | 2003-01-10 | Commissariat Energie Atomique | Dispositif magnetique a polarisation de spin et a rotation d'aimantation, memoire et procede d'ecriture utilisant ce dispositif |
US6473279B2 (en) | 2001-01-04 | 2002-10-29 | International Business Machines Corporation | In-stack single-domain stabilization of free layers for CIP and CPP spin-valve or tunnel-valve read heads |
US6584016B2 (en) * | 2001-01-08 | 2003-06-24 | Azalea Microelectronics Corporation | Non-volatile memory architecture and method of operation |
JP3677455B2 (ja) | 2001-02-13 | 2005-08-03 | Necエレクトロニクス株式会社 | 不揮発性磁気記憶装置およびその製造方法 |
US7189435B2 (en) * | 2001-03-14 | 2007-03-13 | University Of Massachusetts | Nanofabrication |
US6744086B2 (en) * | 2001-05-15 | 2004-06-01 | Nve Corporation | Current switched magnetoresistive memory cell |
JP3565268B2 (ja) * | 2001-06-22 | 2004-09-15 | 株式会社東芝 | 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置 |
US6569745B2 (en) * | 2001-06-28 | 2003-05-27 | Sharp Laboratories Of America, Inc. | Shared bit line cross point memory array |
US6809909B2 (en) | 2001-07-16 | 2004-10-26 | Seagate Technology Llc | Giant magnetoresistive sensor with high-resistivity magnetic layers |
US6781801B2 (en) | 2001-08-10 | 2004-08-24 | Seagate Technology Llc | Tunneling magnetoresistive sensor with spin polarized current injection |
US6888703B2 (en) * | 2001-09-17 | 2005-05-03 | Headway Technologies, Inc. | Multilayered structures comprising magnetic nano-oxide layers for current perpindicular to plane GMR heads |
AU2002362662A1 (en) * | 2001-10-09 | 2003-04-22 | Axon Technologies Corporation | Programmable microelectronic device, structure, and system, and method of forming the same |
JP3834616B2 (ja) * | 2001-11-13 | 2006-10-18 | 国立大学法人東北大学 | スピンフィルタ |
KR100450794B1 (ko) | 2001-12-13 | 2004-10-01 | 삼성전자주식회사 | 마그네틱 랜덤 엑세스 메모리 및 그 작동 방법 |
US6650562B2 (en) * | 2002-01-23 | 2003-11-18 | Hewlett-Packard Development Company, L.P. | System and method for determining the logic state of a memory cell in a magnetic tunnel junction memory device |
JP2003229544A (ja) * | 2002-02-04 | 2003-08-15 | Mitsubishi Electric Corp | 磁気記憶装置 |
US6778421B2 (en) * | 2002-03-14 | 2004-08-17 | Hewlett-Packard Development Company, Lp. | Memory device array having a pair of magnetic bits sharing a common conductor line |
JP4073691B2 (ja) * | 2002-03-19 | 2008-04-09 | 株式会社ルネサステクノロジ | 半導体記憶装置 |
TWI222763B (en) * | 2002-03-29 | 2004-10-21 | Toshiba Corp | Magnetic logic element and magnetic logic element array |
KR100476889B1 (ko) * | 2002-04-04 | 2005-03-17 | 삼성전자주식회사 | 플래쉬메모리의 워드라인디코더 |
US6888709B2 (en) | 2002-05-03 | 2005-05-03 | Applied Energy Llc | Electromagnetic transient voltage surge suppression system |
US6711067B1 (en) * | 2002-05-08 | 2004-03-23 | Virage Logic Corporation | System and method for bit line sharing |
KR20030089078A (ko) | 2002-05-16 | 2003-11-21 | 주식회사 하이닉스반도체 | 자기터널접합소자를 갖는 자기메모리셀 |
JP4083167B2 (ja) * | 2002-05-31 | 2008-04-30 | 富士通株式会社 | 増幅装置 |
US6633498B1 (en) | 2002-06-18 | 2003-10-14 | Motorola, Inc. | Magnetoresistive random access memory with reduced switching field |
US6781867B2 (en) | 2002-07-11 | 2004-08-24 | Micron Technology, Inc. | Embedded ROM device using substrate leakage |
US6850433B2 (en) * | 2002-07-15 | 2005-02-01 | Hewlett-Packard Development Company, Lp. | Magnetic memory device and method |
US7196882B2 (en) * | 2002-07-23 | 2007-03-27 | Micron Technology, Inc. | Magnetic tunnel junction device and its method of fabrication |
