WO2003103137A1 - 増幅装置 - Google Patents

増幅装置 Download PDF

Info

Publication number
WO2003103137A1
WO2003103137A1 PCT/JP2002/005341 JP0205341W WO03103137A1 WO 2003103137 A1 WO2003103137 A1 WO 2003103137A1 JP 0205341 W JP0205341 W JP 0205341W WO 03103137 A1 WO03103137 A1 WO 03103137A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifiers
gain
signal
value
distortion
Prior art date
Application number
PCT/JP2002/005341
Other languages
English (en)
French (fr)
Inventor
聡 丸山
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2002/005341 priority Critical patent/WO2003103137A1/ja
Priority to JP2004510108A priority patent/JP4083167B2/ja
Publication of WO2003103137A1 publication Critical patent/WO2003103137A1/ja
Priority to US10/999,207 priority patent/US7133466B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0088Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/10Gain control characterised by the type of controlled element
    • H03G2201/103Gain control characterised by the type of controlled element being an amplifying element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/20Gain control characterized by the position of the detection
    • H03G2201/206Gain control characterized by the position of the detection being in radio frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/30Gain control characterized by the type of controlled signal
    • H03G2201/307Gain control characterized by the type of controlled signal being radio frequency signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/50Gain control characterized by the means of gain control
    • H03G2201/504Gain control characterized by the means of gain control by summing selected parallel amplifying paths, i.e. more amplifying/attenuating paths summed together