US6714444B2 (en) * | 2002-08-06 | 2004-03-30 | Grandis, Inc. | Magnetic element utilizing spin transfer and an MRAM device using the magnetic element |
US6888742B1 (en) * | 2002-08-28 | 2005-05-03 | Grandis, Inc. | Off-axis pinned layer magnetic element utilizing spin transfer and an MRAM device using the magnetic element |
US6759263B2 (en) * | 2002-08-29 | 2004-07-06 | Chentsau Ying | Method of patterning a layer of magnetic material |
US6831312B2 (en) | 2002-08-30 | 2004-12-14 | Freescale Semiconductor, Inc. | Amorphous alloys for magnetic devices |
US6801415B2 (en) | 2002-08-30 | 2004-10-05 | Freescale Semiconductor, Inc. | Nanocrystalline layers for improved MRAM tunnel junctions |
US6711051B1 (en) * | 2002-09-05 | 2004-03-23 | National Semiconductor Corporation | Static RAM architecture with bit line partitioning |
US6838740B2 (en) | 2002-09-27 | 2005-01-04 | Grandis, Inc. | Thermally stable magnetic elements utilizing spin transfer and an MRAM device using the magnetic element |
US6958927B1 (en) | 2002-10-09 | 2005-10-25 | Grandis Inc. | Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element |
US6639830B1 (en) | 2002-10-22 | 2003-10-28 | Btg International Ltd. | Magnetic memory device |
KR100536592B1 (ko) * | 2002-11-01 | 2005-12-14 | 삼성전자주식회사 | 자기 메모리 및 그 제조 방법 |
JP2004179483A (ja) * | 2002-11-28 | 2004-06-24 | Hitachi Ltd | 不揮発性磁気メモリ |
US6909633B2 (en) * | 2002-12-09 | 2005-06-21 | Applied Spintronics Technology, Inc. | MRAM architecture with a flux closed data storage layer |
US7190611B2 (en) | 2003-01-07 | 2007-03-13 | Grandis, Inc. | Spin-transfer multilayer stack containing magnetic layers with resettable magnetization |
US6829161B2 (en) | 2003-01-10 | 2004-12-07 | Grandis, Inc. | Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element |
US6845038B1 (en) * | 2003-02-01 | 2005-01-18 | Alla Mikhailovna Shukh | Magnetic tunnel junction memory device |
US6864551B2 (en) * | 2003-02-05 | 2005-03-08 | Applied Spintronics Technology, Inc. | High density and high programming efficiency MRAM design |
US7126200B2 (en) * | 2003-02-18 | 2006-10-24 | Micron Technology, Inc. | Integrated circuits with contemporaneously formed array electrodes and logic interconnects |
US6847547B2 (en) | 2003-02-28 | 2005-01-25 | Grandis, Inc. | Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element |
US6998150B2 (en) * | 2003-03-12 | 2006-02-14 | Headway Technologies, Inc. | Method of adjusting CoFe free layer magnetostriction |
US6963500B2 (en) | 2003-03-14 | 2005-11-08 | Applied Spintronics Technology, Inc. | Magnetic tunneling junction cell array with shared reference layer for MRAM applications |
JP4008857B2 (ja) | 2003-03-24 | 2007-11-14 | 株式会社東芝 | 半導体記憶装置及びその製造方法 |
US7092279B1 (en) | 2003-03-24 | 2006-08-15 | Sheppard Douglas P | Shared bit line memory device and method |
US7067866B2 (en) * | 2003-03-31 | 2006-06-27 | Applied Spintronics Technology, Inc. | MRAM architecture and a method and system for fabricating MRAM memories utilizing the architecture |
KR100522943B1 (ko) * | 2003-04-25 | 2005-10-25 | 학교법인고려중앙학원 | 소자 크기 변화에 무관하게 작고 안정한 바이어스 자기장을 갖는 자기 저항 구조 |
US6933155B2 (en) | 2003-05-21 | 2005-08-23 | Grandis, Inc. | Methods for providing a sub .15 micron magnetic memory structure |
US6834005B1 (en) | 2003-06-10 | 2004-12-21 | International Business Machines Corporation | Shiftable magnetic shift register and method of using the same |
US6885582B2 (en) * | 2003-06-12 | 2005-04-26 | Hewlett-Packard Development Company, L.P. | Magnetic memory storage device |
US6818961B1 (en) | 2003-06-30 | 2004-11-16 | Freescale Semiconductor, Inc. | Oblique deposition to induce magnetic anisotropy for MRAM cells |