Definitions

  • the present invention relates to an amplifying device having two amplifiers for respectively amplifying a common input signal. Particularly, in an amplifying apparatus in a transition state such as when transitioning from an operating state of both amplifiers to an operating state of one of the amplifiers.
  • the present invention relates to an amplifier for suppressing a distortion component included in an output signal of an amplifier.
  • One such distortion compensator is the digital predistortion (digital predistorter).
  • digital predistortion a characteristic component (distortion compensation component, distortion predicted value) opposite to the distortion characteristic of the amplifier is prepared by digital processing at the input side of the amplifier, and this is added to the input signal of the amplifier by digital processing. That is what you do. As a result, the distortion component generated in the amplifier is canceled, and the distortion No output signal is obtained.
  • the distortion compensation component during the digital predistortion also differs from one amplifier to another. Therefore, in order to obtain an appropriate distortion compensating component according to the amplification characteristics of the amplifier used, the amplifier must be operated for a predetermined time or more, and the distortion compensating component corresponding to the amplifier's amplification characteristics must be found all at once in the predistinguishment. There is a need. Therefore, it takes a certain amount of time before an appropriate distortion compensating component is determined and the distortion component contained in the output signal of the amplifier is canceled by the distortion compensating component.
  • a signal having a distortion component is output from the amplifier.
  • This distortion component may cause disturbances such as noise in adjacent channels. Disclosure of the invention
  • An object of the present invention is to provide a distortion component included in an output signal of an amplifier in a transient state, such as when a signal is amplified by two amplifiers to a signal amplification state by one amplifier. Is to suppress.
  • An amplifying device includes two amplifiers that receive an input signal in common and output a signal amplified therefrom; a combiner that combines and outputs output signals of the two amplifiers; A predistortion compensator for obtaining a distortion compensation component based on the output signal and performing distortion compensation on the input signal based on the obtained distortion compensation component; and one of the two amplifiers based on the operating state of the two amplifiers.
  • a gain controller for lowering the gain below a steady value and attenuating the input signal more than in a steady state.
  • one of the amplifiers is removed when transitioning from both operating states of the two amplifiers to one of the operating states, and when transitioning from one of the operating states to both of the operating states.
  • the gain of the gain control unit is reduced below the steady-state value, and the input signal input to the amplifier is attenuated more than in the steady state. Is done.
  • distortion components included in the output signal of the amplifier are suppressed.
  • the amplifier according to the present invention includes two amplifiers to which an input signal is input in common and outputs an amplified signal therefrom; a combiner that combines and outputs the output signals of the two amplifiers; Two predistortion compensators for obtaining a distortion compensation component based on the output signal of the combiner and performing distortion compensation on the input signal based on the obtained distortion compensation component; A switch for selecting one of them and supplying the selected output signal to the two amplifiers in common; and a gain for switching the switch from one predistortion compensator to the other predistorter. And a gain control unit that attenuates the signals input to the two amplifiers below a steady state value by attenuating the signals compared to the steady state.
  • the switch section when the switch section is switched from one predistortion compensator to the other predistortion compensator, the gain is reduced below a steady value, and the signals input to the two amplifiers are higher than in the steady state. Attenuated. As a result, at the time of the above switching, distortion components included in the output signal of the amplifier are suppressed.
  • the amplifying device includes two amplifying units, a combiner for combining and outputting output signals of the two amplifying units, and a switch unit.
  • Each of the two amplifying units includes: A main amplifier; a digital predistortion unit which is placed on the input side of the main amplifier and generates a distortion prediction value of the main amplifier and adds the distortion prediction value to an input signal; and an output signal of the digital bridging unit which is orthogonally modulated.
  • a quadrature modulator that converts the frequency of the output signal of the quadrature modulator, a frequency converter that converts the frequency of the output signal of the synthesizer, and converts the frequency-converted output signal of the synthesizer to the digital signal.
  • FIG. 1 is a block diagram showing the configuration of the transmission amplifier according to the first embodiment of the present invention.
  • FIG. 2 is a graph showing changes in the transmission output from the combiner before and after the occurrence of a fault in the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing a configuration of the transmission amplifier according to the second embodiment of the present invention.
  • FIG. 4 is a graph showing a change in the transmission output from the combiner before and after the occurrence of a failure in the third embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration of the transmission amplifier according to the fourth embodiment of the present invention.
  • FIG. 6 is a graph showing the variation of the transmission output from the combiner before and after the occurrence of a failure in the fourth embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a transmission amplifier 100 according to the first embodiment of the present invention.
  • This transmission amplifier 100 is provided, for example, in a base station of a mobile communication system, and is used to amplify a transmission signal to a mobile communication terminal.
  • the transmission amplifier 100 includes transmission amplifiers 1 and 2, a switch (SW) 3, and a combiner 4.
  • the transmission amplifier 1 has a modulation unit 10, a gain control unit 15, a main amplifier (AMP) 16, and a failure detection unit 17.
  • the modulator 10 is a digital predistortion (D PD) 11, Quadrature modulator (QMOD) 12, Upcomer (UCONV) 13 and Downcomer (DCONV) 14 These components of the transmission amplifier 1 are integrated on, for example, one circuit board (card) or package.
  • the transmission amplifier 2 has a configuration similar to that of the transmission amplifier 1, and includes a modulation unit 20, a gain control unit 25, a main amplifier (AMP) 26, and a failure detection unit 27.
  • the modulation unit 20 includes a DPD 21, a QMOD 22 , UCONV23, and DC ONV 24. These components of the transmission amplifier 2 are also integrated into a single circuit board (card) or package.
  • a signal from a selected side (working side) of the modulation sections 10 and 20 is supplied to SW3 via a gain control section 15 or 25 on the working side, and two AMPs are supplied from SW3. Supplied to 16 and 26.
  • the two AMPs 16 and 26 amplify the signal supplied from SW3, and output the amplified signal to the combiner 4.
  • the combiner 4 combines the two signals from the AMPs 16 and 26, outputs the signal to an antenna or the like, and transmits the signal.
  • Signals to be amplified and transmitted by the AMPs 16 and 26 are commonly input to the transmission amplifiers 1 and 2 from a preceding device (not shown). This transmission signal is applied to modulation sections 10 and 20, respectively.
  • DPD 11 (The code in parentheses indicates the code of the transmission amplifier 2 or its components. The same applies hereinafter.)
  • the transmission signal is, for example, a signal (voice signal, data signal, image signal, control signal, etc.) transmitted to a mobile communication terminal, and an intermediate frequency (IF) digital signal (in-phase component I signal and quadrature component Q signal). It is.
  • the analog output signal of the radio frequency (RF) of the synthesizer 4 was converted to an intermediate frequency (down-converted) by DCONV14 [24] and converted to a digital signal (A / D conversion). Things.
  • DPD 11 (21) compensates for the distortion component contained in the output signal of combiner 4. And a adder for adding the distortion compensation value of the distortion compensation tape to the transmission signal. Then, the DPD 11 [21] adds a distortion compensation value (distortion prediction value) corresponding to the power value of the transmission signal to the transmission signal and outputs it.
  • the distortion component included in the output signal of the synthesizer 4 is added to the AMPs 16 and 26 when both the transmission amplifiers 1 and 2 have no failure (hereinafter referred to as “normal state”). When a failure occurs in one of the transmission amplifiers 1 and 2 (hereinafter referred to as a “failure state”), only AMPs 16 and 26 that have no failure are added.
  • the distortion compensation value is obtained by the DPD11 [21] based on the transmission signal and the feedback signal (for example, the difference between the transmission signal and the feedback signal). For this reason, after the transmission amplifier 100 starts operating, an appropriate distortion compensation value corresponding to the amplification characteristics of the AMP 16 and / or 26 is determined, and the distortion component included in the output signal of the combiner 4 is distorted. It takes a certain amount of time to cancel out by the compensation value and converge within the allowable range. Similarly, when the state changes from the normal state to the failure state or when the state returns from the failure state to the normal state, an appropriate distortion compensation value is obtained, and the distortion component is canceled by the distortion compensation value and converges within the allowable range. It takes a certain amount of time to complete.
  • QMOD 12 (22) quadrature modulates the output signals (I signal and Q signal) of DPD11 (21), and provides the signal after quadrature modulation to UCONV13 (23).
  • the UC ONV13 [23] converts the digital signal given from the QMOD12 [22] into an analog signal, and converts (up-converts) the frequency of this analog signal from an intermediate frequency to a radio frequency.
  • the analog signal converted to the radio frequency is supplied to the gain control unit 15 [25].
  • the function of converting a digital signal to an analog signal may be provided in QMOD 12 [22].
  • the gain control unit 15 (25) has a variable attenuator, attenuates the level (power) of the analog signal from the UCONV13 (23) by the set gain (attenuation amount), and outputs the attenuated analog signal to SW3.
  • the gain of the gain control unit 15 (25) is set to, for example, OdB as a steady value in the normal state. Therefore, in the normal state, the analog signal from modulator 10 (20) is neither attenuated nor amplified. No.
  • the gain control is performed.
  • the unit 15 (25) lowers the gain from the steady value to the predetermined value G, attenuates the power of the analog signal from the modulator 10 (20), and supplies it to SW3.
  • the failure detection unit 17 monitors the corresponding transmission amplifier 1 (2), detects the failure, and outputs a failure detection signal to the gain control unit 25 ⁇ 15 ⁇ and the other transmission amplifier 2 ⁇ 1 ⁇ . This is given to a control device (not shown). Failures include all failures of the modulator 10 (20), gain controller 15 (25), and AMP 16 (26), and at least one of these failures. (27) detects any of these faults. The operation of the transmission amplifier 100 when a failure is detected will be described later in detail. For the failure, for example, the input level (power value) of the modulation section 10 (20) and the output level (power value) of the AMP 16 (26) are monitored, and the level ratio between these levels is lower than that of the AMP 16 (26). It can be detected by detecting a difference from the amplification factor (gain) value, or by monitoring the voltage of a specific transistor of the AMP 16 (26) and detecting that the voltage has an abnormal value.
  • gain gain
  • a selection signal instructing selection of one of the output signals of the gain control units 15 and 25 is input to SW 3 from a control device (not shown).
  • SW3 selects the output signal from one of the gain control units 15 or 25 according to the selection signal and supplies it to the two AMPs 16 and 26 in common.
  • SW3 can be composed of, for example, a relay.
  • SW3 is composed of a combiner that combines the signals supplied from gain control units 15 and 25, and the power supply to the non-selected (non-working) side of gain control units 15 and 25 is stopped (power off). May be. Even in this case, the signal from the gain control unit on the side where the power supply is stopped is not supplied to SW (combiner) 3, but only the signal from the active gain control unit is supplied to SW 3. Therefore, the working-side signal of the gain control units 15 and 25 can be supplied to the AMPs 16 and 26 in common.
  • the power supply is stopped by the controller. Also, stopping the power supply
  • the modulation unit 10 or 20 may be used, or only the UCO NV 13 or 23 of the component may be used.
  • the AMP 16 (26) amplifies the signal supplied from the SW 3 and supplies it to the combiner 4.
  • the combiner 4 combines and outputs the signals from the AMPs 16 and 26.
  • the synthesized signal is transmitted to the mobile communication terminal by radio waves from an antenna (not shown), for example, and a part of the signal is fed back to DCONVs 14 and 24.
  • the operation of the transmission amplifier 100 having such a configuration will be described.
  • the transmission signals input to transmission amplifiers 1 and 2 are predistorted (pre-distorted) and modulated by modulators 10 and 20, and then transmitted to gain controllers 15 and 25, respectively. Given.
  • the signals from the modulators 10 and 20 are given to SW3 without attenuation or amplification. .
  • SW 3 selects the signal from the working side of gain control section 15 or 25 based on the selection signal of the control device and supplies it to the two AMPs 16 and 26.
  • the signals supplied to the AMPs 16 and 26 are amplified, combined by the combiner 4, and then transmitted from an antenna (not shown).
  • the transmission signal is amplified by the two AMPs 16 and 26, so that the transmission output is twice as large as in the case of a single amplifier.
  • distortion components may be added to the output signal due to AMPs 16 and 26, but since they are canceled out by the predistortion compensation by the modulator 10 or 20, the result is a distortion-free output. A signal is obtained.
  • the pre-distortion of the signal and the modulation are not performed on the non-working side.
  • the entire transmission amplifier on the side where the failure has occurred is stopped (power supply is stopped), or after the stop, it is removed from the equipment constituting the base station for replacement. Then, the predistortion, modulation, and amplification of the transmission signal are performed only by the transmission amplifier on the side where no failure has occurred.
  • transmission amplifiers 1 and 2 that have a failure on the working side (first case) and non-working sides that have a failure (second case).
  • the fault detecting unit that is, the working side fault detecting unit 17 that has detected a fault sends the fault detection signal to the other gain control unit (ie, the non-working side).
  • Side gain control section 25 and a control device (not shown). The gain controller 25 lowers the gain from a steady value to a predetermined value G for a predetermined time T after receiving the failure detection signal (gain reduction control).
  • control device stops the entire transmission amplifier 1 on the side where the failure is detected (for example, stops the power supply), and selects the signal from the gain control unit 25 of the transmission amplifier 2 for SW 3. Give a select signal to indicate. If the power supply to the non-working side modulator 20 is stopped, the controller starts power supply to the modulator 20.
  • the working side and the non-working side are switched, and the signal pre-compensated and modulated by the modulation section 20 is attenuated by the gain control section 25, and then the AMP 26 (AMP 1 6 is stopped) and amplified.
  • the gain control unit 25 After a predetermined time T has elapsed, the gain control unit 25 returns the gain value to a steady value (gain return control).
  • the non-working side fault controller 27 that detects the fault sends a fault detection signal to the gain controller 15 and the controller.
  • the gain control unit 15 sets the gain to a predetermined value G lower than the steady-state value for a predetermined time T after receiving the failure detection signal.
  • the control device stops the entire transmission amplifier 2, but does not supply a selection signal to SW3 because transmission amplifier 1 in which no failure has occurred is originally the working side.
  • the signal pre-compensated and modulated by the modulation unit 10 is attenuated by the gain control unit 15 and supplied to AMP 16 (AMP 26 is stopped) and amplified. After a lapse of a predetermined time T, the gain control unit 25 returns the gain to a steady value.
  • the distortion component contained in the output signal of the synthesizer 4 immediately after the occurrence of a fault is suppressed by lowering the gain of the working-side gain control unit 15 or 25 below the steady-state value immediately after the occurrence of the fault. Can be.
  • the two AMPs 16 and 26 in the normal state The amplification state changes to the amplification state using either AMP 16 or 26, and a situation equivalent to a change in the amplification characteristics of the amplifier occurs.
  • the distortion components used in the amplification state by the two AMPs 16 and 26 cannot sufficiently compensate for the distortion components.
  • the modulator 20 that is switched from the non-working side to the working side will be Since it did not operate before, it has no distortion compensation value itself.
  • the AMP distortion component is added to the output signal of the combiner 4, and this distortion component may cause noise in adjacent channels, for example. Things happen. On the other hand, such a situation can be avoided by reducing the gain value to the predetermined value G.
  • the “predetermined value G” at which the gain value is reduced is preferably a value at which the active AMP 16 or 26 can amplify in the linear region of the amplification characteristic.
  • the “predetermined value G” at which the gain value is reduced is preferably a value at which the active AMP 16 or 26 can amplify in the linear region of the amplification characteristic.
  • it is a value that can obtain a transmission output that does not disconnect the communication with the mobile communication terminal. This is a value (for example, about several dB) within a range in which noise given to adjacent channels by distortion components is allowed.
  • the specific values are obtained by tests, experiments, simulations, etc., and are set in advance in the gain controllers 15 and 25.
  • the working DPD 11 or 21 sets the distortion compensation value to an appropriate value in the operating state with one AMP. This is the time required for the distortion component added by the AMP to converge within the allowable range.
  • the specific values are obtained by tests, experiments, simulations, etc., and are set in the gain control units 15 and 25 in advance.
  • Figure 2 is a graph showing the change in the transmission output (power value) from the combiner 4 before and after the occurrence of a failure.
  • the transmission output from the combiner 4 has decreased by a certain value (for example, 6 dB). This is a phenomenon that occurs when the output signal from the combiner 4 partially flows out to the failed transmission amplifier 1 or 2 side as well as the antenna side.
  • the transmission output decreases as the gain of the gain control unit 15 or 25 on the working side is reduced to the predetermined value G.
  • the gain control unit 15 or Since the gain of 25 is returned to the steady-state value, the transmission output returns to the state of 6 dB immediately after the occurrence of the fault.
  • the gain of the working-side gain control unit 15 or 25 remains at the given value G for a given time T immediately after the removal. Can be lowered.
  • the level of the output signal from the combiner 4 is reduced by, for example, 6 dB as described above. This is because the amount of decrease in the output signal level is small (for example, 3 dB), and this also causes a situation equivalent to a change in the amplification characteristics of the AMP. Therefore, even when it is removed, a distortion component may occur, and it is preferable to attenuate the signal from the modulator until the distortion component is compensated by the distortion compensation value and canceled out.
  • the same gain control (gain reduction control and gain return control) is performed on the gain control unit. This is because the installation of a new transmission amplifier results in a situation opposite to the situation when the amplifier is removed, and a situation equivalent to a change in the amplification characteristics of the AMP occurs.
  • the removal and attachment of the transmission amplifier is detected by a control device (not shown), and the gain control of the gain control section is performed by the control device.
  • the detection of the removal and attachment can be performed, for example, by monitoring a change in the potential of a predetermined terminal connected to the transmission amplifier (a ground potential when attached, and an open potential when removed).
  • the control unit also controls the gain when the power is turned on to the attached transmission amplifier.
  • the switching from the non-working side to the working side is performed at the time of switching. It is preferable to reduce the gain of the gain control unit to a predetermined value. Before switching, the power supply to the modulator is stopped. Does not have the distortion compensation value before switching.
  • the transmission amplifying apparatus 100 As described above, according to the transmission amplifying apparatus 100 according to the first embodiment of the present invention, it is possible to suppress the occurrence of distortion components when a failure occurs, when the transmission amplifier is removed, and when switching is performed in a normal state. .
  • FIG. 3 is a block diagram showing a configuration of a transmission amplifier 200 according to the second embodiment of the present invention.
  • the same components as those of the transmission amplifier 100 according to the first embodiment described above are denoted by the same reference numerals, and description thereof will be omitted.
  • the transmission amplifier 200 has a power measuring section 18 in the transmission amplifier 1 and a power measurement section 28 in the transmission amplifier 2 in addition to the components of the transmission amplification apparatus 100.
  • the gain controllers 19 and 29 have different functions from those of the gain controllers 15 and 25 of the transmission amplifying device 100, and therefore have different reference numerals.
  • the power measurement unit 18 (28) calculates the power value (input level) of the signal input to the modulation unit 10 (20), and sends the calculated power value to the gain control unit 19 (29). give.
  • the gain control unit 19 controls the gain control (eg, when a failure is detected, when the transmission amplifier is removed and attached, and when the power to the attached transmission amplifier is turned on). Gain control and gain return control), but differs from gain control unit 15 (25) in that gain control is performed according to the power value provided from power measurement unit 18 (28). .
  • Specific gain control includes the following first and second methods.
  • the first method is used when the power value of the power measurement unit 18 (28) is lower than a predetermined threshold, such as when a failure is detected, when the transmitter is removed, when the Z is attached, or when the power is turned on to the attached transmitter. Is a method in which the gain is not decreased and the gain is increased when the power value is larger than a predetermined threshold.
  • the predetermined threshold is, for example, an input level at the boundary between the linear region and the non-linear region of AMP 16 and / or 26, and is set in the gain control units 15 and 25 in advance.
  • the signal at the level at which AMP performs amplification in the linear region is not attenuated, and the signal at the level at which AMP performs amplification in the nonlinear region is attenuated. Therefore, in the nonlinear region where the distortion component is added by AMP, the signal power must be attenuated. Thus, while the distortion component can be suppressed, the signal can be transmitted without attenuating the signal power in the linear region where the distortion component is not added by the AMP. As a result, fluctuations in the transmission output level can be minimized, and a stable communication state can be maintained.
  • the second method is to vary the amount of gain reduction (attenuation) according to the transmission power at the time of failure detection, removal / attachment of the transmission amplifier, or power-on to the attached transmission amplifier.
  • the amount of gain reduction is assumed to be a value proportional to the power value, and the power value in the linear region is If, the gain reduction is zero (ie, no attenuation).
  • the amount of attenuation is increased or decreased according to the magnitude of the distortion component, enabling more effective suppression of the distortion component, minimizing fluctuations in the transmission output level, and maintaining a stable communication state. can do.
  • the gain control units 15 and 25 can determine the amount of gain reduction proportional to the power value using a pre-set formula, or use a preset power value and gain reduction amount. Can be obtained by a template corresponding to
  • the gain can be gradually returned to a steady value after the gain reduction control.
  • FIG. 4 is a graph showing a change in the transmission output (power value) from the combiner 4 before and after the occurrence of a failure in the third embodiment of the present invention.
  • the transmission output drops by a fixed value (for example, 6 dB '), as in the graph in Fig. 2, and then the transmission is controlled by the gain reduction control of the working-side gain control unit 15 or 25. Power is falling.
  • the gain control unit 15 or 25 does not return the gain to a steady-state value immediately after a predetermined time has elapsed since the gain reduction control, but gradually returns it over a certain period of time.
  • FIG. 13 is a block diagram showing a configuration of a transmission amplifier 300 according to a fourth embodiment of the present invention.
  • the same components as those of the transmission amplifier 100 according to the first embodiment described above are denoted by the same reference numerals, and description thereof will be omitted.
  • the DPDs 11a and 21a of the transmission amplifier 300 and the gain control units 15a and 25a have different functions from those of the corresponding components of the transmission amplifier 100, and thus are assigned different reference numerals.
  • the DPD 11a (21a) performs pre-compensation in the same way as the DPD 11 (21), and performs the gain return control to return the gain stepwise after the gain reduction control. It is determined whether the distortion component contained in the feedback signal given by the convergence is below a predetermined level, and if it converges below the predetermined level, the signal (convergence signal) notifying the convergence is gained. This is given to the control unit 15a (25a).
  • the gain control unit 15a (25a) performs gain reduction control in the same way as the gain control unit 15 (25), and returns the gain in a stepwise manner during gain return control to return the gain to a steady value.
  • the trigger for returning this gain stepwise is the input of the convergence signal. That is, each time a convergence signal is input, the gain control unit 15a (25a) gradually approaches the gain to a steady value by a predetermined amount.
  • the gain controller 15a (25a) performs After a lapse of a predetermined time, the gain is increased so that the transmission output increases by p (that is, it approaches the steady-state value).
  • the distortion component due to AMP 16 and Z or 26 included in the output signal of the combiner 4 slightly increases, and the DPD 11a (21a) finds an appropriate distortion compensation value. As a result, the distortion component gradually decreases.
  • the DPD 11a (21a) gives a converged signal to the gain controller 15a (25a).
  • the gain controller 15a increases the gain again so that the transmission output increases by p again. This process is repeated until the gain returns to a steady value.
  • FIG. 6 is a graph showing a change in the transmission output from the combiner 4 before and after the occurrence of a failure in the fourth embodiment.
  • n is set so that the noise applied to the adjacent channel due to the distortion component generated by increasing the transmission output by p is within the allowable range. Also, instead of increasing the transmission power by a fixed amount p, the transmission power may be increased by p i, 2,.
  • This stepwise gain return control can also be applied to the transmission amplifier 200 according to the second embodiment.
  • the transmission amplifiers 1 and 2 are provided with gain control sections 15 and 25, respectively.
  • gain control sections 15 and 25 instead of these two gain control sections 15 and 25, one gain control section is provided.
  • the control unit can be provided on the output side of SW5.
  • power measuring units 18 and 28 for measuring the input signals of transmission amplifiers 1 and 2 are provided, respectively.
  • a power measuring unit for measuring the power of the output signals of AMPs 16 and 26 may be provided.
  • the gain controllers 19 and 29 may perform gain control according to the power of the output signal.
  • the present invention can be used for an amplifying device for amplifying a signal.
  • the present invention can be used for an amplifying device for amplifying a transmission signal to a mobile communication terminal in a base station of a mobile communication system.
  • one of the amplifiers when shifting from both operating states of the two amplifiers to one of the operating states, when shifting from one of the operating states to both of the operating states, one of the amplifiers is removed.
  • one of the removed amplifiers When one of the removed amplifiers is installed, or when switching from one modulator (including the pre-compensator) to the other modulator (including the pre-compensator), In the transient state, distortion components contained in the output signal of the amplifier can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Description