US7088624B2 (en) | 2003-07-18 | 2006-08-08 | Infineon Technologies, A.G. | System of multiplexed data lines in a dynamic random access memory |
US7245462B2 (en) | 2003-08-21 | 2007-07-17 | Grandis, Inc. | Magnetoresistive element having reduced spin transfer induced noise |
US6985385B2 (en) | 2003-08-26 | 2006-01-10 | Grandis, Inc. | Magnetic memory element utilizing spin transfer switching and storing multiple bits |
US6943040B2 (en) | 2003-08-28 | 2005-09-13 | Headway Technologes, Inc. | Magnetic random access memory designs with controlled magnetic switching mechanism by magnetostatic coupling |
US7009266B2 (en) * | 2003-08-29 | 2006-03-07 | Applied Spintronics Technology, Inc. | Method and system for providing a magnetic element including passivation structures |
US7161829B2 (en) | 2003-09-19 | 2007-01-09 | Grandis, Inc. | Current confined pass layer for magnetic elements utilizing spin-transfer and an MRAM device using such magnetic elements |
US7116530B2 (en) * | 2003-09-30 | 2006-10-03 | Hitachi Global Storage Technologies Netherlands B.V. | Thin differential spin valve sensor having both pinned and self pinned structures for reduced difficulty in AFM layer polarity setting |
JP2005116923A (ja) | 2003-10-10 | 2005-04-28 | Hitachi Ltd | スピントルクを用いた不揮発性磁気メモリセルおよびこれを用いた磁気ランダムアクセスメモリ |
US7282755B2 (en) | 2003-11-14 | 2007-10-16 | Grandis, Inc. | Stress assisted current driven switching for magnetic memory applications |
US7009877B1 (en) * | 2003-11-14 | 2006-03-07 | Grandis, Inc. | Three-terminal magnetostatically coupled spin transfer-based MRAM cell |
US7093347B2 (en) | 2003-12-05 | 2006-08-22 | Seagate Technology Llc | Method of making a current-perpendicular to the plane (CPP) magnetoresistive (MR) sensor |
US7138648B2 (en) | 2003-12-17 | 2006-11-21 | Palo Alto Research Center Incorporated | Ultraviolet group III-nitride-based quantum well laser diodes |
US20050136600A1 (en) | 2003-12-22 | 2005-06-23 | Yiming Huai | Magnetic elements with ballistic magnetoresistance utilizing spin-transfer and an MRAM device using such magnetic elements |
US7072209B2 (en) * | 2003-12-29 | 2006-07-04 | Micron Technology, Inc. | Magnetic memory having synthetic antiferromagnetic pinned layer |
US20050150535A1 (en) * | 2004-01-13 | 2005-07-14 | Nanocoolers, Inc. | Method for forming a thin-film thermoelectric device including a phonon-blocking thermal conductor |
US20050150537A1 (en) * | 2004-01-13 | 2005-07-14 | Nanocoolers Inc. | Thermoelectric devices |
US7105372B2 (en) * | 2004-01-20 | 2006-09-12 | Headway Technologies, Inc. | Magnetic tunneling junction film structure with process determined in-plane magnetic anisotropy |
US7110287B2 (en) | 2004-02-13 | 2006-09-19 | Grandis, Inc. | Method and system for providing heat assisted switching of a magnetic element utilizing spin transfer |
US7242045B2 (en) * | 2004-02-19 | 2007-07-10 | Grandis, Inc. | Spin transfer magnetic element having low saturation magnetization free layers |
US6967863B2 (en) | 2004-02-25 | 2005-11-22 | Grandis, Inc. | Perpendicular magnetization magnetic element utilizing spin transfer |
US6992359B2 (en) * | 2004-02-26 | 2006-01-31 | Grandis, Inc. | Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization |
US6965522B2 (en) | 2004-03-17 | 2005-11-15 | Macronix International Co., Ltd. | Tunneling diode magnetic junction memory |
US20070035890A1 (en) * | 2004-04-02 | 2007-02-15 | Tdk Corporation | Composed free layer for stabilizing magnetoresistive head having low magnetostriction |
JP2007531177A (ja) * | 2004-04-02 | 2007-11-01 | Tdk株式会社 | 磁気抵抗ヘッドを安定化させる合成フリー層 |
US7274057B2 (en) | 2004-04-26 | 2007-09-25 | International Business Machines Corporation | Techniques for spin-flop switching with offset field |
US7236336B2 (en) | 2004-04-30 | 2007-06-26 | Hitachi Global Storage Technologies Inc, Netherlands B.V. | Method and apparatus for providing a free layer having higher saturation field capability and optimum sensitivity |
US20050269612A1 (en) | 2004-05-11 | 2005-12-08 | Integrated Magnetoelectronics | Solid-state component based on current-induced magnetization reversal |
US7088609B2 (en) | 2004-05-11 | 2006-08-08 | Grandis, Inc. | Spin barrier enhanced magnetoresistance effect element and magnetic memory using the same |
US7057921B2 (en) | 2004-05-11 | 2006-06-06 | Grandis, Inc. | Spin barrier enhanced dual magnetoresistance effect element and magnetic memory using the same |
JP4377751B2 (ja) | 2004-06-10 | 2009-12-02 | シャープ株式会社 | クロスポイント構造の半導体記憶装置及びその製造方法 |
US7098494B2 (en) | 2004-06-16 | 2006-08-29 | Grandis, Inc. | Re-configurable logic elements using heat assisted magnetic tunneling elements |
US7411235B2 (en) | 2004-06-16 | 2008-08-12 | Kabushiki Kaisha Toshiba | Spin transistor, programmable logic circuit, and magnetic memory |
US7436632B2 (en) | 2004-06-30 | 2008-10-14 | Seagate Technology Llc | Differential/dual CPP recording head |
US7067330B2 (en) * | 2004-07-16 | 2006-06-27 | Headway Technologies, Inc. | Magnetic random access memory array with thin conduction electrical read and write lines |
US7576956B2 (en) | 2004-07-26 | 2009-08-18 | Grandis Inc. | Magnetic tunnel junction having diffusion stop layer |
US7098495B2 (en) | 2004-07-26 | 2006-08-29 | Freescale Semiconducor, Inc. | Magnetic tunnel junction element structures and methods for fabricating the same |
DE102004041894B3 (de) * | 2004-08-30 | 2006-03-09 | Infineon Technologies Ag | Speicherbauelement (CBRAM) mit Speicherzellen auf der Basis eines in seinem Widerstandswert änderbaren aktiven Festkörper-Elektrolytmaterials und Herstellungsverfahren dafür |
US7369427B2 (en) * | 2004-09-09 | 2008-05-06 | Grandis, Inc. | Magnetic elements with spin engineered insertion layers and MRAM devices using the magnetic elements |
JP4568152B2 (ja) * | 2004-09-17 | 2010-10-27 | 株式会社東芝 | 磁気記録素子及びそれを用いた磁気記録装置 |
US7336525B2 (en) * | 2004-10-18 | 2008-02-26 | Kabushiki Kaisha Toshiba | Nonvolatile memory for logic circuits |
US7126202B2 (en) | 2004-11-16 | 2006-10-24 | Grandis, Inc. | Spin scattering and heat assisted switching of a magnetic element |
US20060171197A1 (en) | 2005-01-31 | 2006-08-03 | Ulrich Klostermann | Magnetoresistive memory element having a stacked structure |
US7173848B2 (en) | 2005-02-01 | 2007-02-06 | Meglabs, Inc. | Magnetic random access memory with memory cell stacks having more than two magnetic states |
US7099186B1 (en) | 2005-02-10 | 2006-08-29 | Infineon Technologies Ag | Double-decker MRAM cells with scissor-state angled reference layer magnetic anisotropy and method for fabricating |
KR100632953B1 (ko) | 2005-03-07 | 2006-10-12 | 삼성전자주식회사 | 메모리 소자, 상기 메모리 소자를 위한 메모리 배열 및 상기 메모리 배열의 구동 방법 |
US7285836B2 (en) | 2005-03-09 | 2007-10-23 | Maglabs, Inc. | Magnetic random access memory with stacked memory cells having oppositely-directed hard-axis biasing |
JP2006294191A (ja) | 2005-04-14 | 2006-10-26 | Toshiba Corp | 磁気ランダムアクセスメモリのデータ読み出し方法 |
US7241632B2 (en) * | 2005-04-14 | 2007-07-10 | Headway Technologies, Inc. | MTJ read head with sidewall spacers |