技術分野
本発明は, 共通の入力信号をそれぞれ増幅する 2つの増幅器を有する増幅装置 であって, 特に, 双方の増幅器の作動状態からいずれか一方の増幅器の作動状態 に移行する際等の過渡状態において, 増幅器の出力信号に含まれる歪成分を抑制 する増幅装置に関する。 景技術
携帯電話等の移動通信端末の普及および移動通信における高速デ一夕サービス の需要増大に伴い, 基地局の送信出力の増大および基地局の信頼性の向上が大き な課題となっている。
送信出力の増大を図るとともに,基地局の信頼性を向上するための方法として , 送信用の増幅器を 2台設ける構成が考えられている。 2台の増幅器によりそれそ れ增幅された信号を合成することにより, 1台の増幅器の場合と比較して, 実質 的に 2倍の送信出力を得ることができるからである。 また, 一方の増幅器が故障 しても, 他方の増幅器によって, 送信出力は半減するものの, 信号の継続した送 信が可能となり, 信頼性を向上させることができるからである。
一方, このような増幅器では, 高効率で出力を得るために増幅特性の非線形領 域で増幅することも行われる。 しかし, 増幅特性の非線形領域で増幅を行った場 合に,増幅器の出力信号に非線形歪(歪成分)が生じる。このため,増幅器には, 一般に, 非線形歪を補償するための歪補償装置が設けられる。
このような歪補償装置の 1つとして, ディジタルプリディスト一夕 (デイジ夕 ル前置補償器).がある。 ディジタルプリディスト一夕は, 増幅器の入力側におい て, ディジタル処理により増幅器の歪特性と逆の特性成分 (歪補償成分, 歪予測 値) を用意し, これを増幅器の入力信号にディジタル処理により付加するもので ある。 これにより, 増幅器において生じる歪成分が打ち消され, 増幅器から歪の ない出力信号が得られる。
増幅器の増幅特性は増幅器ごとに異なることから, ディジタルプリディスト一 夕の歪補償成分も増幅器ごとに異なる。 したがって, 使用される増幅器の増幅特 性に応じた適切な歪補償成分を得るためには,増幅器を所定の時間以上作動させ, プリディスト一夕に増幅器の増幅特性に応じた歪補償成分を求めさせる必要があ る。 このため, 適切な歪補償成分が求まり, 増幅器の出力信号に含まれる歪成分 が歪補償成分により打ち消されるまでには, 所定の時間を要する。
ここで, 冒頭に述べた 2台の増幅器が設けられる構成では, 2台の増幅器が作 動している状態から, 一方が故障し, 他方のみの作動状態に移行する際に, 増幅 器の増幅特性が変ィ匕したのと等価な状態が発生する。 この場合に, ディジタルプ リディスト一夕の歪補償成分を 1台の増幅器の増幅特性に適した値とするために, 再び所定の時間を要することとなる。
このような過渡状態の間, 歪成分を有する信号が増幅器から出力されることと なる。 この歪成分により, たとえば, 隣接したチャネルにノイズが生じるなどの 障害が発生することがある。 発明の開示
本発明の目的は, 2台の増幅器によって信号を増幅している状態から 1台の増 幅器による信号の増幅状態に移行する際等の過渡状態において, 増幅器の出力信 号に含まれる歪成分を抑制することにある。
本発明による増幅装置は, 共通に入力信号が入力され, それそれから増幅され た信号を出力する 2つの増幅器と, 前記 2つの増幅器の出力信号を合成して出力 する合成器と, 前記合成器の出力信号に基づいて歪補償成分を求め, 求めた歪補 償成分に基づいて前記入力信号に歪補償を行う前置歪補償部と, 前記 2つの増幅 器の双方の作動状態からいずれか一方の作動状態に移行する際, いずれか一方の '作動状態から双方の作動状態に移行する際, いずれか一方の増幅器が除去される 際, または, 除去されたいずれか一方の増幅器が取り付けられる際に, 利得を定 常値よりも下げて前記入力信号を定常時よりも減衰させる利得制御部と, を有す る。 本発明によると, 2つの増幅器の双方の作動状態からいずれか一方の作動状態 に移行する際, いずれか一方の作動状態から双方の作動状態に移行する際, いず れか一方の増幅器が除去される際, または, 除去されたいずれか一方の増幅器が 取り付けられる際の過渡状態において, 利得制御部の利得が定常値よりも下げら れ, 増幅器に入力される入力信号が定常時よりも減衰される。 これにより, 上記 過渡状態において, 増幅器の出力信号に含まれる歪成分が抑制される。
また, 本発明による増幅装置は, 共通に入力信号が入力され, それそれから増 幅された信号を出力する 2つの増幅器と, 前記 2つの増幅器の出力信号を合成し て出力する合成器と, 前記合成器の出力信号に基づいて歪補償成分を求め, 求め た歪補償成分に基づいて前記入力信号に歪補償を行う 2つの前置歪補償部と, 前 記 2つの歪補償部の出力信号の一方を選択し, 選択した出力信号を前記 2つの増 幅器に共通に供給するスィツチ部と, 前記スィツチ部を一方の前置歪補償部から 他方の前置歪補償部に切り替える際に, 利得を定常値よりも下げて前記 2つの増 幅器に入力される信号を定常時よりも減衰させる利得制御部と, を有する。 本発明によると, スイッチ部を一方の前置歪補償部から他方の前置歪補償部に 切り替える際に, 利得が定常値よりも下げられ, 2つの増幅器に入力される信号 が定常時よりも減衰される。 これにより, 上記切り替え時において, 増幅器の出 力信号に含まれる歪成分が抑制される。
さらに, 本発明による増幅装置は, 2つの増幅部と, 前記 2つの増幅部の出力 信号を合成して出力する合成器と, スイッチ部とを有し, 前記 2つの増幅部のそ れそれは, 主増幅器と, 前記主増幅器の入力側に置かれ, 前記主増幅器の歪予測 値を生成して入力信号に加算するディジタルプリディスト一夕と, 前記ディジ夕 ルブリディスト一夕の出力信号を直交変調する直交変調器と, 前記直交変調器の 出力信号の周波数を変換するァップコンバ一夕と, 前記合成器の出力信号の周波 数を変換し, 周波数変換後の前記合成器の出力信号を前記ディジタルプリディス トー夕に与えるダウンコンパ一夕と, 前記ァヅプコンバ一夕の出力信号が入力さ れ, 前記 2つの増幅部の双方の作動状態からいずれか一方の作動状態に移行する 際, いずれか一方の作動状態から双方の作動状態に移行する際, いずれか一方の 増幅部が除去される際, 除去されたいずれか一方の増幅部が取り付けられる際, または, 前記スィツチ部を一方の前置歪補償部から他方の前置歪補償部に切り替 える際に, 利得を定常値よりも下げて前記入力信号を定常時よりも減衰させる利 得制御部と, を有し, 前記スイッチ部は, 前記 2つの送信増幅器の利得制御部の 一方の出力信号を選択し, 選択した出力信号を前記主増幅器に共通に与えるもの である。 図面の簡単な説明
図 1は, 本発明の第 1の実施の形態による送信増幅装置の構成を示すプロヅク 図である。
図 2は, 本発明の第 1の実施の形態における故障発生前後の合成器からの送信 出力の変化を示すグラフである。
図 3は, 本発明の第 2の実施の形態による送信増幅装置の構成を示すプロヅク 図である。
図 4は, 本発明の第 3の実施の形態における故障発生前後の合成器からの送信 出力の変化を示すグラフである。
図 5は, 本発明の第 4の実施の形態による送信増幅装置の構成を示すプロヅク 図である。
図 6は, 本発明の第 4の実施の形態における故障発生前後の合成器からの送信 出力の変^:を示すグラフである。 発明を実施するための最良の形態
<第 1の実施の形態 >
図 1は, 本発明の第 1の実施の形態による送信増幅装置 1 0 0の構成を示すブ ロック図である。 この送信増幅装置 1 0 0は, たとえば移動通信システムの基地 局に設けられ, 移動通信端末への送信信号を増幅するために使用される。
送信増幅装置 1 0 0は, 送信増幅器 1および 2 , スイッチ (SW) 3, ならび に合成器 4を有する。
送信増幅器 1は, 変調部 1 0 , 利得制御部 1 5, 主増幅器 (AMP) 1 6 , お よび故障検出部 1 7を有する。 変調部 1 0は, ディジタルプリディスト一夕 (D PD) 11, 直交変調器(QMOD) 12, アップコンパ一夕 (UCONV) 1 3, およびダウンコンパ一夕 (DCONV) 14を有する。 送信増幅器 1のこれ らの構成要素は, たとえば 1つの回路ボード (カード) やパッケージ等に一体ィ匕 されている。
送信増幅器 2は, 送信増幅器 1と同様の構成を有し, 変調部 20 , 利得制御部 25,主増幅器 (AMP) 26, および故障検出部 27を有し, 変調部 20は, DPD21, QMOD 22, UCONV23, および D C ONV 24を有する。 送信増幅器 2のこれらの構成要素も, 1つの回路ボード (カード) やパッケージ 等に一体化されている。
この送信増幅装置 100では, 変調部 10および 20のうち選択された側 (現 用側) からの信号が現用側の利得制御部 15または 25を介して SW3に与えら れ, SW3から 2つの AMP 16および 26に供給される。 2つの AMP 16お よび 26は, SW3から与えられた信号をそれそれ増幅し, 増幅された信号を合 成器 4に出力する。合成器 4は, AMP16および 26からの 2つの信号を合成 し, アンテナ等に出力し, 送信する。 以下, 送信増幅装置 100の各構成要素お よび動作について詳述する。
送信増幅器 1および 2には, AMP 16および 26によってそれそれ増幅され 送信されるべき信号 (送信信号) が, 図示しない前段の装置から共通に入力され る。 この送信信号は, 変調部 10および 20にそれそれ与えられる。
DPD 11(21) (小括弧内の符号は送信増幅器 2またはその構成要素の符号 を示す。以下同じ。)には,図示しない前段の装置からの送信信号と, DCONV 14 (24) からのフィードバック信号とが入力される。
送信信号は,たとえば移動通信端末に送信される信号(音声信号,データ信号, 画像信号, 制御信号等) であり, 中間周波数 (IF) のディジタル信号 (同相成 分 I信号および直交成分 Q信号) である。 フィードバック信号は, 合成器 4の無 線周波数 (RF)のアナログ出力信号が, DCONV14 (24) により中間周 波数に変換 (ダウンコンバート) されるとともに, ディジタル信号に変換(A/ D変換) されたものである。
DPD 11 (21) は, 合成器 4の出力信号に含まれる歪成分を補償するため の歪補償値を格納した歪補償テーブルと, 歪補償テ一プルの歪補償値を送信信号 に加算するための加算器とを有する。 そして, DPD 11 (21) は, 送信信号 の電力値に対応した歪補償値 (歪予測値) を送信信号に付加して, 出力する。合 成器 4の出力信号に含まれる歪成分は, 送信増幅器 1および 2の双方に故障が発 生していない状態(以下「正常状態」 という。) においては, AMP 16および 2 6において付加され, 送信増幅器 1または 2の一方に故障が発生した状態 (以下 「故障状態」 という。) においては, AMP 16および 26のうち,故障の発生し ていない側の AMPのみにおいて付加される。
歪補償値は, DPD11 (21) により, 送信信号およびフィードバック信号 (たとえば送信信号とフィ一ドバック信号との差分) に基づいて求められる。 こ のため, 送信増幅装置 100が作動を開始してから, AMP 16および/または 26の増幅特性に応じた適切な歪補償値が求まり, 合成器 4の出力信号に含まれ る歪成分が歪補償値により打ち消されて許容範囲内に収束するまでには, 所定の 時間を要する。 同様にして, 正常状態から故障状態に移行した時や故障状態から 正常状態に復帰した時も , 適切な歪補償値が求まり, 歪成分が歪補償値により打 ち消されて許容範囲内に収束するまでには, 所定の時間を要する。
QMOD 12 (22) は, DPD11 ( 21 ) の出力信号 ( I信号および Q信 号) を直交変調し, 直交変調後の信号を UCONV13 (23) に与える。 UC ONV13 (23) は, QMOD12 ( 22 ) から与えられたディジタル信号を アナログ信号に変換するとともに, このアナログ信号の周波数を中間周波数から 無線周波数に周波数変換 (アップコンバート) する。 無線周波数に変換されたァ ナログ信号は, 利得制御部 15 (25) に与えられる。 なお, ディジタル信号を アナログ信号に変換する機能 (D/A変 f嫌能) は, QMOD 12 (22)が有 していてもよい。
利得制御部 15 (25) は, 可変減衰器を有し, UCONV13 (23) から のアナログ信号のレベル(電力)を,設定された利得(減衰量)により減衰させ, 減衰後のアナログ信号を SW3に与える。この利得制御部 15 (25)の利得は, 正常状態では, 定常値としてたとえば OdBに設定されている。 したがって, 正 常状態では, 変調部 10 (20) からのアナログ信号は, 減衰も増幅も行われな い。
一方,図示しない制御装置からの選択信号(後述), または,他方の送信増幅器
2 {1} (中括弧内の符号は送信増幅器 1またはその構成要素の符号を示す。以下 同じ。)の故障検出部 27 {17}からの故障検出信号(後述) を受信すると,利 得制御部 15 (25) は, 利得を定常値から所定の値 Gに下げ, 変調部 10 (2 0) からのアナログ信号の電力を減衰させて SW3に与える。
故障検出部 17 (27) は, 対応する送信増幅器 1 (2) を監視して, その故 障を検出し,故障検出信号を他方の送信増幅器 2 {1}の利得制御部 25 {15} および制御装置(図示略)に与える。故障には, 変調部 10 (20),利得制御部 15 (25), および AMP 16 ( 26 )のすベての故障もあるし, これらの少な くとも 1つの故障もあり, 故障検出部 17 (27) は, これらいずれの故障も検 出する。 故障検出時の送信増幅装置 100の動作については, 後に詳述する。 なお, 故障は, たとえば, 変調部 10 (20) の入力レベル (電力値) と AM P 16 (26) の出カレペル (電力値) とを監視し, これらのレベル比が AMP 16 (26)の増幅率(利得)の値と異なることにより検出することもできるし, AMP 16 (26)の特定のトランジスタの電圧を監視し, 該電圧が異常な値と なることにより検出することもできる。
S W 3には, 図示しない制御装置から, 利得制御部 15および 25の一方の出 力信号の選択を指示する選択信号が入力される。 SW3は, 選択信号に従って利 得制御部 15または 25の一方からの出力信号を選択し, 2つの AMP 16およ び 26に共通に供給する。
なお, SW3は, たとえばリレーにより構成することができる。 また, SW3 を, 利得制御部 15および 25から与えられる信号を合成する合成器により構成 するとともに, 利得制御部 15および 25のうち選択されない側 (非現用側) の 電力供給を停止 (電源オフ) してもよい。 これによつても, 電力供給が停止され た側の利得制御部からの信号は SW (合成器) 3に供給されず, 現用側の利得制 御部からの信号のみが SW 3に供給されるので, 利得制御部 15および 25のう ち現用側の信号を AMP 16および 26に共通に供給することができる。 なお, 電力供給の停止は制御装置によって行われる。 また, 電力供給を停止するのは, 変調部 1 0または 2 0であってもよいし, その構成要素の U C O NV 1 3または 2 3のみであってもよい。
AMP 1 6 ( 2 6 ) は, SW 3から供給される信号を増幅し, 合成器 4に与え る。 合成器 4は, AMP 1 6および 2 6からの信号を合成して出力する。 合成さ れた信号は, たとえば, 図示しないアンテナから電波により移動通信端末に送信 されるとともに,その一部は D C O NV 1 4および 2 4にフィードバックされる。 次に, このような構成を有する送信増幅装置 1 0 0の動作について説明する。 正常状態では, 送信増幅器 1および 2に入力された送信信号は, 変調部 1 0お よび 2 0により前置歪補償 (プリディスト一ト) および変調され, 利得制御部 1 5および 2 5にそれそれ与えられる。 利得制御部 1 5および 2 5の利得は定常値 として O d Bに設定されているので, 変調部 1 0および 2 0からの信号は, 減衰 も増幅もされることなく, SW 3に与えられる。 SW 3は, 制御装置の選択信号 に基づいて, 利得制御部 1 5または 2 5のうち現用側からの信号を選択して, 2 つの AMP 1 6および 2 6に供給する。 AMP 1 6および 2 6に供給された信号 は, それぞれ増幅され, 合成器 4によって合成された後, 図示しないアンテナか ら送信される。
このように, 正常状態では, 送信信号は 2つの AMP 1 6および 2 6により増 幅されるので, 増幅器が 1つの場合と比較して実質的に 2倍の送信出力が得られ る。 また, AM P 1 6および 2 6により, 歪成分が出力信号に付加される場合が あるが, 変調部 1 0または 2 0による前置歪補償によって打ち消されるので, 結 果として, 歪のない出力信号が得られる。
なお,変調部 1 0および 2 0のうち非現用側の電力供給が停止される場合には, 非現用側で, 信号の前置歪補償および変調が行われないのは言うまでもない。 一方, 故障状態では, 故障が発生した側の送信増幅器全体が停止 (電力供給が 停止) され, あるいは, 停止後, 交換を行うために基地局を構成する装置等から 取り外される。 そして, 故障の発生していない側の送信増幅器のみによって, 送 信信号の前置歪補償, 変調, および増幅が行われる。
故障の発生には,送信増幅器 1および 2のうち現用側に故障が発生する場合 (第 1のケース) と, 非現用側に故障が発生する場合 (第 2のケース) とがある。 送信増幅器 1が現用側である場合に, 第 1のケースでは, 故障を検出した故障 検出部 (すなわち現用側の故障検出部) 1 7が, 故障検出信号を他方の利得制御 部 (すなわち非現用側の利得制御部) 2 5および制御装置 (図示略) に与える。 利得制御部 2 5は, 故障検出信号の受信後から所定の時間 Tの間, 利得を定常 値から所定の値 Gに下げる (利得低下制御)。また,制御装置は,故障が検出され た側の送信増幅器 1全体を停止 (たとえば電力供給を停止) させるとともに, S W 3に, 送信増幅器 2の利得制御部 2 5からの信号を選択することを指示する選 択信号を与える。 なお, 非現用側の変調部 2 0の電力供給が停止されている場合 には, 制御装置は変調部 2 0への電力供給を開始する。
これにより, 現用側と非現用側が切り替えられ, 変調部 2 0により前置補償お よび変調された信号が, 利得制御部 2 5により減衰された後, S W 3を介して A M P 2 6 (AMP 1 6は停止)に与えられ,増幅される。所定の時間 Tの経過後, 利得制御部 2 5は利得の値を定常値に戻す (利得戻し制御)。
第 2のケースでは, 故障を検出した非現用側の故障制御部 2 7は, 故障検出信 号を利得制御部 1 5および制御装置に与える。利得制御部 1 5は, 故障検出信号 の受信後から所定の時間 Tの間,利得を定常値よりも低い所定の値 Gに設定する。 また, 制御装置は, 送信増幅器 2全体を停止させるが, 故障が発生していない送 信増幅器 1はもともと現用側であるので, S W 3に選択信号を与えない。
これにより, 変調部 1 0により前置補償および変調された信号は, 利得制御部 1 5により減衰され, AMP 1 6 (AMP 2 6は停止)に与えられ,増幅される。 所定の時間 Tの経過後, 利得制御部 2 5は利得を定常値に戻す。
なお, 送信増幅器 2が現用側である場合の第 1および第 2のケースでも, 送信 増幅器 1と 2とが入れ替わるだけで, 同様の処理が実行される。 また, 非現用側 の変調部等への電力供給が停止される場合には, 現用側に切り替えられることに よって, 制御装置によって電力供給が開始されることとなる。
このように, 故障発生直後に現用側の利得制御部 1 5または 2 5の利得を定常 値よりも下げることにより, 故障発生直後の合成器 4の出力信号に含まれる歪成 分を抑制することができる。
すなわち, 故障発生時には, 正常状態における 2つの AM P 1 6および 2 6に よる増幅状態から AMP 1 6または 2 6の一方による増幅状態に移行し, 増幅器 の増幅特性が変化したのと等価な事態が発生する。 これにより, 2つの AMP 1 6および 2 6による増幅状態において使用された歪補償値では, 歪成分を十分に 補償できなくなる。 また, 第 1のケースにおいて, 非現用側の変調部 2 0の電力 供給を停止する制御が行われている場合には, 非現用側から現用側に切り替えら れる変調部 2 0は, 故障発生前は作動していないので, 歪補償値そのものを有し ない。 したがって, 故障発生直後において, 利得を下げることなく信号の増幅を 行うと,合成器 4の出力信号に A M Pの歪成分が付加され,この歪成分によって, たとえば隣接するチャネルにノイズが発生するなどの事態が生じる。 一方, 利得 値が所定の値 Gに下げられることにより, このような事態を回避できる。
したがって, 利得値が下げられる 「所定の値 G」 は, 好ましくは, 作動状態に ある AMP 1 6または 2 6が増幅特性の線形領域で増幅作用を行うことができる 値である。 ただし, 移動通信端末との通信が切断されない送信出力を得る必要も あることから, 移動通信端末との通信が切断されない送信出力を得ることができ る値で, かつ, AMP 1 6または 2 6の歪成分により隣接したチャネルに与える ノィズが許容される範囲の値(たとえば数 d B程度)である。その具体的な値は, 試験, 実験, シミュレーション等により求められ, 利得制御部 1 5および 2 5に あらかじめ設定される。
また, 利得値が所定の値 Gに下げられている 「所定の時間 T」 は, 1つの AM Pによる作動状態において, 現用側の D P D 1 1または 2 1が歪補償値を適切な 値に設定でき, AMPにより付加される歪成分が許容範囲内に収束するまでの時 間である。その具体的な値は,試験,実験,シミュレーション等により求められ, 利得制御部 1 5および 2 5にあらかじめ設定される。
図 2は, 故障発生前後の合成器 4からの送信出力 (電力値) の変化を示すグラ フである。故障発生直後,合成器 4からの送信出力が一定の値(たとえば 6 d B) だけ低下している。 これは, 合成器 4からの出力信号がアンテナ側だけでなく, 故障した送信増幅器 1または 2側にも一部流出することにより生じる現象である。 その後, 現用側の利得制御部 1 5または 2 5の利得が所定の値 Gに下げられるこ とにより, 送信出力が減少している。 所定の時間の経過後, 利得制御部 1 5また は 2 5の利得は定常値に戻されるので, 送信出力は, 故障発生直後の 6 d B低下 した状態に戻っている。