US7230265B2 (en) * | 2005-05-16 | 2007-06-12 | International Business Machines Corporation | Spin-polarization devices using rare earth-transition metal alloys |
US7289356B2 (en) | 2005-06-08 | 2007-10-30 | Grandis, Inc. | Fast magnetic memory devices utilizing spin transfer and magnetic elements used therein |
US7236791B2 (en) | 2005-06-30 | 2007-06-26 | Lucent Technologies Inc. | Radio channel allocation for national security and emergency preparedness calls |
US7518835B2 (en) * | 2005-07-01 | 2009-04-14 | Grandis, Inc. | Magnetic elements having a bias field and magnetic memory devices using the magnetic elements |
JP4504273B2 (ja) * | 2005-07-06 | 2010-07-14 | 株式会社東芝 | 磁気抵抗効果素子および磁気メモリ |
US7411765B2 (en) | 2005-07-18 | 2008-08-12 | Hitachi Global Storage Technologies Netherlands B.V. | CPP-GMR sensor with non-orthogonal free and reference layer magnetization orientation |
KR100725380B1 (ko) * | 2005-07-28 | 2007-06-07 | 삼성전자주식회사 | 반도체 메모리 장치의 전압 발생 회로, 이를 포함하는반도체 메모리 장치 및 반도체 메모리 장치의 전압 발생방법 |
US7230845B1 (en) | 2005-07-29 | 2007-06-12 | Grandis, Inc. | Magnetic devices having a hard bias field and magnetic memory devices using the magnetic devices |
US7489541B2 (en) | 2005-08-23 | 2009-02-10 | Grandis, Inc. | Spin-transfer switching magnetic elements using ferrimagnets and magnetic memories using the magnetic elements |
US7224601B2 (en) * | 2005-08-25 | 2007-05-29 | Grandis Inc. | Oscillating-field assisted spin torque switching of a magnetic tunnel junction memory element |
US7272034B1 (en) | 2005-08-31 | 2007-09-18 | Grandis, Inc. | Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells |
US7272035B1 (en) | 2005-08-31 | 2007-09-18 | Grandis, Inc. | Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells |
US20070054450A1 (en) * | 2005-09-07 | 2007-03-08 | Magic Technologies, Inc. | Structure and fabrication of an MRAM cell |
US7532442B2 (en) * | 2005-09-19 | 2009-05-12 | Hitachi Global Storage Technologies Netherlands B.V. | Magnetoresistive (MR) elements having pinning layers formed from permanent magnetic material |
US7973349B2 (en) * | 2005-09-20 | 2011-07-05 | Grandis Inc. | Magnetic device having multilayered free ferromagnetic layer |
US7807492B2 (en) * | 2005-09-28 | 2010-10-05 | Northern Lights Semiconductor Corp. | Magnetoresistive random access memory with improved layout design and process thereof |
US7403418B2 (en) | 2005-09-30 | 2008-07-22 | Silicon Storage Technology, Inc. | Word line voltage boosting circuit and a memory array incorporating same |
JP4444241B2 (ja) * | 2005-10-19 | 2010-03-31 | 株式会社東芝 | 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置 |
US7286395B2 (en) | 2005-10-27 | 2007-10-23 | Grandis, Inc. | Current driven switched magnetic storage cells having improved read and write margins and magnetic memories using such cells |
US20070096229A1 (en) * | 2005-10-28 | 2007-05-03 | Masatoshi Yoshikawa | Magnetoresistive element and magnetic memory device |
US7411815B2 (en) | 2005-11-14 | 2008-08-12 | Infineon Technologies Ag | Memory write circuit |
US7187577B1 (en) * | 2005-11-23 | 2007-03-06 | Grandis, Inc. | Method and system for providing current balanced writing for memory cells and magnetic devices |
US7485503B2 (en) * | 2005-11-30 | 2009-02-03 | Intel Corporation | Dielectric interface for group III-V semiconductor device |
US7880249B2 (en) * | 2005-11-30 | 2011-02-01 | Magic Technologies, Inc. | Spacer structure in MRAM cell and method of its fabrication |
JP5040105B2 (ja) * | 2005-12-01 | 2012-10-03 | ソニー株式会社 | 記憶素子、メモリ |