故障状態の送信増幅器 1または 2を基地局を構成する装置等から取り外す時に も, 取り外し直後から所定の時間 Tの間, 現用側の利得制御部 1 5または 2 5の 利得は, 所定の値 Gに下げられる。故障が発生した送信増幅器の電力供給が停止 されることにより, 合成器 4からの出力信号のレベルは, 前述したたとえば 6 d B低下するが, この送信増幅器を取り外すことによって, 合成器 4からの出力信 号のレベルの低下量が小さくなり (たとえば 3 d B ), これによつても, AMPの 増幅特性が変ィ匕したのと等価な事態が生じるからである。 したがって, 取り外し た際にも, 歪成分が発生する場合があり, この歪成分が歪補償値によって補償さ れ打ち消されるまでの間, 変調部からの信号を減衰させることが好ましい。 また, 取り外し後, 新たな送信増幅器が取り付けられる時にも, 利得制御部に 対して同様の利得制御 (利得低下制御および利得戻し制御) が行われる。新たな 送信増幅器が取り付けられることにより, 取り外した場合と逆の状況となり, A M Pの.増幅特性の変化と等価な事態が生じるからである。
さらに, 取り付け後, 取り付けられた送信増幅器に電力が供給され, 1つの A MPによる増幅状態から 2つの AMPによる増幅状態に移行した際にも, 利得制 御部に対して同様の利得制御が行われる。 この移行時にも, 増幅特性の変化と等 価な事態が発生するからである。
なお, この送信増幅器の取り外しおよび取り付けは制御装置 (図示略) によつ て検出され, 利得制御部の利得制御は制御装置によって行われる。 この取り外し および取り付けの検出は, たとえば, 送信増幅器に接続される所定の端子の電位 の変化(取り付けられているときは接地電位,取り外されることにより開放電位) を監視することによって行うことができる。 また, 取り付けられた送信増幅器へ の電源投入時の利得制御も制御装置によって行われる。
正常状態においても現用側と非現用側との切り替えが行われる場合において, 非現用側の変調部の電力供給が停止される運用が行われているときは, 切り替え 時に, 非現用側から現用側にされる利得制御部の利得を所定の値に下げることが 好ましい。切り替え前には, 変調部への電力供給が停止されているので, 変調部 は切り替え前の歪補償値を有しないからである。
このように, 本発明の第 1の実施の形態による送信増幅装置 1 0 0によると, 故障発生時や送信増幅器の取り外し時, 正常時における切り替え時の歪成分の発 生を抑制することができる。
<第 2の実施の形態 >
図 3は, 本発明の第 2の実施の形態による送信増幅装置 2 0 0の構成を示すブ ロック図である。 前述した第 1の実施の形態による送信増幅装置 1 0 0と同じ構 成要素には同じ符号を付し, その説明を省略することとする。
送信増幅装置 2 0 0は, 送信増幅装置 1 0 0の構成要素に加えて, 送信増幅器 1には電力計測部 1 8を有し,送信増幅器 2には電力計測部 2 8を有する。また, 利得制御部 1 9および 2 9は, 送信増幅装置 1 0 0の利得制御部 1 5および 2 5 と一部異なる機能を有するので, 異なる符合を付している。
電力計測部 1 8 ( 2 8 )は,変調部 1 0 ( 2 0 )に入力される信号の電力値(入 カレベル) を求めし, 求めた電力値を利得制御部 1 9 ( 2 9 ) に与える。
利得制御部 1 9 ( 2 9 ) は, 利得制御部 1 5 ( 2 5 ) と同様に, 故障検出時, 送信増幅器の取り外し Z取り付け時, 取り付けた送信増幅器への電源投入時等に 利得制御(利得低下制御および利得戻し制御)を行うが,利得制御部 1 5 ( 2 5 ) と異なる点は, 電力計測部 1 8 ( 2 8 ) から与えられる電力値に応じて利得制御 を行う点である。
具体的な利得制御には, 以下の第 1および第 2の方法がある。
第 1の方法は, 故障検出時, 送信増幅器の取り外し Z取り付け時, 取り付けた 送信増幅器への電源投入時等の電力計測部 1 8 ( 2 8 ) の電力値が所定の閾値以 下の場合には利得を下げず, 電力値が所定の閾値より大きい場合には利得を上げ る方法である。 この所定の閾値は, たとえば, AMP 1 6および/または 2 6の 線形領域と非線形領域との境界の入力レベルとされ, 利得制御部 1 5および 2 5 にあらかじめ設定される。
これにより, AMPが線形領域で増幅作用を行うレベルの信号は減衰されず, AMPが非線形領域で増幅作用を行うレベルの信号は減衰される。 したがって, A M Pにより歪成分が付加される非線形領域では, 信号の電力を減衰させること により, 歪成分を抑制することができる一方, AMPにより歪成分が付加されな い線形領域では, 信号の電力を減衰させることなく信号を送信できる。 これによ り, 送信出力レベルの変動をできるだけ少なくすることができ, 安定した通信状 態を維持することができる。
第 2の方法は, 故障検出時, 送信増幅器の取り外し/取り付け時, 取り付けた 送信増幅器への電源投入時等の送信電力に応じて利得低下量 (減衰量) を可変に する方法である。 たとえば, 電力計測部 1 8 ( 2 8 ) の電力値が AMPの非線形 領域の入力レベルである場合には, 利得低下量は電力値に比例した値とされ, 電 力値が線形領域の入カレペルである場合には, 利得低下量は 0 (すなわち減衰さ せない。) とされる。
これにより, 歪成分の大小に応じて減衰量が大小され, より効果的な歪成分の 抑制が可能となるとともに, 送信出力レベルの変動を最低限にすることができ, 安定した通信状態を維持することができる。
なお, 利得制御部 1 5および 2 5は, 電力値に比例した利得低下量を, あらか じめ設定された計算式により求めることもできるし, あらかじめ設定された, 電 力値と利得低下量とを対応させたテ一プルにより求めることもできる。
<第 3の実施の形態 >
上述した第 1および第 2の実施の形態において,利得低下制御後, 利得を徐々 に定常値に戻すことができる。
図 4は, 本発明の第 3の実施の形態における故障発生前後の合成器 4からの送 信出力 (電力値) の変化を示すグラフである。故障発生直後, 図 2のグラフと同 様に, 送信出力は, 一定値 (たとえば 6 d B')低下し, その後, 現用側の利得制 御部 1 5または 2 5による利得低下制御により, 送信電力は低下している。利得 制御部 1 5または 2 5は, 利得低下制御から所定の時間の経過後, 利得を直ちに 定常値に戻すのではなく, 一定の時間をかけてかけて徐々に戻す。
これにより,利得を元に戻す際の送信信号のスぺクトラムの拡散が抑制される。 その結果, 通信の安定性を維持でき, また, 通信品質の低下を防止できる。
<第 4の実施の形態 >
利得低下制御後, 利得を段階的に元に戻すこともできる。 図 5は, 利得を段階 的に戻す本発明の第 4の実施の形態による送信増幅装置 300の構成を示すプロ ック図である。 前述した第 1の実施の形態による送信増幅装置 100と同じ構成 要素には同じ符号を付し, その説明を省略することとする。
送信増幅装置 300の DPD 11 aおよび 21 a, ならびに, 利得制御部 15 aおよび 25 aは, 送信増幅装置 100の対応する構成要素と一部異なる機能を 有するので, 異なる符合を付している。
DPD 11 a (21 a) は, DPD 11 (21) と同様に前置補償を行うとと もに, 利得低下制御後, 利得を段階的に元に戻す利得戻し制御の際に, 合成器 4 から与えられるフィ一ドバック信号に含まれる歪成分が所定のレベル以下に収束 したかどうかを判断し, 所定のレベル以下に収束した場合には, 収束したことを 通知する信号 (収束信号) を利得制御部 15 a (25 a) に与える。
利得制御部 15a (25 a) は, 利得制御部 15 (25) と同様に, 利得低下 制御を行うとともに, 利得を定常値に戻す利得戻し制御の際に, 利得を段階的に 元に戻す。 この利得を段階的に戻すトリガが収束信号の入力である。 すなわち, 収束信号が入力されるごとに, 利得制御部 15 a (25 a) は, あらかじめ設定 された所定の量ずつ, 利得を定常値に段階的に近づけてゆく。
利得低下制御による送信出力の低下量を P (P>0) とし, P÷n = p (nは 2以上の整数で) とすると, 利得制御部 15 a (25 a) は, 利得低下制御から 所定の時間経過後, 送信出力が pだけ増加するように利得を上げる (すなわち定 常値に近づける)。これにより,合成器 4の出力信号に含まれる AMP 16および Zまたは 26による歪成分が僅かに増大し, DPD 11 a (21 a) は適正な歪 補償値を求める。 これにより, 歪成分が徐々に減少する。
DPD 11 a (21 a) は, 歪成分が所定のレベル以下に収束すると, 収束信 号を利得制御部 15 a ( 25 a)に与える。この収束信号の入力をトリガとして, 利得制御部 15 a (25 a) は, 再び送信出力が pだけ増加するように利得を上 昇させる。 このような処理が, 利得が定常値に戻るまで繰り返される。
図 6は, 第 4の実施の形態における故障発生前後の合成器 4からの送信出力の 変化を示すグラフである。 利得低下制御から所定の時間 Tの経過後, 利得が段階 的に戻されるので,それに伴い合成器 4からの送信出力も段階的に上昇している。 このように, 本実施の形態によると, 歪制御の収束を確認しながら利得を戻す ので, 通信品質 (電波の品質) の低下を防止することができる。
なお, nの値は, 送信出力を pだけ増加させることにより発生する歪成分によ つて隣接チャネルに与えるノイズが許容範囲内に収まる値とされることが好まし い。 また, 一定量 pずつ送信電力を増加させるのではなく, p i , 2 , ···, p nとそれそれ異なる量ずつ送信電力を増加させてもよい。
この段階的な利得戻し制御は, 第 2の実施の形態による送信増幅装置 2 0 0に も適用することができる。
<他の実施の形態 >
これまで述べた実施の形態では, 送信増幅器 1および 2に利得制御部 1 5およ び 2 5がそれぞれ設けられているが, これら 2つの利得制御部 1 5および 2 5の 代わりに 1つの利得制御部を S W 5の出力側に設けることもできる。
また, 第 2の実施の形態では, 送信増幅器 1および 2の入力信号をそれそれ計 測する電力計測部 1 8および 2 8が設けられているが, これらの電力計測部 1 8 および 2 8の代わりに AMP 1 6および 2 6の出力信号の電力を計測する電力計 測部が設けられてもよい。 そして, 利得制御部 1 9および 2 9は, 出力信号の電 力に応じて利得制御を行ってもよい。 産業上の利用の可能性
本発明は, 信号を増幅する増幅装置に利用することができ, たとえば, 移動通 信システムの基地局において, 移動通信端末への送信信号を増幅する増幅装置に 利用することができる。
本発明によると, 前記 2つの増幅器の双方の作動状態からいずれか一方の作動 状態に移行する際, いずれか一方の作動状態から双方の作動状態に移行する際, いずれか一方の増幅器が除去される際, 除去されたいずれか一方の増幅器が取り 付けられる際,または,一方の変調部(前置補償器を含む。)から他方の変調部(前 置補償器を含む。)に切り替える際の過渡状態において,増幅器の出力信号に含ま れる歪成分を抑制することができる。