US20070132049A1 (en) * | 2005-12-12 | 2007-06-14 | Stipe Barry C | Unipolar resistance random access memory (RRAM) device and vertically stacked architecture |
US7430135B2 (en) * | 2005-12-23 | 2008-09-30 | Grandis Inc. | Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density |
US7466583B2 (en) * | 2006-01-13 | 2008-12-16 | Magic Technologies, Inc. | MRAM with split read-write cell structures |
US20070187785A1 (en) * | 2006-02-16 | 2007-08-16 | Chien-Chung Hung | Magnetic memory cell and manufacturing method thereof |
US7515457B2 (en) * | 2006-02-24 | 2009-04-07 | Grandis, Inc. | Current driven memory cells having enhanced current and enhanced current symmetry |
US8183652B2 (en) | 2007-02-12 | 2012-05-22 | Avalanche Technology, Inc. | Non-volatile magnetic memory with low switching current and high thermal stability |
US20070246787A1 (en) | 2006-03-29 | 2007-10-25 | Lien-Chang Wang | On-plug magnetic tunnel junction devices based on spin torque transfer switching |
US7826174B2 (en) | 2006-03-31 | 2010-11-02 | Ricoh Company, Ltd. | Information recording method and apparatus using plasmonic transmission along line of ferromagnetic nano-particles with reproducing method using fade-in memory |
US20070241392A1 (en) | 2006-04-14 | 2007-10-18 | Hsin-Chang Lin | Non-volatile flash memory structure and method for operating the same |
US7345912B2 (en) * | 2006-06-01 | 2008-03-18 | Grandis, Inc. | Method and system for providing a magnetic memory structure utilizing spin transfer |
US20070297220A1 (en) | 2006-06-22 | 2007-12-27 | Masatoshi Yoshikawa | Magnetoresistive element and magnetic memory |
US7379327B2 (en) * | 2006-06-26 | 2008-05-27 | Grandis, Inc. | Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells having enhanced read and write margins |
US7433225B2 (en) * | 2006-07-06 | 2008-10-07 | International Business Machines Corporation | Scalable magnetic random access memory device |
US7502249B1 (en) * | 2006-07-17 | 2009-03-10 | Grandis, Inc. | Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements |
JP4385156B2 (ja) * | 2006-07-27 | 2009-12-16 | 独立行政法人産業技術総合研究所 | Ccp−cpp型巨大磁気抵抗素子 |
WO2008018266A1 (fr) | 2006-08-07 | 2008-02-14 | Nec Corporation | MRAM à ligne de commande de mots à potentiel variable |
US7851840B2 (en) * | 2006-09-13 | 2010-12-14 | Grandis Inc. | Devices and circuits based on magnetic tunnel junctions utilizing a multilayer barrier |
US8477528B2 (en) | 2006-10-16 | 2013-07-02 | Nec Corporation | Magnetic memory cell and magnetic random access memory |
US7572645B2 (en) | 2006-11-15 | 2009-08-11 | Everspin Technologies, Inc. | Magnetic tunnel junction structure and method |
JP2008130112A (ja) * | 2006-11-16 | 2008-06-05 | Fujitsu Ltd | 磁気抵抗効果型再生磁気ヘッド及びその再生磁気ヘッドを用いた磁気記録装置 |
US7864569B2 (en) * | 2006-12-01 | 2011-01-04 | Macronix International Co., Ltd. | Structure of magnetic random access memory using spin-torque transfer writing |
US7598579B2 (en) | 2007-01-30 | 2009-10-06 | Magic Technologies, Inc. | Magnetic tunnel junction (MTJ) to reduce spin transfer magnetization switching current |
US20090218645A1 (en) | 2007-02-12 | 2009-09-03 | Yadav Technology Inc. | multi-state spin-torque transfer magnetic random access memory |
US7480173B2 (en) * | 2007-03-13 | 2009-01-20 | Magic Technologies, Inc. | Spin transfer MRAM device with novel magnetic free layer |
US8058697B2 (en) | 2007-03-26 | 2011-11-15 | Magic Technologies, Inc. | Spin transfer MRAM device with novel magnetic synthetic free layer |
US7738287B2 (en) | 2007-03-27 | 2010-06-15 | Grandis, Inc. | Method and system for providing field biased magnetic memory devices |
US7728622B2 (en) * | 2007-03-29 | 2010-06-01 | Qualcomm Incorporated | Software programmable logic using spin transfer torque magnetoresistive random access memory |
US7486551B1 (en) | 2007-04-03 | 2009-02-03 | Grandis, Inc. | Method and system for providing domain wall assisted switching of magnetic elements and magnetic memories using such magnetic elements |
US7605437B2 (en) | 2007-04-18 | 2009-10-20 | Everspin Technologies, Inc. | Spin-transfer MRAM structure and methods |
US7919826B2 (en) | 2007-04-24 | 2011-04-05 | Kabushiki Kaisha Toshiba | Magnetoresistive element and manufacturing method thereof |
US7782661B2 (en) * | 2007-04-24 | 2010-08-24 | Magic Technologies, Inc. | Boosted gate voltage programming for spin-torque MRAM array |
JP2008277542A (ja) | 2007-04-27 | 2008-11-13 | Toshiba Corp | 磁気ランダムアクセスメモリ及びその製造方法 |
US7539047B2 (en) * | 2007-05-08 | 2009-05-26 | Honeywell International, Inc. | MRAM cell with multiple storage elements |
US7486552B2 (en) | 2007-05-21 | 2009-02-03 | Grandis, Inc. | Method and system for providing a spin transfer device with improved switching characteristics |
US7573736B2 (en) | 2007-05-22 | 2009-08-11 | Taiwan Semiconductor Manufacturing Company | Spin torque transfer MRAM device |
WO2008154519A1 (en) | 2007-06-12 | 2008-12-18 | Grandis, Inc. | Method and system for providing a magnetic element and magnetic memory being unidirectional writing enabled |
US7742328B2 (en) | 2007-06-15 | 2010-06-22 | Grandis, Inc. | Method and system for providing spin transfer tunneling magnetic memories utilizing non-planar transistors |
US7750421B2 (en) * | 2007-07-23 | 2010-07-06 | Magic Technologies, Inc. | High performance MTJ element for STT-RAM and method for making the same |
US7764536B2 (en) * | 2007-08-07 | 2010-07-27 | Grandis, Inc. | Method and system for providing a sense amplifier and drive circuit for spin transfer torque magnetic random access memory |
US7982275B2 (en) * | 2007-08-22 | 2011-07-19 | Grandis Inc. | Magnetic element having low saturation magnetization |
US20090185410A1 (en) | 2008-01-22 | 2009-07-23 | Grandis, Inc. | Method and system for providing spin transfer tunneling magnetic memories utilizing unidirectional polarity selection devices |
KR101586271B1 (ko) * | 2008-04-03 | 2016-01-20 | 삼성전자주식회사 | 자기 메모리 소자 및 그 정보 쓰기 및 읽기 방법 |
US8233247B2 (en) | 2008-04-11 | 2012-07-31 | Hitachi Global Storage Technologies Netherlands B.V. | Scissoring-type current-perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) sensors with damped free layer structures |
US20090302403A1 (en) | 2008-06-05 | 2009-12-10 | Nguyen Paul P | Spin torque transfer magnetic memory cell |
US7935435B2 (en) | 2008-08-08 | 2011-05-03 | Seagate Technology Llc | Magnetic memory cell construction |
US7881095B2 (en) * | 2008-08-08 | 2011-02-01 | Seagate Technology Llc | Asymmetric write current compensation using gate overdrive for resistive sense memory cells |
US7881098B2 (en) | 2008-08-26 | 2011-02-01 | Seagate Technology Llc | Memory with separate read and write paths |
US7826256B2 (en) * | 2008-09-29 | 2010-11-02 | Seagate Technology Llc | STRAM with compensation element |
US7940551B2 (en) * | 2008-09-29 | 2011-05-10 | Seagate Technology, Llc | STRAM with electronically reflective insulative spacer |
US8169810B2 (en) | 2008-10-08 | 2012-05-01 | Seagate Technology Llc | Magnetic memory with asymmetric energy barrier |
US8039913B2 (en) * | 2008-10-09 | 2011-10-18 | Seagate Technology Llc | Magnetic stack with laminated layer |