Claims

請求の範囲
1 . 共通に入力信号が入力され, それそれから増幅された信号を出力する 2つの 増幅器と,
前記 2つの増幅器の出力信号を合成して出力する合成器と,
前記合成器の出力信号に基づいて歪補償成分を求め, 求めた歪補償成分に基 づいて前記入力信号に歪補償を行う前置歪補償部と,
前記 2つの増幅器の双方の作動状態からいずれか一方の作動状態に移行する 際, いずれか一方の作動状態から双方の作動状態に移行する際, いずれか一方 の増幅器が除去される際, または, 除去されたいずれか一方の増幅器が取り付 けられる際に, 利得を定常値よりも下げて前記入力信号を定常時よりも減衰さ せる利得制御部と,
を有する増幅装置。
2 . 請求の範囲第 1項において,
前記利得制御部は, 前記 2つの増幅器の双方の作動状態からいずれか一方の 作動状態に移行する際, いずれか一方の作動状態から双方の作動状態に移行す る際, いずれか一方の増幅器が除去される際, もしくは, 除去された増幅器が 取り付けられる際の前記入力信号の電力, または, 前記合成器の出力信号の電 力が所定の値より大きい場合に, 前記入力信号を定常時よりも減衰させる,
3 . 請求の範囲第 2項において,
前記所定の値は, 作動状態にある前記増幅器の増幅特性の線形領域と非線形 領域との境界の入力信号の電力値である,
4 . 請求の範囲第 1項において,
前記利得制御部は, 前記 2つの増幅器の双方の作動状態からいずれか一方の 作動状態に移行する際, いずれか一方の作動状態から双方の作動状態に移行す る際, いずれか一方の増幅器が除去される際, もしくは, 除去された増幅器が 取り付けられる際の前記入力信号の電力, または, 前記合成器の出力信号の電 力に応じて前記利得を下げる量を変化させる,
5 . 請求の範囲第 1項において,
前記利得制御部は, 前記利得を前記定常値よりも下げた後, 所定の時間の経 過後, 前記利得を前記定常値に戻す,
6 . 請求の範囲第 5項において,
前記利得制御部は, 前記利得を徐々に前記定常値に戻す, 増幅装置。
7 . 請求の範囲第 5項において,
前記利得制御部は, 前記利得を, 前記下げた値と前記定常との差分よりも小 さな所定の値だけ戻した後, 前記合成器の出力信号に含まれる歪成分が許容範 囲内に収束すると, 再び前記利得を所定の値だけ戻し, これを複数回繰り返す ことにより, 前記利得を前記定常値に戻す,
8 . 請求の範囲第 5項において,
前記所定の時間は, 前記前置歪補償部による歪補償により, 前記合成器の出 力信号に含まれる歪成分が許容範囲内に収束する時間である,
9 . 請求の範囲第 1項において,
前記 2つの増幅器の故障をそれそれ検出し, 該故障を検出すると, 故障検出 信号を前記利得制御部にそれそれ与える 2つの故障検出部をさらに有し, 前記利得制御部は, 前記故障検出信号を受信すると, 前記利得を定常値より も下げる,
1 0 . 共通に入力信号が入力され, それぞれから増幅された信号を出力する 2つ の増幅器と,
前記 2つの増幅器の出力信号を合成して出力する合成器と,
前記合成器の出力信号に基づいて歪補償成分を求め, 求めた歪補償成分に基 づいて前記入力信号に歪補償を行う 2つの前置歪補償部と,
前記 2つの歪補償部の出力信号の一方を選択し, 選択した出力信号を前記 2 つの増幅器に共通に供給するスイッチ部と,
前記スィッチ部を一方の前置歪補償部から他方の前置歪補償部に切り替える 際に, 利得を定常値よりも下げて前記 2つの増幅器に入力される信号を定常時 よりも減衰させる利得制御部と,
を有する増幅装置。
1 1 . 2つの増幅部と, 前記 2つの増幅部の出力信号を合成して出力する合成器 と, スィツチ咅 15とを有し,
前記 2つの増幅部のそれそれは,
主増幅器と,
前記主増幅器の入力側に置かれ, 前記主増幅器の歪予測値を生成して入力信 号に加算するディジタルプリディスト一夕と,
前記ディジ夕ルプリディスト一夕の出力信号を直交変調する直交変調器と, 前記直交変調器の出力信号の周波数を変換するアツプコンバ一夕と, 前記合成器の出力信号の周波数を変換し, 周波数変換後の前記合成器の出力 信号を前記ディジ夕ルプリディストー夕に与えるダウンコンパ一夕と, 前記ァップコンバ一夕の出力信号が入力され, 前記 2つの増幅部の双方の作 動状態から t、ずれか一方の作動状態に移行する際, いずれか一方の作動状態か ら双方の作動状態に移行する際, いずれか一方の増幅部が除去される際, 除去 されたいずれか一方の増幅部が取り付けられる際, または, 前記スィッチ部を 一方の前置歪補償部から他方の前置歪補償部に切り替える際に, 利得を定常値 よりも下げて前記入力信号を定常時よりも減衰させる利得制御部と, を有し,
前記スィツチ部は, 前記 2つの送信増幅器の利得制御部の一方の出力信号を 選択し, 選択した出力信号を前記主増幅器に共通に与える,
PCT/JP2002/005341 2002-05-31 2002-05-31 増幅装置 WO2003103137A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2002/005341 WO2003103137A1 (ja) 2002-05-31 2002-05-31 増幅装置
JP2004510108A JP4083167B2 (ja) 2002-05-31 2002-05-31 増幅装置
US10/999,207 US7133466B2 (en) 2002-05-31 2004-11-24 Amplifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/005341 WO2003103137A1 (ja) 2002-05-31 2002-05-31 増幅装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/999,207 Continuation US7133466B2 (en) 2002-05-31 2004-11-24 Amplifying apparatus

Publications (1)

Publication Number Publication Date
WO2003103137A1 true WO2003103137A1 (ja) 2003-12-11

Family

ID=29606637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005341 WO2003103137A1 (ja) 2002-05-31 2002-05-31 増幅装置

Country Status (3)

Country Link
US (1) US7133466B2 (ja)
JP (1) JP4083167B2 (ja)
WO (1) WO2003103137A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060301A (ja) * 2004-08-17 2006-03-02 Fujitsu Ltd 増幅器

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327803B2 (en) 2004-10-22 2008-02-05 Parkervision, Inc. Systems and methods for vector power amplification
US7355470B2 (en) 2006-04-24 2008-04-08 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for amplifier class transitioning
US8013675B2 (en) 2007-06-19 2011-09-06 Parkervision, Inc. Combiner-less multiple input single output (MISO) amplification with blended control
US7911272B2 (en) 2007-06-19 2011-03-22 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including blended control embodiments
US8031804B2 (en) 2006-04-24 2011-10-04 Parkervision, Inc. Systems and methods of RF tower transmission, modulation, and amplification, including embodiments for compensating for waveform distortion
WO2008144017A1 (en) * 2007-05-18 2008-11-27 Parkervision, Inc. Systems and methods of rf power transmission, modulation, and amplification
FI20075586A0 (fi) * 2007-08-24 2007-08-24 Nokia Corp Radiolähettimen signaalivahvistinrakenne
WO2009145887A1 (en) 2008-05-27 2009-12-03 Parkervision, Inc. Systems and methods of rf power transmission, modulation, and amplification
US7985994B2 (en) * 2008-09-29 2011-07-26 Seagate Technology Llc Flux-closed STRAM with electronically reflective insulative spacer
KR20140026458A (ko) 2011-04-08 2014-03-05 파커비전, 인크. Rf 전력 송신, 변조 및 증폭 시스템들 및 방법들
KR20140034895A (ko) 2011-06-02 2014-03-20 파커비전, 인크. 안테나 제어
WO2015042142A1 (en) 2013-09-17 2015-03-26 Parkervision, Inc. Method, apparatus and system for rendering an information bearing function of time
US9231530B1 (en) * 2015-01-08 2016-01-05 Freescale Semiconductor, Inc. System for calibrating power amplifier
EP3236584B8 (en) * 2016-04-18 2020-08-26 Rohde & Schwarz GmbH & Co. KG An amplifier device for high frequency signals
US10218318B2 (en) * 2017-07-20 2019-02-26 Arris Enterprises Llc Amplifier with digital linearization and multiple output stages
JP2020141379A (ja) * 2019-03-01 2020-09-03 富士通株式会社 歪み補償装置及び歪み補償方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145357A (ja) * 1991-11-20 1993-06-11 Nec Corp 電力増幅器
JPH1022755A (ja) * 1996-07-04 1998-01-23 Hitachi Ltd 自動利得制御増幅器、受信回路および受信回路を用いた携帯電話機
JPH10233629A (ja) * 1997-02-18 1998-09-02 Kokusai Electric Co Ltd 入力制限機能付き歪補償増幅器
JP2000077951A (ja) * 1998-08-31 2000-03-14 Matsushita Electric Ind Co Ltd 電力増幅器
JP2000508149A (ja) * 1996-12-30 2000-06-27 サムソン エレクトロニクス カンパニー リミテッド 合成線形増幅装置及びその制御方法
JP2000201040A (ja) * 1999-01-08 2000-07-18 Matsushita Electric Ind Co Ltd 出力増幅回路
JP2001024457A (ja) * 1999-07-02 2001-01-26 Toshiba Corp 自動利得制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3708232B2 (ja) * 1995-10-30 2005-10-19 富士通株式会社 歪補償回路を有する送信装置
JP2002223130A (ja) * 2001-01-25 2002-08-09 Fujitsu Ltd 送信装置および送信方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145357A (ja) * 1991-11-20 1993-06-11 Nec Corp 電力増幅器
JPH1022755A (ja) * 1996-07-04 1998-01-23 Hitachi Ltd 自動利得制御増幅器、受信回路および受信回路を用いた携帯電話機
JP2000508149A (ja) * 1996-12-30 2000-06-27 サムソン エレクトロニクス カンパニー リミテッド 合成線形増幅装置及びその制御方法
JPH10233629A (ja) * 1997-02-18 1998-09-02 Kokusai Electric Co Ltd 入力制限機能付き歪補償増幅器
JP2000077951A (ja) * 1998-08-31 2000-03-14 Matsushita Electric Ind Co Ltd 電力増幅器
JP2000201040A (ja) * 1999-01-08 2000-07-18 Matsushita Electric Ind Co Ltd 出力増幅回路
JP2001024457A (ja) * 1999-07-02 2001-01-26 Toshiba Corp 自動利得制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060301A (ja) * 2004-08-17 2006-03-02 Fujitsu Ltd 増幅器
JP4539225B2 (ja) * 2004-08-17 2010-09-08 富士通株式会社 増幅器

Also Published As

Publication number Publication date
JP4083167B2 (ja) 2008-04-30
JPWO2003103137A1 (ja) 2005-10-06
US20050141640A1 (en) 2005-06-30
US7133466B2 (en) 2006-11-07

Similar Documents

Publication Publication Date Title
JP4083167B2 (ja) 増幅装置
US7933570B2 (en) Power amplifier controller circuit
JP3823296B2 (ja) 歪み補償機能を有する無線機
JP4977784B2 (ja) ポーラ送信機を有する電力増幅器コントローラ
US8433263B2 (en) Wireless communication unit, integrated circuit and method of power control of a power amplifier therefor
US7689180B2 (en) Method and apparatus for a cartesian error feedback circuit to correct distortion within a power amplifier
JP4849572B2 (ja) Rf電力増幅器コントローラ回路
KR100786456B1 (ko) 피드 포워드 방식 왜곡 보상 증폭 장치 및 어댑티브프리디스토션 방식 왜곡 보상 증폭 장치
WO2004030206A1 (ja) 増幅装置
JP2008539601A (ja) ポーラ変調送信回路及び通信機器
US20080290939A1 (en) Method and apparatus for distortion correction of RF amplifiers
JPWO2010076845A1 (ja) ポーラ変調装置及び通信機器
EP1353438B1 (en) Feedforward amplifier, communication apparatus, feedforward amplifying method, program and medium
JP5040924B2 (ja) 歪補償装置
JP2008172511A (ja) 歪補償増幅装置
JP5122361B2 (ja) 歪み補償機能を備えた増幅装置
JP2005012419A (ja) 増幅装置
WO2009096040A1 (en) Distortion compensation device
GB2368214A (en) Cartesian or polar loop or envelope elimination/restoration amplifier linearization with correction of timing errors between phase and amplitude components
JP4312626B2 (ja) フィードフォワード型歪補償増幅器
JP4230649B2 (ja) デジタル放送変調信号送出システムの現用・予備非線形補償装置及び現用・予備非線形補償方法
JPH10233629A (ja) 入力制限機能付き歪補償増幅器
JP4439868B2 (ja) 増幅器
WO2020110298A1 (ja) 送信機
JP2004320185A (ja) 前置歪補償電力増幅装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2004510108

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10999207

Country of ref document: US