US7829964B2 (en) * | 2008-10-31 | 2010-11-09 | Industrial Technology Research Institute | Magnetic memory element utilizing spin transfer switching |
US8536669B2 (en) | 2009-01-13 | 2013-09-17 | Qualcomm Incorporated | Magnetic element with storage layer materials |
US8063460B2 (en) * | 2009-12-18 | 2011-11-22 | Intel Corporation | Spin torque magnetic integrated circuits and devices therefor |
-
2008
- 2008-09-29 US US12/239,884 patent/US7985994B2/en not_active Expired - Fee Related
-
2009
- 2009-09-29 KR KR1020117009873A patent/KR101308605B1/ko active IP Right Grant
- 2009-09-29 WO PCT/US2009/058756 patent/WO2010037090A2/en active Application Filing
- 2009-09-29 JP JP2011529345A patent/JP5667982B2/ja not_active Expired - Fee Related
- 2009-09-29 EP EP09793107A patent/EP2342716B1/en not_active Not-in-force
- 2009-09-29 CN CN200980143740.8A patent/CN102216995B/zh not_active Expired - Fee Related
-
2011
- 2011-05-25 US US13/115,265 patent/US8362534B2/en active Active
-
2013
- 2013-01-24 US US13/748,815 patent/US9041083B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6765819B1 (en) * | 2002-07-25 | 2004-07-20 | Hewlett-Packard Development Company, Lp. | Magnetic memory device having improved switching characteristics |
US20040061981A1 (en) * | 2002-09-30 | 2004-04-01 | Seagate Technology Llc | Suppression of thermally activated magnetization fluctuations in magnetoresistive elements via spin momentum transfer |
WO2004093087A1 (en) * | 2003-04-16 | 2004-10-28 | Agency For Science, Technology And Research | Magnetic memory device |
US20050237787A1 (en) * | 2004-04-21 | 2005-10-27 | Yiming Huai | Spin transfer magnetic elements with spin depolarization layers |
CN101133476A (zh) * | 2004-12-29 | 2008-02-27 | 弘世科技公司 | 具有用于自旋转移翻转的高自旋极化层的mtj元件以及使用该磁性元件的自旋电子器件 |
US20070085068A1 (en) * | 2005-10-14 | 2007-04-19 | Dmytro Apalkov | Spin transfer based magnetic storage cells utilizing granular free layers and magnetic memories using such cells |
WO2008100868A2 (en) * | 2007-02-12 | 2008-08-21 | Yadav Technology, Inc. | Non-uniform switching based non-volatile magnetic based memory |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105374935A (zh) * | 2015-12-01 | 2016-03-02 | 中电海康集团有限公司 | 一种用于stt-mram的含有不均匀势垒层的磁性隧道结 |
CN108574041A (zh) * | 2017-03-13 | 2018-09-25 | 三星电子株式会社 | 磁性结、设置磁性结的方法和磁性存储器 |
CN108574041B (zh) * | 2017-03-13 | 2023-10-24 | 三星电子株式会社 | 磁性结、设置磁性结的方法和磁性存储器 |
CN109004087A (zh) * | 2017-06-07 | 2018-12-14 | 英飞凌科技股份有限公司 | 用于生成闭合通量磁化图案的磁阻传感器和方法 |
US11789097B2 (en) | 2017-06-07 | 2023-10-17 | Infineon Technologies Ag | Magnetoresistive sensors and methods for generating closed flux magnetization patterns |
CN112490353A (zh) * | 2019-09-11 | 2021-03-12 | 上海磁宇信息科技有限公司 | 一种磁性随机存储器存储单元及磁性随机存储器 |
CN112750945A (zh) * | 2019-10-31 | 2021-05-04 | 上海磁宇信息科技有限公司 | 一种具双自由层的磁性随机存储器存储单元 |
Also Published As
Publication number | Publication date |
---|---|
JP2012504349A (ja) | 2012-02-16 |
KR20110079824A (ko) | 2011-07-08 |
CN102216995B (zh) | 2014-04-16 |
US20100078742A1 (en) | 2010-04-01 |
US20110221016A1 (en) | 2011-09-15 |
US20130140659A1 (en) | 2013-06-06 |
EP2342716A2 (en) | 2011-07-13 |
US9041083B2 (en) | 2015-05-26 |
WO2010037090A2 (en) | 2010-04-01 |
EP2342716B1 (en) | 2012-06-20 |
KR101308605B1 (ko) | 2013-09-17 |
US7985994B2 (en) | 2011-07-26 |
US8362534B2 (en) | 2013-01-29 |
JP5667982B2 (ja) | 2015-02-12 |
WO2010037090A3 (en) | 2010-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102216995B (zh) | 具有电子反射绝缘间隔层的通量闭合stram | |
CN102339638B (zh) | 具有电子反射绝缘间隔层的stram | |
CN102224546B (zh) | 具有补偿元件的stram |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140416 |